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Abstract

Tsimpoukelli et al. (2021) devise Frozen, em-
powering a language model to solve multi-
modal tasks by pretraining a vision encoder
whose outputs are prompts fed to the language
model. The vision encoder has a dual objec-
tive: Extracting image features and aligning
image/text representation spaces. We propose
to disentangle the objectives by using prompt
vectors to align the spaces; this lets the vision
encoder focus on extracting image features. We
show that this disentangled approach is modu-
lar and parameter-efficient for processing tasks
that involve two or more modalities.

1 Introduction

Recent work shows that prompting is an effective
method of adapting large-scale pretrained language
models (PLMs) into few-shot learners for solving
a wide range of NLP tasks (Brown et al., 2020;
Schick and Schiitze, 2021; Gao et al., 2021; Tam
et al., 2021; Le Scao and Rush, 2021). Tsim-
poukelli et al. (2021) introduce Frozen, success-
fully extending PLMs into few-shot learners for
multimodal tasks. Frozen performs strongly on
low-resource visual question answering through
GPT3-style (Brown et al., 2020) priming.

Frozen consists of two components: A vision
encoder (VE), e.g., NF-ResNet-50 (Brock et al.,
2021), and an off-the-shelf PLM like GPT3. When
pretraining Frozen, the PLM takes the image repre-
sentations extracted by VE as prompts, to generate
captions describing the input image. The parame-
ters of the PLM are fixed and VE is pretrained from
scratch. The success of Frozen shows the poten-
tial of prompting-based systems for tasks that have
more than one data modality (Zhou et al., 2021;
Yang et al., 2021; Salaberria et al., 2021).

One inherent discrepancy between Frozen and
prompting for NLP tasks (Li and Liang, 2021a;
Lester et al., 2021) is that the prompt vectors in
Frozen represent part of the input, the image: They
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Figure 1: Model architecture. We disentangle VE’s
functionality by introducing prompt vectors. The only
work of VE is to extract image representations. PLM
and VE are fixed (grey) during training; prompt vectors
are the only trainable parameters (red).
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are image features extracted by VE. In contrast,
prompt vectors in NLP are agnostic to the input
texts: They are trainable parameters of the PLM
embedding layer to be optimized during training.
Recall that the PLM in Frozen is fixed when pre-
training VE. This implies that VE’s trainable pa-
rameters serve two quite distinct purposes: (i) ex-
tract high quality image representations; (ii) align
the image and text representation spaces.

We investigate the efficacy of disentangling the
functionality of VE. Concretely, we allocate extra
free parameters for learning the alignment between
spaces of different modalities when conducting a
multimodal task; this is achieved by introducing
additional prompt vectors. As a result, VE can ded-
icate itself to extract high quality image represen-
tations. We hypothesize that disentanglement has
two benefits. First, higher modularity is achieved
compared to Frozen because VE is freed from the
objective of aligning modalities. Higher modular-
ity brings higher flexibility, which is not applicable
in systems like Frozen: We can easily change the
type of VE, e.g., replacing a CNN with a Trans-
former; adding extra modalities like speech data
is made possible as well. Our architecture meets
the desideratum stated by Srivastava et al. (2014):



It should be possible to modularly add modalities
to an existing multimodal system. Second, higher
parameter efficiency is achieved by fixing the en-
coders of different modalities during training; the
prompt vectors are the only module to be trained
for aligning the representation spaces when solving
a multimodal task.

We present PromptFuse, a prompting-based ap-
proach extending PLMs to multimodal tasks in a
modular and efficient manner. Our contributions:
(i) We show that the new prompting paradigm of uti-
lizing PLMs (Liu et al., 2021a) effectively strength-
ens PLMs with the ability of processing data in
modalities besides text. With only 15K trainable
parameters, PromptFuse performs comparably to
several multimodal fusion methods on visual ques-
tion answering (VQAv2). (ii) We further devise
BlindPrompt, which enforces that prompts solely
learn task-specific information; it makes effective
use of the generalization capabilities of PLMs and
is less prone to overfitting.

