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Abstract

Multilingual neural machine translation
(MNMT) offers the convenience of translating
between multiple languages with a single
model. However, MNMT often suffers from
performance degradation in high-resource
languages compared to bilingual counterparts.
This degradation is commonly attributed to
parameter interference, which occurs when
parameters are fully shared across all language
pairs. In this work, to tackle this issue we
propose a gradient-based gradual pruning
technique for MNMT. Our approach aims
to identify an optimal sub-network for each
language pair within the multilingual model
by leveraging gradient-based information as
pruning criterion and gradually increasing the
pruning ratio as schedule. Our approach allows
for partial parameter sharing across language
pairs to alleviate interference, and each pair
preserves its unique parameters to capture
language-specific information. Comprehensive
experiments on IWSLT and WMT datasets
show that our approach yields a notable
performance gain on both datasets.

1 Introduction

In recent years, neural machine translation (NMT)
based on the transformer architecture has achieved
great success and become the dominant paradigm
for machine translation (Sutskever et al., 2014;
Vaswani et al., 2017). Multilingual neural machine
translation (MNMT), which learns a unified model
to translate between multiple languages, has at-
tracted growing attention in the NMT area (Ha
et al., 2016; Johnson et al., 2017). The reasons
are: 1) From a practical perspective, it significantly
reduces the training and inference cost and simpli-
fies deployment in production; 2) Utilizing data
from multiple language pairs simultaneously can
potentially help improve the translation quality of
low-resource or even zero-resource language pairs
by transferring knowledge across languages.

Despite these benefits, MNMT remains challeng-
ing as its performance degrades compared to bilin-
gual counterparts in high-resource languages (Ari-
vazhagan et al., 2019). Previous studies (Wang
et al., 2020; Shaham et al., 2023) attribute this
degradation to parameter interference: each lan-
guage is unique and therefore has distinct re-
quirements from the model parameters to capture
language-specific information, and fully sharing
parameters causes negative interactions across lan-
guage pairs as languages compete for model capac-
ity. Although naively increasing model size may
alleviate parameter interference, large models often
suffer from parameter inefficiency and overfitting
(Zhang et al., 2020; Arivazhagan et al., 2019).

To address the parameter interference issue more
effectively, researchers have explored various meth-
ods to allocate language-specific parameters to cap-
ture unique linguistic information for each lan-
guage pair. One line of work focused on intro-
ducing extra parameters to the model. For instance,
adapter-based approaches (Bapna and Firat, 2019;
Philip et al., 2020; Zhu et al., 2021; Baziotis et al.,
2022) inject lightweight language-specific mod-
ules into the shared model. Another well-known
method (Dong et al., 2015) utilizes a shared en-
coder but a different decoder for each target lan-
guage. Despite being effective, these methods can
become parameter-inefficient as the number of lan-
guages in the multilingual model grows.

Another line of work focused on extracting a sep-
arate sub-network within the multilingual model
for each language pair. In these approaches, each
sub-network preserves exclusive parameters to cap-
ture the language-specific features and has some
parameters shared with other languages (Xie et al.,
2021; Lin et al., 2021; Wang and Zhang, 2022;
Pham et al., 2022). A recent work (Lin et al., 2021)
shows promising results by first training a multi-
lingual model that covers all language pairs, then
fine-tuning the trained model on each pair, and in



the end, extracting the sub-networks via magnitude
pruning in one step. Although this paradigm is intu-
itive and straightforward, it can be suboptimal due
to the following limitations: (1) Magnitude prun-
ing is demonstrated to be ineffective in a transfer
learning context (Sanh et al., 2020), potentially af-
fecting NMT systems in the multilingual scenario.
(2) Pruning in one single step after fine-tuning can
lead to the removal of crucial weights resulting in
lower performance.

This work aims to mitigate the parameter in-
terference issue in MNMT without adding ex-
tra parameters and overcome the aforementioned
two limitations in Lin et al. (2021). We pro-
pose gradient-based gradual pruning for language-
specific MNMT. More specifically, a multilingual
base model is first trained, and subsequently, the
model is simultaneously fine-tuned and pruned on
each language pair. Conducting finetuning and
pruning concurrently allows the model to adapt and
optimize the parameters while reducing the model
size. Instead of the widely used magnitude scores,
we opt for the gradient-based scores as the prun-
ing criterion. The percentage of pruned weights
is gradually increased from zero to the target level
throughout the pruning process. By optimizing the
pruning criterion and schedule, we strive to iden-
tify optimal sub-networks and limit the parameter
interference. Lastly, the resulting sub-networks are
integrated into the MNMT model through a final
training phase in a language-aware manner.

A large set of experiments is conducted on
IWSLT and WMT datasets, showing that our ap-
proach leads to a substantial performance gain of
2.06 BLEU on IWSLT and 1.41 BLEU on WMT.
Our contributions can be summarized as follows:

• Our method leads to a significant boost
in medium- and high-resource languages
and also a reasonable improvement in low-
resource languages, suggesting its effective-
ness in alleviating parameter interference.

• We provide a comprehensive study of vari-
ous pruning criteria and schedules in search-
ing optimal sub-networks in the multilingual
translation scenario.

• We provide additional analyses of our method
by studying the contribution of various sub-
layers to the overall performance and explor-
ing the relationship between language-specific
sub-networks and language families.

2 Related Work

Standard multilingual neural machine translation
systems translate between multiple languages with
a unified model. The model can be jointly trained
on multiple language pairs by prepending a special
token to the source sentence, informing the model
about the desired target language (Johnson et al.,
2017). Although fully sharing parameters across
languages and joint training can enhance knowl-
edge transfer, MNMT suffers from parameter in-
terference and the lack of language-specific param-
eters for capturing language-specific information,
resulting in performance degradation, especially
in high-resource language pairs. Various previous
works have explored the idea of partially sharing
parameters across languages while allowing for
language-specific parameters. Sachan and Neu-
big (2018) investigates different parameter sharing
strategies. Blackwood et al. (2018) compares sev-
eral methods of designing language-specific atten-
tion module. Zhang et al. (2021) studies when and
where language-specific capacity matters.

Additionally, another widely recognized tech-
nique, adapter-based, has attracted substantial in-
terest in recent years. Adapter-based approaches
(Bapna and Firat, 2019; Zhu et al., 2021; Baziotis
et al., 2022) inject additional lightweight language-
specific modules for different language pairs to
capture language-specific information. Although
effective, these methods increase the parameters
for each language pair and thus result in an infer-
ence speed decrease. On the contrary, our work
introduces no extra parameters to the model and
thus has negligible to no impact on the inference
speed. For more details, see Appendix E.

To avoid the inference speed decrease, several
works (Dong et al., 2015; Purason and Tättar, 2022;
Pfeiffer et al., 2022; Pires et al., 2023) explore de-
signing language-aware modules inside the MNMT
model. This way, the model can capture language-
specific information without sacrificing the infer-
ence speed. For instance, Dong et al. (2015) em-
ploys a single shared encoder across all languages
but a unique decoder for each target language.
However, the model can suffer from the param-
eter exploration issue as the number of languages
in the multilingual model increases. In contrast, our
approach maintains a consistent number of total pa-
rameters, irrespective of the number of languages.

