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Abstract

Competitive coevolutionary algorithms (CoEAs) have a natural application to prob-
lems that are adversarial or feature strategic interaction. However, there is currently
limited theoretical insight into how to avoid pathological behaviour associated
with CoEAs. In this paper we use impartial combinatorial games as a challenging
domain for CoEAs and provide a corresponding runtime analysis. By analysing
how individuals capitalise on the mistakes of their opponents, we prove that the
Univariate Marginal Distribution Algorithm finds (with high probability) an opti-
mal strategy for a game called Reciprocal LeadingOnes within O(n2 log3 n) game
evaluations, a significant improvement over the best known bound of O(n5 log2 n).
Critical to the analysis is the introduction of a novel stabilising operator, the impact
of which we study both theoretically and empirically.

1 Introduction

Many of the most popular machine learning methods for multi-agent systems rely on self-play. Indeed,
recent breakthroughs on games including Go, Chess, and Poker [43, 5, 34] have used self-play to
produce superhuman performance without prior training data. However, despite their popularity
self-play algorithms are not provably efficient in general, and a robust theory of which self-play
algorithms are efficient and how performance scales with problem size is an important open question.

A recurring observation is that while self-play agents perform well against similar play styles, they
often perform poorly against new agents exhibiting radically different strategies to those trained
against [32, 48, 44]. Accordingly, there is a need to ensure strategic diversity is present during
learning. A possible source for this strategic diversity is to utilise population-based approaches such
as competitive coevolutionary algorithms (CoEAs) [40]. CoEAs iteratively evaluate individuals of
a population based on interactions with competitors, selecting the strongest as parents for the next
generation’s population, which is instantiated using mutation and crossover.

The successful application of CoEAs is not straightforward in general, due to the possibility of
pathological behavior such as cycling, forgetting, and loss of fitness signal [12]. These issues are
often caused by a failure to accurately ascertain the quality of individuals, which in turn relies on
ensuring opponents are both diverse and challenging. For example, a lack of population diversity on
highly intransitive games can lead to cycle-chasing; if a certain genotypic feature is needed to defeat
a particular type of opponent, that feature may be forgotten if such opponents are not also retained
in the population; and evaluations against significantly stronger or weaker opponents provide little
useful information for progression, which incurs a loss of fitness signal.
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As it is critical to avoid such behaviours, our research objective is to gain a deeper understanding of
how the distribution of opponents is affected by algorithm design, and how this subsequently impacts
the performance of CoEAs. This understanding can be acquired through runtime analysis, which
provides rigorous estimates of the number of times the game is simulated by an algorithm until a
specified objective is achieved [8]. While there is a large amount of runtime analysis for standard
evolutionary algorithms (EAs) [9], the first steps towards a corresponding theoretical framework for
coevolution have only been taken recently (see Section 1.1), despite clear demand [40].

As theoretical work on full-scale real-world problems is generally not feasible, the problems to which
runtime analysis applies are often simplifications designed to capture a challenging aspect of the
corresponding application. There is a large amount of interest in the use of CoEAs for game playing
(see Section 1.1), so we consider this a critical area for the development of runtime analysis for
CoEAs. One important class of difficult and varied games are combinatorial games. Even though
optimal play for small combinatorial games can be computed using the game graph in linear time (as
a function of n, the number of game positions), the full space of possible strategies is exponential in
n, and CoEAs often struggle to find winning strategies efficiently. Thus combinatorial games can
provide a challenging class of benchmarks for CoEAs that are amenable to theoretical analysis.

Recently, the first runtime analysis for CoEAs on combinatorial games [4] showed that for any
impartial combinatorial game, a CoEA called Tournament UMDA (see Section 2) is likely to find
an optimal strategy within nO(s) game evaluations, where s is a precisely defined invariant of the
corresponding game graph. For many games, s turns out to be a constant. However, even in such
cases, the implied exponent in the polynomial bound is much higher than implied by observed
performance, and it was conjectured that a more sophisticated analysis of how competing individuals
respond to the weaknesses of their opponents could yield tighter runtime bounds.

The main contribution of this paper is to advance the development of a theoretical framework for
coevolution by undertaking this more detailed analysis. We will introduce a combinatorial game
called Reciprocal LeadingOnes (RLO) which is difficult for a range of CoEAs and for which the
aforementioned analysis implies a runtime bound of O(n5 log2 n). With careful examination of the
corresponding coevolutionary dynamics, we prove the following improved upper bound, as well as a
new lower bound demonstrating the result is tight up to a polylogarithmic factor.
Theorem 1.1 (Theorem 5.2, informal version). With appropriate parameters, Tournament UMDA
finds with high probability an optimal strategy for RLO in time bounded above by O(n2 log3 n) and
bounded below by Ω(n2 log n).

The particular variant of UMDA we analyse includes a novel feature that promotes diversity in the
resulting populations. Not only does its inclusion greatly assist the theoretical analysis, but we
will see in the experimental analysis of Section 4 that it also improves the algorithm’s observed
performance. Our experiments will also investigate the performance of a range of CoEAs on several
combinatorial games, and help motivate RLO as a challenging benchmark for CoEAs.

While population diversity is an important requirement for success on RLO, diversity alone cannot
overcome its challenges. Indeed, we will also prove that any evolutionary algorithm (EA) that
maximises diversity by foregoing coevolution and evaluating only against uniform random opponents
has exponential runtime on RLO, thus confirming that a coevolutionary arms race between players
and opponents is essential for sustained progress towards optimal play.
Theorem 1.2 (Theorem 6.1, informal version). If an EA is used to optimise RLO, where evalua-
tions are made by playing against uniform random opponents, then with overwhelming probability,
exponential time is needed to discover an optimal strategy.

1.1 Related work

There have been numerous case studies on the topic of coevolution for combinatorial games, including
for Nim and Tic-Tac-Toe [41, 23], Backgammon [39], Othello [24, 44, 45], Senet [11], Checkers
[6], Chess [13, 18], and Go [31]. More general game-playing applications of coevolution include
Pong [33], Bomberman [15], Poker [36], and Resistance [26]. Notably, DeepMind’s groundbreaking
AlphaStar algorithm made use of a competitive coevolutionary league training system [48, 1].

The first runtime analysis for competitive CoEAs was provided by [27], which established conditions
for the successful location of the Nash equilibrium of an intransitive game called BILINEAR by

2



a population-based CoEA. Further theoretical analysis of CoEAs on BILINEAR has studied the
impact of algorithmic features including archives [21] and fitness aggregation [19]. In this paper, we
ask how to retain a distribution of diverse opponents that are conducive to coevolutionary learning.
This question was also examined theoretically in [20] through a method promoting populations of
individuals that are diverse in how they rank opponents relative to one another. The coevolutionary
instance of UMDA to which our main result applies was first analysed on a class of symmetric
zero-sum games [3], and also later in the first runtime analysis of a coevolutionary algorithm for
combinatorial games (and indeed, any turn-based game) [4].

1.2 Notation

Let S be a finite set. A probability distribution over S is a function p : S → [0, 1] such that∑
s∈S p(s) = 1. An S-valued random variable x is said to be distributed according to p, denoted

x ∼ p, if P(x = s) = p(s) for all s ∈ S. For any subset A ⊆ S, we define p(A) =
∑

s∈A p(s).
Given γ ∈ [0, 1], let Pγ(S) be the set of distributions p over S with p(s) ⩾ γ for all s ∈ S, and
define P(S) = P0(S). We use P(S) to denote the powerset of a set S. All logarithms are the
natural logarithm unless stated otherwise, and given k ∈ N we write logk n = (log n)k.

2 Tournament UMDA

Whereas most EAs generate new individuals by mutating existing individuals in the current population,
estimation of distribution algorithms (EDAs) instead use statistics about the current population to
instantiate a more general probability distribution over the entire search space [38]. Candidates for
selection in the next generation are then sampled according to this distribution.

For search domains of the form X =
∏

i∈I Si, where I is a finite indexing set, a standard practice
is to keep track of a frequency vector pt ∈

∏
i∈I P(Si) that evolves with time. Broadly speaking,

pt(i)(s) represents the proportion of individuals in the population Pt ⊆ X that have an s appearing
in position i. New search points can then be generated using the following probability distribution.

Definition 2.1. Given X =
∏

i∈I Si and p ∈ ∏
i∈I P(Si), let Univ(X , p) denote the probability

distribution over X such that, if x ∼ Univ(X , p), then for any y ∈ X , P(x = y) =
∏

i∈I p(i)(y).

The coevolutionary EDA we analyse is a one-population instance of the Univariate Marginal Dis-
tribution Algorithm (UMDA) which employs a binary tournament selection, and is delineated in
Algorithm 1 (for further comparison of one-population and two-population CoEAs, see Section 4).

Algorithm 1 Tournament UMDA with parameters µ ∈ N, γ > 0, c > 0

Require: Search domain X =
∏

i∈I Si and payoff function f : X × X → {−1, 1}.
for i ∈ I and s ∈ Si do

Set p0(i)(s) = 1
|Si| .

end for
for t ∈ N until termination criterion met do

for j ∈ [µ] do
Sample x ∼ Univ(X , pt) and y ∼ Univ(X , pt)

Set w =

{
x if f(x, y) = 1

y if f(x, y) = −1
Sample Pt+1(j) ∼ MUTATE(c, pt, w)

end for
for i ∈ I do

for s ∈ Si do
Set qt+1(i)(s) =

1
µ |{j : Pt+1(j)(i) = s}|

end for
Set pt+1(i) = πSi

γ (qt+1(i))
end for

end for
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UMDA was first introduced as a non-coevolutionary EDA by Mühlenbein and Paaß [35], and the
instance analysed here is closely related to that appearing in [3].

As is common for EDAs, there is a special step at the end of each generation to ensure that the
probability of a generated individual taking any given value s ∈ Si in position i ∈ I never drops
below some boundary parameter γ. This is achieved by use of constraint functions πSi

γ : P(Si) →
Pγ(Si). We refer the reader to [4, 2] for a complete description of πSi

γ . However, we note that
for our proofs we only rely on the fact that the constraint function simplifies to πSi

γ (p)(s) =
min {max {p(s), γ}, 1− γ} in the case |Si| = 2. A novel feature of the instance of UMDA described
here (and indeed the only difference to that appearing in [4]) is the use of an operator MUTATE(c, pt, x)
applied to each selected individual.
Definition 2.2. Given x ∈ X :=

∏
i∈I Si, the operator MUTATE(c, pt, x) generates an element

y ∈ X by, independently for each i ∈ I , sampling y(i) uniformly at random from Si with probability
c ·∏s∈Si

(1− pt(i)(s)), and otherwise setting y(i) = x(i).

MUTATE(c, pt, x) introduces a probability that individuals entering the next population have some
entries generated uniformly at random, thus nudging each entry pt(i) of the frequency vector slightly
towards the uniform distribution. This increases the level of population diversity in subsequent
generations. Nonetheless, because the size of the nudge is proportional to

∏
s∈Si

(1− pt(i)(s)), its
effect lessens when pt(i) has low entropy, and thus does not prevent the algorithm converging on
those positions i ∈ I where there is a strong preference for certain values.

As well as its potential diversity benefits, the inclusion of MUTATE(c, pt, x) is perhaps best motivated
in terms of its relation to the concepts of balance and stability as applied to EDAs [14, 25]. Roughly
speaking, an EDA is balanced if E[pt+1 | pt] = pt holds in the absence of any fitness signal,
and it is stable if the distributions (pt(i))i∈I remain close to uniform in such a case. While these
properties do not seem at first to be obviously contradictory, Theorem 6.11 of [25] shows that they
are in fact mutually exclusive. In the same chapter, it is shown via an application to the well-known
LEADINGONES benchmark (where the fitness of a bitstring is defined as the length of its longest
prefix of 1-bits) that stable EDAs can offer significant speed up due to their prevention of premature
convergence on positions that do not become relevant until later in the optimisation process.

The addition of the operator MUTATE(c, pt, x) transforms Tournament UMDA from a coevolutionary
EDA that is balanced into one that is stable. With this, we should hope to see improved performance
in settings where the optimisation of positions happens sequentially rather than concurrently, as is
the case for LEADINGONES. We will see in Section 4 that this change significantly improves the
performance of Tournament UMDA on combinatorial games, and also assists with the proof of the
associated runtime bounds.

3 Impartial combinatorial games and Reciprocal LeadingOnes

We quickly describe the representation of impartial combinatorial games via directed graphs; for a
more comprehensive introduction, see [4, 16, 17]. An impartial combinatorial game (ICG) is a finite
acyclic rooted directed graph G = (V, F, v0), where V is a vertex set of size n (the game positions),
v0 ∈ V is the initial game position, and F : V → P(V ) is a function mapping each position onto
those which can be reached in a single move. Players take turns moving the current position v to an
element of F (v). If F (v) is empty, the current player loses.

We will encode strategies for ICGs as an assignment of each interior vertex v to an element of
F (v), with this assignment indicating the preferred move at each game position. Formally, using
Int(G) to denote the set of v ∈ V with F (v) ̸= ∅, then XG =

∏
v∈Int(G) F (v) will be the set of

strategies for G. Given x ∈ XG, let x(u) ∈ V denote the preferred move at at position u. Let
fG : XG ×XG → {−1, 1} be the payoff function for G, where fG(x, y) = 1 indicates that x wins
against y and fG(x, y) = −1 indicates that x loses against y (where x moves first).

To help motivate Reciprocal LeadingOnes, let us consider why learning winning strategies even for
simple combinatorial games can be difficult in principle. Whether it is Chess or Nim, in order to
guarantee optimal play in a combinatorial game it is not enough to put oneself in a winning position;
one must then also maintain the upper hand by responding correctly to any difficult position an
opponent move the game to later. However, for many combinatorial games, each play only bears
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Figure 1: The game graph G for RLO.

witness to a fraction of the overall possible positions. It is on such games that learning is potentially
improved by training against opponents that are both challenging (so that novel and difficult positions
occur) and diverse (so that a range of difficult positions occur).

We define Reciprocal LeadingOnes (RLO) to be the impartial combinatorial game G = (V, F, v0)
with the specification V = {c0} ∪

(
∪i∈[n]{ai, bi, ci, di}

)
, v0 = cn, and

F (v) =


{ci−1, di} if v = ai or v = bi,
{ci−1} if v = di,
{ai, bi} if v = ci and i > 1,
∅ if v = c0.

