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ABSTRACT

Recent advances by practitioners in the deep learning community have breathed
new life into Locality Sensitive Hashing (LSH), using it to reduce memory and
time bottlenecks in neural network (NN) training. However, while LSH has sub-
linear guarantees for approximate near-neighbor search in theory, it is known to
have inefficient query time in practice due to its use of random hash functions.
Moreover, when model parameters are changing, LSH suffers from update over-
head. This work is motivated by an observation that model parameters evolve
slowly, such that the changes do not always require an LSH update to maintain
performance. This phenomenon points to the potential for a reduction in update
time and allows for a modified learnable version of data-dependent LSH to im-
prove query time at a low cost. We use the above insights to build MONGOOSE, an
end-to-end LSH framework for efficient NN training. In particular, MONGOOSE
is equipped with a scheduling algorithm to adaptively perform LSH updates with
provable guarantees and learnable hash functions to improve query efficiency.
Empirically, we validate MONGOOSE on large-scale deep learning models for rec-
ommendation systems and language modeling. We find that it achieves up to 8%
better accuracy compared to previous LSH approaches, with 6.5× speed-up and
6× reduction in memory usage.

1 INTRODUCTION

Locality Sensitive Hashing (LSH) has been adapted to address the computational and memory bot-
tlenecks of large-scale neural network (NN) training in natural language processing (Chandar et al.,
2016; Rae et al., 2016; Kitaev et al., 2020), computer vision (Chen et al., 2015) and recommendation
systems (Spring & Shrivastava, 2017; Chen et al., 2020). Specifically, giant matrix multiplications
in linear layers preceding a softmax can be approximated using nearest neighbor search (NNS) tech-
niques, which often rely on LSH. However, LSH methods used in NNs are inefficient. Although LSH
achieves sub-linear query time in theory, it is known to suffer from high query and pre-processing
(update) overhead in practice (Erik et al., 2018). In the setting of NN training, where data points
for LSH are model parameters, this overhead is exacerbated by a high number of updates due to
constantly evolving model parameters.

The most established solution for reducing LSH query overhead is data-dependent or learning-
based hashing, which uses adaptive hash functions to optimize the LSH bucket distribution for each
dataset (Andoni & Razenshteyn, 2015; Dong et al., 2019). These methods reduce query time by
incurring a one-time offline cost to learn useful data input patterns in a preprocessing step. The
learning techniques are often computationally complex, but can lead to a net reduction in overall
query time. However, in NN training, the expensive preprocessing procedure has to be repeated each
time the parameters are updated. Naïvely applying these techniques would increase the LSH update
overhead rather than reduce it. A more appropriate data-dependent LSH framework would ideally
(i) have a deeper understanding of the training dynamics of model parameters, a setting in which
LSH has not been well-studied, (ii) be able to perform low-cost updates to account for evolving
parameters, and (iii) have better query time while accurately approximating matrix multiplication.

We argue that it is unnecessary to view evolving model parameters as streaming data and not every
parameter update requires an LSH update. In fact, LSH updates are necessary only when the NN gra-
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Figure 1: MONGOOSE workflow - For each layer in the NN, besides the usual setup for LSH, we add two
components: (i) a scheduler deciding if an LSH update should be performed in this iteration (ii) if updating, a
learning (data-adaptive) mechanism will be triggered for tuning the LSH hash functions based on the current
weights, and then LSH updates will be performed.

dient steps are large enough to cause the model parameters’ LSH hash codes to change. Therefore,
we count the number of hash code changes that occur for important models such as Transformers
and fully-connected NNs from previous work (Chen et al., 2020; Kitaev et al., 2020). We find that
only 1% of the hash codes change after each epoch on average for Transformers, and 5% for a fully-
connected NNs, so most weights do not change on a scale that is enough to trigger an LSH update.
Furthermore, the rate of hash code change initially decays exponentially and eventually plateaus, as
shown later in Figure 3. We calculate that a 100× speed up is possible with an update oracle. In
contrast, current approaches with LSH have not fully exploited this observation. We show in Section
4.2 that they either blindly skip updates for speed, resulting in a 10-point accuracy drop, or suffer
from a 20× slow-down.

We demonstrate that these slowly changing hash codes provide two opportunities to realize the
ideal data-dependent LSH framework described above (shown as the intuition for the scheduler in
Figure 1). First, given weight changes, an algorithm could adaptively schedule LSH updates to
realize low update overhead. Second, given current weights, we could learn data-dependent hash
functions for better LSH bucket distribution to achieve fast query time. However, this comes with
three challenges: (i) how to characterize the slowly-changing phenomenon without computing hash
codes, (ii) how to schedule the updates without the oracle, and (iii) how to learn data-dependent hash
functions for shorter query time without compromising on the update time.

In this paper, we first provide a general formulation of the problem as dynamic NNS in Section 2. In
Section 3, we propose MONGOOSE, a framework for fast and memory-efficient NN training to ad-
dress the above challenges. We show one major observation, slow change, and two key components
based on it in MONGOOSE. Specifically,

• In Section 3.1, we measure the `2 norm of the weight changes and their hash code changes during
training on a fully-connected NN. (More models are studied in Appendix A). We find that (i) the
hash codes are slowly changing (ii) both quantities share similar trajectories, but the former’s slow
change is the necessary condition of the latter’s. Therefore, we formally define the slow change
of `2 norm of weight changes in Assumption 3.1, which is the key to build MONGOOSE.

• In Section 3.2, we present an algorithm for scheduling efficient LSH updates. We closely analyze
our scheduler’s theoretical guarantees and provide an upper bound of its running time, which is
proportional to the `2 norm of the weight changes. Therefore, under the slow change assumption,
we show that our scheduler is provably faster than previous approaches.

• In Section 3.3, we propose a method of learning parameterized LSH hash functions (e.g., SimHash
(Charikar, 2002)) during NN training. Our method utilizes intermediate activations during the
forward pass to generate training inputs for tuning LSH hash functions with little overhead. Com-
bining this with our scheduler further decreases the overhead, while providing hash functions that
better separate data.

Finally, in Section 4, we demonstrate the efficacy of MONGOOSE on two LSH-NN systems, SLIDE
and Reformer. For SLIDE applications, we show up to 6.5× speedup in time and 8% higher accuracy
on three datasets. For Reformer applications, we show improvement in perplexity when training lan-
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guage modeling benchmarks from scratch. Moreover, We provide two additional sets of experiments
to show how MONGOOSE addresses the aforementioned three challenges separately.

2 RELATED WORK AND PROBLEM SETTING

In this section, we first discuss applications of LSH in the NN training setting and introduce data-
dependent LSH techniques. Then we formally define the problem we solve as dynamic NNS.

2.1 LSH FOR EFFICIENT NN TRAINING

h(x1) = 1

h(x1) = 0 h

0 |x1
1 |x2 …

Figure 2: Visualization of why
LSH updates are essential when
data changes. h is a hyperplane
separating two hash buckets. If
x1 is updated in training, its
hash value may change.

Recent works take advantage of LSH as an efficient NNS algorithm
to speed up matrix multiplication in neural networks. SLIDE (Chen
et al., 2020) is an algorithm that retrieves neurons with maximum
inner product during the forward pass via an LSH-based data struc-
ture. In this way, in the backward pass gradients are only com-
puted for neurons with estimated large gradients. Reformer (Kitaev
et al., 2020), a variant of Transformer, similarly uses LSH to reduce
the memory bottleneck of self-attention layers over long sequences.
One pain point of LSH in this setting is that model weights change
throughout training. This necessitates constantly updating the LSH
data structure. Figure 2 illustrates what happens when we don’t per-
form such updates. In short, failing to update the LSH data structure
as the search data changes degrades its NNS performance. This in
turn worsens the quality of the matrix product approximation. In our
experiments, we found that failing to update the LSH data structure in SLIDE causes a 28% decrease
in top-1 accuracy for a fully-connected NN. (More related work is presented in Appendix E.1)

2.2 PROBLEM FORMULATION

In this section, we formulate LSH for effcient training as a dynamic NNS problem. This formulation
is closely built on the static NNS problem and the well-known lower bound on LSH complexity.
In the static NNS problem, we are given a set of weights w1, · · · , wn ∈ Rd and want to construct
a data structure (NNS-ds) that supports the QUERY operation, defined as follows: given x ∈ Rd,
QUERY(x) returns a set S of weights wi that are all “close” to x in a distance measure.

More precisely, we require the QUERY(x) operation to be (c1, c2)-accurate:
Definition 2.1 ((c1, c2)-accurate). Denote S to be the (random) set returned by QUERY(x). We say
QUERY(x) is (c1, c2) accurate if

(i) for any i ∈ [n] such that 〈wi, x〉 ≥ c1‖x‖2‖wi‖2, Pr[wi ∈ S] ≥ 1− 1/ poly(n),
(ii) for any i ∈ [n] such that 〈wi, x〉 < c2‖x‖2‖wi‖2, Pr[wi ∈ S] < 1/poly(n).

In our application, we assume 1 > c1 > c2 > 0 to be some constants and denote ρ = (c2/c1)2.
In the dynamic NNS problem, the weights w1, · · · , wn ∈ Rd can evolve over time, so we need to
update the data structure.
Lemma 2.2 ((Andoni & Indyk, 2006)). Using LSH, one can achieve (c1, c2) accuracy with query
time O(dnρ), preprocessing time O(dn1+ρ), updating time O(dnρ).

3 MONGOOSE: A FRAMEWORK FOR LEARNABLE LSH

We present the workflow of our main framework in Figure 1. In Section 3.1, we first show the key
observation that encourages the design of MONGOOSE and formally define the slow change assump-
tion. In Section 3.2, we introduce our first component, an algorithm for scheduling LSH updates
with provable guarantees based on the assumption. Finally, we present the second component, low-
cost learnable LSH hash functions, in Section 3.3. More details about the efficient implementation
of MONGOOSE are in Appendix F.