2 Related Work

Prompting generally is a more data- and
parameter-efficient method of using pretrained lan-
guage models (PLMs; Devlin et al. (2019); Yang
et al. (2019); Brown et al. (2020); Raffel et al.
(2020)) than finetuning (Devlin et al., 2019). Con-
cretely, Brown et al. (2020), Schick and Schiitze
(2021), Tam et al. (2021), Le Scao and Rush (2021),
and Gao et al. (2021) show that prompting out-
performs finetuning in many NLP tasks when la-
beled data is limited, i.e., in few-shot learning. The
fast growing number of parameters in PLMs en-
courages researchers to devise more parameter-
efficient methods than finetuning (Houlsby et al.,
2019; Zhao et al., 2020). Li and Liang (2021b)
introduce prefix-tuning, only updating the prompt
vectors, keeping the PLM fixed. Lester et al. (2021)
introduce prompt-tuning — a simple form of prefix-
tuning — achieving performance comparable to fine-
tuning when scaling up the number of parame-
ters in PLMs. As large PLMs remain unchanged
during prefix- and prompt-tuning, high parameter-
efficiency is achieved.

Multimodal pretraining. The success of pre-
training PLMs (Devlin et al., 2019; Radford et al.,
2019) and image encoders (Dosovitskiy et al.,
2021; Liu et al., 2021b) has stimulated a surge of
pretrained multimodal models that align texts with
data in other modalities like image (Tan and Bansal,

2019; Su et al., 2019; Cho et al., 2021; Wang et al.,
2021; Kim et al., 2021), video (Sun et al., 2019)
and speech (Bapna et al., 2021).

Prompting methods for multimodal models were
recently devised. Zhou et al. (2021) learn con-
tinuous prompts rather than natural language de-
scriptions to model visual concepts. Yao et al.
(2021) mark image regions as prompts, adapting
pretrained vision-language models to downstream
tasks. In Frozen, for a fixed PLM, Tsimpoukelli
et al. (2021) pretrain a VE with image caption-
ing where image representations from the VE are
used as prompt vectors. The VE in Frozen needs
to achieve two objectives: Extracting high qual-
ity image representations and properly aligning
image/text spaces. In this work, we show that dis-
entangling the two functionalities results in a more
modular and efficient multimodal system.

3 Prompting as Multimodal Fusing

We propose to decompose the functionality of VE
in Frozen into: (i) providing high quality image
representations to the PLM; (ii) aligning the image
and text spaces for a multimodal task. Achieving (1)
is straightforward — we leverage off-the-shelf pre-
trained image encoders, e.g., Vision Transformer
(ViT; Dosovitskiy et al. (2021)). We align the two
representation spaces by prompt-tuning (Li and
Liang, 2021b; Lester et al., 2021), i.e., by introduc-
ing prompt vectors. Concretely, we randomly ini-
tialize N trainable vectors in the embedding layer
of PLM. When processing downstream multimodal
tasks, we finetune the prompt vectors but fix PLM
and VE. Figure 1 illustrates our model. We call
our method PromptFuse. Due to the small num-
ber of trainable parameters, PromptFuse performs
strongly in low-resource regimes.

We design a special attention mask for the
PLM’s encoder, shown in Figure 2. It enforces
prompts to be blind to all input data. We refer
to this variant of PromptFuse as BlindPrompt.
BlindPrompt fuses data in all modalities using the
prompt vectors in self-attention layers. This further
emphasizes that prompt vectors should be focusing
on the alignment between modalities rather than
on specifics of the content of a modality. As a
result, BlindPrompt is more robust to spurious sta-
tistical cues (Niven and Kao, 2019) like answering
“poodles” in response to question “What do dogs
chase?”
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Figure 2: BlindPrompt attention mask in PLM encoder.
Prompt vectors cannot attend to the input content, so
their parameters solely serve to align the modalities.

4 Experiments: Two Modalities

4.1 Setup

Our model is designed to be modular, maximizing
the utility of widely used pretrained image and
language models: ViT as our VE and BART (Lewis
et al., 2020) as our PLM. For both models we use
the pretrained base checkpoints from HuggingFace
(Wolf et al., 2020). We use the embedding v of
[CLS] as the image representation unless otherwise
noted; we use cross-entropy loss during training
and use greedy search when decoding.

We experiment with visual question answer-
ing (VQAV2; Goyal et al. (2017)), for which un-
derstanding both image and language is neces-
sary when answering a question about an image.
VQAV2 consists of 443,757 samples, categorized
into three types: Number, Yes/No, and Other.