An illustration of the game is shown in Figure 1. RLO can be regarded as a series of n challenges
and responses, where the player who plays at ci is considered to be the current challenger and the
player who plays at {ai, bi} is the current responder. In each play of the game only one of each ai
or bi can be encountered, yet optimal play necessitates perfect play at both, and so RLO captures
the notion of a difficult game to learn as described above. As the player who plays at c0 loses, the
responder can win by repeatedly moving the game to ci−1 (a “correct response"), thus maintaining
their position as responder. Thus, RLO is a second-player-win game, and victory can be guaranteed
by ensuring that x(u) = ci−1 for every i ∈ [n] and u ∈ {ai, bi}. In fact, this condition for perfect
play is also a necessary one, and so we have the following characterisation of optimal strategies for
RLO (see Appendix A for a corresponding proof).
Definition 3.1. Let Opt(G) ⊆ XG be the set of x such that fG(y, x) = −1 for every y ∈ XG.
Proposition 3.2. x ∈ Opt(G) if and only if x(u) = ci−1 for every i ∈ [n] and u ∈ {ai, bi}.

4 Experimental analysis

In this section we present experimental analysis showing combinatorial games to be a challenging
benchmark and case study for CoEAs. Throughout, the runtimes for an algorithm A on a game G
were obtained by performing 100 runs of A for each population size in a range of values between 100
and 10000, and retaining only the 100 runs associated to the population size with the lowest average
runtime. When we refer to the average runtime of A on G, we refer specifically to the mean of these
100 retained runs. All algorithms were run until either the population contained an optimal strategy or
108 game evaluations had been performed, whichever occurred first. As such, runtimes of 108 should
be interpreted as failure to discover an optimal strategy in the allocated time. In addition to RLO, we
consider a number of other well-known ICGs. Many of the algorithms selected were chosen due to a
previous application to combinatorial games (including Chess, Checkers, and Othello). For further
details on the algorithms and games, as well as details of computational resources used to carry out
the relevant experiments, see Appendix B.

Most CoEAs are two-population, and evaluate individuals based on interactions with the opposing
population. For asymmetric problems (especially those with differing search domains), such algo-
rithms are the only viable option. However, for settings where both players have the same strategy
space, one may opt to use a one-population CoEA in which individuals are evaluated based on their
interactions with other members of the same population. There are potential benefits to this approach,
such as to avoid a loss of fitness signal arising from differing strengths between populations. However,
reliable insight into when each paradigm should be employed is limited.

The distributions of runtimes shown in Figure 2 relate to three broad classes of CoEAs: one-population
EDA-type CoEAs (Tournament UMDA with c = 0 and c > 0); one-population non-EDA CoEAs
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regressions.

6



Table 1: Comparison of runtimes for Tournament UMDA for c = 0 and c = 0.05.

Problem Tournament UMDA (c=0) Tournament UMDA (c=0.05)
t-statistic p-valueMean Runtime Std Dev Mean Runtime Std Dev

Subtraction Nim 2.60 e4 5.29 e3 2.40 e4 2.40 e3 3.45 7.33 e−4
RLO 1.06 e5 4.14 e4 5.53 e4 1.81 e4 11.23 4.25 e−21
Turning Turtles 1.09 e5 2.73 e4 5.76 e4 1.13 e4 17.34 10 e−35
Silver Dollar 1.65 e5 1.50 e4 1.34 e5 2.45 e4 10.50 4.63 e−20
Chomp 1.38 e4 5.82 e3 6.20 e3 3.02 e3 11.54 2.12 e−22
Tic-Tac-Toe 6.48 e5 6.48 e4 3.13 e5 9.76 e4 28.35 8.86 e−67

(pollackblair1998, chellapillafogel1999, and panaitluke2002); and two-population non-EDA CoEAs
(rosinbelew1997, sjlk2015, PDCoEA, and RankDivCoEA). Despite the games having relatively
small game graphs (ranging from between 64 and 629 vertices), most CoEAs required millions of
simulations to discover optimal play (if optimal play was found at all). Notably, the best-performing
CoEAs in each of the non-EDA classes (panaitluke2002 and rosinbelew1997) both used crossover
and archives, which increase population diversity and help prevent coevolutionary forgetting.

Despite its simplicity compared to the best-performing non-EDAs, the instances of Tournament
UMDA were the best-performing algorithms on all games, justifying its selection as an interesting
case for further theoretical analysis. Notably, setting the parameter c to be positive in the mutation
operator MUTATE(c, pt, x) improved the performance of Tournament UMDA on all six games.
Table 1 compares the relative performance for c = 0 and c = 0.05, and the speed up was found to be
significant with respect to Welch’s t-test [49]. As these findings only apply to problems of a fixed
size, we also present in Figure 3 an analysis of how the runtime of Tournament UMDA scales with
the number of challenges n in RLO. Polynomial performance is observed from the linear relationship
between n and runtime when plotted on a log-log scale. It is remarkable that while the estimated
degree of the polynomial for c = 0 closely corresponds to the dominant term of n2 in our main
theoretical result, the slope of 1.543 for c = 0.05 indicates that asymptotically superior performance
may be possible as a result of introducing MUTATE(c, pt, x) for populations of size roughly

√
n (that

is, smaller than considered in our analysis).

5 An upper bound for the runtime of UMDA on Reciprocal LeadingOnes

The runtime of a CoEA is measured as the number of times the payoff is queried until the algorithm
reaches the desired search objective (see [10]), as follows.
Definition 5.1. Suppose that G is an impartial combinatorial game, and that A is an algorithm
which makes τ queries of fG during each generation. Then, given a set B ⊆ XG, the runtime of A
on fG is defined to be the random variable TG

A (B) = τ ·min {t : Pt ∩B ̸= ∅}, where Pt ⊆ XG is
the population of A at the start of generation t.

As discussed in Section 1, an upper runtime bound of O(n5 log2 n) for Algorithm 1 on RLO can be
quickly obtained using the results of [4] (see Appendix C.1). Our main result improves this upper
bound and further establishes a lower bound, as follows.
Theorem 5.2. Let K > 0 be an arbitrary constant, let G be the game graph for RLO, and let A
be described by Algorithm 1 where c ⩽ 1/600 is a constant and γ = 1/(100n). Then there exists

n0 ∈ N such that, provided n ⩾ n0 and µ ⩾
(

(K+4)105

c2

)
n log n,

P
[
n2 log n ⩽ TG

A (Opt(G)) ⩽ µn log2 n
]
⩾ 1− n−K .

While the full proof of Theorem 5.2 is provided in Appendix D, here we provide a description of
some of the key ideas behind the upper bound, and how they relate to the impact of the operator
MUTATE(c, pt, x).

A run of A on RLO generates a Markov chain (pt)
∞
t=0 over a state space which we label Q. For each

0 ⩽ i ⩽ n, we will let Ai be the set of p ∈ Q such that p(cj , aj) ∈ [ 18 ,
7
8 ], p(aj , cj−1) ⩾ 1 − 2γ,

and p(aj , cj−1) ⩾ 1− 2γ whenever j ∈ [i] (where we use p(u, v) as a shorthand for p(u)(v)). Note
that Q = A0 ⊇ A1 ⊇ . . . ⊇ An. The intuition here is that pt ∈ Ai corresponds to evaluating
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Figure 4: Deterministic trajectories in [γ, 1−γ]3 induced by ∆(q) initialised on the line p(ai, ci−1) =
p(bi, ci−1) = γ. The cases c = 0 (left) and c > 0 (right) are both shown. As ∆(q) is an illustrative
device and does not explicitly feature in the proof of Theorem 5.2, the expression for ∆(q) used
to produce this plot (via Euler’s method) is one corresponding to the lower bounds featuring in the
definition of ϕα, as given in Appendix D.

against opponents that are both diverse and strong in the final i challenges. Indeed, if γ is small
and x ∼ Univ(XG, pt) for some pt ∈ Ai, then x is likely to always respond correctly in the final i
challenges, making x impossible to beat when entering those challenges as responder. Moreover,
because pt(cj , aj), pt(cj , bj) ∈ [ 18 ,

7
8 ] for j ∈ [i], if x enters those challenges as challenger, then

x will discover and punish suboptimal opponents with at least constant probability. The diversity
condition pt(cj , aj) ∈ [ 18 ,

7
8 ] is critical to sustaining consistent progress by ensuring suboptimal

players do not reenter the population (as observed in Appendix C.2).

If x ∼ Univ(XG, p) for some p ∈ An, then x is likely to belong to Opt(G). Thus, we analyse how
long it takes (pt)

∞
t=0 to move from A0 to An. This process is partitioned into n phases, with pt

moving from Ai−1 to Ai in phase i. More specifically, phase i examines how the vector

qt := (pt(ci, ai), pt(ai, ci−1), pt(bi, ci−1)) ∈ [γ, 1− γ]3

moves towards the set Â := [ 18 ,
7
8 ]× [1− 2γ, 1− γ]2. Applying results from [4], and also carefully

accounting for the effects of MUTATE(c, pt, x) and the constraint functions, we will be able to obtain
a fairly precise estimate of the value of

∆(q) := E[qt+1 − qt | qt = q , pt ∈ Ai−1].

∆(q) defines a (deterministic) vector field over [γ, 1− γ]3. In this framing, our analysis reduces to:

(A) Show the trajectories induced by ∆(q) converge to Â.
(B) Show the random process (qt)

∞
t=0 closely follows these trajectories.

These tasks are the most detailed and technical and part of our proof. However, they are greatly
assisted by the role played by MUTATE(c, pt, x). To illustrate, consider Figure 4, which shows these
trajectories for the cases c = 0 and c > 0. When pt ∈ Ai−1, the winner w sampled in Algorithm 1
is typically whichever of x or y avoids playing at position ci−1. This observation provides strong
intuition for the shape of the trajectories. For example, when pt(ai, ci−1) is large and pt(ci, ai) is
small, most games will visit bi in which instance the responder can win by moving to ci−1, thus
incurring a strong pressure for pt(bi, ci−1) to increase in that region of [γ, 1 − γ]3. As another
example, if pt(bi, ci−1) is large but pt(ai, ci−1) is small, the challenger is more likely to win if
they select ai, thus incurring a strong pressure for pt(ci, ai) to increase. In both cases, the resulting
increase is a consequence of rewarding one player for exploiting sub-optimal play exhibited by
another. Thus, the shapes of the curves in Figure 4 are representative of how coevolution learns
through a feedback mechanism of individuals capitalising on the mistakes of their opponents.

Transferring this intuition to a rigorous confirmation of (A) and (B) is not straightforward, as random
variation in (qt)

∞
t=0 makes it unlikely to follow any single trajectory. For one-dimensional stochastic
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Ai−1 ↪→τ H H ↪→τ G1 ∪G2
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Figure 5: Trajectory-following sequences of cuboids appearing in the proof of Theorem 5.2 (or more
precisely, in the proof of Lemma D.8). The three axes of each representation of [γ, 1−γ]3 correspond
to p(ci, ai), p(ai, ci−1), and p(bi, ci−1) in the same orientation as in Figure 4. The space close to the
boundaries of [γ, 1− γ]3 has been enlarged to assist with visualisation.

processes, this is typically handled using drift analysis [29]. One way such methods can be applied
to higher dimensional processes is by mapping the space down to one-dimension using a distance
function, however such a function with the specific properties needed to apply drift analysis is not
always guaranteed to exist (and we were unable to find one in this instance). Aside from possibly
using a distance function, there is no clear system for generalising drift analysis to higher dimensions
beyond simple linear cases [42, 22]. An alternative approach is to use level-based analysis [7, 27],
however it was not immediately clear in this case how to define associated levels that fully capture the
dynamics of (qt)

∞
t=0. Instead, to handle this technicality, we will introduce a relation ↪→τ between

sub-cuboids of [γ, 1− γ] with the property that if qt ∈ B and B ↪→τ C, then qt+τ ∈ C holds with
high probability (where we assign τ a fixed value that is Θ(log2 n)). We then define sequences of
cuboids, with ↪→τ holding between one cuboid to the next. These sequences collectively follow the
paths of the trajectories, and gradually contract down to the set Â. An illustration of this part of the
proof is shown in Figure 5.

This transfer from the idealised deterministic progression of Figure 4 to the probabilistic progression
of Figure 5 is where the effect of MUTATE(c, pt, x) is most beneficial. The resulting nudge towards
the uniform distribution (recall Section 2) biases the (qt)

∞
t=0 towards the middle of [γ, 1− γ]3, where

the trajectories move more directly towards Â and where fluctuations caused by random variation
are less erratic. This difference is evident also in Figure 4, where the trajectories for c > 0 move
more directly and smoothly towards Â. This analysis also helps explain the difference in performance
between c = 0 and c = 0.05 observed in Section 4. Accordingly, it is natural to ask how closely the
actual trajectories for a run of Tournament UMDA on RLO match the idealisations of Figure 4. For
this, we refer the reader to Appendix C.2.

It is useful to consider the extent to which the proof of Theorem 5.2 generalises beyond RLO. The
overall proof technique (that is, analysing the trajectory of the vector q and carrying out steps (A) and
(B)) is certainly not exclusive to the specific structure of RLO and there is no innate reason it could
not be applied to other combinatorial games. In particular, the proof generalises easily to non-binary
cases (that is, combinatorial games with more than two moves available in a turn), albeit with some
heavier notation. However, a focus on RLO greatly simplifies our analysis due to its repeating gadget
structure, and most of the proof analyses dynamics on a single gadget. Similar arguments could be
recreated for game structures that are more complex or varied, however this may be impractical given
the high level of technicality already present for RLO.

6 EAs cannot optimise combinatorial games by playing against random
opponents

The result and corresponding proof of Section 5 helps demonstrate and formalise the benefit provided
by evaluating against a range of diverse opponents. However, it would be misguided to conclude that
population diversity is the sole contributor to the success of a CoEA – the coevolutionary feedback
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between player and opponent is fundamental to learning. To this end, in this section we will show
that an evolutionary algorithm cannot efficiently optimise Reciprocal LeadingOnes if individuals are
evaluated against opponents sampled uniformly at random from the search domain. In this regime,
the distribution of opponents is maximally diverse, but representative of a fixed environment.

The statement and corresponding proof of this black box result relies on the introduction of a family
of ICGs {RLO(z) : z ∈ {0, 1}n}. Each instance RLO(z) will be obtainable from RLO by simply
relabeling vertices, and so are all isomorphic to RLO. In addition, as a strategy for RLO may
be described using 3n binary choices, we will adopt X := {0, 1}3n as the search domain for all
instances of RLO(z) and write the corresponding payoff function as fRLO(z) : X × X → R. For a
full description of RLO(z) and the correspondence of strategies to {0, 1}3n, we refer the reader to
Appendix E.1.

Algorithm 2 Black box evolutionary algorithm
Require: Initial distribution d0 ∈ P(X ) and variation functions vt : X t × Rt → P(X ) for t ∈ N

Sample x0 ∼ d0
for t ∈ N until termination criterion met do

Sample at ∼ f(xt)
Sample xt+1 ∼ vt+1(x0, . . . , xt; a0, . . . , at)

end for

The lower bound will apply to any evolutionary algorithm describable by the black box model of [10]
outlined by Algorithm 2, which, here, has been generalised to apply to stochastic payoff functions
f : X → P(R). We remark that this model is general enough to encompass non-coevolutionary
EDAs in addition to classical EAs. With this, we can now state the main result for this section (for a
proof, see Appendix E.2).
Theorem 6.1. Given z ∈ {0, 1}n and x ∈ X , let gz(x) be the random variable defined by sampling
y ∼ Unif(X ) and setting gz(x) = fRLO(z)(y, x). Suppose A is any EA describable by Algorithm 2.
Then there exists z ∈ {0, 1}n such that

P[T gz
A (Opt(RLO(z))) < 2n/8] ⩽ 2−n/8.