3.1 CHARACTERIZATION OF “SLOW CHANGE” PHENOMENON

We first present an observation on model weights and how their LSH hash codes change during
training. Based on this observation, we define the slow change assumption. We denote ∆W as the
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difference between weights across gradient steps, and ∆H as the Hamming distance between hash
codes during training.
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Figure 3: ∆W and ∆H both start out relatively high
at the beginning of training, but quickly drop off and
flatten out.

Observation. We plot the `2 norm of ∆W and
∆H of the weights during training a one lay-
ered fully-connected NN in Figure 3. Our most
surprising finding is that only 5% of hash codes
change after each epoch on average, which im-
plies that for most neurons, ∆W is not large
enough to trigger hash code changes. For both
∆W and ∆H , there is a sharp drop at the early
stages of training before they plateau. (Similar
observations on Transformers and further dis-
cussions are presented in Appendix A.)

Insights. In the dynamic NNS problem, input data (model weights) change over time. Without any
assumptions about weight updates, naïvely applying LSH will require updating the LSH hash func-
tions at every time step. However, the above observation suggests that we can reasonably assume
∆W is (roughly) upper-bounded by ∆H . Denote w as the weight matrix, n as number of neurons
and wi as the weight vector for neuron i. Formally:

Assumption 3.1 (Slow change). Assume NN weights change slowly over time. In particular, we
assume there is an upper bound on the expected movement of the weights of the neural networks
(C1) and an upper bound on the variance (C2). Specifically, we denote the initial weight matrix as
w(0) ∈ Rn×d. We assume the (random) update sequence w(1), · · · , w(T ) ∈ Rn×d satisfies

n∑
i=1

∥∥∥E[w
(k+1)
i ]− w(k)

i

∥∥∥2
2
≤ C2

1 and
n∑
i=1

‖Var[w
(k+1)
i ]‖2 ≤ C2

2 , (1)

where the expectation and variance is conditioned on w(k)
i for all k = 0, 1, · · · , T − 1.

3.2 A SMART SCHEDULER FOR LEARNABLE LSH UPDATES

Algorithm 1 General Maintenance Data Structure
1: Input: w ∈ Rn×d, v ∈ Rn×d, εmds ∈ (0, 1/ log2 n),
a = min{ρ, α}, S ⊆ [n]

2: procedure INITIALIZE(w, εmds) . Lemma B.2
3: w ← w, v ← w, εmds ← εmds, S ← ∅,
4: Build LSH with accuracy (c1 − εmds, c2 + εmds)
5: end procedure
6: procedure UPDATE(wnew) . Lemma B.3
7: yi ← wnew

i − vi, ∀i ∈ [n]
8: r ← the number of indices i that ‖yi‖2 ≥ εmds/2.
9: if r < na then

10: vnew ← v
11: else
12: Let π : [n]→ [n], that ‖yπ(i)‖2 ≥ ‖yπ(i+1)‖2
13: while 1.5 · r < n and ‖yπ(d1.5·re)‖2 ≥ (1 −

1/ logn)‖yπ(r)‖2 do
14: r ← min(d1.5 · re, n)
15: end while . Finding a smooth cut

16: vnewπ(i) ←

{
wnew
π(i) i ∈ {1, 2, · · · , r}

vπ(i) i ∈ {r + 1, · · · , n}
17: LSH.UPDATE π(1), · · · , π(r)
18: end if
19: w ← wnew, v ← vnew,
20: S = {i ∈ [n] : ‖wi − vi‖2 ≥ εmds/2}
21: end procedure
22: procedure QUERY(h) . Lemma B.4
23: LSH.QUERY and check S
24: end procedure

In this section, we introduce a dy-
namic data structure to schedule updates
for LSH. Our scheduler provides signifi-
cant speedup under two realistic assump-
tions without compromising the theoreti-
cal guarantee of LSH: (1) slow change de-
fined in Assumption 3.1, (2) batch speed
up defined in Assumption 3.2. The sched-
uler can generalize to any near-neighbor
search data structure (NNS-ds), but we
show a design for LSH as an example
since that is the NNS-ds in MONGOOSE.

3.2.1 SMART SCHEDULER

The pseudo-code for our smart scheduler
is shown in Algorithm 1. Our scheduler
is inspired by a dynamic data structure
proposed in a recent line of work (Co-
hen et al., 2019), which was originally de-
signed for inverse maintainance in Lin-
ear Programming solvers. We provide
a novel application here for the dynamic
LSH problem.

Notation: We denote [n] = {1, · · · , n}.
The Õ(·) notation hides polylogarithmic
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dependence on n, d, εmds. We use w ∈ Rn×d to denote the weights of the neural network and
each row wi ∈ Rd (i ∈ [n]) corresponds to the input weight of the i-th neuron. We maintain a copy
of the neural network weights, denoted as v ∈ Rn×d, that approximately equals w except for a few
coordinates. We take εmds to be a sufficiently small precision parameter, i.e. εmds � c1− c2, which
satisfies εmds ∈ Ω(1/ log2 n). We use S to denote the set of indices where w and v differ signifi-
cantly (see Line 20). LSH.UPDATE (see line 17) takes indices of the neural weights and updates the
LSH hashcode correspondingly.

Overview of algorithm: During the training process, we maintain two copies of the NN weights
w, v, where w are the actual weights that are updated via gradient descent and v approximately
equals w except for a few coordinates. We set an empirical threshold of εmds. Due to the robustness
of the NNS problem, we can tolerate this small error εmds such that only those coordinates with
a difference greater than εmds matter. To exploit the benefit of batch updating, we perform lazy
updates on the LSH hash table. In particular, we update the LSH hash table if and only if the
difference between w, v exceeds some threshold number nρ (see line 9 to line 11). One key part of
our update procedure is that we also update some low-error coordinates when there are too many of
them (see line 13 to line 16). This procedure can be seen as forecasting future updates. The intuition
is that when there are too many coordinates close to the decision boundary, they are likely to change
within a short amount of time. Updating these all together could further take advantage of the batch
updates. To answer an LSH query, we keep track of a short list S (see line 20), which records
coordinates that differ significantly between w, v. We can interpret S as the indices of corrupted
datapoints to keep track of when performing an LSH query, since they are no longer the same. In the
query procedure (see line 22 to line 24), besides performing the normal LSH query, we also check S
and pick up weights that are close to x. Hence, we balance the overhead of query time with update
time, where update time is usually the bottleneck.

3.2.2 THEORETICAL ANALYSIS

Assumption 3.2 (batch speedup). Denote Tr as the updating time for LSH when the weights of r
neurons change and Tr = r · tr. That is, Tr is the updating time when we update r entries of the
LSH hash table and tr is the average updating time. We assume {ti}i=1,...n is non increasing, i.e.,
t1 ≥ t2 ≥ . . . ≥ tn. We further assume Tr = nρ when r ≤ nα for some constant α.

The batch speedup assumption is realistic, especially due to advances in support for massive paral-
lelism on modern computation architectures.

Theorem 3.3 (LSH maintenance). For any constant c1, c2 (c1 > c2), there is a dynamic data
structure (Algorithm 1) for LSH maintenance that achieves (c1, c2)-accuracy. The data structure
takes Õ(dn1+ρ) time to initialize and each call of QUERY(h) takes time Õ(nρd). By taking a =
min{ρ, α} and

gr =

{
nρ−a, r ≤ na;

tr, r > na.

The amortized expected time per call of UPDATE(w) is at most

Õ((C1 + C2) · ‖g‖2). (2)

Remark 3.4. Depending on the exact form of batch updating time tr, the (amortized) running time
and the benefit of our scheduler could be different. We provide concrete examples in Appendix B.7,
showing advantages of our smart scheduler under different scenarios. In general, we remark that
(1) Our scheduler is always better than the naïve sequential updating strategy. (2) Our scheduler is
oblivious to the exact form of the update time tr and the weight change C1, C2. That is to say, we do
not need to fine tune these parameters. In NN training, the only parameter that requires fine tuning
is the precision parameter εmds.

3.3 HASH FUNCTION LEARNING

In this section, we provide a simple streaming algorithm to learn parameterized hash functions. Here,
the learning objective is to track the weight distribution as the weights change to better separate the
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input data to the NNS problem. Recall that in last section, we show an algorithm for scheduling the
LSH updates, which makes it possible to involve learning for LSH and improve the query efficiency.
Therefore, the overall update overhead can be reduced even with learning overhead if scheduled
well, since the update time is closely related to query time.

3.3.1 LEARNABLE LSH

Algorithm 2 Learnable Hash Function
1: Input: query set Q = {qi}i∈[N ], query size N
2: hash table G = {gl}l∈[L]

3: hash function ∀l ∈ [L], Hl = {hl,k}k∈[K], H =
∪l∈[L]Hl

4: Retrieved Neurons Sets {Si}i∈[N ], Si = {vr}r∈[M ]

5: parameters t+, t−
6: P+ ← ∅, P− ← ∅ . P+,P− ∈ R2d+2

7: for i = 1→ N do
8: P+ ← P+ ∪ {(qi, vr) | vr ∈ Si, 〈qi, vr〉 > t+}
9: P− ← P− ∪ {(qi, vr) | vr ∈ Si, 〈qi, vr〉 < t−}

10: end for
11: sizenew ← min{|P+|, |P−|}
12: RESIZE(P+,P−, sizenew)
13: Hnew ← REHASH(P+,P−,L) . L is a loss function
14: Gnew ← REBUILD(G,Hnew)
15: return Gnew,Hnew

We view the sequence of neural network
weights throughout training as a matrix
stream. In each training iteration, if our
scheduler schedules an update, we compute
a training signal with which we can train
our LSH parameters. Specifically, we com-
pute the classical triplet loss (Chechik et al.,
2010) using positive and negative samples
from the current model weights for each
LSH query. Here, positive samples (denoted
by P+) are neurons that have higher inner
product within the input retrieved by LSH,
while negative samples (denoted by P−) are
neurons with lower inner product that are se-
lected. Denote a set of neurons in a partic-
ular layer as C = {vr | 0 ≤ r < m} and
the input embedding as qi. Denote the set of
neurons retrieved from the LSH hash tables using qi as Si. We formally present the learning al-
gorithm in Algorithm 2. The operation of updating or training LSH hash functions is defined as
REHASH and the operation of updating the hash tables based on the updated hash functions and
weights is defined as REBUILD. The triplet loss is defined as follows:

L(H,P+,P−) = max(0,
∑

(q,v)∈P+

− cos(H(q),H(v)) +
∑

(q,v)∈P−

cos(H(q),H(v)) + α) , (3)

where H denotes the LSH hash function at the current iteration and α is a margin between positive
and negative pairs. cos(H(·),H(·)) represents the cosine similarity. Note that in the application
setting of unit norm like (Kitaev et al., 2020), using inner product is equivalent to cosine similarity.
We provide a detailed justification of this learning approach in Appendix C.1.