We simulate low-resource regimes by sampling
128 and 512 shots of training data. We show that
PromptFuse and BlindPrompt are less prone to
overfitting in low-resource scenarios than baseline
methods, in which the model tends to place extra
emphasis on samples of the majority answer type
Yes/No but pays less attention to Other. This is
because the two answering words of Yes/No have
much higher frequency in the text corpus than the
answers of the open-ended questions, i.e., Other.

We train the models for two epochs on the
full dataset and 100 epochs on the sampled low-
resource datasets. For prompting, we set the
prompt length N to 20 and learning rate to Se-1.!
We use learning rate 5e-4 in all other experiments.
Batch size is 32 and the Adam optimizer (Kingma
and Ba, 2015) is used.

"We empirically found that a large learning rate leads to
better performance, similar to Lester et al. (2021).

Finetune | Linear | JointProj | PromptFuse | BlindPrompt
86M 0.5M IM 15K 15K

Table 1: Number of trainable parameters of different
fusion methods in million (M) and thousand (K).

Full dataset Other Yes/No Number Overall
Finetune | 20.3£0.5  69.3+03  29.5+0.2  40.1+0.3
Linear 8.540.6 63.94+0.2 233403  30.14+0.3
JointProj 192404  67.74£02 289404  38.9+£0.1
BlackImage 8.34+0.7 60.410.5 153404 237405
PromptFuse 122406  64.9+04  27.1£02  34.1+04
BlindPrompt 13.3+0.9 645404  27.440.1  34.8£0.8

128 shots Other Yes/No Number Overall
Finetune 6.6+0.3 57.940.9 14.74£0.3  26.84+0.5
Linear 2.3140.1 46.4+0.7 16.24+0.4 182404
JointProj 3.940.5 63.3£0.1 19.440.6  28.4+0.3
BlackImage 0.940.1 38.940.8 6.2+0.4 14.4+0.5
PromptFuse 4.940.6 63.710.3 16.940.2  28.340.6
BlindPrompt 8.0+1.1 62.1+0.2  19.840.3  28.04+0.9

512 shots Other Yes/No Number Overall
Finetune 7.3+0.3 61.1+0.2 202404  29.240.3
Linear 43104 62.2+0.5 192404  26.6+0.4
JointProj 3.840.1 63.8+0.3  23.8404  28.740.3
BlackImage 3.54+0.6 48.24+0.6 10.340.5 18.840.5
PromptFuse 6.31+0.5 63.9+0.1 215403  29.4405
BlindPrompt 8.41+0.9 63.1+0.2  22.64+0.3  29.740.6

Table 2: Results (accuracy) on VQAv?2 validation set.
We report Overall and separate performance of the three
types: Other, Yes/No, Number.

4.2 Baseline

We consider four baselines of fusing the modalities:

Finetune. As the baseline Frozenfnetuned 1N
Tsimpoukelli et al. (2021), we finetune all param-
eters of VE, such that the visual embedding space
is expected to be aligned with PLM’s language
embedding space.

Linear. We fix VE, but train a linear layer to
project its output, i.e., the visual embedding, while
retaining its dimensionality.

JointProj. We concatenate the visual em-
bedding v to the embedding vector w; of each
(sub)word in the sentence. Next, we train a lin-
ear layer to project the concatenated vectors to the
PLM hidden dimension. The resulting vectors are
input to the encoder layers.

BlackImage. To verify that the prompt vectors
use visual information from VE (as opposed to
simply conditioning on spurious features of the
text, as in the above “poodle” example), we train
the prompt vectors with black images.

Table 1 shows the number of trained parameters
of the methods. PromptFuse and BlindPrompt are
much more parameter-efficient.

4.3 Results

Table 2 compares the performance of baselines
and our prompting methods. We report mean and



standard deviation over three runs with different
random seeds.

PromptFuse outperforms the BlackImage and
Linear baselines on all experiments, showing that
prompting successfully utilizes visual information
and fuses the two modalities.

For 128 and 512 shots, PromptFuse achieves
accuracy comparable with baselines Finetune and
JointProj. However, PromptFuse and BlindPrompt
are more parameter-efficient as shown in Table 1.
Prompting methods perform worse than Finetune
and JointProj on full data.> We conjecture that this
is due to having much fewer parameters, i.e., 15K,
which is even smaller than the training set size
443,757. Thus we argue that PromptFuse better
suits low-resource scenarios.