Recent works allocate language-specific param-
eters by extracting a unique sub-network for each



language pair within the multilingual model, which
avoids introducing additional parameters to the
model. Different approaches are explored for sub-
network extraction, such as Taylor expansion (Xie
et al., 2021), parameter differentiation (Wang and
Zhang, 2022), and model pruning (Lin et al., 2021).
In this paper, we focus on model pruning because it
showed to be more effective and results in promis-
ing performance.

In machine learning, model pruning is widely
used to remove redundant weights from a neu-
ral network while preserving important ones to
maintain accuracy (Han et al., 2015, 2016; Fran-
kle and Carbin, 2019; Liu et al., 2019; Sun et al.,
2020). Two key components of model pruning are
the pruning criterion, which determines the rela-
tive importance of weights and which weights to
prune, and the pruning schedule, which defines the
strategy how the target pruning ratio is achieved
throughout the pruning process. In terms of prun-
ing criteria, magnitude pruning (Han et al., 2015,
2016), which removes weights with low absolute
values, is the most widely used method for weight
pruning. A recent work on large language models
(Sanh et al., 2020) proposed movement pruning,
which scores weights by using the accumulated
product of weight and gradient and removes those
weights shrinking toward zero. We refer to this
approach as gradient-based pruning in this work.
Regarding pruning schedules, two commonly con-
sidered options are one-shot pruning (Frankle and
Carbin, 2019) and gradual pruning (Zhu and Gupta,
2017). While one-shot pruning removes the de-
sired percentage of weights in a single step after
the completion of finetuning, gradual pruning incre-
mentally removes weights, starting from an initial
pruning ratio (often 0) and gradually progressing
towards the target pruning ratio.

In MNMT, the most similar technique to our ap-
proach for extracting sub-networks through model
pruning has been proposed by Lin et al. (2021). In
their work, sub-networks are searched through mag-
nitude one-shot pruning, which means the model
is pruned based on the magnitude of weights in a
single step after the completion of fine-tuning. Dif-
ferent from their method, we opt for the gradient-
based pruning criterion, which is proved to be more
effective than magnitude pruning in a transfer learn-
ing context. Besides, in contrast to pruning in one
single step (Lin et al., 2021), we gradually increase
the ratio from zero to the target value during fine-

Algorithm 1 Gradient-based Gradual pruning for
MNMT

1: Input: N bilingual corpora data Dall =
(Ds1→t1 , Ds2→t2 , ...DsN→tN ), language pairs
pairs = {s1 → t1, s2 → t2, ..., sN → tN}

2: // Phase 1: pretrain a multilingual model
3: Training a multilingual model base: θ0
4: // Phase 2: extract sub-network for each pair
5: for each pair si → ti in pairs do
6: if step < T1 then
7: // Finetune without pruning
8: Fine-tune and keep prune_ratio = 0
9: else if step < (T1 + T2) then

10: Calculate gradient-based importance scores as
shown in Eq. (2), and rank the scores.

11: Calculate the current pruning ratio according to
Eq. (4) and prune the weights with the lowest
scores accordingly.

12: else
13: Finetune with target ratio until converge.
14: end if
15: Extract pruning mask Msi→ti

16: Extract sub-network θsi→ti = θ0 ⊙Msi→ti

17: end for
18: // Phase 3: structure-aware joint training
19: θAll = (θs1→t1 , θs2→t2 , ..., θsN→tN )
20: while θAll not converge do
21: for each pair si → ti in pairs do
22: Further training θsi→ti on Dsi→ti

23: end for
24: end while

tuning, allowing the model to self-correct and re-
cover from previous choices. To the best of our
knowledge, this is the first study to explore the ef-
fectiveness of gradient-based gradual pruning in
the multilingual translation context.

3 Methodology

Our approach includes three main phases. In the
first one (Phase 1 in Algorithm 1), a multilingual
model is initially trained using the parameter log-
likelihood loss (see Sec. 3.1). Subsequently, the
multilingual base model is simultaneously fine-
tuned and pruned on each language pair (Phase 2 in
Algorithm 1). In this phase, we adopt the gradient-
based pruning criterion as the scoring function for
each weight and the gradual pruning schedule to
identify sub-network masks for language pairs (see
Sec. 3.2). The extracted masks are then jointly used
during the final training (Phase 3 in Algorithm 1)
as described in Sec. 3.3.

3.1 Multilingual Neural Machine Translation
In this work, we adopt the multilingual Transformer
(Vaswani et al., 2017) as the backbone of our ap-
proach. Following Lin et al. (2021), we use a uni-
fied model for multilingual NMT by adding two



special language tokens to indicate source and tar-
get languages. Given a set of N bilingual corpora
Dall = (Ds1→t1 , Ds2→t2 , ...DsN→tN ), the multi-
lingual model is jointly trained over the set of all
N parallel training corpora. The objective is to
minimize the parameter log-likelihood of the target
sentence given the source sentence over all corpora.
The training loss is formulated as follows:

LMT = −
N∑
i=1

J∑
j=1

log p(yi,j |yi,<j , Xi, θ) (1)

where Xi = (xi,1, xi,2, ..., xi,I) and Y =
(yi,1, yi,2, ..., yi,J) represent the source and target
sentences of one sentence pair in the parallel corpus
Dsi→ti respectively, with source sentence length
I and target sentence length J , and special tokens
omitted. The index of the current target word is
denoted by j, which ranges from 1 to the sentence
length J. θ represents the model parameters.

3.2 Identify Sub-networks Via Pruning
Once the MNMT model is trained, sub-networks
are identified by applying our pruning approach.
Gradient-based pruning criterion. Inspired by
Sanh et al. (2020), we first learn an importance
score for each weight in the weight matrix targeted
for pruning, and then prune the model based on
these importance scores during the simultaneous
finetuning and pruning process. The importance
scores can be represented as follows 1:

S
(T )
i,j = −

∑
t<T

(
∂L

∂Wi,j

)(t)

W
(t)
i,j (2)

where ∂L
∂Wi,j

is the gradient of loss L with respect

to Wi,j in a generic weight matrix W ∈ RM×N of
the model, T denotes the number of performed gra-
dient updates, S(T )

i,j denotes the importance score
of weight Wi,j after T updates.

After scoring each weight using Eq. (2) and rank-
ing the score values, we prune the weights having
importance scores among the v% (pruning ratio)
lowest, regardless of the absolute score values. To
this end, a binary mask matrix M ∈ {0, 1}M×N

based on the importance scores is calculated as:

Mi,j =

{
0 Si,j among v% lowest scores
1, otherwise

(3)

1For detailed information please refer to Appendix G.

Weights with scores among the lowest v% are
assigned a value of 0 in the binary mask matrix
and pruned, while the other weights are assigned a
value of 1 in the mask and retained.