3.3.2 FURTHER SPEEDUP

Figure 4: Attention distribution examples in different layers:
Y-axis is the least number of attentions summing to 90% of
full attentions. The annotations represent the median. The total
number of attentions (or sequence length) is 512.

We demonstrate how to optimize learn-
able LSH for further acceleration in
NN training. Here, we provide the
main insights; further details are in Ap-
pendix A.

Layer Selection: In previous LSH-NN
methods such as SLIDE or Reformer, the
designation of whether a layer uses LSH
is treated as a tunable hyperparameter.
For example, Reformer applies LSH in
three out of twelve attention layers in their final model based on empirical performance. In MON-
GOOSE we make this designation in a more principled manner. The intuition behind the design can
be presented by visualizing the statistics of attention weights in different layers of the Transformer
model (Figure 4). The three plots represent the distribution of the average number of coordinates
with “heavy” attention for each layer. We also calculate the size of the minimal set of attention
weights that captures 90% of the total attention ((Ramsauer et al., 2020) perform a similar experi-
ment). The median for the left plot is 2, meaning that they are well-separated and LSH can perform
well on such a distribution. On the other hand, learnable LSH can be very helpful for the right plot,
because classical LSH is inefficient for this distribution. Therefore, we can use this observation
when deciding between LSH or learnable LSH in each layer for later training stages or fine-tuning
on downstream tasks.
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Table 1: This table summarizes the performance of MONGOOSE, SLIDE and Full-Computation implemented
with PyTorch (Paszke et al., 2019). P@1/5 is top-1/5 precision. Time represents convergence time and Mem
represents memory consumption.

Datasets
Full-Computation SLIDE MONGOOSE

P@1 P@5 Time (s) Mem (GB) P@1 P@5 Time Mem P@1 P@5 Time Mem
Wiki10-31K 0.824 0.578 63 0.3 0.824 0.556 47 (1.3 ×) 0.24 (1.3×) 0.824 0.618 35 (1.8×) 0.2 (1.5×)

Delicious-200K 0.446 0.356 483 2.2 0.465 0.372 318 (1.5×) 1.7 (1.3×) 0.469 0.371 162 (3×) 1.5 (1.5×)
Wiki-325K 0.501 0.235 5702 3.9 0.438 0.205 4680 (1.2×) 3.3 (1.2×) 0.519 0.255 1906 (3×) 2.7 (1.5×)
Amz-670K 0.332 0.273 8310 6.7 0.335 0.276 3224 (2.6×) 4.3 (1.6×) 0.336 0.281 1279 (6.5×) 3.3 (2×)

From a system design perspective, MONGOOSE improves the flexibility of LSH’s usage in NN train-
ing. We provide a smart scheduler to decide when to perform LSH updates and visualization on
when to use LSH or learnable LSH. Therefore, the training process has the following tunable pa-
rameters for LSH: (i) the layers which we apply random LSH to, (ii) the layers for which we can
use learning to improve LSH’s random hash functions, (iii) the runtime that LSH or learnable LSH
should perform the update in. Setting these parameters appropriately will enable much more efficient
NN training or fine-tuning, as supported by our theory and observations.

4 EXPERIMENTS

In Section 4.1 we present the results of experiments that demonstrate the higher performance of
MONGOOSE over other LSH-NN frameworks during training. Then we study the effectiveness of
the two components: (i) smart scheduler in Section 4.2, (ii) learnable LSH in Section 4.3 1.

4.1 MAIN RESULTS: MONGOOSE IN NN TRAINING

We present the results of main experiments that demonstrate MONGOOSE’s advantage in end-to-end
NN training over two different LSH-NN baselines on recommendation and language modeling tasks.

4.1.1 TASK1: EXTREME MULTI-LABEL CLASSIFICATION

Settings: We compare the performance of MONGOOSE against SLIDE and networks without LSH
(Full-Computation) on 3 large-scale multi-label classification datasets: Wiki10-31k, Delicious-
200k, Wiki-325k and Amz-670k. The datasets are obtained from the Extreme Classification Repos-
itory (Bhatia et al., 2016), which is a benchmark for various recommendation systems. The model is
a fully-connected network with one hidden-layer. The statistics of each dataset are in Appendix D.
We report the best results of each framework in P@1/5 following metrics in (Bhatia et al., 2016).
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Figure 5: Left plot: P@1 versus training iteration on Wiki-325k. Right
plot: Loss versus training iteration on a synthetic copying task.

Results: Table 1 shows the
test accuracy, wall-clock time to
converge and memory consump-
tion for MONGOOSE and other
baselines. Left plot in Fig-
ure 5 visualizes P@1 for MON-
GOOSE and other baselines dur-
ing the training process. MON-
GOOSE achieves 1.8× faster con-
vergence and 1.5× less memory
consumption compared to Full-
Computation on Wiki10-31K, 3×
faster convergence, 1.5× less
memory on Delicious-200K and Wiki-325K and 6.5× faster convergence, 2× less memory on Amz-
670K. SLIDE has a large accuracy drop without a substantial speedup for Wiki-325k, but our method
has a 3× speedup with no accuracy loss.

Table 2: Time and memory advantage com-
pared to Full-Computation on one layer.

Datasets SLIDE MONGOOSE

Time Mem Time Mem
Wiki10-31K 1.8× 2× 6.6× 4×

Delicious-200K 1.8× 2.2× 8.6× 4.5×
Wiki-325K 1.4× 1.7× 20 × 4×

Analysis: The above mainly focuses on MONGOOSE’s
end-to-end performance during training. We also present
closer analysis of a single linear layer during training in
Table 2. In isolation, we find that MONGOOSE achieves
up to 20× faster convergence and 4.5× less memory con-
sumption compared to Full-Computation. The greater

1MONGOOSE code is available at https://github.com/HazyResearch/mongoose
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time and memory savings here compared to Table 1 are because we ignore the earlier large em-
bedding layer of the model (Details are in Appendix D.3). We make three observations to help
explain the memory and time savings fromMONGOOSE. First, matrix multiplication is only per-
formed on a small subset of neurons. The average number of neurons sampled in the output layer
for MONGOOSE on Delicious-200K is around 6k compared to the total number of 200k. Second,
our scheduler further reduces updating costs. On Wiki-325K, we observe updating frequency drops
significantly at the start of the second epoch. This is compatible with our observation of slow weight
change in Figure 3. Finally, learnable LSH improves LSH query efficiency and quality. In addi-
tion, we observe that MONGOOSE obtains a slightly higher accuracy compared to Full-Computation,
which is a side benefit from activation sparsity (Ba & Frey, 2013).

4.1.2 TASK2: EFFICIENT TRANSFORMER

Settings: We run experiments on two tasks from Reformer (Kitaev et al., 2020). The first task is a
synthetic sequence duplication task where inputs are of the form 0w0w and w ∈ {0, ..., N}∗. This
task is useful for demonstrating the effectiveness of LSH attention: it requires non-local attention
lookups and therefore cannot be solved by any model relying on sparse attention with a limited
range (e.g., local attention). We compare MONGOOSE with a 1-layer Reformer by replacing the data-
independent LSH in the attention layer with learnable LSH, updating the LSH parameters according
to our smart scheduler. The second task is a standard language modeling task on the enwik8 dataset.
For this second task, we use sequence length of 8192 and 10 LSH-attention layers.

Results: We compare the test loss of MONGOOSE and Reformer on each task. The loss curve for
the synthetic sequence duplication task is shown in Figure 5 (right). On this task, MONGOOSE
achieves a loss value of 0.75, which is 0.5 better than Reformer. Moreover, MONGOOSE only needs
20% time to reach the same loss as Reformer (5× speed-up). Similarly, on enwik8, Reformer only
reaches 2.65 in perplexity, while MONGOOSE achieves 2.59 in the same setting. Both MONGOOSE
and Reformer (with LSH) save 6× memory over the original Transformer in above two tasks (more
details are in Appendix D.4).

4.2 STUDY ON SMART SCHEDULER Table 3: Speed with respect to accuracy
P@1 P@5 Speed (batch/s)

Infrequent Scheduler 0.39 0.193 31.2
W/O Scheduler 0.521 0.254 0.4

MONGOOSE Scheduler 0.519 0.255 7.7

In this section, we demonstrate the superiority of
our smart scheduling algorithm over the two base-
lines we mentioned in Section 1 on Wiki-325K.

Effect of Smart Scheduler: The first approach
(“Infrequent Scheduler”) performs an update on a fixed schedule, every 1000 iterations (6 times
per epoch on Wiki-325K). The other baseline performs an update every iteration (“W/O Sched-
uler”). We compare speed (number of batches processed per second) and accuracy (P@1 and P@5)
of these schedulers in Table 3. On average, MONGOOSE Scheduler reduces more than 97% of the
update overhead compared to W/O Scheduler, leading an end-to-end 20× speed-up. Meanwhile,
although Infrequent Scheduler is faster in speed, it fails to reach the same task accuracy as the other
approaches. In fact, MONGOOSE Scheduler achieves Infrequent Scheduler’s final accuracy in 66%
less time. We can see that MONGOOSE substantially reduces LSH update overhead while maintain-
ing performance.