It is often standard to restrict black box analysis to algorithms which sample initial search points
uniformly at random, and also restrict variation operators to those which are unbiased, in the sense
that bit values and positions are treated impartially [28]. With these restrictions, the conclusion of
Theorem 6.1 holds for all instances of Reciprocal LeadingOnes, as follows (for further details on the
unbiasedness condition and a proof of Corollary 6.2, we refer the reader to Appendix E.3).
Corollary 6.2. Suppose A is an EA describable by Algorithm 2 which employs the uniform distribu-
tion over X as d0 and employs only unbiased variation functions vt : X t ×Rt → P(X ). Then for
any z ∈ {0, 1}n it holds that

P[T gz
A (Opt(RLO(z))) < 2n/8] ⩽ 2−n/8.

7 Concluding remarks

In order to analyse what distributions of opponents are essential to sustain progress in coevolution,
we have proven that with high probability a coevolutionary instance of UMDA is able to find an
optimal strategy for RLO within O(n2 log3 n) game simulations. Central to this is detailed analysis
of a novel mutation operator applied to selected individuals. Experiments indicate that the inclusion
of this operator significantly improves the performance of UMDA, which is already among the
best-performing CoEAs on combinatorial game benchmarks. We additionally showed that RLO
cannot be optimised efficiently by a non-coevolutionary EA evaluating against random opponents.

While our main result provides a lower bound for populations of size Ω(n log n) that matches
the upper bound (up to a polylogarithmic factor), our experiments indicates that asymptotically
faster runtimes may be possible for smaller populations. Related analysis of EDAs indicates that
tight bounds for smaller populations may be obtainable, but only with detailed arguments that vary
significantly over several cases (see Section 9 of [25]), and so we leave this as an open question for
potential future work.

10



Acknowledgements

This research was supported by a Turing AI Fellowship (EPSRC grant ref EP/V025562/1). The
computations were performed using the University of Birmingham’s BlueBEAR HPC service. See
http://www.birmingham.ac.uk/bear for more details.

References
[1] K. Arulkumaran, A. Cully, and J. Togelius. AlphaStar: An evolutionary computation perspec-

tive. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’19, pages 314–315, 2019.

[2] F. Ben Jedidia, B. Doerr, and M. S. Krejca. Estimation-of-distribution algorithms for multi-
valued decision variables. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’23, pages 230–238, 2023.

[3] A. Benford and P. K. Lehre. Runtime analysis of coevolutionary algorithms on a class of
symmetric zero-sum games. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, pages 1542–1550, 2024.

[4] A. Benford and P. K. Lehre. A general upper bound for the runtime of a coevolutionary
algorithm on impartial combinatorial games. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’25, pages 1594–1603, 2025.

[5] N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
2019.

[6] K. Chellapilla and D. Fogel. Evolving neural networks to play checkers without relying on
expert knowledge. IEEE Transactions on Neural Networks, 10(6):1382–1391, 1999.

[7] D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre. Level-based analysis of genetic
algorithms and other search processes. IEEE Transactions on Evolutionary Computation,
22(5):707–719, 2018.

[8] B. Doerr and F. Neumann. Theory of Evolutionary Computation: Recent Developments in
Discrete Optimization. Springer, 2020.

[9] B. Doerr and F. Neumann. A survey on recent progress in the theory of evolutionary algorithms
for discrete optimization. ACM Transactions on Evolutionary Learning and Optimization,
1(4):1–43, 2021.

[10] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for randomized search heuristics
in black-box optimization. Theory of Computing Systems, 39(4):525–544, 2006.

[11] G. Ferrer and W. Martin. Using genetic programming to evolve board evaluation functions. In
Proceedings of 1995 IEEE International Conference on Evolutionary Computation, volume 2,
pages 747–752, 1995.

[12] S. G. Ficici. Solution concepts in coevolutionary algorithms. PhD thesis, Brandeis University,
2004.

[13] D. Fogel, T. Hays, S. Hahn, and J. Quon. A self-learning evolutionary chess program. Proceed-
ings of the IEEE, 92(12):1947–1954, 2004.

[14] T. Friedrich, T. Kötzing, and M. S. Krejca. EDAs cannot be balanced and stable. In Proceedings
of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pages 1139–1146,
2016.

[15] R. Gold, H. Branquinho, E. Hemberg, U.-M. O’Reilly, and P. García-Sánchez. Genetic program-
ming and coevolution to play the Bomberman™ video game. In Applications of Evolutionary
Computation, pages 765–779, 2023.

[16] R. K. Guy. Impartial games. In Games of No Chance, volume 29 of Mathematical Sciences
Research Institute Publications, pages 61–78. Cambridge University Press, 1996.

11

http://www.birmingham.ac.uk/bear


[17] R. K. Guy. What is a game? In Games of No Chance, volume 29 of Mathematical Sciences
Research Institute Publications, pages 43–60. Cambridge University Press, 1996.

[18] A. Hauptman and M. Sipper. GP-EndChess: Using genetic programming to evolve chess
endgame players. In Proceedings of the 8th European Conference on Genetic Programming,
EuroGP ’05, pages 120–131, 2005.

[19] M. A. Hevia Fajardo and P. K. Lehre. How fitness aggregation methods affect the performance
of competitive CoEAs on bilinear problems. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’23, pages 1593–1601, 2023.

[20] M. A. Hevia Fajardo and P. K. Lehre. Ranking diversity benefits coevolutionary algorithms
on an intransitive game. In Parallel Problem Solving from Nature – PPSN XVIII, pages 213–229,
2024.

[21] M. A. Hevia Fajardo, P. K. Lehre, and S. Lin. Runtime analysis of a co-evolutionary algorithm:
Overcoming negative drift in maximin-optimisation. In Proceedings of the 17th Conference on
Foundations of Genetic Algorithms, FOGA ’23, pages 73–83, 2023.

[22] D. Janett and J. Lengler. Two-dimensional drift analysis: Optimizing two functions simultane-
ously can be hard. Theoretical Computer Science, 971:114072, 2023.
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A Proof of Proposition 3.2

Proof of Proposition 3.2. Let

A = {x : x(u) = ci−1 for every i ∈ [n] and u ∈ {ai, bi}}.
We have already seen in the discussion of Section 3 that A ⊆ Opt(G). Now suppose that x /∈ A,
so that there is some i ∈ [n] and u ∈ {ai, bi} such that x(u) ̸= di. If y ∈ A is such that y(ci) = u,
then fG(y, x) = 1 (indeed, if y has not become the responder before the game reaches ci, then y will
switch to being the responder on the following challenge). Thus x /∈ Opt(G), and A = Opt(G) as
required.

B Experimental details for Section 4

Here we provide an overview of the algorithms and games used for the experiments of Section 4. The
algorithms used were the following (see Table 2).

• pollackblair1998 [39]: A (1 + 1)-type CoEA with crossover. As our applications are not
probabilistic, repeated play was not used in our implementation.

• chellapillafogel1999 [6]: A (λ + λ)-type CoEA with players evaluated against random
opponents. Self-adaptive features appearing in the original paper were not used in our
implementation.

• panaitluke2002 [37]: A population-based CoEA that uses a single-elimination tournament
to evaluation individuals.

• rosinbelew1997 [41]: A population-based CoEA with a unique evaluation method that
promotes the retention of individuals that can defeat niches in the opposing population.

• sjlk2015 [44]: A (λ, 2λ)-type CoEA which evaluates individuals based on average perfor-
mance against the opposing population and “fitness sharing".

• PDCoEA [27]: A population-based CoEA which independently selects parents based on a
game-theoretic pairwise dominance relation.

• RankDivCoEA [20]: A population-based CoEA which rewards individuals for inducing
less common rankings of their opponents.

All non-EDA algorithms used the same mutation operator: given x, we obtain a mutant by, for each
u ∈ Int(G), randomly resampling x(u) uniformly from F (u) with probability χ/n, and otherwise
leaving x(u) unchanged. A constant mutation rate of χ = 0.3 was used for all algorithms.

The games Subtraction Nim, Turning Turtles, Silver Dollar, and Chomp are all described in [4].
Tic-Tac-Toe is not often characterised as an impartial combinatorial game, owing to the fact that
all possible game positions are reachable by only one player and the win condition being described
positively rather than as the absence of a legal move. Nonetheless, it is easy to represent Tic-Tac-Toe
as an ICG by creating an additional game position with no out-neighbours representing a lost game,
and having the losing player sent there upon the completion of 3-in-a-row. As the second player can
never force a win on a strong positional game (a class to which Tic-Tac-Toe belongs), draws were
counted as a win for player two. A summary of relevant games is provided in Table 3.

Each experiment was conducted on an internal cluster provisioned with 1344 CPU cores and 6TB of
RAM. The experiment used to produce the data presented in Figure 2 had a wall-clock time of 22
hours, resulting in a maximum 29568 core-hours. The experiment used to produce the data presented
in Figure 3 had a wall-clock time of 8 hours, resulting in a maximum 10752 core-hours. Combined,
the experiments required no more than 40320 core-hours.

C Supplementary material to Section 5

C.1 An existing upper runtime bound for Tournament UMDA on RLO

The proof of the following runtime bound relies on the definitions of concepts including the switcha-
bility s(v) of a vertex v ∈ V , the depth of a set of edges A ⊆ E(G) := {(u, v) : u ∈ V, v ∈ F (u)},
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Table 2: An overview of algorithms used in the experiments of Section 4.

Label Ref. Applications Paradigm Archives Crossover Elitist

pollackblair1998 [39] Backgammon one-pop. ✓ ✓
chellapillafogel1999 [6] Checkers, Chess one-pop. ✓
panaitluke2002 [37] Nim one-pop. ✓
rosinbelew1997 [41] Nim, 3D Tic-Tac-Toe two-pop. ✓ ✓ ✓
sjlk2015 [44] Othello two-pop.
PDCoEA [27] two-pop.
RankDivCoEA [20] two-pop.

Table 3: An overview of games used in the experiments of Section 4.

Game Notes |V |
Subtraction Nim n = 100, k = 2 101
RLO 50 challenges 201
Turning Turtles 6 coins 64
Silver Dollar 9 squares, 4 coins 126
Chomp 5× 5 bar 252
Tic-Tac-Toe 629

and what it means for a set of edges to be a v-switcher. These notions are all defined in detail in
Section 4 of [4].
Proposition C.1. There is a constant C > 0 such that the following holds. Let K > 0 be an arbitrary
constant, let G be the game graph for RLO, and let A be described by Algorithm 1 where c = 0 and
γ = 1/(40n). Then, provided µ = C(K + 2)(40n)3 log n,

P
[
TG
A (Opt(G)) ⩽ C2405(K + 2)n5 log2 n

]
⩾ 1− n−K .

Proof. The result is immediate from Corollary 5.3 of [4], provided we can verify that every vertex
v ∈ V has switchability s(v) at most 1. However, this is indeed the case, as for each v ∈ V the set
Av := {(u, v) : v ∈ F (u)} is a v-switcher of depth 1.

C.2 Empirical trajectories

Here we investigate how closely the actual trajectories of the vector

qt := (pt(ci, ai), pt(ai, ci−1), pt(bi, ci−1)) ∈ [γ, 1− γ]3

in a run of Tournament UMDA on RLO match the idealised deterministic version represented in
Figure 4. Tournament UMDA was run with population size µ = 300 on RLO with n = 50 challenges.
This was repeated 15 times for both c = 0 and c = 0.05; the corresponding implied trajectories for
qt (for challenge number i = 25) are shown in the first two plots of Figure 6.

Both instances initialise with qt in the middle of [γ, 1− γ]3, and the motion is somewhat akin to a
random walk for a while. Once the algorithms have optimised the challenges up to i− 1, selective
pressure on the entries of qt kicks in and we see the trajectories of both algorithms follow curves
similar to those in Figure 4. This is most clearly evident in the very direct movements seen at the
edges of [γ, 1−γ]3 for the case c = 0. There are several notable differences in the behaviour between
the two cases. The case c = 0.05 has qt remain closer to (0.5, 0.5, 0.5) before the application of
selective pressure. Recalling the discussion of how setting c > 0 transforms UMDA from a balanced
EDA to a stable one (see Section 2), this behaviour is similar to that explaining the speed-up of stable
EDAs over balanced EDAs on the LEADINGONES benchmark [25]. After selective pressure is applied
the c = 0.05 trajectory moves quickly and directly towards the set Â := [ 18 ,

7
8 ]× [1− 2γ, 1− γ]2.

Perhaps most critically, once the c = 0.05 trajectory reaches Â the bias towards uniformity (on the
p(ci, ai) axis) combined with the selective pressure (on the other two axes) causes the trajectory
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Figure 6: Observed trajectories of qt for Tournament UMDA (in the cases c = 0 and c = 0.05) as
well as the CoEA of [37]. Beneath the plots are projections of the trajectories onto each dimensions,
with the horizontal axis representing time. We note that the horizontal axis has been scaled for
each algorithm. Thus, while it may appear, for example, that the case c = 0 reaches the region
p(ai, ci−1) ≈ p(bi, ci−1) sooner, this is only relative to the overall runtime of the algorithm, which is
in fact much longer.

to remain inside Â. This is in stark contrast to the case c = 0, where the qt is not prevented from
moving into the corners of the cube, from which point it is then even possible for p(ai, ci−1) and
p(bi, ci−1) to drift significantly away from 1− γ, thus impeding further progress on the remaining
challenges.

As a reference case, the corresponding trajectories for the CoEA of [37] (the best performing non-
EDA from the experimental analysis of Section 4) is provided in the third plot of Figure 6. Here
we observe an even more erratic motion in [γ, 1− γ], and the coevolutionary forgetting caused by
p(ci, ai) being too close to a boundary occurs more frequently.

D Proof of Theorem 5.2

D.1 Further notation

Let us outline the notational conventions that will be adopted in the statements and proofs of this
section. Throughout this section, A will always refer to Algorithm 1, and G will always refer to the
game graph for RLO. As per the statement of Theorem 5.2, we will always assume the following.

A1 K > 0 is an arbitrary constant.

A2 c > 0 is an arbitrary constant satisfying c ⩽ 1/600.

A3 n ⩾ n0, where n0 is a constant which is sufficiently large depending on c and K.

A4 µ ⩾
(

(K+4)105

c2

)
n log n.