We generate a mask for each matrix that is tar-
geted for pruning in the model and extract a unique
sub-network for each language pair: θsi→ti = θ0⊙
Msi→ti . Where ⊙ denotes the Hadamard product,
si → ti is the language pair, Msi→ti ∈ {0, 1}|θ|
represents the mask of the entire model for pair
si → ti, θ0 denotes the initial model, and θsi→ti

represents the corresponding sub-network for the
pair si → ti.
Gradual pruning schedule. In this work, the prun-
ing ratio (v% in Eq. (3)) is gradually increased
from 0 to the target value Rp through a three-stage
process, similar to Zhu and Gupta (2017). In the
first stage spanning T1 training steps, the model
remains unpruned with a pruning ratio of 0. In
the second stage, which lasts for T2 training steps,
the pruning ratio gradually increases from 0 to the
predefined threshold Rp. In the third stage, the
pruning ratio remains constant at the target pruning
ratio Rp. This strategy is formalized as follows:

Rt =


0 t < T1

Rp −Rp

(
1− t−T1

T2

)3
T1 < t < (T1 + T2)

Rp otherwise
(4)

where t represents the current training step, Rt

represents the pruning ratio at step t, Rp represents
the preset target pruning ratio, T1 and T2 represent
the total steps of stage 1 and stage 2, respectively.

3.3 Joint Training

Once the sub-networks θsi→ti , i = 1, ..., N for all
language pairs are obtained, the multilingual base
model θ0 is further trained with language-aware
data batching and structure-aware model updating.
For this purpose, batches of each language pair
are randomly grouped from the language-specific
bilingual corpus (Lin et al., 2021). Given a pair
si → ti, batches Bs1→t1 for this pair are randomly
grouped from the bilingual corpus Dsi→ti . Impor-
tantly, each batch contains samples from a single
language pair, which differs from standard mul-
tilingual training where each batch can contain
fully random sentence pairs from all language pairs.
The model is iteratively trained on batches of all
language pairs until convergence. During back-



propagation, only parameters in the sub-network of
the corresponding language pair are updated. Dur-
ing inference, the sub-network corresponding to
the specific language pair is utilized to generate
predictions. Notably, the sub-networks of all lan-
guage pairs are accommodated in a single model,
without introducing any additional parameters.

4 Experiment settings

4.1 Data

We run our experiments using two collections of
datasets (IWSLT and WMT) having different lan-
guage coverage and training data sizes. Due to
its limited dimensions, the IWSLT data is used to
run a deeper analysis of our method while WMT
is used to further simulate real-world imbalanced
dataset scenarios.
IWSLT. We collect 8 English-centric language
pairs for a total of 9 languages from IWSLT2014
(Cettolo et al., 2014), with corpus size ranging from
89K to 169K, as shown in Appendix A.1. We
first tokenize data with moses scripts (Koehn et al.,
2007)2, and further learn shared byte pair encod-
ing (BPE) (Sennrich et al., 2016), with a vocabu-
lary size of 30K, to preprocess data into sub-word
units. To balance the training data distribution,
low-resource languages are oversampled using a
temperature of T=2 (Arivazhagan et al., 2019).
WMT. We collect another dataset comprising 19
languages in total with 18 languages to-and-from
English from previous years’ WMT (Barrault et al.,
2020). The corpus sizes range from very low-
resource (Gu, 9K) to high-resource (Fr, 37M).
More detailed information about the train, dev, and
test datasets is listed in Appendix A.2. We apply
the shared byte pair encoding (BPE) algorithm us-
ing SentencePiece (Kudo and Richardson, 2018)
to preprocess multilingual sentences, with a vo-
cabulary size of 64K. Since the data is extremely
imbalanced, we apply oversampling with a larger
temperature of T=5. We categorize the language
pairs into three groups based on their corpus sizes:
low-resource (<1M), medium-resource (≥ 1M and
<10M), and high-resource (≥10M).

4.2 Model Settings

In our experiments, we adopt models of different
sizes to adjust for the variation in dataset sizes.
Given the smaller size of the IWSLT benchmark,

2https://github.com/moses-smt/mosesdecoder/
blob/master/scripts/tokenizer/tokenizer.perl

we opt for Transformer-small following Wu et al.
(2019). For the WMT experiment, we choose
Transformer-base. For more training details please
refer to Appendix B. To have a fair comparison
with Lin et al. (2021), our method is applied to two
linear sub-layers: attention and feed-forward.3

4.3 Terms of Comparison
We compare our method with two well-known and
adopted technologies: the adapter-based (Bapna
et al., 2019) and the method utilizing a shared en-
coder but separate decoders (Dong et al., 2015).

• Adapter.128, Adapter.256, and Adapter.512
- Inject a unique lightweight adapter to the
shared model for each language pair with vary-
ing bottleneck dimensions 128, 256, and 512,
respectively (Bapna et al., 2019). Following
Pires et al. (2023), we train the entire model,
including all adapters, from scratch for train-
ing stability.

• SepaDec - Use a shared encoder for all lan-
guage pairs and a separate decoder for each
target language (Dong et al., 2015).

As described in Section 3, our GradientGradual
approach employs a gradient-based pruning crite-
rion, and pruning occurs during finetuning, with
the pruning ratio gradually increasing. To investi-
gate the effectiveness of our pruning strategy for
sub-network extraction in multilingual translation,
we further compare our method with three pruning-
based variants by combining different pruning cri-
teria and schedules.

• MagnitudeOneshot (LaSS) 4 - Extract sub-
networks through pruning: the pruning cri-
terion is the magnitude values of the weights;
the pruning is performed in one step after the
completion of finetuning (Lin et al., 2021).

• MagnitudeGradual - Extract sub-networks
through pruning: the pruning criterion is the
magnitude values of weights; the pruning ratio
increases gradually during finetuning.

• GradientOneshot - Extract sub-networks
through pruning: the pruning criterion is

3Although our analysis is limited to attention and feed-
forward sub-layers, our algorithm can be used to prune other
components of the model, e.g. the embedding matrixes.

4In the original paper, this approach is referred to as LaSS.
In the following sections of this paper, we will use Magni-
tudeOneshot for simplicity.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl


Lang Fa Pl Ar He Nl De It Es Average
Size 89K 128k 140K 144K 153K 160K 167K 169K
Baseline 17.54 17.25 21.31 29.39 32.11 30.09 30.02 36.18 26.74
Adapter.128 +0.20 +1.46 +1.32 +1.56 +1.62 +1.34 +1.36 +1.82 +1.33
Adapter.256 +0.06 +1.44 +1.53 +1.56 +1.43 +1.52 +1.53 +1.70 +1.34
Adapter.512 -0.23 +1.39 +1.61 +2.09 +1.67 +1.81 +2.01 +2.01 +1.54
SepaDec -0.38 +0.79 +0.88 +0.84 +0.75 +1.23 +1.12 +0.73 +0.74
MagnitudeOneshot (LaSS) +0.04 +0.26 +0.68 +0.65 +0.56 +0.49 +0.72 +0.60 +0.50
GradientGradual (Ours) +1.13 +0.67 +2.24 +2.8 +2.56 +2.28 +2.19 +2.60 +2.06
MagnitudeGradual +0.43 +0.20 +2.22 +2.36 +2.07 +1.92 +2.02 +2.24 +1.68
GradientOneshot +0.73 +0.32 +2.08 +2.44 +2.14 +2.08 +1.88 +2.14 +1.73

Table 1: Average En ↔ X BLEU score gain of the sub-network extraction methods on the IWLST dataset.

gradient-based; pruning is performed in one
step after the completion of finetuning.