In low-resource experiments, PromptFuse and
BlindPrompt achieve higher accuracy on Other and
Number; the performance drops on Yes/No com-
pared with Finetune and JointProj. This also hap-
pens between PromptFuse and BlindPrompt. For
example, on 128 shots, we find that BlindPrompt
outperforms PromptFuse with 3% on Number and
3% on Other. The results indicate that our prompt-
ing methods, especially BlindPrompt, can better
utilize the generalization capability of PLM to han-
dle open-ended questions and are less prone to
falling into Yes/No samples.

5 Experiments: Three Modalities

Disentangling functionality of the modality data
encoder, e.g., VE, makes PromptFuse and Blind-
Prompt more modular than Frozen. Applying our
methods to tasks involving more than two modali-
ties is straightforward. In contrast, Frozen incurs
the high cost of pretraining encoders for new modal-
ities. We experiment on the sarcasm detection
dataset MUStARD (Castro et al., 2019) with video,
audio, and text data.’

Setup. To process video, we first use Open-
Face (Baltrusaitis et al., 2018) to sample important
frames containing human faces. Next, ViT is lever-
aged to extract visual representations from each
frame. We then average visual representations of

Finetune (40.1) performs worse than Frozenyqa (48.4).
We hypothesize this is because Frozen uses a much larger
PLM (7 billion) than ours (139 million).

3To highlight modularity, we utilize pretrained encoders
rather than the data preprocessing pipelines in Castro et al.
(2019). For example, we use pretrained wav2vec2 (Baevski
et al., 2020) rather than Mel-Frequency Cepstral Coefficients
(Davis and Mermelstein, 1980) when processing audio data.

Full dataset Precision Recall F-Score
Finetune | 65.640.2 73.942.7 68.410.5
PromptFuse | 64.240.4 72.1+3.6 66.240.7
BlindPrompt | 63.8+0.5 71.943.1 66.540.8
8 shots Precision Recall F-Score
Finetune | 42.84+4.3 69.54+9.9 52.745.5
PromptFuse | 41.1+£4.8  71.0+13.1 53.1+5.8
BlindPrompt | 44.2+4.5  71.8+12.8  54.016.1
32 shots Precision Recall F-Score
Finetune | 53.944.1 70.619.1 59.1+5.2
PromptFuse | 53.844.7 71.1410.8 585454
BlindPrompt | 54.6+4.1 69.7+10.3 587455
64 shots Precision Recall F-Score
Finetune 59.542.3 70.4+7.7 61.442.8
PromptFuse | 59.2+£2.7 70.2£7.4 62.0+3.3
BlindPrompt | 60.1+£2.4 70.947.8 61.743.1

Table 3: Results on Mustard test set.

all frames to represent the video. To process audio,
we use librosa (McFee et al., 2015) to remove back-
ground noise and convert audio to waveform with
a sampling rate of 16,000 Hz. We then use pre-
trained wav2vec?2 (Baevski et al., 2020) to encode
the waveform and apply the same averaging strat-
egy as for video. BART is used as our PLM. We
use a verbalizer of True/False in this experiment.

We adopt the speaker-dependent setup in MUS-
tARD: 334 training and 356 testing samples. We
compare PromptFuse, BlindPrompt, and Finetune
for 8, 32, and 64 shots. Note that Finetune uses
180M trainable parameters in the vision and audio
encoders. We also conduct an experiment training
on the full dataset for 5 epochs. The remaining
setup is the same as §4.1.

Results. Table 3 reports performance over ten
runs. PromptFuse and BlindPrompt outperform
Finetune in 8- and 64-shot experiments. Prompting
methods perform comparably to Finetune in other
experiments, while they are clearly more parameter-
efficient. Overall, the three-modality experiment
provides observations in line with §4.3. More im-
portantly, it highlights two strengths of prompting:
High modularity and parameter-efficiency.

6 Conclusion

We devise PromptFuse and BlindPrompt as meth-
ods for aligning different modalities in a modu-
lar and parameter-efficient manner. We show that
prompting, which needs few trainable parameters,
performs comparably to several multimodal fusion
methods. Our methods better utilize PLM’s gener-
ation ability for open-ended answers, and the high
modularity supports flexible addition of modalities
at low cost (i.e., without having to finetune large
pretrained models).
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