4.3 STUDY ON LEARNABLE LSH

Effect of Learnable LSH: In this section, we compare the NNS performance of MONGOOSE’s
learnable LSH scheme to classical LSH on their NNS ability using the same number of hash func-
tions. In Figure 6 (left) we plot the difference between average inner products computed using
neurons retrieved by learnable LSH (MONGOOSE) and random LSH (SLIDE) and inner products us-
ing the same number of randomly chosen neurons. A negative value on these plots indicates that
LSH is performing worse than random sampling. We can see that at the beginning of training, when
weights are initialized randomly, data-independent LSH is sufficient to partition the data. However,
as training progresses, SimHash used in SLIDE fails to adapt to the evolving weight distribution,
while our selection better approximates the full softmax.

We conduct the same experiments for enwik8 language modeling. In Figure 6 (right), we can see that
data-dependent hashing computes higher inner products within each bucket as training progresses.
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Table 4: This table compares MONGOOSE and HNSW. P@1/5 is the top-1/5 precision.

Rebuild Time(s) vs Number of Neurons Wiki-10k Training Wiki-325k Training
10k 100k 300k P@1 P@5 Time (s) P@1 P@5 Time (s)

HNSW 0.4983 5.1168 20.5933 0.829 0.602 60 0.4625 0.2052 10106
MONGOOSE 0.4625 (1.1×) 0.4780 (11×) 0.8610 (23×) 0.824 0.618 35 (1.7×) 0.519 0.255 1906 (5.3×)

For attention layers in the Transformer models, random LSH fails to approximate attention well
in certain layers due to a skewed attention distribution (this phenomenon was also explained in
Section 3.3.2 and Figure 4). In attention layers, our selection produces a better characterization of
the full attention.
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Figure 6: The normalized inner product computed by NNS-ds neu-
rons. In both Wiki-325k (left) and enwik8 (right), MONGOOSE has
much higher average inner product than baselines.

Other data-dependent NNS data
structures: In Section 1, we have
briefly discussed that most exist-
ing data-dependent NNS-ds have
high update costs. We choose
an LSH-based data structure in
MONGOOSE because update over-
head for hash-table-based NNS-ds
is less compared to other meth-
ods (e.g. graph-based) in prac-
tice (Wang et al., 2018; Gong
et al., 2020). For example, in a
recent paper, (Dong et al., 2019)
proposed a k-nearest-neighbor graph-based algorithm for NNS that requires several hours to pro-
cess 1 million data points. Although a recent work, HNSW (Malkov & Yashunin, 2018), is relatively
fast in preprocessing and updating step among graph-based data-dependent NNS-ds empirically, it
does not have guarantees (Fu et al., 2017). In Table 4 we compare the update times of the learnable
LSH and HNSW, and their performance during training when both are equipped with the MONGOOSE
smart scheduler. We can see that HNSW’s updating overhead grows exponentially and becomes over
20× learnable LSH’s overhead in 350k neurons layer. However, it is an ongoing work to reduce the
updating overhead of graph-based NNS-ds, so it could be potentially included in MONGOOSE later.

5 CONCLUSION

In this work, we make a novel observation on the slowly changing LSH hash codes during LSH-
NN training. Based on the observation, we present MONGOOSE, a learnable LSH framework that
outperforms original LSH methods in efficient neural network training. We demonstrate two key
designs in the framework. One is a smart scheduling algorithm which reduces the LSH update
overhead. The other one is a low cost learnable LSH which can improve the query efficiency and
hashing quality. We empirically verify the effectiveness of our framework on both recommendation
and language modeling tasks. The slowly changing observation along with the smart scheduler in
MONGOOSE opens up the opportunity of designing new NNS-ds for dynamic similarity search for
efficient NN training.
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A SLOW CHANGE OBSERVATIONS

In this section, we analyze the relative distance between iterates of model parameters and connect it
with LSH updates throughout training. We target at making full use of our slowly change character-
ization for MONGOOSE.

Settings. We report ∆W throughout training on several benchmark models. We follow the stan-
dard training procedures of fully-connected networks on Wiki325k (Partalas et al., 2015) and Trans-
former (Vaswani et al., 2017) on enwik8. We chooseW in the last linear layer for the fully-connected
model and W in the projection layer before attention for the transformer model to correspond ex-
periments in section 4.

Results. We plot our results in Figure 3. The left-two and right-most plots show that during the
initial steps of the training, ∆W is relatively high, but quickly drops and flattens out afterwards.
The middle and right-most plots exhibit the hash code change of W in the hamming distance along
with the training. The pattern matches with ∆W but has a direct connection with the LSH update
overhead. This is also consistent with LSH theory that the hash code collision probability of two
vectors equals to the vectors’ certain similarity, e.g., angular. Note the above observations are made
based on angular distance LSH. The above phenomenon suggests that if there exists an optimal
scheduler to update the data structures adaptively based on the actual demand, the overhead by LSH
updates can be largely reduced. Furthermore, this opens the door to make LSH learnable in order to
improve query efficiency. Since the LSH update time is also closely related to the query time, the
overall update overhead might still be reduced after considering learning costs, if the updates are well
scheduled. Several related works (Jastrzebski et al., 2018; Agarwal et al., 2020) have also observed
the phenomenon of a sharp drop of weight changes at the early stages of training. One (Jastrzebski
et al., 2018) conjectures that initially SGD visits increasingly sharp regions, reaching a maximum
sharpness determined by both the learning rate and the batch-size of SGD and infer that it optimizes
faster while finding a good sharp region. It is also discussed in a recent paper (Agarwal et al., 2020),
which connects the phenomenon to critical learning periods defined in (Achille et al., 2017). This
phenomenon can be observed on text (Transformers), recommendation (Embedding Models) and
image (CNN) data and thereby it is relatively general.
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Figure 7: We show the average change of weight (left), cosine similarity (middle), weight’s hash code (right).
Top row is reformer and the bottom row is for Wiki-325k.
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B DYNAMIC MAINTENANCE DATA STRUCTURE

The idea of dynamic maintenance has been successfully applied to matrix inversion problem, which
served as a central component in linear program solvers (Cohen et al., 2019; Lee et al., 2019; Brand
et al., 2020b; Song & Yu, 2021; Jiang et al., 2021), cutting plane method (Jiang et al., 2020b),
maximum matching Brand et al. (2020a), max-flow Brand et al. (2021), and semi-definite program
solvers (Jiang et al., 2020a; Huang et al., 2021). In this work, we adopt it for dynamic LSH mainte-
nance problem. Since the underlying problem is completely different, it requires several non-trivial
generalizations and more fine-grained analysis (see Lemma B.2, Lemma B.3, Lemma B.4). More-
over, in our proof, we care about the absolute distance of between vectors (i.e. ‖wi − vi‖2) rather
than the relative difference between real numbers Cohen et al. (2019), and therefore, we need a new
construction of the potential function (see Lemma B.8).

The rest of this section is organized as follows

• In Section B.1, we provide an illustration of the smart scheduler.
• In Section B.2, we state our main results.
• In Section B.3, we give a high-level overview on the correctness and the running time of

the algorithm.
• In Section B.4, we give an analyze on the movement of w vector.
• In Section B.5 we give analyze on the movement of v vector.
• In Section B.6, we discussed over the choice of potential function and analysis its property.
• In Section B.7, we compare the performance our algorithm with sequential updating strat-

egy/batch updating strategy.

B.1 ILLUSTRATION

Figure 8: Illustration of the smart scheduler

We present a demonstration of
our smart scheduler at Fig-
ure 8. As shown in the top,
if the change of data vectors
(denoted as points with colors)
stays within the partitions given
by hash functions, the scheduler
would not update current LSH
tables. However, if the data vec-
tors change such that they cross
partition boundaries, the scheduler updates the hash functions.

B.2 MAIN RESULT

Theorem B.1 (Locality sensitive hashing maintenance, Formal statement of Theorem 3.3). For any
constant c1, c2 (c1 > c2) there is a dynamic data structure (Algorithm 1) that achieves (c1, c2)-
accuracy. The data structure takes Õ(dn1+ρ) time to initialize and each call of QUERY(h) takes
time Õ(nρd). By taking a = min{ρ, α} and

gr =

{
nρ−a, r ≤ na;

tr, r > na.

The amortized expected time per call of UPDATE(w) is at most

Õ((C1 + C2) · ‖g‖2). (4)

B.3 PROOF OF THEOREM B.1

We first give a rough explanation on the proof of Theorem 3.3. For intuition, we consider the case
C1 = Θ(1), C2 = Θ(1), and εmp = Θ(1) in this explanation. The amortized time analysis is based
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on a potential function that measures the distance of the approximate vector v and the target vector
w. We will show that

• The cost to update the LSH data structure is proportional to the decrease of the potential.
• Each call to query increase the potential by a fixed amount.

Combining both together gives the amortized running time bound of our data structure.

Now, we explain the definition of the potential. Consider the k-th round of the algorithm. For all
i ∈ [n], we define x(k)i = w

(k)
i − v(k)i . Note that ‖x(k)i ‖2 measures the distance between w(k)

i and
v
(k)
i . Our algorithm fixes the indices with largest error ‖x(k)i ‖2. To capture the fact that updating

in a larger batch is more efficient, we define the potential as a weighted combination of the error
where we put more weight to higher x(k)i . Formally, we sort the coordinates of x(k) such that
‖x(k)i ‖2 ≥ ‖x

(k)
i+1‖2 and define the potential by

Ψk =

n∑
i=1

gi · ψ(x
(k)
i ) ,

where gi are positive decreasing numbers to be chosen and ψ is a symmetric (ψ(x) = ψ(−x))
positive function that increases on both sides. For intuition, one can think ψ(x) behaves roughly
like |x|.