4.4 Evaluation

We report the tokenized BLEU (Papineni et al.,
2002) on individual languages on the IWSLT
dataset, and average tokenized BLEU of low-,
medium-, and high-resource groups on the WMT
dataset using the SacreBLEU tool (Post, 2018). We
provide detailed results on the WMT dataset in Ap-
pendix D.1. In addition, we show the results of win
ratio based on tokenized BLEU in Appendix D.2,
and the results of COMET (Rei et al., 2020) and
chrF (Popović, 2015) scores in Appendix D.3.

5 Experiment Results on IWSLT

This section shows the results of our approach on
the IWSLT dataset, along with a comparative anal-
ysis against the MNMT baseline and prior research
works. We also provide a comprehensive analysis
of our method from various perspectives. 5

5.1 Main Results

In Table 1, we first report the performance of
multilingual baseline, adapter-based approaches
(Adapter.128, Adapter.256, and Adapter.512 with
bottleneck dimensions 128, 256, and 512) and
SepaDec method, with a dedicated decoder for
each target language. On average, Adapter.128,
Adapter.256, and Adapter.512 achieve 1.33, 1.34,
and 1.54 BLEU score gains, respectively. Sepa-
Dec clearly underperforms adapter-based methods
yet exhibits a smaller gain of 0.74 BLEU score
points over the baseline. The above approaches
alleviate the parameter interference issue by in-
troducing additional language-specific parameters
to the model and outperform the baseline across

5Additional analysis of parameter count, disk storage, and
inference speed among different approaches is provided in
Appendix E .

most languages. The consistent improvements in
average scores confirm the necessity of language-
specific parameters in the MNMT model. Subse-
quently, we report the results of the pruning-based
approach MagnitudeOneshot, which extracts sub-
networks for language pairs through magnitude
pruning in one step. MagnitudeOneshot obtains
a 0.50 BLEU score gain, demonstrating the po-
tential of designing language-specific parameters
and mitigating parameter interference without in-
creasing the parameter count. Furthermore, our
proposed GradientGradual approach, which lever-
ages gradient-based information as the pruning cri-
terion and gradually increases the pruning ratio
from 0 to the target value, delivers a substantial im-
provement of 2.06 BLEU scores over the baseline
model and achieves the best performance among
all approaches, suggesting the effectiveness of our
method in mitigating parameter interference in the
MNMT model.

5.2 Pruning criteria and schedules

In the last two rows of Table 1 we further ex-
plore the individual impact of two key factors that
contribute to the performance improvement sepa-
rately, namely the gradient-based pruning criterion
and gradual pruning schedule. MagnitudeGradual
leads to a 1.68 BLEU score improvement over the
baseline model and a 1.18 BLEU score improve-
ment over MagnitudeOneshot, separately. Gradi-
entOneshot leads to a 1.73 BLEU score gain over
baseline and a 1.23 BLEU score gain over Mag-
nitudeOneshot. The results demonstrate that both
the gradient-based pruning criterion and gradual
pruning schedule have the potential to significantly
improve multilingual translation performance when
implemented separately and to surpass the perfor-
mance of MagnitudeOneshot. Nevertheless, the
maximum average improvement is obtained when
the gradient-based pruning criterion and gradual



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning Ratio

25.5

26.0

26.5

27.0

27.5

28.0

28.5

BL
EU

GradientGradual (Ours)
MagnitudeGradual
GradientOneshot
MagnitudeOneshot (LaSS)
Baseline

Figure 1: Average BLEU score of all language pairs
across 4 methods with pruning ratio [0.1:0.9].

pruning schedule are combined, as demonstrated
in our proposed GradientGradual approach.

5.3 Robustness with respect to pruning ratios
Results presented in Table 1 demonstrate that all 4
methods with different pruning criteria and sched-
ules lead to varying levels of performance improve-
ment. To gain a more comprehensive understand-
ing of the relationship between performance and
pruning ratios, we further visualize the average per-
formance of all language pairs across the 4 meth-
ods with different pruning ratios. Results in Figure
1 show that the optimal performance of these 4
methods is obtained at slightly different pruning
ratios. In addition, although MagnitudeGradual
and GradientOneshot yield a considerably higher
performance gain (around 1.7 BLEU) than Magni-
tudeOneshot (0.5 BLEU) at their optimal pruning
ratios, they both show instability across pruning
ratios. Specifically, GradientOneshot suffers from
a significant performance drop from middle to high
pruning ratios, and MagnitudeGradual experiences
an unexpected performance drop at the specific
pruning ratio of 0.6. In contrast, GradientGradual
demonstrates a more robust behavior across a wide
range of pruning ratios, consistently outperforming
the other methods except for MagnitudeGradual
at a very high pruning ratio of 0.9. These results
further verify the effectiveness and robustness of
our GradientGradual approach.

5.4 Which sub-layer matters?
In this work, our approach is applied to attention
and feed-forward sub-layers. To better understand
where the parameter interference is more severe
and where language-specific parameters are essen-

tial, we perform ablation experiments by applying
our approach to the attention and feed-forward sub-
layers separately. The results in Table 2 show that
applying our approach to feed-forward sub-layers
yields a limited average performance gain (+0.49
BLEU) while applying it to attention sub-layers
leads to a notable gain (+1.22 BLEU), suggest-
ing parameters in attention sub-layers are more
language-specific. This finding aligns with the pre-
vious work (Clark et al., 2019), which shows that
specific attention heads specialize in distinct as-
pects of linguistic syntax. Given the unique syn-
tax patterns in different languages, parameters in
attention sub-layers are possibly more language-
specific and suffer more severe parameter inter-
ference. Consequently, applying our approach to
attention sub-layers yields a notable gain. How-
ever, the largest average performance gain (+2.06
BLEU) is achieved when applying our approach
to both attention and feed-forward sub-layers. Our
results suggest that parameter interference exists
in both sub-layers, but is more severe in attention
sub-layers.

5.5 Similarity Scores and Phylogenetic Tree
To gain deeper insights into the effectiveness and
interpretability of our method and to evaluate its
capability to extract high-quality language-specific
sub-networks, we compute the similarity of masks
obtained with our approach, and we use these simi-
larities to reconstruct the phylogenetic trees of lan-
guages. We present the results of En→X language
pairs in this section and the results of X→En, which
exhibit similar patterns as En→X in Appendix F.