A5 γ = 1/(100n).
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It is helpful to define the following sets.

Q :=
∏

v∈Int(G)

Pγ(F (v)), Q0 :=
∏

v∈Int(G)

P(F (v)).

Indeed, a run of A on RLO can now be considered as a stochastic process (pt)∞t=0 taking values in Q
(with the intermediate frequencies (qt)∞t=1 arising in Algorithm 1 taking values in Q0). For notational
convenience, given p ∈ Q we will usually write for u, v ∈ V ,

p(u, v) =

{
p(u)(v) if v ∈ F (u),
0 otherwise.

The process used to constrain qt ∈ Q0 into pt ∈ Q can be represented as a map πγ : Q0 → Q
defined as follows.

πγ(q)(u, v) = πF (u)
γ (q(u))(v).

As this particular game graph always has |F (u)| = 2 whenever u ∈ Int(G), we could equivalently
have defined

πγ(q)(u, v) =

{
min {1− γ,max {γ, q(u, v)}} if v ∈ F (u),
0 otherwise.

It is therefore helpful to define the simple function π̂ : [0, 1] → [γ, 1− γ] as

π̂(x) = min {1− γ,max {γ, x}}.

Given p ∈ Q, we will use wp to represent the random variable taking values in XG generated by
sampling x and y independently according to Univ(XG, p) and setting wp = x if fG(x, y) = 1 and
wp = y otherwise. Note that wpt has the same distribution as a w sampled in Algorithm 1.

Given a function η : Q× V 2 → {−∞} ∪ [−1, 1
2 ], let ϕη : Q → P(Q) be the map given by

ϕη(p) =

{
πγ(q) :

q(u, v) ⩾ p(u, v) · [1 + (η(p;u, v) + c( 15 − p(u, v))) · (1− p(u, v))]

for every u, v ∈ V

}
. (1)

The motivation for this definition is that we will later establish that pt+1 ∈ ϕη(pt) holds with
high probability for carefully defined functions η. More precisely, we will see in Lemmas D.7
and D.9 that if pt = p, then an individual w sampled in Algorithm 1 satisfies equations of the
form P(w(u) = v) = p(u, v) · [1 + η(p;u, v) · (1− p(u, v))]. After then accounting for the effect
of MUTATE(c, pt, w) using Lemma D.3, we will then deduce that E[qt+1(u, v)] ⩾ p(u, v) · [1 +
(η(p;u, v) + c( 38 − p(u, v)) · (1− p(u, v))]. In this expression we relax 3

8 to 1
5 so that we can apply

concentration inequalities in the proof of Lemma D.6. The only remaining feature to account for is
then constraint steps of Algorithm 1, which motivates the inclusion of πγ in the definition of ϕη .

For some of the preliminary results (in particular, Lemmas D.4 and D.5) it is helpful to recursively
define for v ∈ V ,

fv
G(x, y) =

{
−f

x(v)
G (y, x) if v ∈ Int(G),

−1 otherwise,

so that fG(x, y) = f cn
G (x, y). Intuitively, fv

G is the payoff function for the version of RLO where the
initial position is v. It is also helpful to denote for x, y ∈ XG,

PathG(x, y) = {v0, x(v0), y(x(v0)), x(y(x(v0))), . . .}.

Finally, let s+1/2 : R → R be given by

s+1/2(x) =

{
x/2 if x ⩾ 0,
x otherwise.

Note that s+1/2 is a convenient tool for showing certain inequalities hold even when the signs of certain
terms are unknown, and its role is not very important in the overall proof idea.
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D.2 Probabilistic tools

We quickly collect some probabilistic tools that will be useful later. The first is one of Bernstein’s
inequalities (see Theorem 6.6.1 of [47] for a more general version from which Theorem D.1 follows).
The second is a simple bound on the variance of a binomial random variable.

Theorem D.1. Let C > 0 and let X1, . . . , Xn be independent random variables such that, for
all i, ai ⩽ Xi ⩽ bi almost surely and bi − ai ⩽ C. Set S :=

∑
i∈[n] Xi and V := Var[S] =∑

i∈[n] Var[Xi]. Then, for any t > 0,

P(S ⩾ E[S] + t) ⩽ exp

(
− t2/2

V + C · t/3

)
,

P(S ⩽ E[S]− t) ⩽ exp

(
− t2/2

V + C · t/3

)
.

Proposition D.2. If X ∼ Bin(µ, p), then Var(X) ⩽ min {E[X], µ− E[X]}.

Proof. Var(X) = µp(1− p) ⩽ min {µp, µ(1− p)} = min {E[X], µ− E[X]}.

D.3 Preliminary lemmas for both bounds

The following lemma helps quantify the effect of the mutation operator in Algorithm 1.

Lemma D.3. Suppose in Algorithm 1 that 0 ⩽ c ⩽ 1, and i ∈ I is such that |Si| = 2. If r ∈ Si,
a ⩽ 1/2, and p ∈ ∏

i∈I Pγ(Si) is such that

P(w(i) = r | pt = p) ⩾ p(i, r) · [1 + a · (1− p(i, r))],

then
E[ qt+1(i, r) | pt = p ] ⩾ p(i, r) · [1 + (a+ c( 38 − p(i, r))) · (1− p(i, r))].

Proof. Let q := p(i, r) be fixed and assume that P(w(i) = r | pt = p) ⩾ q(1 + a(1− q)). Noting
that c ·∏s∈Si

(1− p(i, s)) = cq(1− q), We can compute

E[ qt+1(i, r) | pt = p ] = P(Pt+1(1)(i) = 1) = cq(1− q) · 1
2 + (1− cq(1− q)) · P(w(i) = 1)

⩾ cq(1− q) · 1
2 + (1− cq(1− q)) · q(1 + a(1− q))

= q · [ 12c(1− q) + 1 + a(1− q)− cq(1− q)− acq(1− q)2]

= q · [1 + (a+ 1
2c− cq − acq(1− q)) · (1− q)]

= q · [1 + (a− acq(1− q) + c( 12 − q)) · (1− q)]

⩾ q · [1 + (a+ c( 38 − q)) · (1− q)], (2)

where in the final inequality we have used that aq(1− q) ⩽ 1/8.

Lemma D.4. Suppose that p ∈ Q. Then, for any u ∈ V and v ∈ F (u),

P(wp(u) = v) = p(u, v) · [1+P(u ∈ PathG(x, y)) ·(1−P(fv
G(x, y) = 1)−P(fu

G(x, y) = 1))]. (3)

Proof. See Lemma 3.1 of [4].

Lemma D.5. Suppose that p ∈ Q and that x and y are sampled independently according to
Univ(XG, p). Then for any u ∈ V we have

P(fu
G(x, y) = 1) =

∑
v∈F (u)

p(u, v) · (1− P(fv
G(x, y) = 1)), (4)

=
∑

v∈F (u)

∑
w∈F (v)

p(u, v) · p(v, w) · P(fw
G (x, y) = 1). (5)
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Proof. (4) holds by the law of total probability. We can then deduce that∑
v∈F (u)

p(u, v) · (1− P(fv
G(x, y) = 1)) = 1−

∑
v∈F (u)

p(u, v) · P(fv
G(x, y) = 1)

(4)
= 1−

∑
v∈F (u)

p(u, v) ·
∑

w∈F (v)

p(v, w) · (1− P(fw
G (x, y) = 1))

=
∑

v∈F (u)

∑
w∈F (v)

p(u, v) · p(v, w) · P(fw
G (x, y) = 1),

and hence (5) also holds.

In the proof of the following lemma, we note that for real-valued random variables X,Y , we say that
X stochastically dominates Y , written X ≽ Y , if P(X ⩽ z) ⩽ P(Y ⩽ z) holds for all z ∈ R.

Lemma D.6. Suppose that η : Q× V 2 → {−∞} ∪ [−1, 1
2 ] is any function such that

P(wp(u) = v) ⩾ p(u, v) · [1 + η(p;u, v) · (1− p(u, v))] (6)

holds for every p ∈ Q and (u, v) ∈ V 2. Then, for every p ∈ Q we have P(pt+1 /∈ ϕη(p) | pt = p) ⩽
n−K−2.

Proof. Let p be fixed. In the following proof, expectations and probabilities are all written conditional
on the event that pt = p. For every (u, v) ∈ V 2, the quantity Xu,v := µ · qt+1(u, v) is binomially
distributed. Let us define

φ(u, v) = p(u, v) · [1 + (η(p;u, v) + c( 15 − p(u, v))) · (1− p(u, v))]

For every (u, v) ∈ V 2, we will show that

P (qt+1(u, v) < φ(u, v)) ⩽ n−K−4. (7)

The lemma then follows using a union bound.

Noting that (7) is trivially true when η(p;u, v) = −∞, we may additionally assume that η(p;u, v) ∈
[−1, 1

2 ]. Using (6) together with Lemma D.3, we can establish that

E[qt+1(u, v)] ⩾ p(u, v) · [1 + (η(p;u, v) + c( 38 − p(u, v))) · (1− p(u, v))]

⩾ φ(u, v) +
c

6
· p(u, v) · (1− p(u, v)). (8)

For each (u, v) ∈ V 2, let

Yu,v ∼ Bin(µ , φ(u, v) + c
6 · p(u, v) · (1− p(u, v) ).

Xu,v and Yu,v are both binomial random variables with µ trials. In addition, (8) shows that E[Xu,v] ⩾
E[Yu,v]. Therefore Xu,v ≽ Yu,v , and hence

P(qt+1(u, v) < φ(u, v)) = P(Xu,v < µ · φ(u, v)) ⩽ P(Yu,v < µ · φ(u, v))
⩽ P(Yu,v < E[Yu,v]− cµ

6 · p(u, v) · (1− p(u, v))).

In order to bound the final probability above, we need an upper bound on Var(Yu,v). For this, first
observe that because −1 ⩽ η(p;u, v) ⩽ 1/2 we have

µ · p(u, v)2
A3
⩽ µ · φ(u, v) ⩽ E[Yu,v]

A3
⩽ 2µ · p(u, v). (9)

Therefore,

Var(Yu,v)
Proposition D.2

⩽ min {E[Yu,v], µ− E[Yu,v]}
(9)
⩽ min {2µ · p(u, v), µ · (1− p(u, v)2)}

= min {2µ · p(u, v), µ · (1− p(u, v) + p(u, v) · (1− p(u, v)))}
⩽ min {2µ · p(u, v), 2µ · (1− p(u, v))} ⩽ 4µ · p(u, v) · (1− p(u, v)). (10)

19



Therefore, applying Theorem D.1 (with C = 1 and t = cµ
6 · p(u, v) · (1− p(u, v))), we obtain

P(Yu,v <E[Yu,v]− cµ
6 · p(u, v) · (1− p(u, v))) ⩽ exp

(
− t2/2

Var(Yu,v) + t/3

)
⩽ exp

(
− ( cµ6 · p(u, v) · (1− p(u, v)))2/2

Var(Yu,v) + ( cµ6 · p(u, v) · (1− p(u, v)))/3

)
(10)
⩽ exp

(
− ( cµ6 · p(u, v) · (1− p(u, v)))2/2

(4 + c
12 )µ · p(u, v) · (1− p(u, v))

)
⩽ exp

(
−c2µ · p(u, v) · (1− p(u, v))

72(4 + c
12 )

)
⩽ exp

(
−c2µ · γ(1− γ)

72(4 + c
12 )

)
A5
= exp

(
− c2µ

7200(4 + c
12 )(1− γ)−1n

)
A2
⩽ exp

(
− c2µ

105n

)
A4
⩽ exp

(
− (K + 4)n log n

n

)
= n−K−4.

Hence (7) holds, thus completing the proof.

D.4 Preliminary lemmas for the upper bound

A key tool in the proof of Theorem 5.2 will be a map Φ : P(Q) → P(Q), carefully defined so that
for any set A ⊆ Q, if pt ∈ A then pt+1 ∈ Φ(A) holds with high probability. The runtime result then
follows by establishing that a repeated application of Φ eventually contracts Q down to a small set
on which sampling an element of Opt(G) is very likely. This part of the argument is handled by the
following two technical lemmas. Note that intuition behind the sets (Ai)

n
i=0 defined below (that is,

that Ai is representative of populations that are both diverse and strong in the final i challenges) is
provided in the discussion of Section 5.

Lemma D.7. For 0 ⩽ i ⩽ n, define

Ai =

{
p ∈ Q :

p(cj , v) ⩾ 1
8 whenever j ∈ [i] and v ∈ {aj , bj},

p(u, cj−1) ⩾ 1− 1
50n whenever j ∈ [i] and u ∈ {aj , bj}.

}
Let α : Q× V 2 → {−∞} ∪ [−1, 1

2 ] be given by

α(p;u, v) =



s+1/2(p(bi, ci−1)− p(ai, ci−1)) if (u, v) = (ci, ai) and p ∈ Ai−1,
s+1/2(p(ai, ci−1)− p(bi, ci−1)) if (u, v) = (ci, bi) and p ∈ Ai−1,
1
2p(ci, ai) if (u, v) = (ai, ci−1) and p ∈ Ai−1,
1
2p(ci, bi) if (u, v) = (bi, ci−1) and p ∈ Ai−1,

−∞ otherwise.

(11)

Then, for any p ∈ Q and (u, v) ∈ V 2 we have

P(wp(u) = v) ⩾ p(u, v) · [1 + α(p;u, v) · (1− p(u, v))].

Proof of Lemma D.7. All cases where α(p;u, v) = −∞ are trivially true, which leaves us with four
cases to verify. This will be done using Lemma D.4.