B.3.1 PROOF OF CORRECTNESS

We prove the correctness of Theorem 3.3, we will defer some simple calculations into later sections.

Definition of x and y. Consider the k-th round of the algorithm. For all i ∈ [n], we define x(k)i ∈
Rd, x(k+1)

i ∈ Rd and y(k)i ∈ Rd as follows:

x
(k)
i = w

(k)
i − v

(k)
i , y

(k)
i = w

(k+1)
i − v(k)i , x

(k+1)
i = w

(k+1)
i − v(k+1)

i .

Note that the difference between x(k)i and y(k)i is that w is changing. The difference between y(k)i

and x(k+1)
i is that v is changing.

Assume sorting. Assume the coordinates of vector x(k) ∈ Rn×d are sorted such that ‖x(k)i ‖2 ≥
‖x(k)i+1‖2. Let τ and π are permutations such that ‖x(k+1)

τ(i) ‖2 ≥ ‖x
(k+1)
τ(i+1)‖2 and ‖y(k)π(i)‖2 ≥

‖y(k)π(i+1)‖2.

Definition of Potential function. Let ψ : R→ R be defined by

ψ(x) =


‖x‖22
2εmds

, ‖x‖2 ∈ [0, εmds]

εmds − (4ε2mds−‖x‖
2
2)

2

18ε3mds
, ‖x‖2 ∈ (εmds, 2εmds]

εmds, ‖x‖2 ∈ (2εmds,+∞)

(5)

We define the potential at the k-th round by

Ψk =

n∑
i=1

gi · ψ(x
(k)
τk(i)

) ,

where τk(i) is the permutation such that ‖x(k)τk(i)
‖2 ≥ ‖x(k)τk(i+1)‖2.

Bounding the potential.

We can express Ψk+1 −Ψk as follows:

Ψk+1 −Ψk =

n∑
i=1

gi ·
(
ψ(x

(k+1)
τ(i) )− ψ(x

(k)
i )
)

=

n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)

︸ ︷︷ ︸
w move

−
n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
︸ ︷︷ ︸

v move

. (6)
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Now, using Lemma B.5 and B.7, and the fact that Ψ0 = 0 and ΨT ≥ 0, with Eq. 6, we get

0 ≤ ΨT −Ψ0 =

T−1∑
k=0

(Ψk+1 −Ψk)

≤
T−1∑
k=0

(O(C1 + C2/εmds) · ‖g‖2 − Ω(εmdsrkgrk/ log n))

= T ·O(C1 + C2/εmds) · ‖g‖2 −
T∑
k=1

Ω(εmdsrkgrk/ log n) ,

where the third step follows by Lemma B.5 and Lemma B.7 and rk is the number of coordinates we
update during that iteration.

Therefore, we get,

T∑
k=1

rkgrk = O
(
T · (C1/εmds + C2/ε

2
mds) · log n · ‖g‖2

)
.

B.3.2 INITIALIZATION TIME, UPDATE TIME, QUERY TIME

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma B.2),
update time (Lemma B.3), and query time (Lemma B.4) of our maintenance data-structure.

Lemma B.2 (Initialization time). The initialization time of data-structure MAINTAIN (Algorithm 1)
is O(dn1+ρ).

Lemma B.3 (Update time). The update time of data-structure MAINTAIN (Algorithm 1) isO(rgr)+
O(Sd + S log n) where r is the number of indices we updated in v, S is the number of weights
changed. The later two terms are dominated by the updating time of neural network.

Proof. We change r (r ≥ na) terms each time, and the running time for updating the LSH is rgr.
We need to update v and calculate its `2 norm every time, and the computational cost is Sd. We also
need to maintain an order on the error y(k)i , using some standard data structure (like Fibonacci heap),
this can be done in S log n. Thus the total running time per update isO(rgr)+O(Sd+S log n), the
second term is bounded by the updating cost of neural network training, since calculate the gradient
takes at least O(Sd) and we usually have d� log n.

Lemma B.4 (Query time). The query time of data-structure MAINTAIN (Algorithm 1) is O(nρd +
nad).

B.4 BOUNDING w MOVE

Lemma B.5 (w move). We have

n∑
i=1

gi · E
[
ψ(y

(k)
π(i))− ψ(x

(k)
i )
]
≤ O(C1 + C2/εmds) · ‖g‖2.

Proof. Observe that since the errors ‖x(k)i ‖2 are sorted in descending order, and ψ(x) is symmetric
and non-decreasing function, thus ψ(x

(k)
i ) is also in decreasing order. In addition, note that g is

decreasing, we have

n∑
i=1

giψ(x
(k)
π(i)) ≤

n∑
i=1

giψ(x
(k)
i ). (7)

Hence we have
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E

[
n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)]
≤ E

[
n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
π(i))

)]
by Eq. 7

=

n∑
i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))]

= O(C1 + C2/εmds) · ‖g‖2). by Lemma B.6

Thus, we complete the proof of w move Lemma.

It remains to prove the following Lemma,
Lemma B.6.

n∑
i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] = O(C1 + C2/εmds) · ‖g‖2.

Proof. We separate the term into two:
n∑
i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] =

n∑
i=1

gπ−1(i) · E[ψ(y
(k)
i )− ψ(E[y

(k)
i ])]

+

n∑
i=1

gπ−1(i) · (ψ(E[y
(k)
i ])− ψ(x

(k)
i )). (8)

For the first term, we have

ψ(y
(k)
i )− E[ψ(y

(k)
i )]

= 〈ψ′(E[y
(k)
i ]), y

(k)
i − E[y

(k)
i ]〉+

1

2
(y

(k)
i − E[y

(k)
i ])>ψ′′(ζ)(y

(k)
i − E[y

(k)
i ])

≤ 〈ψ′(E[y
(k)
i ]), y

(k)
i − E[y

(k)
i ]〉+

1

2
L2‖y(k)i − E[y

(k)
i ]‖22

= 〈ψ′(E[y
(k)
i ]), w

(k+1)
i − E[w

(k+1)
i ]〉+

1

2
L2‖w(k+1)

i − E[w
(k+1)
i ]‖22 (9)

where the first step follows from the Mean value theorem, the second step follows from the definition
of L2 (see Part 4 of potential lemma B.8), the last step follows from the definition of y(k)i .

Next, we denote γi = Var[w
(k+1)
i ]. Summing over i and taking conditional expectation given w(k)

on both sides, we get
n∑
i=1

gπ−1(i) · E[ψ(y
(k)
i )− ψ(E[y

(k)
i ])] ≤

n∑
i=1

gπ−1(i) · E[〈ψ′(E[y
(k)
i ]), w

(k+1)
i − E[w

(k+1)
i ]〉]

+

n∑
i=1

gπ−1(i) ·
1

2
L2E[‖w(k+1)

i − E[w
(k+1)
i ]‖22]

= 0 +
1

2
L2

n∑
i=1

gπ−1(i) · γi

≤ 1

2
L2‖g‖2(

n∑
i=1

γ2i )
1
2

≤ 1

2
·O(1/εmds) · ‖g‖2 · C2

= O(C2/εmds)‖g‖2. (10)

The first step follows from Eq. 9, the second step follows from the linearity of expectation and the
definition of γi, the third step follows from Cauchy-Shwarz inequality, the fourth step follows from
L2 = O(1/εmds) (see Lemma B.8) and Eq. 1.
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For the second term, conditioning on w(k)
i , we have

ψ(E[y
(k)
i ])− ψ(x

(k)
i ) ≤ L1 · ‖E[y

(k)
i ]− xki ‖2 = L1 · ‖E[w

(k+1)
i ]− wki ‖2

def
= L1 · βi. (11)

The first inequality follows from the L1-Lipschitz continuity of Ψ (see part 4 of Lemma B.8). The
second step follows from the definition of y(k)i and x(k)i .

Summing over i, we get

n∑
i=1

gπ−1(i) · (ψ(E[y
(k)
i ])− ψ(x

(k)
i )) ≤

n∑
i=1

gπ−1(i) · L1βi ≤ L1 · ‖g‖2 · (
n∑
i=1

β2
i )

1
2 ≤ O(C1) · ‖g‖2.

(12)

The first step follows from Eq. 11, the second step follows from Cauchy Shwarz inequality, the last
step follows from L1 ≤ 2 (see part 4 of Lemma B.8) and Eq. 1.

Combining Eq. 81012, we have

n∑
i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] ≤ O(C1 + C2/εmds)‖g‖2.

Thus completing the proof.

B.5 BOUNDING v MOVE

The goal of this section is to prove Lemma B.7.

Lemma B.7 (v move). We have,

n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥ Ω(εmdsrkgrk/ log n).

Proof. We split the proof into two cases.

We first understand some simple facts which are useful in the later proof. Note that from definition
of x(k+1)

i , we know that x(k+1) has rk coordinates are ~0. Basically, ‖y(k) − x(k+1)‖0 = rk. The
difference between those vectors is, for the largest rk coordinates in y(k), we erase them in x(k+1).
Then for each i ∈ [n− rk], x(k+1)

τ(i) = y
(k)
π(i+rk)

. For convenience, we define y(k)π(n+i) = ~0, ∀i ∈ [rk] .

Case 1. We exit the while loop when 1.5rk ≥ n.