Similarity scores are determined by the propor-
tion of shared parameters between two language
pairs (Lin et al., 2021), which can be obtained by
dividing the number of shared "1" values in two
masks by the number of "1" in the first mask, as
illustrated in the equation below:

Sim(M1,M2) =
∥M1⊙M2∥0

∥M1∥0

where ∥ · ∥0 is L0 norm, M1 and M2 represent
binary masks of two language pairs, ∥M1⊙M2∥0
represents the number of shared 1, i.e., the num-
ber of shared parameters, in these two language
pairs. Intuitively, languages within the same family
share a higher linguistic similarity, implying an in-
creased likelihood of shared parameters and higher
similarity scores. Conversely, languages that are



Lang Fa Pl Ar He Nl De It Es Average
Size 89K 128k 140K 144K 153K 160K 167K 169K
Baseline 17.54 17.25 21.31 29.39 32.11 30.09 30.02 36.18 26.74
Attn +0.45 +0.09 +1.39 +1.95 +1.4 +1.33 +1.57 +1.58 +1.22
Ff +0.1 -0.01 +0.79 +0.74 +0.41 +0.63 +0.71 +0.54 +0.49
AttnFf +1.13 +0.67 +2.24 +2.8 +1.13 +0.67 +2.24 +2.8 +2.06

Table 2: Sub-layer Ablation Results. Baseline denotes the multilingual Transformer model. Attn denotes applying
our approach to attention sub-layers only. Ff denotes the approach applied to the feed-forward sub-layers only.
AttnFf represents applying our approach to both the attention and feed-forward sub-layers.
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Figure 2: Similarity scores (%) of En→X language pairs.

linguistically distant from one another tend to pos-
sess more distinct language-specific characteristics,
which implies lower similarity scores.

Figure 2 shows the similarity scores of En→X
language pairs. Italian (It) and Spanish (Es) ob-
tained the highest score, followed by German (De)
and Dutch (Nl). The third highest score is obtained
by Arabic (Ar) and Farsi (Fa). In addition, we no-
ticed that within the European or Afro-Asiatic lan-
guage groups, similarity scores between languages
are relatively high, while lower scores are often
observed when comparing a language from the Eu-
ropean group to one from the Afro-Asiatic group.
The results demonstrate that similarity scores ob-
tained with our method are highly positively corre-
lated with language family clustering (see Table 14
in Appendix F). This implies the capability of our
GradientGradual approach to generate high-quality
language-specific sub-network.

Furthermore, to quantify the proportion of
language-specific parameters and construct a phy-
logenetic tree of languages, we compute lan-
guage distance scores as: Dis(M1,M2) = 1 −
Sim(M1,M2).

With these scores calculated between every two
language pairs, the phylogenetic tree is constructed
according to a weighted least-squares criterion

Figure 3: The built tree positively correlates with lan-
guage families. It and Es are in the Romance branch; De
and Nl are in the Germanic branch. Fa, Ar, and He are
similar Afro-Asiatic languages; with Fa and Ar written
in Arabic script.

(Makarenkov and Leclerc, 1999) using the T-REX
tool (Boc et al., 2012)6. Figure 3 demonstrates
the constructed phylogenetic tree is highly aligned
with the language families shown in Table 14 in
Appendix F, confirming the capability of our ap-
proach to extract high-quality language-specific
sub-networks.

6 Experiment Results on WMT

On the highly imbalanced WMT dataset with the
Transformer-base model, we compare our method
with the multilingual baseline and the prior work
MagnitudeOneshot, which shares the same phi-
losophy as our method: both our approach and
MagnitudeOneshot introduce no additional param-
eters to the model and have no negative impact on
the inference speed. The results in Table 3 show
that our method outperforms both the baseline and
the MagnitudeOneshot across low-, medium-, and
high-resource language pairs, reconfirming the ef-
fectiveness of our approach. More specifically, we
observe an average improvement of 0.91 BLEU
on low-resource, 1.56 BLEU on medium-resource,
and 1.67 BLEU on high-resource language pairs

6http://www.trex.uqam.ca/index.php?action=trex

http://www.trex.uqam.ca/index.php?action=trex


Model Low Med High All
Baseline 14.01 17.54 24.16 18.76
MagnitudeOneshot +0.70 +0.85 +0.99 +0.85
GradientGradual (Ours) +0.91 +1.56 +1.67 +1.41

Table 3: Average BLEU improvement of Low (< 1M),
Medium (≥ 1M and < 10M) and High (≥10M) resource
language pairs over baseline on WMT dataset.

over the baseline. These results shed light on three
aspects. Firstly, the performance improvement be-
comes larger when the number of training resources
increases, which validates findings in previous re-
search works, suggesting that high-resource lan-
guage pairs tend to be more negatively affected
by the parameter interference issue in a unified
multilingual model. As a result, mitigating the
interference issue can result in more notable en-
hancements for high-resource languages. Secondly,
while previous works suggest that low-resource
languages often benefit from knowledge transfer,
our results suggest that parameter interference also
harms the performance of low-resource languages.
By mitigating the interference issue, the perfor-
mance of low-resource languages can also be im-
proved. Finally, the consistent improvement of our
method compared to MagnitudeOneshot across lan-
guage groups of all resource sizes suggests that our
gradient-based gradual pruning approach is more
effective in identifying optimal sub-networks and
mitigating the parameter interference issue in the
multilingual translation scenario.

7 Conclusion

In a standard MNMT model, the parameters are
shared across all language pairs, resulting in the
parameter interference issue and compromised per-
formance. In this paper, we propose gradient-based
gradual pruning for multilingual translation to iden-
tify optimal sub-networks and mitigate the interfer-
ence issue. Extensive experiments on the IWSLT
and WMT datasets show that our method results
in large gains over the normal MNMT system and
yields better performance and stability than other
approaches. Additionally, we observe that the inter-
ference issue can be more severe in attention sub-
layers and it is possible to reconstruct a reliable
phylogenetic tree of languages using the language-
specific sub-networks generated by our approach.
All the experiments confirm the effectiveness of our
approach and the need for better training strategies
to improve MNMT performance.

Limitations

Modelling
In this work, we explore our approach in the
English-centric multilingual machine translation
setting. However, we believe that the effective-
ness of our method extends to the real-world non-
English-centric scenario. We will explore this di-
rection in future work.

Regarding model capacity, we adopt
Transformer-small and Transformer-base for
IWSLT and WMT experiments, respectively, to
reduce the training cost. Given the extensive
coverage of languages in the WMT dataset,
using an even larger model like Transformer-big
(Vaswani et al., 2017) may further boost the
overall translation performance, especially in
high-resource directions, but we do not expect
any difference in the relative quality of the tested
methods (GradientGradual > MagnitudeOneshot >
Baseline). This has been confirmed when moving
from Transformer-small to Transformer-base in
our experiments.

Another limitation of our work is that the current
version of our algorithm applies the same pruning
ratio to all language pairs and, hence, prunes the
same percentage of parameters for each language.
However, language pairs with different sizes of
available training data may have different optimal
pruning ratios. For example, high-resource lan-
guage pairs may need smaller pruning ratios and
preserve sufficient parameters to process and cap-
ture more complex information in the abundant
data. To potentially improve the gains and have
a method able to differently behave with differ-
ent data conditions, future work could explore a
method to automatically identify appropriate prun-
ing ratios for different languages.