Given u ∈ V , let us write Nu as a shorthand for the event fu
G(x, y) = 1, where x and y are sampled

independently according to Univ(XG, p). Note that if u has an out-neighbourhood F (u) = {v, w} of
size 2, then with a view to applying Lemma D.4 we can observe that

1− P(Nv)− P(Nu)
(4)
= 1− P(Nv)− p(u, v) · (1− P(Nv))− (1− p(u, v)) · (1− P(Nw))

= (1− p(u, v)) · (P(Nw)− P(Nv)). (12)

Let p ∈ Ai−1. Before verifying the four critical cases, let us collect some useful identities. In order
for x to win when beginning the game from ci−1, y must make at least one mistake as the responder

20



in the final i− 1 challenges. Because p ∈ Ai−1, it holds for every j ∈ [i− 1] and u ∈ {aj , bj} that
P(y(u) ̸= cj−1) ⩽ 1

50n . Therefore, we have

P(Nci−1
) ⩽ P(y(u) ̸= cj−1 for some j ∈ [i− 1] and u ∈ {aj , bj}) ⩽

2(i− 1)

50n
⩽

1

10
, (13)

and
P(Ndi)

(4)
= 1− P(Nci−1). (14)

We can now compute

1− P(Nci−1
)− P(Nai

)
(12)
= (1− p(ai, ci−1)) · (P(Ndi

)− P(Nci−1
))

(14)
= (1− p(ai, ci−1)) · (1− 2 · P(Nci−1)), (15)

and similarly,

1− P(Nci−1
)− P(Nbi)

(12),(14)
= (1− p(bi, ci−1)) · (1− 2 · P(Nci−1

)). (16)

Next,

P(Nbi)− P(Nai
) = [1− P(Nci−1

)− P(Nai
)]− [1− P(Nci−1

)− P(Nbi)]

(15),(16)
= (1− p(ai, ci−1) · (1− 2 · P(Nci−1

))− (1− p(bi, ci−1) · (1− 2 · P(Nci−1
))

= (1− 2 · P(Nci−1)) · (p(bi, ci−1)− p(ai, ci−1)). (17)

The cases are then verified by applying Lemma D.4 as follows. If (u, v) = (ci, ai), then

P(wp(ci) = ai)
(3)
= p(ci, ai) · [1 + (1− P(Nai

)− P(Nci))]

(12)
= p(ci, ai) · [1 + (P(Nbi)− P(Nai)) · (1− p(ci, ai))]

(17)
= p(ci, ai) · [1 + (1− 2 · P(Nci−1

)) · (p(bi, ci−1)− p(ai, ci−1)) · (1− p(ci, ai))]

(13)
⩾ p(ci, ai) · [1 + α(p; ci, ai) · (1− p(ci, ai))].

If (u, v) = (ci, bi), a similar computation to the above also yields P(wp(ci) = bi) ⩾ p(ci, bi) · [1 +
α(p; ci, bi) · (1− p(ci, bi))]. If (u, v) = (ai, ci−1), then

P(wp(ai) = ci−1)
(3)
= p(ai, ci−1) · [1 + P(ai ∈ PathG(x, y)) · (1− P(Nci−1

)− P(Nai
)]

(15)
= p(ai, ci−1) · [1 + p(ci, ai) · (1− 2 · P(Nci−1)) · (1− p(ai, ci−1))]

(13)
⩾ p(ai, ci−1) · [1 + α(p; ai, ci−1) · (1− p(ai, ci−1))].

Finally, if (u, v) = (bi, ci−1), then

P(wp(bi) = ci−1)
(3)
= p(bi, ci−1) · [1 + P(bi ∈ PathG(x, y)) · (1− P(Nci−1)− P(Nbi)]

(16)
= p(bi, ci−1) · [1 + p(ci, bi) · (1− 2 · P(Nci−1

)) · (1− p(bi, ci−1))]

(13)
⩾ p(bi, ci−1) · [1 + α(p; bi, ci−1) · (1− p(bi, ci−1))].

Lemma D.8. Let the set An and the function α : Q × V 2 → {−∞} ∪ [−1, 1
2 ] be defined as

in Lemma D.7. Let Φ : P(Q) → P(Q) be the map given by Φ(A) = ∪p∈Aϕα(p). Fix τ =
1

100 log
2 (1/γ).

It then holds that Φ8τn(Q) ⊆ An.

The proof of Lemma D.8 is by far the most detailed part of this section. Additionally, because it
follows only from the definition of Φ, it does not necessarily provide direct intuition for the dynamics
of Algorithm 1 and its application to Reciprocal LeadingOnes. For these reasons, we opt to first
present the overall proof of Theorem 5.2, before proving Lemma D.8 later in Section D.7.
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D.5 Preliminary lemmas for the lower bound

Whereas the sets (Ai)
n
i=0 are representative of populations that are both diverse and strong in at

least the final i challenges, the sets (Bi)
n
i=0 in the following lemma are representative of populations

which are strong in at most the final i challenges.
Lemma D.9. Let ℓ ⩾ 4. For 0 ⩽ i ⩽ n, define

Bi = {p ∈ Q : p(u, v) ⩾ 1
8 whenever j > i, u ∈ {aj , bj}, and v ∈ {dj , cj−1}}.

Let β : Q× V 2 → {−∞} ∪ [−1, 1
2 ] be given by

β(p;u, v) =

{−2(3/4)ℓ−1 if u ∈ {aj , bj}, v ∈ {dj , cj−1}, and p ∈ Bj−ℓ,
−∞ otherwise.

(18)

Then, for any p ∈ Q and (u, v) ∈ V 2 we have
P(wp(u) = v) ⩾ p(u, v) · [1 + β(p;u, v) · (1− p(u, v))].

Proof. As with the proof of Lemma D.7, given u ∈ V we will use Nu to denote the event fu
G(x, y) =

1. Note that the identities (12) and (14) apply here also.

We require the following claim.

Claim D.10. For 0 ⩽ j ⩽ n and 0 ⩽ k ⩽ j, if p ∈ Bj−k and v ∈ {cj , dj+1}, then |P(Nv)− 1
2 | ⩽

(3/4)k.

Proof of Claim D.10. By (14), it suffices to prove the claim holds for v = cj . We prove this by
induction on k, noting that the case k = 0 is trivial. For the inductive case, assume for k > 0 that
p ∈ Bj−k and |P(Ncj−1

)− 1
2 | ⩽ (3/4)k−1. Writing δ = 1

2 − P(Ncj−1
), we can now compute

P(Ncj )
(4)
=

∑
v∈{aj ,bj}

∑
w∈{dj ,cj−1}

p(cj , v) · p(v, w) · P(Nw)

=
∑

v∈{aj ,bj}

p(cj , v) ·
(
p(v, dj) · P(Ndj

) + p(v, cj−1) · P(Ncj−1
)
)

(14)
=

∑
v∈{aj ,bj}

p(cj , v) ·
(
(1− p(v, cj−1)) · (1− P(Ncj−1

)) + p(v, cj−1) · P(Ncj−1
)
)

=
∑

v∈{aj ,bj}

p(cj , v) ·
(
(1− p(v, cj−1)) · ( 12 + δ) + p(v, cj−1) · ( 12 − δ)

)
=

∑
v∈{aj ,bj}

p(cj , v) ·
(
1
2 + (1− 2p(v, cj−1)) · δ

)
=

1

2
+

∑
v∈{aj ,bj}

p(cj , v) · (1− 2p(v, cj−1)) · δ. (19)

Because p ∈ Bj−k ⊆ Bj−1 it holds for each v ∈ {aj , bj} that p(v, cj−1) ∈ [ 18 ,
7
8 ], and hence

|1− 2p(v, cj−1)| ⩽ 3/4. Therefore,

|P(Ncj )− 1
2 |

(19)
⩽

∑
v∈{aj ,bj}

p(cj , v) · |1− 2p(v, cj−1)| · |δ| ⩽ 3
4 |δ| ⩽ (3/4)k,

as required. ⊡

We now turn to proving the lemma. All cases where β(p;u, v) = −∞ are trivially true, and so we
only need to consider the case where u ∈ {aj , bj}, v ∈ {dj , cj−1}, and p ∈ Bj−ℓ. Under these
assumptions, we have

P(wp(u) = dj)
(3)
= p(u, dj) · [1 + (1− P(Ndj

)− P(Nu))]

(12)
= p(u, dj) · [1 + (P(Ncj−1

)− P(Ndj
)) · (1− p(u, dj))]

Claim D.10
⩾ p(u, dj) · [1− 2(3/4)ℓ−1 · (1− p(u, dj))].
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By swapping dj and cj−1 in the above calculation, we also obtain P(wp(u) = cj−1) ⩾ p(u, cj−1) ·
[1− 2(3/4)ℓ−1 · (1− p(u, cj−1))]. □

Recall in the following lemma that the definition of ϕβ is provided by (1).

Lemma D.11. Let ℓ = ⌈4 log (200/c)⌉. Let the sets (Bi)
n
i=0 and the function β : Q × V 2 →

{−∞} ∪ [−1, 1
2 ] be defined as in Lemma D.9. Let Ψ : P(Q) → P(Q) be the map given by

Ψ(A) = ∪p∈Aϕβ(p).

For every 0 ⩽ i ⩽ n− ℓ, it holds that Ψ(Bi) ⊆ Bi+ℓ.

Proof. First, note that

ℓ ⩾ 4 log (200/c)
A2
⩾

log (200/c)

log (4/3)
+ 1 =

log (c/200)

log (3/4)
+ 1 (20)

Suppose that q ∈ Ψ(Bi), so that there exists p ∈ Bi such that q ∈ ϕβ(p). In particular, there is some
q′ ∈ Q0 such that

q′(u, v) ⩾ p(u, v) · [1 + (β(p;u, v) + c( 15 − p(u, v))) · (1− p(u, v))] for every u, v ∈ V , (21)

πγ(q
′) = q. (22)

We will show that q ∈ Bi+ℓ. To do this we need to confirm that q(u, v) ⩾ 1
8 whenever j > i + ℓ,

u ∈ {aj , bj}, and {dj , cj−1}. So let j > i + ℓ, u ∈ {aj , bj}, and v ∈ {dj , cj−1} be fixed, and
observe that because p ∈ Bi ⊆ Bj−ℓ,

β(p;u, v)
(18)
= −2(3/4)ℓ−1

(20)
⩾ − c

100
. (23)

Therefore,

q(u, v)
(22)
= π̂(q′(u, v))

(21)
⩾ π̂(p(u, v) · [1 + (β(p;u, v) + c( 15 − p(u, v))) · (1− p(u, v))])

(23)
⩾ π̂(p(u, v) · [1 + c( 3

16 − p(u, v)) · (1− p(u, v))]). (24)

There are now two cases to consider. First, if p(u, v) ⩾ 3/16 we have

q(u, v)
(24)
⩾ π̂(p(u, v) · [1− c]) ⩾ π̂( 3

16 · [1− c]) ⩾ π̂(1/8) = 1/8.

On the other hand, if 1/8 ⩽ p(u, v) ⩽ 3/16 then

q(u, v)
(24)
⩾ π̂(p(u, v)) ⩾ π̂(1/8) = 1/8.

In either case, we have q(u, v) ⩾ 1
8 whenever j > i+ ℓ. Thus q ∈ Bi+ℓ for every q ∈ Ψ(Bi), and

hence Ψ(Bi) ⊆ Bi+ℓ, as required.

The following lemma shows that if pt ∈ Bn/4 describes the current state of Algorithm 1, then the
probability that an optimal strategy is found in the following generation is very small.

Lemma D.12. If p ∈ Bn/2 and µ ⩽ n3, then P(Pt+1 ∩ Opt(G) ̸= ∅ | pt = p) ⩽ n−K−2.

Proof. Let us assume that pt = p for some p ∈ Bn/4. Let j ∈ [µ] be fixed. We need to estimate
P(Pt+1(j) ∈ Opt(G)), where we recall from Algorithm 1 that Pt+1(j) ∼ MUTATE(c, p, wp). As
in Algorithm 1, let x and y both be sampled independently according to Univ(X , p), and let us
assume that x′ ∼ MUTATE(c, p, x) and y′ ∼ MUTATE(c, p, y). Note that with this notation, we have
Pt+1(j) ∈ {x′, y′}.

Repeating the calculations of Lemma D.3 (with a = 0), we obtain for each i ⩾ n/2,

P(x′(ai) = di) ⩾ p(ai, di) · [1 + c( 14 − p(ai, di)) · (1− p(ai, di))] ⩾ 1
8 , (25)
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where we have used the fact that p(ai, di) ⩾ 1/8 (as p ∈ Bn/2). The value of x′(u) is independent
for every u ∈ V , and hence using the characterisation of Opt(G) provided by Proposition 3.2,

P(x′ ∈ Opt(G)) ⩽ P
(∧

i∈n x
′(ai) = ci−1

)
⩽

∏
i>n/2

P(x′(a) = ci−1)

⩽
∏

i>n/2

(1− P(x′(a) = di))
(25)
⩽ (7/8)n/2

A3
⩽ 1

2n
−K−5.

Similarly, we also have P(y′ ∈ Opt(G)) ⩽ 1
2n

−K−4, and hence

P(Pt+1(j) ∈ Opt(G)) ⩽ P(x′ ∈ Opt(G)) + P(y′ ∈ Opt(G)) ⩽ n−K−5.

Taking a union bound over all j ∈ [µ] then yields the desired result.

D.6 Proof of Theorem 5.2

Proof of Theorem 5.2. First, we consider the upper bound P[TG
A (Opt(G)) > µn(log n)2]. Let the

sets (Ai)
n
i=0 and the function α : Q×V 2 → {−∞}∪ [−1, 1

2 ] be defined as in Lemma D.7, and note
that we have An ⊆ . . . ⊆ A0 = Q. If for some t we have pt ∈ An, then 1− 1

50n ⩽ pt(u, ci−1) ⩽
qt(u, ci−1) whenever u ∈ {ai, bi} for i ∈ [n], and hence

1
µ

∑
j∈[µ]

∑
i∈[n]

∑
u∈{ai,bi} 1(Pt(j)(u) = ci−1) =

∑
i∈[n]

∑
u∈{ai,bi}

qt(u, ci−1)

⩾ 2n(1− 1
50n ) > 2n− 1.

It would then follow that there is some j such that
∑

i∈[n]

∑
u∈{ai,bi} 1(Pt(j)(u) = ci−1) = 2n,

and hence Pt(j) ∈ Aopt. Therefore

TG
A (Opt(G)) ⩽ µ ·min {t : pt ∈ An}. (26)

By Lemma D.7, we have that P(wp(u) = v) ⩾ p(u, v) · [1 + α(p;u, v) · (1 − p(u, v))] for every
p ∈ Q and (u, v) ∈ V 2. In particular, the condition for Lemma D.6 is satisfied for η = α, and so it
holds for every p ∈ Q that

P(pt+1 /∈ ϕα(p) | pt = p) ⩽ n−K−2. (27)

Let τ = (log (1/γ))2

100 , so that

8τn =
8n(log (100n))2

100
⩽ n(log n)2. (28)

Let Φ : P(Q) → P(Q) be the map given by Φ(A) = ∪p∈Aϕα(p). By Lemma D.8, Φ8τn(Q) ⊆ An.
Consequently, if p8τn /∈ An, then there must exist some t < 8τn such that pt+1 /∈ ϕα(pt). Therefore,
we have

P[TG
A (Opt(G)) > µn(log n)2]

(26)
⩽ P[µ ·min {t : pt ∈ An} > µ · n(log n)2]

(28)
= P[min {t : pt ∈ An} > 8τn] ⩽ P(p8τn /∈ An)

⩽ P
(∨

t<8τn(pt+1 /∈ ϕα(pt))
)

(27)
⩽ n−K−2 · 8nτ ⩽ 1

2n
−K .