Let u∗ denote the largest u satisfying ‖y(k)π(u)‖2 ≥ εmds/2. If u∗ ≥ rk, then we have that ‖y(k)π(rk)
‖2 ≥

εmds/2 ≥ εmds/100. Otherwise, the condition of the loop shows that

‖y(k)π(rk)
‖2 ≥ (1− 1/ log n)log1.5 rk−log1.5 u

∗‖y(k)π(u∗)‖2
≥ (1− 1/ log n)log1.5 nεmds/2

≥ εmds/100.

where we used that n ≥ 4.
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According to the definition of x(k+1)
τ(i) , we have

n∑
i=1

gi(ψ(y
(k)
π(i))− ψ(x

(k+1)
τ(i) )) =

n∑
i=1

gi(ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)

))

≥
n∑

i=n/3+1

gi(ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)

))

≥
n∑

i=n/3+1

giψ(y
(k)
π(i))

≥
2n/3∑

i=n/3+1

gif((εmds/100)2) ≥ Ω(rkgrkεmds),

where the first step follows from x
(k+1)
τ(i) = y

(k)
π(i+rk)

, the second step follows from ψ(x) is non-

decreasing (see part 2 of Lemma B.8) and ‖y(k)π(i)‖2 is non-increasing, the third step follows from

1.5rk > n and hence ψ(y
(k)
π(i+rk)

) = 0 for i ≥ n/3+1, the fourth step follows from ψ(x) = f(‖x‖22)

is non-decreasing and ‖y(k)π(i)‖2 ≥ ‖y
(k)
π(rk)
‖2 ≥ εmds/100 for all i < 2n/3, and the last step follows

by g is non-increasing and the part 3 of Lemma B.8.

Case 2. We exit the while loop when 1.5rk < n and ‖y(k)π(1.5rk)
‖2 < (1− 1/ log n)‖y(k)π(rk)

‖2.

By the same argument as Case 1, we have that ‖y(k)π(rk)
‖2 ≥ εmds/100. Part 3 of Lemma B.8 together

with the fact

‖y(k)π(1.5rk)
‖2 < min(εmds/2, ‖y(k)π(rk)

‖2 · (1− 1/ log n)),

indicates that

ψ(y
(k)
π(1.5rk)

)− ψ(y
(k)
π(rk)

) = Ω(εmds/ log n). (13)

Putting things together, we have
n∑
i=1

gi · (ψ(y
(k)
π(i))− ψ(x

(k+1)
τ(i) ))

=

n∑
i=1

gi · (ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)

)) by x(k+1)
τ(i) = y

(k)
π(i+rk)

≥
rk∑

i=rk/2

gi · (ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)

)) by ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)

) ≥ 0

≥
rk∑

i=rk/2

gi · (ψ(y
(k)
π(rk)

)− ψ(y
(k)
π(1.5rk)

))

≥
rk∑

i=rk/2

gi · Ω(
εmds

log n
) by 13

≥
rk∑

i=rk/2

grk · Ω(
εmds

log n
) by gi is decreasing

= Ω (εmdsrkgrk/ log n) ,

where the third step follows by ‖y(k)π(i)‖2 is non-increasing and ψ is non-decreasing (see part 2 of
Lemma B.8).

22



Published as a conference paper at ICLR 2021

B.6 POTENTIAL FUNCTION ψ

Lemma B.8 (Properties of potential function ψ). Let function ψ : Rd → R (defined in Eq. 5). Then
function ψ satisfies the following properties:
1. Symmetric (ψ(−x) = ψ(x)) and ψ(0) = 0;
2. If ‖x‖2 ≥ ‖y‖2, then ψ(x) ≥ ψ(y);
3. |f ′(x)| = Ω(1/εmds),∀|x| ∈ [(0.01εmds)

2, ε2mds];

4. L1
def
= maxx

Dxψ[h]
‖h‖2 = 2 and L2

def
= maxx

D2
xψ[h,h]

‖h‖22
= 10/εmds;

5. ψ(x) is a constant for ‖x‖2 ≥ 2εmds

Proof. Recall f : R+ → R is defined as

f(x) :=


x2

2ε3mds
, x ∈ [0, ε2mds];

εmds − (4ε2mds−x)
2

18ε3mds
, x ∈ (ε2mds, 4ε

2
mds];

εmds, x ∈ (4ε2mds,+∞).

We can see that

f(x)′ =


x

ε3mds
, x ∈ [0, ε2mds];

4ε2mds−x
9ε3mds

, x ∈ (ε2mds, 4ε
2
mds];

0, x ∈ (4ε2mds,+∞).

and

f(x)′′ =


1

ε3mds
, x ∈ [0, ε2mds];

− 1
9ε3mds

, x ∈ (ε2mds, 4ε
2
mds];

0, |x| ∈ (4ε2mds,+∞)

It implies that maxx |f(x)′| ≤ 1
εmds

and maxx |f(x)′′| ≤ 1
ε3mds

. Let ψ(x) = f(‖x‖22).

Proof of Part 1, 2 and 5. These proofs are pretty standard from definition of ψ.

Proof of Part 3. This is trivially following from definition of scalar function f .

Proof of Part 4. By chain rule, we have
Dxψ[h] = 2f ′(‖x‖22) · 〈x, h〉

D2
xψ[h, h] = 2f ′′(‖x‖22) · (〈x, h〉)2 + 2f ′(‖x‖22) · 〈h, h〉

We can upper bound
|Dxψ[h]| ≤ 2|f ′(‖x‖22)| · |〈x, h〉| ≤ 2|f ′(‖x‖22)| · ‖x‖2 · ‖h‖2.

Thus, we have

|f ′(‖x‖22)| · ‖x‖2 =


‖x‖32/ε3mds ≤ 1, ‖x‖2 ∈ [0, εmds];

(4ε2mds − ‖x‖22)‖x‖2/(9ε3mds) ≤ 2/3, ‖x‖2 ∈ (εmds, 2εmds);

0, ‖x‖2 ∈ (2εmds,+∞).

It implies that |Dxψ[h]| ≤ 2‖h‖2,∀x.

By case analysis, we have

|f ′′(‖x‖22)| · ‖x‖22 ≤
{

1
ε3mds
‖x‖22 ≤ 4/εmds, ‖x‖22 ∈ [0, 4ε2mds];

0, ‖x‖22 ∈ (4εmds,+∞).

We can also upper bound
|D2

xψ[h, h]| ≤ 2|f ′′(‖x‖22)| · 〈x, h〉2 + 2|f ′(‖x‖22)| · ‖h‖22
≤ 2|f ′′(‖x‖22)| · (‖x‖2 · ‖h‖2)2 + 2|f ′(‖x‖22)| · ‖h‖22
≤ 2 · 4

εmds
‖h‖22 + 2 · 1

εmds
‖h‖22

=
10

εmds
‖h‖22.
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B.7 EXAMPLES

Comparing with sequential updating algorithm We present another version of our main result,
which is particularly useful when we compare with the sequential updating algorithm.
Theorem B.9 (Locality sensitive hashing maintenance, worst case bound). For any constant c1, c2
(c1 > c2) there is a dynamic data structure (Algorithm 1) that achieves (c1, c2)-accuracy. The data
structure takes Õ(dn1+ρ) time to initialize and each call of QUERY(h) takes time Õ(nρd). By taking
a = min{ρ, α} and gr = tr, after T iterations, the amortized expected time per call of UPDATE(w)
is at most

Õ

(
nρ

T

T−1∑
k=0

n∑
i=1

(∣∣∣E[w
(k+1)
i ]− w(k)

i

∣∣∣+ Var[wk+1
i ]

))
(14)

The proof is almost indentical to Theorem B.1, we only need to replace Lemma B.5 by the following
one.
Lemma B.10 (w move). We have

n∑
i=1

gi · E
[
ψ(y

(k)
π(i))− ψ(x

(k)
i )
]
≤ O

(
g1

n∑
i=1

∣∣∣E[w
(k+1)
i ]− w(k)

i

∣∣∣+ Var[wk+1
i ]

)

= O

(
nρ

n∑
i=1

∣∣∣E[w
(k+1)
i ]− w(k)

i

∣∣∣+ Var[wk+1
i ]

)
We omit the dependence on εmds since we assume it to be constant in the scheduler.

Proof. Again, the proof is almost identical to Lemma B.5, the only difference is that we use `∞/`1
form of Cauchy-Shwarz instead of the `2/`2 form in the previous proof. We only point out the
difference here.

We replace Eq. 10 with
n∑
i=1

gπ−1(i) · E[ψ(y
(k)
i )− ψ(E[y

(k)
i ])] = 0 +

1

2
L2

n∑
i=1

gπ−1(i) · γi

≤ 1

2
L2g1 ·

n∑
i=1

γi

≈ O
(
g1

n∑
i=1

Var[wk+1
i ]

)
.

The first step follows from Eq. 10, the second step follows from {gi}i=1,··· ,n are decreasing and the
last step follows from the definition of γi.

Similarly, we replace Eq. 12 with
n∑
i=1

gπ−1(i) · (ψ(E[y
(k)
i ])− ψ(x

(k)
i )) ≤

n∑
i=1

gπ−1(i) · L1βi . O

(
g1

n∑
i=1

∣∣∣E[w
(k+1)
i ]− w(k)

i

∣∣∣)
The first step follows from Eq. 12, the second step follows from the definition of βi, L1 ≤ 2 and
{gi}i=1,··· ,n are decreasing.

The rest of the proof are the same and we omit it here.

The sequential updating time for LSH is nρ. The total number of updating is (roughly) at least

O

(
T∑
k=1

n∑
i=1

(∣∣∣E[w
(k+1)
i ]− w(k)

i

∣∣∣+ Var[wk+1
i ]

))
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It then easy to see that our scheduler always perform better than naive sequential update.

Comparing with naive batch updating algorithm Below we give a concrete example to show
the effectiveness of our algorithm. We take α = ρ for simplicity. Remember in Assumption 3.2,
we already assume for any r ≤ na = nρ, Tr = nρ, i.e., the average LSH updating time tr = nρ/r
decays linearly in r when r ≤ nρ. It remains to specify the rest tr (r ≥ nρ).
Example B.11. Assuming the average running time decays faster than 1/

√
r, i.e. tr =

n−(1−β)ρr−β for some β ∈ [ 12 , 1) when r ≥ nρ. We then have

‖g‖22 =

n∑
r=1

g2r ≈ n−ρ/2.

The running time of our scheduler is then at most

(C1 + C2)‖g‖2 ≈ (C1 + C2)nρ/2.