Training
In this work, we aim to search for a sub-network
for each language pair within the multilingual
model to mitigate the parameter interference is-
sue and improve the performance. While our ap-
proach avoids introducing additional parameters,
the 3-phase training process (training a base model,
searching for sub-networks, and joint training)
introduces additional complexity to the training
pipeline compared to the standard end-to-end multi-
lingual model training, and demands computational
resources for the sub-network searching phase.
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A Datasets details

In this section, we provide detailed data informa-
tion of our experiments.

A.1 IWSLT dataset
Table 4 provides detailed information about the
IWLST data.

ISO Language Family Script Size
(K)

fa Farsi Iranian Arabic 89

ar Arabic Arabic Arabic 140

he Hebrew Semitic Hebrew 144

it Italian Romance Latin 167

es Spanish Romance Latin 169

pl Polish Slavic Latin 128

nl Dutch Germanic Latin 153

de German Germanic Latin 160

Table 4: Statistics of IWSLT data with similar languages
organized into groups.

A.2 WMT dataset
Table 5 provides detailed information about the
WMT data.

B Model details

In this section, we provide detailed model informa-
tion in our experiments.
IWSLT. Given the small scale of the data in the
IWSLT dataset, we adopt the Transformer-small
architecture with 4 attention heads: L = 6, d = 512,
nhead = 4 and dff = 1024.
WMT. For the WMT experiment, we adopt a
Transformer-base architecture with 8 attention
heads: L = 6, d = 512, nhead = 8 and dff = 2048.

C Training details

As shown in section 3, our approach includes
three phases: training a multilingual base model
(Phase 1), identifying sub-networks through prun-
ing (Phase 2), and joint training (Phase 3). In this
section, we provide the details of the hyperparame-
ters of these 3 phases in our experiments.

C.1 IWSLT
In Phase 1, we train the multilingual base model
with the same set of hyper-parameters as in Lin et al.
(2021). More specifically, we optimize parameters
with Adam (Kingma and Ba, 2015) (β1 = 0.9, β2 =
0.98), a learning rate schedule of (5e-4,4k), dropout
of 0.1 and label smoothing of 0.1. The max tokens
per batch is set to 262144. The maximum update
number is set to 160K with a checkpoint saved
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ISO Language Family Script Train Valid Test Size

gu Gujarati Indo-Aryan Gujarati WMT19 newsdev19 newstest19 7.5K

ta Tamil Dravidian Tamil WMT20 newsdev20 newstest20 605K

kk Kazakh Turkic Cyrillic WMT19 newsdev19 newstest19 102K

tr Turkish Turkic Latin WMT16 newsdev16 newstest16 198K

ro Romanian Romance Latin WMT16 newsdev16 newstest16 596K

es Spanish Romance Latin WMT13 newstest12 newstest13 12.9M

fr French Romance Latin WMT14 newstest13 newstest14 37M

ps Pashto Iranian Arabic WMT20 wikipedia newstest20 1M

fi Farsi Uralic Latin WMT16 newstest15 newstest16 2M

lv Latvian Baltic Latin WMT17 newsdev17 newstest17 2.1M

et Estonian Uralic Latin WMT18 newsdev18 newstest18 2.1M

lt Lithuanian Baltic Latin WMT19 newsdev19 newstest19 3.4M

ru Russian Slavic Cyrillic WMT16 newstest15 newstest16 1.4M

cs Czech Slavic Latin WMT14 newstest13 newstest14 11M

pl Polish Slavic Latin WMT20 newsdev20 newstest20 11M

ja Japanese Japonic Kanji; Kana WMT20 newsdev20 newstest20 16.5M

zh Chinese Chinese Chinese WMT17 newsdev17 newstest17 11.9M

de German Germanic Latin WMT16 newstest13 newstest14 4.4M

Table 5: Statistics of WMT data with similar languages organized into groups.

Lang Gu Kk Tr Ro Ta Average
Size 7.5K 102K 198K 596K 605K

En →X translation
Baseline 1.2 2.5 17.8 31.1 14.1 13.34
MagnitudeOneshot +0.1 +1.3 +1.7 +0.8 +3.1 +1.40
GradientGradual (Ours) −0.2 +1.4 +1.7 +1.9 +6.0 +2.16

X → En translation
Baseline 0.3 9.5 21.3 26.6 15.7 14.68
MagnitudeOneshot +0.4 −0.5 −0.4 +0.2 +0.3 0.00
GradientGradual (Ours) 0.0 −2.5 −0.2 +0.8 +0.2 −0.34

Table 6: BLEU score over baseline of each pair in the low-resource group (< 1M) on the WMT dataset.

every 500 updates, and the patience for early stop
training is set to 30. In Phase 2, we set the max
tokens to 16384, and dropout to 0.3. The training
steps of 3 stages are set to 4K, 36K, and 40K. The
best performance of the final model is achieved
with a pruning ratio of 0.6 in this phase. The other
settings are as same as in Phase 1. In Phase 3, we
keep the same settings as Phase 1, except we apply
masks on the model.

C.2 WMT

In Phase 1, the parameters are as same as in Lin
et al. (2021). We train the multilingual base model
with Adam (Kingma and Ba, 2015) (β1 = 0.9, β2 =
0.98), a learning rate schedule of (5e-4,4k), dropout
of 0.1 and label smoothing of 0.1. The max tokens
per batch is set to 524288. The maximum update

number is set to 600K with a checkpoint saved
every 1K updates, and the patience for early stop
training is set to 30. In Phase 2, the max tokens
per batch are set to 20K, 40K, 80K, and 160K for
languages with training data sizes >10K, >100K,
>1M, and >10M. The training steps of 3 stages are
set to 4K, 16K, and 20K. The best performance of
the final model is achieved with a pruning ratio of
0.2 in this phase. In Phase 3, we keep the same
settings as Phase 1, except we apply masks on the
model.

D Additional evaluation results

D.1 Detailed BLEU scores on WMT dataset
Considering the relatively extensive number of lan-
guages involved in the WMT dataset, we present av-
erage scores for low-, medium-, and high-resource



Lang Ps Fi Lv Et Ru Lt De Average
Size 1M 2M 2.1M 2.1M 2.3M 3.4M 4.4M

En →X translation
Baseline 4.1 14.7 14.1 15.1 22.2 8.6 19.9 14.10
MagnitudeOneshot +0.4 +1.8 +1.1 +1.3 +2.4 +0.1 +2.0 +1.30
GradientGradual (Ours) +2.6 +2.3 +2.0 +2.3 +3.5 0.0 +2.9 +2.23

X → En translation
Baseline 9.8 22.1 18.8 22.4 28.7 17.1 27.9 20.97
MagnitudeOneshot 0.0 +0.4 +0.4 +0.5 +0.5 +0.3 +0.7 +0.40
GradientGradual (Ours) +1.1 +0.7 +0.6 +1.2 +1.1 +0.3 +1.3 +0.90

Table 7: BLEU score over baseline of each pair in the medium-resource group (1M–10M) on the WMT dataset.