Next we consider the lower bound P[TG
A (Opt(G)) < n2 log n]. Note that

n2 log n
A2
⩽

(
105

c2

)
n2 log n

2 · ⌈4 log (200/c)⌉
A1,A4
⩽

µn

2 · ⌈4 log (200/c)⌉ (29)

If µ > n3 then by definition we have TG
A (Opt(G)) ⩾ n3, and so we may additionally assume that

µ ⩽ n3. Let the sets (Bi)
n
i=1 and the function β : Q × V 2 → {−∞} ∪ [−1, 1

2 ] be defined as in
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Lemma D.9, and note that we have B0 ⊆ . . . ⊆ Bn = Q. Deterministically, it holds that p0 ∈ Bn.
By Lemma D.9, we have that P(wp(u) = v) ⩾ p(u, v) · [1 + β(p;u, v) · (1 − p(u, v))] for every
p ∈ Q and (u, v) ∈ V 2. In particular, the condition for Lemma D.6 is satisfied for η = β, and so it
holds for every p ∈ Q that

P(pt+1 /∈ ϕβ(p) | pt = p) ⩽ n−K−2. (30)

Let Ψ : P(Q) → P(Q) be the map given by Ψ(A) = ∪p∈Aϕβ(p). Suppose that 0 ⩽ t ⩽ n/(2ℓ),
where we define ℓ = ⌈4 log (200/c)⌉. By Lemma D.11, Ψt(Q) ⊆ Bℓt. Consequently, if pt /∈ Bℓt,
then there must exist some s < t such that ps+1 /∈ ϕβ(ps). Therefore, we have

P(pt /∈ Bℓt) ⩽ P
(∨

s<t(ps+1 /∈ ϕβ(ps))
) (30)
⩽ n−K−2 · t ⩽ 1

4n
−K−1. (31)

Next, note that if p ∈ Bℓt, then as Bℓt ⊆ B3n/4 and µ ⩽ n3 we can apply Lemma D.12 to obtain
P(Pt+1 ∩ Opt(G) ̸= ∅ | pt = p) ⩽ n−K−2. Therefore, we may deduce for any t < n/(2ℓ) that

P(Pt+1 ∩ Opt(G) ̸= ∅) = P(Pt+1 ∩ Opt(G) ̸= ∅ | pt ∈ Bℓt) · P(pt ∈ Bℓt)+

P(Pt+1 ∩ Opt(G) ̸= ∅ | pt /∈ Bℓt) · P(pt /∈ Bℓt)

⩽ P(Pt+1 ∩ Opt(G) ̸= ∅ | pt ∈ Bℓt) + P(pt /∈ Bℓt)

(31)
⩽ n−K−2 + 1

4n
−K−1 ⩽ 1

2n
−K−1.

Therefore, we may compute

P[TG
A (Opt(G)) < n2 log n]

(29)
⩽ P[TG

A (Opt(G)) ⩽ µn/(2ℓ)]

= P
(∨

t<n/(2ℓ)(Pt+1 ∩ Opt(G) ̸= ∅)
)

⩽
∑

t<n/(2ℓ)

P(Pt+1 ∩ Opt(G) ̸= ∅) ⩽ n

2ℓ
· 1
2
n−K−1 ⩽

1

2
n−K .

The theorem now follows by combining the upper and lower bounds using a union bound.

D.7 Proof of Lemma D.8

From here, we will use ϕ as a shorthand for ϕα.

It will be useful to map probabilities in the interval [γ, 1− γ] onto logit space using the function g
defined in the following lemma. Here we collect some simple properties of this mapping.
Lemma D.13. Let 0 < γ < 1/2 be fixed, and let g : [γ, 1− γ] → R be defined by

g(y) = log

(
y

1− y

)
.

Then the following properties hold.

B1 g is strictly increasing

B2 |g(y)| ⩽ log (1/γ) for any y ∈ [γ, 1− γ].

B3 For any a ∈ [0, 1] and y ∈ [γ, 1− γ], we have g(y(1 + a(1− y)))− g(y) ⩾ a/2.

B4 For any a ∈ [0, 1] and y ∈ [γ, 1− γ], we have g(y(1− a(1− y)))− g(y) ⩽ −a/2.

B5 For any a ∈ [0, 1
2 ] and y ∈ [γ, 1− γ], we have g(y(1− a(1− y)))− g(y) ⩾ −2a.

B6 If γ ⩽ y ⩽ 1
2 , then −1− log y ⩽ g(1− y) ⩽ − log y.

Proof. Because g(y) = log ( y
1−y ) = log y − log (1− y), B1 follows from the fact that log is a

strictly increasing function. Using this, we can deduce that for any y ∈ [γ, 1− γ],

|g(y)| ⩽ max {|g(γ)|, |g(1− γ)|} = max {| log ( γ
1−γ )|, | log (

1−γ
γ )|} = log ( 1−γ

γ ) ⩽ log (1/γ),
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and so B2 holds. Next, observe that for any a ∈ [−1, 1] and y ∈ [γ, 1− γ],

g(y(1 + a(1− y)))− g(y) = log

(
y(1 + a(1− y))

1− y(1 + a(1− y))

)
− log

(
y

1− y

)
= log

(
(1− y)(1 + a(1− y))

1− y(1 + a(1− y))

)
= log

(
(1− y)(1 + a− ay)

1− (a+ 1)y + ay2

)
= log

(
(1− y)(1 + a− ay))

(1− y)(1− ay)

)
= log

(
1 + a− ay

1− ay

)
= log

(
1 +

a

1− ay

)
. (32)

If a ∈ [0, 1] and y ∈ [γ, 1− γ] then

g(y(1 + a(1− y)))− g(y)
(32)
= log

(
1 +

a

1− ay

)
⩾ log (1 + a) ⩾ a/2,

and so B3 holds. If a ∈ [0, 1] and y ∈ [γ, 1− γ] then

g(y(1− a(1− y)))− g(y)
(32)
= log

(
1− a

1 + ay

)
⩽ log

(
1− a

1 + y

)
⩽ log

(
1− a

2

)
⩽ −a

2
,

and so B4 holds. If a ∈ [0, 1
2 ] and y ∈ [γ, 1− γ] then

g(y(1− a(1− y)))− g(y)
(32)
= log

(
1− a

1 + ay

)
⩾ log (1− a) ⩾ −2a,

and so B5 holds. Finally, if γ ⩽ y ⩽ 1
2 then

−1− log y < log (1/2)− log y ⩽ log (1− y)− log y ⩽ − log y.

Observing that g(1− y) = log (1− y)− log y then confirms B6, thus proving the lemma.

The following lemma collects some properties of the map ϕ that will be useful in our analysis.

Lemma D.14. Suppose that p ∈ Ai−1 and q ∈ ϕ(p). Then the following properties hold.

C1 If p(ai, ci−1) ⩾ min {1− c
100 , p(bi, ci−1)} and p(ci, bi) ⩾ 1

8 , then q(ci, bi) ⩾ 1
8 .

C2 If p(ai, ci−1) ⩾ 1− c
100 and p(ci, bi) ⩽ 1

8 , then g(q(ci, bi)) ⩾ g(p(ci, bi)) +
c
32 .

C3 If p(ci, ai) ⩾ 1
8 and p(ai, ci−1) ⩽ 1− 1

50n , then g(q(ai, ci−1)) ⩾ g(p(ai, ci−1)) +
1
64 .

C4 If p(ci, ai) ⩾ 1
8 then q(ai, ci−1) ⩾ p(ai, ci−1).

C5 g(q(ai, ci−1)) ⩾ g(q(ai, ci−1))− 2c.

C6 If p(ai, ci−1) ⩽ 1
8 , then g(q(ai, ci−1)) ⩾ g(p(ai, ci−1)) +

c
40 .

C7 If p(ai, ci−1) ⩾ 1
8 , then g(q(ai, ci−1)) ⩾ 1

8 .

C8 For some fixed function h : (0, 1) → (0, 1) that it strictly increasing, q(ci, ai) ⩾
h(p(ci, ai)).

C9 If p(ci, bi) ⩽ 1
8 then q(ci, ai) ⩾ 1

8 .

Proof. Let q′ ∈ Q0 be chosen such that we have

q′(u, v) ⩾ p(u, v) · [1 + (α(p;u, v) + c( 15 − p(u, v))) · (1− p(u, v))] for every u, v ∈ V , (33)

πγ(q
′) = q. (34)
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C1: If p(ai, ci−1) ⩾ min {1− c
100 , p(bi, ci−1)} then

q′(ci, bi)
(33)
⩾ p(ci, bi) · [1 + (s+1/2(p(a, ci−1)− p(bi, ci−1)) + c( 14 − p(ci, bi))) · (1− p(ci, bi))]

⩾ p(ci, bi) · [1 + (− c
100 + c( 15 − p(ci, bi))) · (1− p(ci, bi))]

⩾ p(ci, bi) · [1 + c( 3
16 − p(ci, bi)) · (1− p(ci, bi))]. (35)

If additionally 1
8 ⩽ p(ci, bi) ⩽ 3

16 , it then follows that

q(ci, bi)
(34)
= π̂γ(q

′(ci, bi))
(35)
⩾ π̂γ(p(ci, bi)) ⩾ π̂γ(

1
8 ) =

1
8 .

On the other hand, if 3
16 ⩽ p(ci, bi) then

q(ci, bi)
(34)
= π̂γ(q

′(ci, bi))
(35)
⩾ π̂γ(p(ci, bi) · [1− c]) ⩾ π̂γ(

3
16 · [1− c]) ⩾ π̂γ(

1
8 ) =

1
8 .

In either case, we find C1 holds.

C2: If p(ai, ci−1) ⩾ 1− c
100 and p(ci, bi) ⩽ 1

8 , then

q(ci, bi)
(34)
= π̂γ(q

′(ci, bi))
(35)
⩾ π̂γ(p(ci, bi) · [1 + c

16 (1− p(ci, bi))])

⩾ p(ci, bi) · [1 + c
16 (1− p(ci, bi))].

It then follows from B1 and B3 that g(q(i)) ⩾ g(p(i)) + c
32 , and so C2 holds.

C3: Observe that for any 0 ⩽ y ⩽ 1− 1
50n and a ∈ [0, 1

2 ], we have

y · [1 + a(1− y)] ⩽ y · ( 32 − 1
2y) ⩽ (1− 1

50n )(1 +
1

100n ) ⩽ 1− 1
100n = 1− γ, (36)

and hence

g(π̂γ(y · [1 + a(1− y)]))
(36)
⩾ g(y · [1 + a(1− y)])

B3
⩾ g(y) + a

2 . (37)
We have

q′(ai, ci−1)
(33)
⩾ p(ai, ci−1) · [1 + ( 12p(ci, ai) + c( 15 − p(ai, ci−1))) · (1− p(ai, ci−1))]. (38)

If p(ci, ai) ⩾ 1
8 and p(ai, ci−1) ⩽ 1− 1

50n , then

g(q(ai, ci−1))
(34)
= g(π̂γ(q

′(ai, ci−1)))
(38)
⩾ g(π̂γ(p(ai, ci−1) · [1 + 1

32 (1− p(ai, ci−1))]))

(37)
⩾ g(p(ai, ci−1)) +

1
64 .

C4: If p(ci, ai) ⩾ 1
8 , then

q(ai, ci−1)
(34)
= π̂γ(q

′(ai, ci−1))
(38)
⩾ π̂γ(p(ai, ci−1)) = p(ai, ci−1).

C5: We have

g(q(ai, ci−1))
(34)
= g(π̂γ(q

′(ai, ci−1)))
(38)
⩾ g(πγ(p(ai, ci−1) · [1− c(1− p(ai, ci−1))]))

⩾ g(p(ai, ci−1) · [1− c(1− p(ai, ci−1))])
B5
⩾ g(p(ai, ci−1))− 2c.

C6: If p(ai, ci−1) ⩽ 1
8 , then

g(q(ai, ci−1))
(34)
= g(π̂γ(q

′(ai, ci−1)))
(38)
⩾ g(π̂γ(p(ai, ci−1) · [1 + 3c

40 (1− p(ai, ci−1))]))

= g(p(ai, ci−1) · [1 + 3c
40 (1− p(ai, ci−1))])

B3
⩾ g(p(ai, ci−1)) +

c
40 .

C7: First, if 1
8 ⩽ p(ai, ci−1) ⩽ 1

4 then

q(ai, ci−1)
(34)
= π̂γ(q

′(ai, ci−1))
(38)
⩾ π̂γ(p(ai, ci−1)) = p(ai, ci−1) ⩾ 1

8 .
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On the other hand, if 1
4 ⩽ p(ai, ci−1) then

q(ai, ci−1)
(34)
= πγ(q

′(ai, ci−1))
(38)
⩾ πγ(p(ai, ci−1) · (1− c)) ⩾ πγ(

1
8 ) =

1
8 .

C8: We have

q(ci, ai)
(34)
= π̂γ(q

′(ci, ai))

(33)
⩾ πγ(p(ci, ai) · [1 + (s+1/2(p(bi, ci−1)− p(ai, ci−1)) + c( 15 − p(ci, ai))) · (1− p(i))])

⩾ π̂γ(p(ci, ai) · [1 + (c( 15 − p(ci, ai))− 1) · (1− p(ci, ai))]) ⩾ p(ci, ai) · h(p(ci, ai)),
where h : (0, 1) → (0, 1) is the strictly increasing function given by

h(x) = x · [1 + (c( 15 − x)− 1) · (1− x)].

(To see that h is strictly increasing, note that we may write
d

dx
h(x) = [1 + (c( 15 − x)− 1) · (1− x)] + x · [(1− c( 15 − x))− c(1− x)]

= 2x+ c · ( 15 − 12
5 x+ 3x2),

and so we have d
dxh(x) > 0 for c sufficiently small.)

C9: If p(ci, bi) ⩽ 1
8 , then p(ci, ai) ⩾ 7

8 and hence

q(ci, ai)
C8
⩾ h(p(ci, ai)) ⩾ h(7/8) = 7

8 · [1 + (− 5
8 − c) · 1

8 ] ⩾
(
7
8

)2
⩾ 1

8 .

The following lemma is essentially the dual of Lemma D.14.
Lemma D.15. Suppose that p ∈ Ai−1 and q ∈ ϕ(p). Then the following properties hold.

D1 If p(bi, ci−1) ⩾ min {1− c
100 , p(ai, ci−1)} and p(ci, ai) ⩾ 1

8 , then q(ci, ai) ⩾ 1
8 .

D2 If p(bi, ci−1) ⩾ 1− c
100 and p(ci, ai) ⩽ 1

8 , then g(q(ci, ai)) ⩾ g(p(ci, ai)) +
c
32 .

D3 If p(ci, bi) ⩾ 1
8 and p(bi, ci−1) ⩽ 1− 1

50n , then g(q(bi, ci−1)) ⩾ g(p(bi, ci−1)) +
1
64 .

D4 If p(ci, bi) ⩾ 1
8 then q(bi, ci−1) ⩾ p(bi, ci−1).

D5 g(q(bi, ci−1)) ⩾ g(q(bi, ci−1))− 2c.

