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ABSTRACT

Advancements in DNA language models (DNA-LMs) have improved phenotype
prediction from DNA sequences, yet the roles of zygosity and genetic variation
(GV) remain underexplored. In this study we quantify their effects on gene ex-
pression prediction as an example of variation-sensitive phenotype, showing that
baseline models benefit from zygosity- and GV-aware encoding, while DNA-LMs
struggle to utilize them. These findings underscore the need for integrating bi-
ologically meaningful features like zygosity and GV in DNA-LM pretraining to
better capture genetic diversity and improve variant interpretation.

1 INTRODUCTION

Advances in DNA language models (DNA-LMs) have revolutionized the interpretation of genetic se-
quences (Benegas et al., 2025; Sanabria et al., 2024), leveraging natural language processing (NLP)
architectures to predict features such as gene expression and variant effects (Avsec et al., 2021; Bene-
gas et al., 2023). Pretrained models like the Nucleotide-Transformer (NT) (Dalla-Torre et al., 2024)
use masked token prediction to capture sequence patterns but often overlook two critical factors:
genetic variation (GV) and zygosity.

GV reflects genetic diversity, while zygosity describes allele variation at a locus. In diploid organ-
isms, alleles can be homozygous (identical) or heterozygous (different), influencing dominant and
recessive traits (Wilkie, 2018; Saadat & Fellay, 2024b). Current DNA-LMs, primarily trained on ref-
erence genomes, fail to account for population-level diversity and individual zygosity, limiting their
performance in variation-sensitive tasks. While simpler models can encode zygosity effectively,
transformers (Vaswani et al., 2017) lack explicit mechanisms to incorporate this information.

This study investigates the impact of GV and zygosity on gene expression prediction, an exam-
ple of variation-sensitive phenotypes, using DNA-LMs and baseline convolutional neural networks
(CNNs) (O’Shea & Nash, 2015). We demonstrate that CNNs benefit from GV- and zygosity-aware
encodings, whereas DNA-LMs require further optimization to fully leverage this information.

By evaluating the roles of GV and zygosity in training and inference, we propose strategies to en-
hance DNA-LM pretraining for better capturing genetic diversity. These advancements aim to im-
prove DNA-LM performance in phenotype prediction and deepen our understanding of how genetic
variation shapes biological outcomes.

2 METHODS

2.1 DATA

We used the Geuvadis dataset(Lappalainen et al., 2013), which includes phased whole-genome se-
quencing (WGS) and log-scaled gene expression data from lymphoblastoid cell lines (LCLs) of
455 individuals. The human reference genome (hg38), lacking variation and zygosity information,
served as a baseline, with matched expression data generated by averaging gene expression values
across individuals.
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2.2 STUDY DESIGN

To assess the impact of GV and zygosity, we designed a task to predict gene expression from
DNA sequences. Using 1,000 base pair sequences centered on transcription start sites (TSS) for
all protein-coding genes, models were trained on Geuvadis samples with individual-specific gene
expression as outputs. For the reference genome, input sequences were paired with averaged gene
expression values (Figure 1).

Figure 1: Study overview: 1000 bp DNA sequences around TSS are embedded using a DNA encoder, then
used to predict average (reference) or individual (Geuvadis) gene expression via a feedforward neural network.

2.3 DNA ENCODERS

We employed three DNA encoders: a CNN without pretraining, the Nucleotide-Transformer trained
on the reference genome (NTREF), and the Nucleotide-Transformer trained on diverse genomes
from the 1000 Genomes Project (NT1000G). The CNN architecture consisted of three 1D convolu-
tional layers with filter sizes of 4, 8, and 12, each using a kernel size of 5 and padding of 2. Both
NTREF and NT1000G models included 500 million parameters.

For the CNN, reference or single-copy Geuvadis genomes were one-hot encoded, while two-copy
Geuvadis genomes with zygosity information used additive genotype encoding, representing het-
erozygous alleles as 1 and homozygous as 2 (Figure 2).

Figure 2: To train the CNN models, DNA sequences are first encoded using either one-hot encoding (when
using reference or 1 copy of Geuvadis genomes) or additive genotype encoding (when using 2 DNA copies).
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For NTREF and NT1000G, DNA sequences were passed through pretrained models to generate
embeddings. Zygosity was incorporated by concatenating embeddings of positive and negative DNA
strands. (Figure 3).

Figure 3: For the NT-based, we passed the DNA sequences through the respective pretrained models to gen-
erate DNA embeddings. When using 2 DNA copies, we concatenated the embeddings.

2.4 MODEL TRAINING AND EVALUATION

We split the data by chromosomes: chromosome 8 for testing, chromosome 9 for validation, and the
rest for training. The model used a multilayer perceptron (MLP) with a 64-unit hidden layer, trained
for up to 100 epochs with early stopping to prevent overfitting. Prediction accuracy was evaluated
using the Pearson correlation between predicted and observed gene expression levels.

3 RESULTS

3.1 INCLUDING GV AND ZYGOSITY INFORMATION DURING TRAINING

Figure 4 presents the Pearson correlation of all models on the unseen test set. CNN performance
improved when trained on sequences with one DNA copy (containing GV) or two DNA copies (in-
cluding GV and zygosity). In contrast, NT-based models showed the opposite trend: incorporating
GV or zygosity during training reduced performance compared to training on reference sequences.
Additionally, NTREF models outperformed NT1000G models, consistent with findings from previ-
ous studies (Dalla-Torre et al., 2024).

Figure 4: Pearson correlation coefficients of various models on the unseen test set. The X-axis represents the
models and the test sequences used, while colors indicate the source of the training sequences.
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3.2 INCLUDING GV AND ZYGOSITY INFORMATION DURING INFERENCE

Figure S1 illustrates model performance when incorporating GV or zygosity information during
inference. For both CNN- and NT-based models, including GV or zygosity consistently improved
performance compared to using reference sequences alone.

4 DISCUSSION

Our study highlights the importance of GV and zygosity in DNA sequence models, comparing base-
line CNNs with pretrained DNA-LMs. CNNs effectively utilized zygosity through additive genotype
encoding, where heterozygous alleles are encoded as 1 and homozygous as 2. This simple encod-
ing improved gene expression predictions, showing that simple models can benefit from GV- and
zygosity-aware features. We observed that CNNs can match the performance of DNA-LMs, espe-
cially when zygosity information was included, suggesting simpler models can compete in specific
tasks with well-designed inputs.

We observed that DNA-LMs pretrained on reference genomes (NTREF) consistently outperformed
those trained on diverse genomes (NT1000G), likely because pretraining tasks like masked token
prediction emphasize reference patterns over genetic variation. We also found that DNA-LMs per-
formed better during inference when variation and zygosity were included, despite not leveraging
these features during training. This reveals the untapped potential of DNA-LMs to handle variation-
sensitive tasks when properly optimized.

Future improvements should focus on pretraining tasks that explicitly incorporate GV, zygosity,
and population allele frequencies to enable DNA-LMs to better capture genetic diversity. Such
advancements could greatly enhance their performance in predicting variation-sensitive phenotypes,
paving the way for more robust genomics applications (Consens et al., 2025; Saadat & Fellay, 2024a;
2025).
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A APPENDIX

A.1 SUPPLEMENTARY FIGURES

Supplementary Figure S1: Pearson correlation coefficients of different models on the unseen test set. The
X-axis represents the models and their training sequences, while colors indicate the source of the testing se-
quences.
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