As long as the weight changes slowly, say C1 ≈ C2 ≤ nρ/2, we know the amortized updating time
of our scheduler is strictly better than the naive approach that updates LSH every time, which has
running time nρ each iteration.
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C LEARNABLE LSH

C.1 LEARNING HASH FUNCTIONS

Denote a set of neurons in a particular layer as C = {vr | 0 ≤ r < m}, where each neuron vr
has weight and bias. Given an input embedding qi from the previous hidden layer, the output of a
forward pass through neuron r is σ(〈qi, vr〉), where σ is some activation functions. For each input
embedding qi, both SLIDE and REFORMER select a set of neurons, denoted as Si, from the LSH
hash tables for the forward pass. We collect the training samples from qi and its Si to improve the
performance of LSH. Formally, the pairwise training samples (q, v) are collected according to the
following criterion:
• positive pairs P+ = (q, v) if v ∈ S and 〈q, v〉 > t+
• negative pairs P− = (q, v) if v ∈ S and 〈q, v〉 < t−

And the loss is defined as:

L(H,P+,P−) = max
{

0,
∑

(q,v)∈P+

− cos(H(q),H(v)) +
∑

(q,v)∈P−

cos(H(q),H(v)) + α
}
. (15)

Here H is the hash functions of all L hash tables. H(x) generates a K · L vector containing the
projection of x in each hash table. cos(H(x),H(y)) represents the cosine similarity of two projected
vectors. The major contribution of this learning approach is that it optimizes the hash functions
and the hash table indices together. Our method focuses on learning a useful indexing scheme for
retrieval efficiency while other learnable hash methods (Wang et al., 2017) focus on binary sketches
that have higher precision.

Figure 9: Illustration of learning hash functions

We present a demonstration of
our loss in Figure 9. Two ran-
dom hash functions separate 6
data points into four parts. It is
obvious that point 1 (pink) should
be partitioned together with point
2 instead of point 5 and 6. On the
other hand, point 3 and 4 should
not be separated. Therefore, dur-
ing the hash function training, we
choose point (5,6) as a positive
pair. Meanwhile, we chose point
(5,1) and (5,4) as negative pairs.
Then, the loss would update the hash functions to accommodate these new partitions.
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C.2 OBSERVATIONS ON ATTENTION DISTRIBUTION

In this section, we present the visualization with analysis on the distribution of the minimal quantifies
of neurons that sum up to have 0.9 softmax values in attention. On Figure 10, we present the
distribution of each head of attention in each layer from a transformer model trained on Enwiki8
dataset. We classify the patterns(Ramsauer et al., 2020) of the distribution into 3 categories by their
median values. With this observation, we are able to determine the layers that LSH or learnable LSH
can apply in MONGOOSE framework.

Figure 10: The distribution of the minimal quantifies of neurons that sum up to have 0.9 softmax values in
attention in each head of attention in each layer of transformer for Enwiki8
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D EXPERIMENTS DETAILS

D.1 DATA STATISTICS

Table 5: Statistics for our benchmark dataset

Dataset Wiki10-31k Delicious-200K Wiki-325K Amz-670K
Output Dimension 30938 205443 325056 670091
Input Dimension 101938 782585 1617899 135909
Training Samples 14146 6616 1778351 490449
Testing Samples 196606 100095 587084 153025

We present statistics on the 3 datasets we test on from the Extreme Classification Repository (Bhatia
et al., 2016). While the number of datapoints in each dataset is not large (on the order of 200K
at most), the key feature is the sheer size of the input and output dimensions. In particular, each
dataset has over 10,000 output classes, which, using a conventional nueral network, requires a matrix
multiplication involving over 10,000 neurons at the final layer.

D.2 INFLUENCE OF THE PARAMETERS

Smart Scheduler Parameters: Recall that in Algorithm 1, εmds is the key parameter to our smart
scheduler because the number of neurons exceeding this threshold determines if LSH updates are
needed. In practice, instead of choosing a single εmds, we use some fraction of the `2 norm of
the weights as the update threshold. We empirically observe from the previous experiments that
MONGOOSE is robust to any choice of the fraction in the range 0.1-0.3. Thus, it can consistently
outperform other baselines without heavily tuning this parameter for different datasets.

Table 6: MONGOOSE performance as a
function of number of hashes.

Number of Hashes P@1 P@5 Speed (batch/s)
8 0.492 0.241 5.79

10 0.519 0.255 7.7
12 0.469 0.234 9.92

Learnable LSH Parameters: For LSH-based NNS-ds, the
number of hashes is one key parameter to balance NNS qual-
ity and efficiency. In Table 6 we study the effects of varying
the number of hashes in MONGOOSE. We observe that com-
pared to our best empirical choice (10 hashes), both a smaller
(8) and larger number (12) of hashes increases convergence
time. MONGOOSE with fewer hashes selects more unnecessary neurons and lowers training effi-
ciency. A larger number of hashes might miss necessary neurons with higher probabilities and
would similarly take longer to converge. Another important parameter is the threshold for positive
and negative examples to train hash functions. In our experiments, top-1 and bottom-1 are the most
effective choices (top-3 and top-5 do not make much difference). In general, this threshold in our
design is robust and does not require heavy tuning.

D.3 ADDITIONAL RESULTS ON THE EXTREME-CLASSIFICATION TASK

We present the results of additional experiments comparing the classification performance of MON-
GOOSE against SLIDE and FULL in Figure 11. The two metrics, P@1 and P@5, are presented in
(Bhatia et al., 2016) as follows:

P@k =
1

k

∑
l∈rankk(ŷ)

yl

where rankk(·) extracts the top k indices from a vector, ŷ refers to the predicted labels, and y refers
to the ground truth label.

We also present the results of time profiling to demonstrate the speedups of MONGOOSE in each
layer. As shown in Table 7, Time1 represents the total convergence time while Time2 represents
the execution time in the wide output layer (including the forward and backward pass). Here we
observe that MONGOOSE provides up to 20× speedup in the second layer. The major reason for the
increase in convergence speedup (3× to 20×) is that the first embedding layer for high dimensional
and sparse input is time and memory consuming Medini et al. (2019). Therefore, in the end-to-end
result, the advantage of MONGOOSE has been diluted.
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Table 7: This table summarizes the performance of MONGOOSE, SLIDE and Full-Computation implemented
with PyTorch (Paszke et al., 2019). P@1 is the top-1 accuracy and P@5 is the top-5 accuracy. Time represents
convergence time.

Datasets
Full-Computation SLIDE MONGOOSE

P@1 P@5 Time1 Time2 Mem1 Mem2 P@1 P@5 Time1 Time2 Mem1 Mem2 P@1 P@5 Time1 Time2 Mem1 Mem2

Wiki10-31K 0.824 0.578 63 33 0.3 0.12 0.824 0.556 47 (1.3 ×) 18 (1.8×) 0.24 (1.3×) 0.06 (2×) 0.824 0.618 35 (1.8×) 5 (6.6×) 0.2 (1.5×) 0.03 (4×)
Delicious-200K 0.446 0.356 483 361 2.2 0.9 0.465 0.372 318 (1.5×) 197 (1.8×) 1.7 (1.3×) 0.4 (2.2×) 0.469 0.371 162 (3×) 42 (8.6×) 1.5 (1.5×) 0.2 (4.5×)

Wiki-325K 0.501 0.235 5702 3990 3.9 1.5 0.438 0.205 4680 (1.2×) 2970 (1.4×) 3.3 (1.2×) 0.9 (1.7×) 0.519 0.255 1906 (3×) 200(20 ×) 2.7 (1.5×) 0.4 (4×)
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Figure 11: Comparison of MONGOOSE against SLIDE and FULL during the training. The two metrics (P@1
in the top row and P@5 in the bottom row) are the same as in (Bhatia et al., 2016).

D.4 ADDITIONAL RESULTS ON THE LANGUAGE MODELING TASK

We present additional experiments comparing the training loss of MONGOOSE and Reformer on the
synthetic copy task in Section 4. In Figure 12 we present additional experiments comparing the
training loss of MONGOOSE and Reformer on the synthetic copy task in Section 4.1.2. The titles of
each graph denote the hyperparameters of the Transformer model being tested: h1_s2048_t16 refers
to a model with 1 round of hashing, a sequence length of 2048, and a token size of 16. Overall we
can see that MONGOOSE makes a marked improvement in loss over Reformer in every case.
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Figure 12: Comparison of MONGOOSE against Reformer during training on the synthetic copy task.

In Figure 13, we present further results comparing MONGOOSE to Reformer on the enwik8 character-
level language modelling task. In particular, we train two sizes of Transformer (3 and 6 layers) with
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Figure 13: Comparison of MONGOOSE against Reformer during training on enwik8.

a maximum sequence length of 8192 and 4096 respectivelyh. In both settings mongoose achieves
lower loss than Reformer.

Note that the goal of this experiments is to prove the superiority of learnable LSH over classical
LSH in NN training (or MONGOOSE vs. naive LSH-NN framework) rather than improve the state-
of-the-art perplexity. For 6 layer transformer experiment on enwik8, Reformer only reaches 2.71 in
perplexity, while MONGOOSE achieves 2.65 in the same setting. Both MONGOOSE and Reformer
(with LSH) save 6× memory than the original transformers in above two tasks.
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E RELATED WORK

E.1 DATA STRUCTURES FOR DYNAMIC SIMILARITY SEARCH

Similarity search is a well-studied problem with wide applications in recommendation system (Xue
et al., 2017; Severyn & Moschitti, 2015; Hall & Attenberg, 2015), question answering (Boytsov
et al., 2016; Seo et al., 2019; Ahmad et al., 2019; Chang et al., 2020), multi-label classification (Cov-
ington et al., 2016; Jain et al., 2016; Tagami, 2017) and natural language processing (Bengio et al.,
2003; Gao et al., 2014; Lee et al., 2016). There are two major categories of similarity measures:
(1) metric similarity (cosine similarity, euclidean distance), (2) non-metric similarity (inner product,
KL divergence, neural network). The brute-force approach to solving similarity search is computa-
tionally expensive; in response, researchers have developed novel indexing structures to accelerate
the search process, with trade-offs on search accuracy. Based on these indexing structures, simi-
larity search algorithms can be broadly categorized as (1) hashing (Shrivastava & Li, 2014; 2015),
(2) quantization (Guo et al., 2016; Jegou et al., 2011), (3) tree-based (Ram & Gray, 2012), or (4)
graph-based methods (Malkov et al., 2012; 2014; Malkov & Yashunin, 2018).