D6 If p(bi, ci−1) ⩽ 1
8 , then g(q(bi, ci−1)) ⩾ g(p(bi, ci−1)) +

c
40 .

D7 If p(bi, ci−1) ⩾ 1
8 , then g(q(bi, ci−1)) ⩾ 1

8 .

D8 For some fixed function h : (0, 1) → (0, 1) that it strictly increasing, q(ci, bi) ⩾ h(p(ci, bi)).

D9 If p(ci, ai) ⩽ 1
8 then q(ci, bi) ⩾ 1

8 .

Proof. Swap the roles of ai and bi in the proof of Lemma D.14.

An observation that will be required in the proof of Lemma D.8 is the following.
Lemma D.16. For any i ∈ [n], Φ(Ai) ⊆ Ai.

Proof. Suppose that q ∈ Φ(Ai). There exists p ∈ Ai such that q ∈ ϕ(p). For every j ∈ [i], we can
now deduce that

q(cj , aj)
D1
⩾ 1

8 ,

q(cj , bj)
C1
⩾ 1

8 ,

q(aj , cj−1)
C4
⩾ p(aj , cj−1) ⩾ 1− 1

50n ,

q(bj , cj−1)
D4
⩾ p(bj , cj−1) ⩾ 1− 1

50n .

Therefore, q ∈ Ai, and hence Φ(Ai) ⊆ Ai.
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Proof of Lemma D.8. We will say that a sequence (qt)rt=0 in Q is a ϕ-sequence if qt ∈ ϕ(qt−1) holds
for every t ∈ [r]. Given subsets A,B ⊆ Q and r ∈ N, we say that A ↪→r B if for any ϕ-sequence
(qt)

r
t=0 with q0 ∈ A, there exists some t with qt ∈ B. Note that the following properties of ↪→r hold.

E1 If A ↪→r B ↪→s C, then A ↪→r+s C.

E2 If A ↪→r B1 ∪B2 and Bk ↪→s C for k ∈ [2], then A ↪→r+s C.

We will establish that Ai−1 ↪→8τ Ai for every i ∈ [n]. To do this, choose a constant β such that

F1 β is a sufficiently small constant depending on c for any subsequent relationships between β
and c to hold, and

F2 n ⩾ n0, where n0 is a sufficiently large constant depending on β (as well as c and K) for
any subsequent relationships between n0 and β to hold.

Note that such a choice of β is possible due to A3. Let i ∈ [n] be fixed, and define the following sets
(see Figure 5 for an illustrative guide).

B = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ 1

8
, p(ai, ci−1) ⩾ 1− c

100
, p(bi, ci−1) ⩾ 1− c

100
}

C1 = {p ∈ Ai−1 : p(ci, ai) ⩾ β, p(ci, bi) ⩾ 1
8
, p(ai, ci−1) ⩾ 1− n−β , p(bi, ci−1) ⩾ 1− c

100
}

D1 = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ 1

8
, p(ai, ci−1) ⩾ 1− n−1/2, p(bi, ci−1) ⩾ 1

8
}

E1 = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ γ, p(ai, ci−1) ⩾ 1− n−1/2, p(bi, ci−1) ⩾ 1− n−1/2 }

F1 = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ γ, p(ai, ci−1) ⩾ 1

8
, p(bi, ci−1) ⩾ 1− 1

50n
}

G1 = {p ∈ Ai−1 : p(ci, ai) ⩾ γ, p(ci, bi) ⩾ γ, p(ai, ci−1) ⩾ 1
8
, p(bi, ci−1) ⩾ 1− 1

50n
}

H = {p ∈ Ai−1 : p(ci, ai) ⩾ γ, p(ci, bi) ⩾ γ, p(ai, ci−1) ⩾ 1
8
, p(bi, ci−1) ⩾ 1

8
}

C2 = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ β, p(ai, ci−1) ⩾ 1− c

100
, p(bi, ci−1) ⩾ 1− n−β }

D2 = {p ∈ Ai−1 : p(ci, ai) ⩾ 1
8
, p(ci, bi) ⩾ 1

8
, p(ai, ci−1) ⩾ 1

8
, p(bi, ci−1) ⩾ 1− n−1/2 }

E2 = {p ∈ Ai−1 : p(ci, ai) ⩾ γ, p(ci, bi) ⩾ 1
8
, p(ai, ci−1) ⩾ 1− n−1/2, p(bi, ci−1) ⩾ 1− n−1/2 }

F2 = {p ∈ Ai−1 : p(ci, ai) ⩾ γ, p(ci, bi) ⩾ 1
8
, p(ai, ci−1) ⩾ 1− 1

50n
, p(bi, ci−1) ⩾ 1

8
}

G2 = {p ∈ Ai−1 : p(ci, ai) ⩾ γ, p(ci, bi) ⩾ γ, p(ai, ci−1) ⩾ 1− 1
50n

, p(bi, ci−1) ⩾ 1
8

}

Using the properties established in Lemmas D.14 and D.15, we will show that Ai−1 ↪→τ H ↪→τ

G1 ∪ G2, B ↪→τ Ai, and Gk ↪→τ Fk ↪→τ Ek ↪→τ Dk ↪→τ Ck ↪→τ B for k ∈ [2]. (For those
instances of depending on k ∈ [2] we will only show the case k = 1, however the case k = 2 will
also hold analagously.)

B ↪→τ Ai: Suppose that (qt)τt=0 is a ϕ-sequence with q0 ∈ B. By induction on t, the following
properties hold for every 0 ⩽ t ⩽ τ .

qt(ci, ai) ⩾ 1
8 ,

qt(ci, bi) ⩾ 1
8 ,

g(qt(ai, ci−1)) ⩾ min {g(1− c
100 ) +

t
128 , g(1− 1

50n )},
g(qt(bi, ci−1)) ⩾ min {g(1− c

100 ) +
t

128 , g(1− 1
50n )}.

Indeed, the condition on qt(ci, ai) follows from D1, the condition on qt(ci, bi) follows from C1, the
condition on qt(ai, ci−1) follows from C3 and C4, and the condition on qt(bi, ci−1) follows from D3
and D4. Because, using B2, g(1− c

100 ) +
τ

128 ⩾ log (1/γ) ⩾ g(1− 1
50n ), we then have qτ ∈ Ai.

C1 ↪→τ B: Set

τ ′ :=

⌈
g( 18 )− g(β)

c/32

⌉
⩽ τ.
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Suppose that (qt)τt=0 is a ϕ-sequence with q0 ∈ C1. By induction on t, the following properties hold
for every 0 ⩽ t ⩽ τ ′.

qt(ci, ai) ⩾ min {g(β) + t · c
32 , g(

1
8 )},

qt(ci, bi) ⩾ 1
8 ,

g(qt(ai, ci−1)) ⩾ g(1− n−β)− t · 2c ⩾ g(1− c
100 ),

qt(bi, ci−1) ⩾ 1− c
100 .

Indeed, the condition on qt(ci, ai) follows from D1 and D2, the condition on qt(ci, bi) follows from
C1, the condition on qt(ai, ci−1) follows from C5 and the fact that

g(1− n−β)− τ ′ · 2c
B6
⩾ −1 + β log n− τ ′ · 2c

F2
⩾ β

2 log n
B6
⩾ g(1− n−β/2) ⩾ g(1− c

100 ),

and the condition on qt(bi, ci−1) follows from D4. We then have qτ ′ ∈ B.

D1 ↪→τ C1: Set

τ ′ :=

⌈
g(1− c

100 )− g( 18 )

1/64

⌉
⩽ τ,

and let h : (0, 1) → (0, 1) be a strictly increasing function so that C8 holds. Suppose that (qt)τt=0 is
a ϕ-sequence with q0 ∈ D1. By induction on t, the following properties hold for every 0 ⩽ t ⩽ τ ′.

qt(ci, ai) ⩾ ht( 18 ),

qt(ci, bi) ⩾ 1
8 ,

g(qt(ai, ci−1)) ⩾ g(1− n−1/2)− t · 2c ⩾ g(1− n−β) ⩾ g(1− c
100 ),

g(qt(bi, ci−1)) ⩾ min {g( 18 ) + t · 1
64 , g(1− 1

50n )}.
Indeed, the condition on qt(ci, ai) follows from C8, the condition on qt(ci, bi) follows from C1, the
condition on qt(ai, ci−1) follows from C5 and the fact that

g(1− n−1/2)− τ ′ · 2c
B6
⩾ −1 + 1

2 log n− τ ′ · 2c ⩾ 1
4 log n

B6
⩾ g(1− n−1/4) ⩾ g(1− n−β),

and the condition on qt(bi, ci−1) follows from D3 and D4. Because τ ′ is defined as a function of c,
F1 implies that hτ ′

( 18 ) ⩾ β. Hence qτ ′ ∈ C1.

E1 ↪→τ D1: Assume for contradiction that there is a ϕ-sequence (qt)
τ
t=0 with q0 ∈ E1 and qt /∈ D1

for all 0 ⩽ t ⩽ τ . Let s ⩾ 0 be the maximal value of t such that the following properties hold.

g(q0(ci, bi)) + t · c
32 ⩽ g(qt(ci, bi)) < g( 18 ),

qt(ai, ci−1) ⩾ 1− n−1/2,

qt(bi, ci−1) ⩾ 1
8 .

Note that s is well defined because the above properties hold for t = 0 (as q0 ∈ E1 \D1). Because
g(q0(ci, bi)) + τ · c

32 ⩾ g( 18 ), it must hold that s < τ . However, we then have

g(q0(ci, bi)) + (s+ 1) · c
32

C2
⩽ g(qs+1(ci, bi))

C9
⩽ g( 78 )

qs+1(ai, ci−1)
C4
⩾ 1− n−1/2

qs+1(bi, ci−1)
D7
⩾ 1

8 .

If additionally g(qs+1(ci, bi)) < g( 18 ) then we have a contradiction to the maximality of s, whereas
if g( 18 ) ⩽ g(qs+1(ci, bi)) then we have qs+1 ∈ D1 (noting in particular that g(qs+1(ci, bi)) ⩽ g( 78 )

implies that qs+1(ci, ai) ⩾ 1
8 ). In either case we obtain a contradiction, and so in fact E1 ↪→τ D1.

F1 ↪→τ E1: Assume for contradiction that there is a ϕ-sequence (qt)
τ
t=0 with q0 ∈ F1 and qt /∈ E1

for all 0 ⩽ t ⩽ τ . Let s ⩾ 0 be the maximal value of t such that the following properties hold.

qt(ci, ai) ⩾ 1
8 ,

g(q0(ai, ci−1)) + t · 1
64 ⩽ g(qt(ai, ci−1)) ⩽ min {g(qt(bi, ci−1), g(1− 1

50n )},
g(qt(bi, ci−1)) ⩾ g(1− 1

50n )− t · 2c.
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Note that s is well defined because the above properties hold for t = 0 (as q0 ∈ F1 \ E1). Because
g(q0(ai, ci−1)) + s · 1

64 ⩽ g(1− 1
50n ), it must hold that

s
B2
⩽ 2 log (1/γ)/(1/64) = 128 log (100n) < τ. (39)

However, we then have

qs+1(ci, ai)
D1
⩾ 1

8 ,

g(q0(ai, ci−1)) + (s+ 1) · 1
64

C3
⩽ g(qs+1(ai, ci−1)),

g(qs+1(bi, ci−1))
D5
⩾ g(1− 1

50n )− (s+ 1) · 2c. (40)

Therefore, by the maximality of s,

g(qs+1(ai, ci−1)) > min {g(qs+1(bi, ci−1), g(1− 1
50n )}

(40)
⩾ g(1− 1

50n )− (s+ 1) · 2c
B6,(39)
⩾ (log (50n)− 1)− 257c log (100n)

A2
⩾ log n+ log 50− 1− 257

600 log n− 257
600 log 100

F2
⩾ log (

√
n)

B6
⩾ g(1− n−1/2).

But then qs+1 ∈ E1, a contradiction. So in fact F1 ↪→τ E1.

G1 ↪→τ F1: Assume for contradiction that there is a ϕ-sequence (qt)
τ
t=0 with q0 ∈ G1 and qt /∈ F1

for all 0 ⩽ t ⩽ τ . Let s ⩾ 0 be the maximal value of t such that the following properties hold.

g(q0(ci, ai)) + t · c
32 ⩽ g(qt(ci, ai)) < g( 18 ),

qt(ai, ci−1) ⩾ 1
8 ,

qt(bi, ci−1) ⩾ 1− 1
50n .

Note that s is well defined because the above properties hold for t = 0 (as q0 ∈ G1 \ F1). Because
g(q0(ci, ai)) + τ · c

32 ⩾ g( 18 ), it must hold that s < τ . However, we then have

g(q0(ci, ai)) + (s+ 1) · c
32

D2
⩽ g(qs+1(ci, ai)),

qs+1(ai, ci−1)
C7
⩾ 1

8 ,

qs+1(bi, ci−1)
D4
⩾ 1− 1

50n .

If additionally g(qs+1(ci, ai)) < g( 18 ) then we have a contradiction to the maximality of s, whereas
if g(qs+1(ci, ai)) ⩾ g( 18 ) then we have qs+1 ∈ F1. In either case we obtain a contradiction, and so
in fact G1 ↪→τ F1.

H ↪→τ G1 ∪ G2: Assume for contradiction that there is a ϕ-sequence (qt)
τ
t=0 with q0 ∈ H and

qt /∈ G1 ∪ G2 for all 0 ⩽ t ⩽ τ . Using C7 and D7, we have ϕ(p) ⊆ H for every p ∈ H , so we
can in fact assume that qt ∈ H \ (G1 ∪ G2) for every 0 ⩽ t ⩽ τ . Let h : Q → R be given by
h(p) = g(p(ai, ci−1)) + g(p(bi, ci−1)). If qt(ci, ai) ⩾ 1

8 , then we have

h(qt+1)
C3,D5
⩾ g(qt(ai, ci−1)) +

1
64 + g(qt(bi, ci−1))− 2c

A2
⩾ h(qt) +

1
128 ,

whereas if qt(ci, ai) < 1
8 then qt(ci, bi) ⩾ 1

8 and hence we have

h(qt+1)
D3,C5
⩾ g(qt(ai, ci−1))− 2c+ g(qt(bi, ci−1)) +

1
64

A2
⩾ h(qt) +

1
128 .

From this we can deduce that h(qτ ) ⩾ h(q0) +
τ

128 , a contradiction to the range of h. Therefore,
H ↪→τ G1 ∪G2.

Ai−1 ↪→τ H: Suppose that (qt)τt=0 is a ϕ-sequence with q0 ∈ Ai−1. By induction on t, the following
properties hold for every 0 ⩽ t ⩽ τ .

g(qt(ai, ci−1)) ⩾ min {g(γ) + t · c
40 , g(

1
8 )},

g(qt(bi, ci−1)) ⩾ min {g(γ) + t · c
40 , g(

1
8 )}.