Lang Cs Pl Zh Es Ja Fr Average
Size 11M 11M 11.9M 12.9M 16.5M 37M

En →X translation
Baseline 19.4 15.9 22.7 29.4 20.0 32.6 23.33
MagnitudeOneshot +1.9 +1.6 +0.7 +1.1 +1.2 +1.8 +1.38
GradientGradual (Ours) +2.7 +1.6 +3.0 +2.0 +2.3 +2.50 +2.35

X → En translation
Baseline 28.7 24.8 15.5 31.4 15.8 33.7 24.98
MagnitudeOneshot −0.5 +0.8 +1.7 +0.4 +0.8 +0.4 +0.60
GradientGradual (Ours) −0.2 +0.7 +2.5 +1.1 +1.2 +0.6 +0.98

Table 8: BLEU score over baseline of each pair in the high-resource group (>10M) on the WMT dataset.

Lang Low Med High All

WR (%) 60 86 83 78

Table 9: Average win ratios of Low (< 1M), Medium
(≥ 1M and < 10M) and High (≥10M) resource lan-
guage pairs of our GradientGradual approach over the
MagnitudeOneshot approach

groups to offer an overview of performance in dif-
ferent data situations in Table 3. For the detailed
results, we provide BLEU scores of languages in
low, medium, and high resource groups in Table 6,
Table 7, and Table 8, respectively.

D.2 Win ratio results

To gain further insights into the performance of our
approach, we present the results of win ratio (WR)
based on tokenized BLEU, which denotes the per-
centage of languages where our approach outper-
forms the other. We choose the MagnitudeOneshot
(LaSS) as a strong baseline to compare with. Table
1 shows that our GradientGradual approach out-
performs MagnitudeOneshot across all languages
on the IWSLT dataset, i.e., the win ratio is 100%.
Table 9 presents the win ratio (WR) results on the
more imbalanced WMT dataset. The results show
that our approach achieves win ratios of 60%, 86%
and 83% on low-, medium-, and high-resource lan-
guages, further verifying the superiority of our ap-
proach across different data sizes and especially on
medium-, and high-resource languages.

Model COMET chrF

Baseline 0.773 51.2

Adapter.128 0.785 52.5

Adapter.256 0.785 52.2

Adapter.512 0.785 52.3

SepaDec 0.774 51.6

MagnitudeOneshot 0.775 51.5

GradientGradual (Ours) 0.788 52.9

Table 10: Average COMET and chrF scores across all
language pairs of various approaches on the IWSLT
dataset.

D.3 COMET and chrF scores

We present the averaged COMET and chrF scores
of all language pairs on the IWLST dataset in Ta-
ble 10 and the WMT dataset in Table 11. More
specifically, on the IWLST dataset, we report the
scores for the multilingual baseline and various
existing approaches proposed in prior works, i.e.,
the Adapter-based approach with different bottle-
neck dimensions: Adapter.128, Adapter.256, and
Adapter.512; SepaDec, MagnitudeOneshot, as well
as our GradientGradual method. On the WMT
dataset, we show the scores of the multilingual
baseline, MagnitudeOneshot, and our approach.
On both the IWLST and the WMT datasets, our
method outperforms other approaches on COMET
and chrF metrics.



Model COMET chrF

Baseline 0.733 44.4

MagnitudeOneshot 0.747 45.4

GradientGradual (Ours) 0.755 45.9

Table 11: Average COMET and chrF scores across
all language pairs of various approaches on the WMT
dataset.

Model BLEU |θl| |θall| Disk storage

Baseline 26.74 78M 78M 298M

Adapter.128 28.07 79M 103M 397M

Adapter.256 28.08 81M 128M 493M

Adapter.512 28.28 84M 179M 685M

SepaDec 27.48 78M 478M 1.8G

MagnitudeOneshot 27.24 78M 78M 497M

GradientGradual 28.80 78M 78M 497M

Table 12: Comparison of performance, parameter count,
and disk storage among different approaches.

E Additional metrics

In this section, we compare our method with var-
ious approaches from the perspectives of total
model parameter counts (|θall|), parameter counts
of individual languages (|θl|) during inference, disk
storage, inference speed, and the average BLEU
scores of all language pairs as performance. We
present the primary results in Table 12 and detailed
inference speed results of our method in Table 13.
The results are obtained with the Transformer-small
architecture on the IWSLT dataset.
Parameter count. As shown in Table 12, adapter-
based approaches increase both the total model
parameter counts and the parameter counts of indi-
vidual languages. SepaDec keeps parameter counts
of individual languages constant but leads to the
most significant total model parameter count due
to separate decoders. In contrast, without intro-
ducing additional parameters, MagnitudeOneshot
and our GradientGradual approach maintain the
same parameter counts for both the overall models
and individual languages as the multilingual NMT
baseline model.
Disk requirement. Similar to the parameter count
analysis, adapter-based approaches cause different
levels of disk storage increase for added parameters
depending on the bottleneck dimensions. Magni-
tudeOneshot and our GradientGradual approach
also require a moderate amount of extra disk stor-

Model Ratio Speed GPU Speed CPU

Baseline − 237.56 ± 2.70 59.98 ± 2.73

GradientGradual 0.1 235.23 ± 3.65 59.57 ± 0.77

GradientGradual 0.2 233.93 ± 3.28 58.81 ± 4.27

GradientGradual 0.3 235.71 ± 1.92 58.26 ± 3.34

GradientGradual 0.4 236.35 ± 2.71 58.04 ± 2.93

GradientGradual 0.5 235.94 ± 2.08 59.37 ± 1.73

GradientGradual 0.6 238.76 ± 2.49 58.94 ± 3.28

GradientGradual 0.7 240.10 ± 2.62 60.17 ± 2.70

GradientGradual 0.8 242.55 ± 2.47 60.58 ± 2.37

GradientGradual 0.9 243.23 ± 2.89 61.56 ± 3.99

Table 13: Tokens/second comparison of our approach
against the baseline on the IWSLT De→En test set.

age for storing indices. However, the most signifi-
cant disk storage requirement is from SepaDec due
to the largest number of total parameters.
Inference speed. Adapter-based approaches in-
troduce additional parameters during inference. A
larger bottleneck dimension of the adapter leads
to a greater expansion of parameters, consequently
causing a more considerable inference speed de-
crease. SepaDec, on the other hand, maintains the
same number of parameters as the baseline during
inference and, therefore, has insignificant to no im-
pact on inference speed. Below, we demonstrate
that our GradientGradual method, has a negligible
effect on inference speed with detailed GPU and
CPU speed results. 7

In our approach, the sub-network mask matrices
are represented as binary matrices and are obtained
during training and directly applied to Attention
and Feedforward sub-layers during inference. Com-
pared to the compute-intensive multiplication be-
tween dense weight matrices, multiplying a binary
mask matrix with a weight matrix on some sub-
layers introduces a minimal overhead and, there-
fore, has a negligible impact on inference speed.
In addition, zero elements in the masked weight
matrix could result in faster inference speed due to
the possibility of avoiding unnecessary arithmetic
operations. We report tokens/second on the IWSLT
De→En test set in Table 13. The batch size is al-
ways set to 1 and the result is averaged over 5 runs.
Speed GPU is measured using a single NVIDIA
A100 GPU and Speed CPU is measured using a
single-threaded Intel(R) Xeon(R) Gold 6330 CPU
@ 2.00GHz.