Most similarity search scenarios studied by these papers are static (search data does not change). In
the experiments section, the developed similarity search methods are compared on a fixed dataset
such as Sift (Jegou et al., 2011) or Glove (Pennington et al., 2014). However, in current similarity
search applications such as the work of (Fan et al., 2019), the search distribution (e.g. product
vectors) changes over time due to the activation of new products and the expiration of old products.
Therefore, some similarity search methods in metric space have been modified for online settings,
such as hashing (Coleman et al., 2019) and quantization (Xu et al., 2018) methods; these methods
sacrifice search speed for data-adaptiveness.

The training phase of Deep Learning models provides a natural setting for Dynamic LSH. During
training, the weight matrices are slowly modified via gradients derived from objective functions. If
we consider the weights as the search data and the training sample as queries, we can view DNN
training as a Dynamic Similarity Search problem. Recent works take advantage of this view of DNN
training by introducing LSH data structures to the NN training process. (Chen et al., 2020) propose
an algorithm (SLIDE) that retrieves neurons with maximum inner product in each step via an LSH
based data structure. In this way, the backward pass of NN training is concentrated on the neurons
with estimated large gradients. Their CPU implementation is able to outperform a traditional GPU
implementation. Similar hashing based algorithms have also been used in Transformer models:
(Kitaev et al., 2020) (Reformer) propose an LSH structure to reduce the memory bottleneck of self-
attention modules especially over long sequences in Transformer.

Since DNN weights are the search data, the distribution of the weights among different hash buckets
changes throughout the training. This necessitates constantly updating the LSH data structure: fail-
ing to update the LSH data structure as the search data changes degrades its nearest-neighbor search
performance, which in turn worsens the quality of the DNN approximation. In our experiments,
we found that failing to update the LSH data structure in SLIDE caused a 28% decrease in top-1
accuracy.

E.2 DATA DEPENDENT INDEXING

Data dependent hashing methods (DDH) focus on adapting hashing schemes to the data distribution.
They often relate to indexing via an objective function. Most literature concentrates on hashing and
quantization methods. Although previous works have achieved promising results in learning B-
Trees (Kraska et al., 2018) or Lattice quantization (Sablayrolles et al., 2019), there are two major
bottlenecks for DDH: (1) Theoretical insights are few applied in practice, (2) Complex index designs
introduce computation overhead. In the theory of data dependent indexing, (Andoni et al., 2018)
present fruitful insights on hashing-based Approximate Nearest Neighbor search on metric space.
However, there is not much literature that puts these insights into practice. (Dong et al., 2019)
propose a k-NN graph based algorithm for efficiently learning data dependent LSH in Euclidean
space based on the insights given by (Andoni et al., 2018). However, their method requires pre-
computing a k-NN graph, which is computationally expensive at scale. In the experiments, (Dong
et al., 2019) only compare their method with k-means; their performance compared to major ANN
benchmarks (Erik et al., 2018) remains unknown.
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Many practical applications of LSH eschew DDH methods for vanilla LSH due to the aforemen-
tioned computational bottlenecks. However, despite having sub-linear query time in theory, query
complexity for even vanilla LSH is still high in practice Datar et al. (2004); Andoni et al. (2017).

When designing the dynamic data structure, we want to minimize the total running time and balance
the overhead and benefit brought by the data structure. In general, the matrix multiplication and
backpropagation procedures comes from neural network training, which we can not control, hence,
we want to balance the accuracy-efficiency trade-offs by selecting neurons.

This is especially pronounced in the Dynamic LSH regime, when weights are evolving, besides
query time, LSH updates incur a more significant overhead that harms the overall efficiency. (Chen
et al., 2020) introduce a method to control update frequency, but their method requires heavy hyper-
parameter tuning and is not guaranteed to work for each benchmark. In contrast, our findings in
the following section show that the update overhead can be significantly reduced while maintaining
nearest-neighbor search quality during NN training. To our knowledge, this is the first time DDH
techniques have been successfully applied to the Deep Learning setting.

E.3 EFFICIENT NEURAL NETWORK TRAINING

The weights of a neural network dynamically change during the training process, which brings great
challenges to the LSH implementation. Since the data are no longer static, we need to constantly
update the hash table, which incurs extra computation cost that could harm the overall performance.
We present a dynamic data structure to handle this issue, and our data structure achieves signifi-
cant speedup over naive implementation under mild assumptions, without compromising the worst
case guarantee. The dynamic data structure (shown in Algorithm 1) borrows ideas from the work
of (Cohen et al., 2019; Jiang et al., 2021) (which are originally designed for linear programming),
and we adapt it to the LSH setting. Our data structure generalizes several practical insights and
turns practical heuristics into rigorous theory, which guarantees significant speed up under natural
assumptions for training neural networks and ensure the worst guarantee at the same time. In partic-
ular, we generalize and provide the following three practical heuristics (i) only update significantly
changed coordinates, (ii) batch updating LSH instead of sequential updating, (iii) using “prediction”
on those “marginal” coordinates.

In this work, we primarily study two LSH based efficient NN training methods: SLIDE and RE-
FORMER. SLIDE introduces LSH to select neurons in the forward pass and then only do gradient
descent on the chosen neurons. The major trade-off of SLIDE is the rebuild overhead versus the ac-
curate neuron selection. To accurately retrieve the neurons with high inner products, the hash tables
are required to be updated. This rehashing and rebuilding will be the major overhead caused by
SLIDE. Therefore, the SLIDE’s speed over full NN training is determined by the relative magnitude
of rebuild overhead compared to the saved back-propagation time. The major goal of REFORMER
is to reduce the memory consumption of the transformer so that GPU based hardware can support
sequence to sequence tasks with longer sequence length. REFORMER also shares the trade-off when
rebuilding the hash tables for better retrieval of attention weights. Besides, learning hash functions
of REFORMER is more challenging than SLIDE. From an information retrieval’s perspective, in at-
tention settings, each data vector is also a query. This unique setting increases the hardness for
learning better hash functions.
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F EFFICIENT GPU IMPLEMENTATION
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Figure 14: Visualization of how union
selection within the batch instead of in-
dependent sets of neurons with variant
length can avoid irregular memory ac-
cess.

As noted by (Chen et al., 2020), each input in one batch sam-
ples a different set of weights(neurons). These irregular oper-
ations significantly reduce the benefits of using GPUs: they
correspond to different sizes of rows for each input, which
makes the forward pass much more difficult to parallelize
and thus, more challenging to map to GPUs than regular
programs (Burtscher et al., 2012). For this reason, (Chen
et al., 2020) build their SLIDE system in C++ from scratch
on CPU. Even though their implementation achieved remark-
able speed up, their impact is limited as they implemented
their system from scratch in C++, making it difficult for the
community to adopt SLIDE in practice. To verify that such
randomized algorithm is not GPU friendly, we implement the
exact same algorithm for GPUs. We show in Section 4.1.1
that it indeed fails to gain any speed up.

We design a variant of the algorithm to exploit fast matrix
multiplications on GPUs. In the original SLIDE, each train-
ing example in a batch retrieves its own subset of weights.
Here, we take a union of the retrieved subsets in each batch to avoid irregular and unbalanced mem-
ory access, shown in figure 14. Our implementation of this proposal is written in python under
Pytorch framework with Cython compiled LSH and CUDA kernels for hashcode efficient computa-
tion. We believe this implementation would be more beneficial for the community as it can be easily
plugged into any deep learning models.

Practical Implementation: In our design, we borrow insights from the theoretical guarantee from
above and aim to find the sweet spot between theory limitations and practical challenges. First,
instead of detecting weight changes at the cost of an extra copy, we reduce the problem to detect
low quality of retrieved weights. In NN training setting, we measure quality as the inner product
and low quality indicates a low inner product. We argue these two approaches are similar that
they both signal the necessity of updating the data structure. Besides, rather than a soft margin for
detecting data changes, which can be ambiguous under dynamic setting, inner product is a better
measurement as it clearly indicates the performance of current data structure. More importantly
from an efficiency perspective, quality detection comes almost for free because the inner product
between the query embedding and retrieved neurons are necessary for the forward pass.

G BROADER IMPACT

With the exponentially growing data volume, the scale of neural network (NN) models keeps in-
creasing to achieve unprecedented performance on tasks in many domains, such as recommendation
systems (He & Chua, 2017; Medini et al., 2019), natural language processing (Bengio et al., 2003;
Vaswani et al., 2017) and computer vision (Deng et al., 2009; Vaswani et al., 2017). However, train-
ing those large-scale models imposes challenges on the computational and memory resources even
with advanced modern hardware. For example, the recent GPT-3 model (Brown et al., 2020) has
a capacity of 175 billion parameters. Therefore, there is an emergent need to reduce the cost of
training those giant models.

We now quantify the potential impacts of our work. MONGOOSE sheds lights on efficient NNS-ds
for efficient training of deep neural networks. Especially, the slow change observation along with
the smart scheduler demonstrate the possibility of applying NNS-ds with larger indexing overhead
for dynamic similarity search where the distribution of data changes slowly. We show applications
of MONGOOSE on language modeling and recommendation tasks. But since our key or fundamental
observations are general, MONGOOSE could potentially generalize to more deep learning models
and tasks. On the other hand, more NNS-ds equipped with our observations and scheduler could be
involved in the deep learning community to tackle the efficiency issue.
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