31



c4 b4

a4

c13

c03

b3

a3

c02

c12

b2

a2

c01

c11

b1

a1

c10

c00

Figure 7: The game RLO(1001).

Indeed, the condition on qt(ai, ci−1) follows from C6 and C7, and the condition on qt(bi, ci−1)
follows from D6 and D7. Because, using B2, g(γ) + τ · c

40 ⩾ log (1/γ) ⩾ g( 18 ), we then have
qτ ∈ H .

We have now shown that Ai−1 ↪→τ H ↪→τ G1 ∪ G2, B ↪→τ Ai, and Gk ↪→τ Fk ↪→τ Ek ↪→τ

Dk ↪→τ Ck ↪→τ B for k ∈ [2]. By applying E1 and E2, we can deduce that Ai−1 ↪→8τ Ai

holds for every i ∈ [n], and hence (by E1) that A0 ↪→8τn An. Thus, as A0 = Q, every sequence
sequence (qt)

8τn
t=0 in Q with qt ∈ ϕ(qt−1) for every t ∈ [8τn] must satisfy qt ∈ An for some

t ∈ [8τn]. However, using Lemma D.16, this implies that qt+1, . . . , q8τn ∈ An also. Therefore,
Φ8τn(Q) ⊆ An, as required.

E Supplementary material to Section 6

E.1 A generalisation of Reciprocal LeadingOnes

Given a bitstring z ∈ {0, 1}n we define RLO(z) (Reciprocal LeadingOnes with target z) to be the
impartial combinatorial game G = (V, F, v0) with the following definition.

V = {cn} ∪
(
∪i∈[n]{ai, bi, c0i−1, c

1
i−1}

)
v0 = cn

F (v) =



{an, bn} if v = cn,
{c0i−1, c

1
i−1} if v = ai or v = bi,

{cz(i)i−1} if v = c
1−z(i)
i−1 ,

{ai, bi} if v = c
z(i)
i and 1 < i ⩽ n,

∅ if v = c
z(i)
0 .

Note that all instances of RLO(z) are isomorphic to RLO. An example instance is shown in Figure 7.

Given an instance RLO(z) of Reciprocal LeadingOnes, there is a natural bijection from φ :
{0, 1}3n → XRLO(z) given by

φ(x)(c
z(i+1)
i ) =

{
ai if x(i) = 1,
bi if x(i) = 0,

φ(x)(ai) = c
x(n+i)
i ,

φ(x)(bi) = c
x(2n+i)
i .

For the sake of a clearer correspondence between our search domain and existing black box models
for evolutionary algorithms, and also a neater proof, we will always identify strategies for RLO(z)
using this identification, and hence adopt X := {0, 1}3n as the problem’s search domain. With this
convention, we remark that the discussion of Proposition 3.2 implies that

Opt(RLO(z)) = {x ∈ X : x(n+ i) = x(2n+ i) = z(i) for all i ∈ [n]} .

E.2 Proof of Theorem 6.1

Proving Theorem 6.1 relies on the following preliminaries.
Lemma E.1. Suppose that z, z′ ∈ {0, 1}n satisfy z(i) = z′(i) = 1 whenever i ⩽ m. Let x ∈ X and
y ∼ Unif(X ). Then,

P(fRLO(z)(x, y) ̸= fRLO(z′)(x, y)) ⩽ 2−m. (41)
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Proof. Observe that for each w ∈ {z, z′} and j ∈ {0, . . . ,m}, exactly one player out of x or y takes
the turn at position c1j in a play of RLO(w) using x and y (where we here interpret losing due to
being unable to move at c10 as ‘taking a turn’). Let us use Xj(w) to denote the event that this turn is
taken by x and Yj(w) to denote the event that this turn is taken by y. Finally, let us define the event

Ej = (Xj(z) ∧ Yj(z
′)) ∨ (Yj(z) ∧Xj(z

′)),

and note that E0 occurs if and only if fRLO(z)(x, y) ̸= fRLO(z′)(x, y).

If for some j ∈ {1, . . . ,m} we find that Ej does not occur, then the plays of RLO(z) and RLO(z′)
have coalesced, and so Ej−1 also does not occur. In particular, we have

Ej = ∧m
i=jEi whenever 0 ⩽ j ⩽ m, (42)

and hence,

P(E0)
(42)
= P(∧m

j=0Ej) = P(Em) ·
m∏
j=1

P(Em−j | ∧m
i=m−j+1Ei)

(42)
= P(Em) ·

m∏
j=1

P(Em−j | Em−j+1) ⩽
m∏
j=1

P(Em−j | Em−j+1) =

m∏
j=1

P(Ej−1 | Ej).

Finally, observe that

P(Ej−1 | Ej) = P(y(x(c1j )) = x(y(c1j ))) =
∑

v∈{aj ,bj}

P(y(x(c1j )) = x(v)) · P(y(c1j ) = v) =
1

2
.

Thus, we deduce that P(E0) ⩽ 2−m, as required.

We will use a coupling to prove the desired result (for a general background on coupling in the
context of evolutionary computing, see [3, 8]). For this, we will first require the notion of total
variation and the coupling lemma, as follows. (Note that these notions are usually described in terms
of the distributions of the variables, rather than the variables themselves as we have done here for
conciseness.)
Definition E.2. Let S be a countable set, and let X1 and X2 be S-valued random variables. The
total variation distance between X1 and X2 is defined as

dTV(X1, X2) = max
A⊆S

|P(X1 ∈ A)− P(X2 ∈ A)|.

The following lemma is Proposition 4.7 of [30].
Lemma E.3. Let S be a countable set, and let X1 and X2 be S-valued random variables. Then the
following properties hold.

G1 dTV(X1, X2) = inf {P(X̂1 ̸= X̂2 : (X̂1, X̂2) is a coupling of X1 and X2}.

G2 There exists a coupling (X̂1, X̂2) of X1 and X2 such that dTV(X1, X2) = P(X̂1 ̸= X̂2).

It is well-known (see Proposition 4.2 of [30]) that the total variation distance satisfies

dTV(X1, X2) =
1

2

∑
s∈S

|P(X1 = s)− P(X2 = s)|. (43)

In particular, G2 implies the existence of a coupling (X̂1, X̂2) of X1 and X2 such that

P(X̂1 = X̂2) ⩾ 1− dTV(X1, X2)
(43)
= 1− 1

2

∑
s∈S

|P(X1 = s)− P(X2 = s)|

= 1− 1

2

∑
s∈S

(
supi∈[2] P(Xi = s)− infi∈[2] P(Xi = s)

)
= 1− 1

2

∑
s∈S

(
P(X1 = s) + P(X2 = s)− 2 infi∈[2] P(Xi = s)

)
=

∑
s∈S

infi∈[2] P(Xi = s).
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We require a generalisation of G2 that extends this observation to larger families of random variables,
as follows (see Theorem 4.2 of [46]).
Lemma E.4. Let S be a countable set. Suppose that (Xi)i∈I is a family of S-valued random variables.
Then there is a coupling (X̂i)i∈I of (Xi)i∈I such that P(∧i,j∈IX̂i = X̂j) ⩾

∑
s∈S infi∈I P(Xi =

s).

The following key lemma for Theorem 6.1 may apply to other settings, and may also generalise to
uncountable S ⊆ R.
Lemma E.5. Suppose that I is a finite indexing set, S ⊆ R is countable, (fi)i∈I is a family of
stochastic payoff functions X → P(S), and (Bi)i∈I is a family of pairwise disjoint subsets of X .
Suppose that ε > 0 satisfies∑

s∈S

infi∈IP(fi(x) = s) ⩾ 1− ε for every x ∈ X .

Let A be any instance of Algorithm 2. It then holds for any τ ⩾ 0 that

1

|I|
∑
i∈I

P[T fi
A (Bi) < τ ] ⩽ τ ·

(
1

|I| + ε

)
.

Proof. For every x ∈ X , we have
∑

s∈S infi∈I P(fi(x) = s) ⩾ 1− ε. Thus, using Lemma E.4, for
each t ∈ N and x ∈ X , let (f̂i(t, x))i∈I be a coupling of the family of random variables (fi(x))i∈I

satisfying P(∧i,j∈I f̂i(t, x) = f̂j(t, x)) ⩾ 1− ε.

We will simulate |I|-many parallel runs of A, one on each stochastic function in (fi)i∈I , which are
carefully coupled together. To do this, we first perform the following steps independently of each
other.

• Sample x̂0 ∼ d0.

• For all (t; i;x) ∈ N× I ×X , sample âit(x) ∼ f̂i(t, x).

• For all (t;x0, . . . , xt; a0, . . . , at) ∈ N×X t+1 × St+1, sample

x̂t+1(x0, . . . , xt; a0, . . . , at) ∼ vt(x0, . . . , xt; a0, . . . , at).

Given i ∈ I , the sequence (xi
t)t⩾0 is then defined recursively via

xi
0 = x̂0,

ait = âit(x
i
t),

xi
t+1 = x̂t+1(x

i
0, . . . , x

i
t; a

i
0, . . . , a

i
t).

The result is that each (xi
t)t⩾0 is identical in distribution to a run of A on fi.

Given τ , let Eτ be the event that the sequences (ait)t<τ are identical for i ∈ I , so that P(E0) = 1.
Note that if Eτ occurs, then in fact the sequences (xi

t)t⩽τ are also identical, to (xt)t⩽τ say, for i ∈ I .
Thus,

P(Eτ+1 | Eτ ) ⩾ P(∧i,j∈I â
i
t(xτ ) = âjt (xτ )) = P(∧i,j∈I f̂i(τ, xτ ) = f̂j(τ, xτ )) ⩾ 1− ε.

Thus, we deduce that P(Eτ ) ⩾ (1− ε)τ ⩾ 1− τε. Because the sets (Bi)i∈I are disjoint, in the event
that Eτ−1 occurs, at most τ of the parallel runs can have hit their objective Bi. Therefore, if Cτ is
the random variable counting the number of parallel runs that have hit their objective before time τ ,
we obtain

1

|I|
∑
i∈I

P[T fi
A (Bi) < τ ] =

E[Cτ ]

|Z| =
P(Eτ−1) · τ + (1− P(Eτ−1)) · |I|

|I|

⩽
τ

|I| + τε = τ ·
(

1

|I| + ε

)
,

as required.
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With the tools we have introduced, proving Theorem 6.1 is now easy. We use Lemma E.1 to establish
that, with high probability, a run of A on RLO(1n) will be indistinguishable from a run of A on
RLO(z) if z and 1n agree on the final n/3 bits. Thus, there is no real reason to find the optimal
strategy for RLO(1n) as opposed to the optimal strategy for many other instances of RLO that
appear similar against random strategies.

Proof of Theorem 6.1. Let

Z = {z ∈ {0, 1}n : z(i) = 1 whenever i ⩽ n/3},
so that |Z| = 22n/3. For any x ∈ X and z, z′ ∈ Z , by noting that sampling y ∼ Unif(X ) produces a
coupling (fRLO(z)(x, y), fRLO(z′)(x, y)) of (gz(x), gz′(x)), we have

dTV(gz(x), gz′(x))
G1
⩽ P(fRLO(z)(x, y) ̸= fRLO(z′)(x, y))

(41)
⩽ 2−n/3. (44)

Given k ∈ {−1, 1} and x ∈ X , let z(k, x) ∈ Z satisfy P(fz(k,x)(x) = k) = infz∈Z P(fz(x) = k).
We now have for every x ∈ X that∑

k∈{−1,1}

inf
z∈Z

P(gz(x) = k) = P(gz(x,1)(x) = 1) + P(gz(x,−1)(x) = −1)

= 1 + P(gz(x,1)(x) = 1)− P(gz(x,−1)(x) = 1)

⩾ 1− dTV(gz(x,1)(x), gz(x,−1)(x))
(44)
⩾ 1− 2−n/3.

Therefore, we can apply Lemma E.5 with ε = 2−n/3 to obtain.

1

|Z|
∑
z∈Z

P[T gz
A (Opt(gz)) < 2n/8] ⩽ 2n/8 · (2−2n/3 + 2−n/3) ⩽ 2−n/8.

In particular, there is some z ∈ {0, 1}n such that P[T gz
A (Opt(gz)) < 2n/8] ⩽ 2−n/8, as required.

E.3 Proof of Corollary 6.2

We quickly outline some further notation for this proof. Sym([3n]) will be used to denote the set of
bijections σ : [3n] → [3n]. We recall that X := {0, 1}3n (as per Section 6), and additionally use ⊕
to denote the exclusive or-operation on bitstrings, and σb : X → X to denote the permutation over
bitstrings associated to σ, defined via σb(x)(i) = x(σ(i)). Finally, we say that real-valued random
variables A and B are equal in distribution, written A

d
= B if P(A ⩽ x) = P(B ⩽ x) holds for every

x ∈ R.

We adopt the following definition of unbiased variation [28].
Definition E.6. A variation operator v : X k × Rk → P(X ) is unbiased if the following conditions
are satisfied for all x1, . . . , xk, y ∈ X and a1, . . . , ak ∈ R.

H1 For all z ∈ X ,

v(x1, . . . , xk; a1, . . . , ak)(y) = v(x1 ⊕ z, . . . , xk ⊕ z; a1, . . . , ak)(y ⊕ z).

H2 For all σ ∈ Sym([3n]),

v(x1, . . . , xk; a1, . . . , ak)(y) = v(σb(x1), . . . , σb(xk); a1, . . . , ak)(σb(y)).

We are now ready to prove Corollary 6.2.

Proof of Corollary 6.2. Given a bitstring w ∈ X and a set B ⊆ X , let us define B ⊕ w ⊆ X via

B ⊕ w = {x⊕ w : x ∈ B}.
Furthermore, Given a bitstring w ∈ X and a function g : X → S, let us define g ⊕ w : X → R via

(g ⊕ w)(x) = g(x⊕ w).
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Note that for any set B ⊆ X , function g : X → R, and bitstring w ∈ X we have

T g
A(B)

d
= T g⊕w

A (B ⊕ w). (45)

By Theorem 6.1 there exists z ∈ {0, 1}n such that P[T gz
A (Opt(RLO(z))) < 2n/8] ⩽ 2−n/8. For any

z ∈ {0, 1}n, let wz ∈ X be defined by

wz(kn+ i) =


0 if k = 0,
0 if k ∈ {1, 2} and z(i) = z(i),
1 if k ∈ {1, 2} and z(i) ̸= z(i).

Observe that gz = gz ⊕ wz and Opt(RLO(z)) = Opt(RLO(z))⊕ wz . Hence,

P[T gz
A (Opt(RLO(z))) < 2n/8] = P[T gz⊕wz

A (Opt(RLO(z))⊕ wz) < 2n/8]

(45)
= P[T gz

A (Opt(RLO(z))) < 2n/8] ⩽ 2−n/8,

as required.
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Answer: [NA]
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
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