7The analysis also applies to MagnitudeOneshot.



While the best performance of our approach is
achieved with pruning ratio set to 0.6, as shown in
Figure 1, we provide the inference speed results
with the pruning ratio ranging from 0.1 to 0.9 to
offer a more comprehensive analysis of inference
speed. Although Speed GPU and CPU are differ-
ent in absolute value, they show a similar pattern
across different pruning ratios, and we take the
Speed GPU as an example to analyze. The results
indicate an improvement in the inference speed of
our approach when compared with the multilingual
NMT baseline within the pruning ratio range of 0.6
to 0.9, and the highest inference speed is obtained
when pruning ratio is set to 0.9. We attribute this
speed improvement to the avoidance of unneces-
sary operations with element 0. Additionally, the
inference speed is slightly slower than the base-
line, with pruning ratio smaller than 0.6, but not
statistically significantly different.
Performance. Our approach outperforms SepaDe
by 1.53 BLEU scores and surpasses the Adapter-
based approaches with 128, 256, and 512 bottle-
neck dimensions by 0.72, 0.73, and 0.51 BLEU
scores, respectively. Additionally, compared to
MagnitudeOneshot, the work most similar to ours,
our approach outperforms by 1.53 BLEU scores.

Based on the comprehensive analysis above, our
approach is particularly advantageous when priori-
tizing performance and inference speed is crucial,
and some additional disk requirements are consid-
ered acceptable.

F Similarity Scores and Phylogenetic Tree
of X→En language pairs

Table 14 reports detailed language family infor-
mation for the languages in the IWSLT dataset.
In particular, it includes the cluster, branch, and
script of each language. Languages belonging to
the same cluster and branch are expected to be lin-
guistically closer to each other and have relatively
high similarity scores.

Figure 4 shows the similarity scores of X→En
language pairs. The results demonstrate that the
similarity scores of languages belonging to the
same cluster are relatively high. Italian (It) and
Spanish (Es) obtained the highest score, followed
by German (De) and Dutch (Nl). The third highest
score is obtained by Arabic (Ar) and Hebrew (He).
Besides, the similarity scores of languages between
two distinct language clusters are relatively low,
with the lowest score obtained by Dutch (Nl), a

es it nl de pl ar fa he
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de
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ar

fa

he

62.5 59.1 59.0 57.9 56.5 55.0 56.8

62.5 59.3 59.3 58.2 56.6 55.2 56.9

59.1 59.3 61.4 57.7 55.7 54.9 55.9

59.0 59.3 61.4 57.7 55.9 55.1 56.0
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Figure 4: Similarity scores (%) of X→En language
pairs. The scores are represented on both the x-axis and
y-axis.

Figure 5: Phylogenetic Tree built with X→En distance
scores obtained in our method. The built tree shows a
strong positive correlation with language families. It,
Es, De, Nl, and Pl are European languages written in
Latin; With It, and Es in the Romance branch; De and
Nl in the Germanic branch. Fa, Ar, and He are similar
Afro-Asiatic languages; with Fa and Ar written

European language, and Farsi (fa), an Afro-Asiatic
language. Figure 5 shows the corresponding phylo-
genetic tree obtained with distance scores.

G Gradient-based pruning criterion

In this paper, we apply gradient-based pruning
to MNMT. This approach uses gradient-based in-
formation to identify the language-specific sub-
networks. More specifically, to identify which
weights to prune in a given weight matrix W, a
scoring matrix S and a binary mask matrix M are
introduced in association with the weight matrix.
Each parameter in the score matrix is intended to
capture and learn the importance of the correspond-
ing weight, and each element in the binary mask
is assigned a value of either 0 or 1 according to
whether the corresponding weight is pruned or



ISO Language Cluster Branch Script

fa Farsi Afro-Asiatic Iranian Arabic

ar Arabic Afro-Asiatic Semitic Arabic

he Hebrew Afro-Asiatic Semitic Hebrew

it Italian European Romance Latin

es Spanish European Romance Latin

pl Polish European Slavic Latin

nl Dutch European Germanic Latin

de German European Germanic Latin

Table 14: Language clustering of 8 languages in IWSLT

retained. Weights with relatively low scores in
the score matrix are considered less important and
assigned a value of 0 in the binary mask matrix.
Score parameters are learned and updated itera-
tively during the training process. The scores of
all the weights, both pruned and retained weights,
are updated. The updating of scores can change the
relative importance of different weights and affect
their score distribution. This process enables the
model to self-correct by allowing pruned weights
to come back.

In the following demonstration, we will show
how the learned scores are based on gradient infor-
mation, as depicted in Eq. (2). In the forward pass
of the training process, the masking step, where the
output is 1 if the input (in this context, the score)
is above a threshold and 0 otherwise, is performed
after the linear operation. The output of the linear
operation and masking can be calculated as ai =∑N

k=1Wi,kMi,kxk. During backpropagation, the
gradients of learnable parameters are computed to
update these parameters and facilitate the learning
process. However, the masking step, introduces a
non-differentiable behavior at the threshold point.
Besides, the constant output of 1 or 0 results in a
gradient of 0 everywhere it is defined. This can
lead to the so-called "vanishing gradient" issue,
which arises when the gradients become very small
or vanish at some point during backpropagation.
As a result, the flow of useful gradient information
is hindered, making it difficult to train the model
effectively. Thanks to Bengio et al. (2013), we
mitigate this issue by employing straight-through
estimator. More specifically, during backpropaga-
tion, the masking step is ignored and the gradient
after the masking step flows "straight-through" to
the step before the masking step. As a result, the
gradient of loss L with respect to Si,j and Wi,j can

be calculated as in Eq. (5) and (6), respectively.

∂L

∂Si,j
=

∂L

∂ai

∂ai
∂Si,j

=
∂L

∂ai
Wi,jxj (5)

∂L

∂Wi,j
=

∂L

∂ai

∂ai
∂Wi,j

=
∂L

∂ai
Mi,jxj (6)

From Eq. (6), we derive ∂L
∂ai

= ∂L
∂Wi,j

1
Mi,j

1
xj

. By
omitting the binary mask term Mi,j as in Sanh
et al. (2020), we obtain ∂L

∂ai
= ∂L

∂Wi,j

1
xj

. Inserting

the obtained result of ∂L
∂ai

into Eq. (5) yields ∂L
∂Si,j

= ∂L
∂Wi,j

1
xj
Wi,jxj . Therefore, the gradient of L

with respect to Si,j can be represented as ∂L
∂Si,j

= ∂L
∂Wi,j

Wi,j . The importance score Si,j after T
gradient updates can be represented as:

S
(T )
i,j = −αi

∑
t<T

(
∂L

∂Wi,j

)(t)

W
(t)
i,j

where T denotes the number of gradient updates,
αi is the learning rate during training process. In
our method, a specific percentage of weights is
pruned based on the distribution of importance
score values, regardless of the absolute score val-
ues. The learning rate αi, which remains constant
across all score parameters, does not impact the
distribution and can be disregarded for simplicity
without affecting the pruning outcome, as shown
in Eq. (2).


