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Abstract

Tsimpoukelli et al. (2021) devise Frozen, em-001
powering a language model to solve multi-002
modal tasks by pretraining a vision encoder003
whose outputs are prompts fed to the language004
model. The vision encoder has a dual objec-005
tive: Extracting image features and aligning006
image/text representation spaces. We propose007
to disentangle the objectives by using prompt008
vectors to align the spaces; this lets the vision009
encoder focus on extracting image features. We010
show that this disentangled approach is modu-011
lar and parameter-efficient for processing tasks012
that involve two or more modalities.013

1 Introduction014

Recent work shows that prompting is an effective015

method of adapting large-scale pretrained language016

models (PLMs) into few-shot learners for solving017

a wide range of NLP tasks (Brown et al., 2020;018

Schick and Schütze, 2021; Gao et al., 2021; Tam019

et al., 2021; Le Scao and Rush, 2021). Tsim-020

poukelli et al. (2021) introduce Frozen, success-021

fully extending PLMs into few-shot learners for022

multimodal tasks. Frozen performs strongly on023

low-resource visual question answering through024

GPT3-style (Brown et al., 2020) priming.025

Frozen consists of two components: A vision026

encoder (VE), e.g., NF-ResNet-50 (Brock et al.,027

2021), and an off-the-shelf PLM like GPT3. When028

pretraining Frozen, the PLM takes the image repre-029

sentations extracted by VE as prompts, to generate030

captions describing the input image. The parame-031

ters of the PLM are fixed and VE is pretrained from032

scratch. The success of Frozen shows the poten-033

tial of prompting-based systems for tasks that have034

more than one data modality (Zhou et al., 2021;035

Yang et al., 2021; Salaberria et al., 2021).036

One inherent discrepancy between Frozen and037

prompting for NLP tasks (Li and Liang, 2021a;038

Lester et al., 2021) is that the prompt vectors in039

Frozen represent part of the input, the image: They040

VE LM Embedding layer

Language Model

how many cats ?<P1><P2>

two

Figure 1: Model architecture. We disentangle VE’s
functionality by introducing prompt vectors. The only
work of VE is to extract image representations. PLM
and VE are fixed (grey) during training; prompt vectors
are the only trainable parameters (red).

are image features extracted by VE. In contrast, 041

prompt vectors in NLP are agnostic to the input 042

texts: They are trainable parameters of the PLM 043

embedding layer to be optimized during training. 044

Recall that the PLM in Frozen is fixed when pre- 045

training VE. This implies that VE’s trainable pa- 046

rameters serve two quite distinct purposes: (i) ex- 047

tract high quality image representations; (ii) align 048

the image and text representation spaces. 049

We investigate the efficacy of disentangling the 050

functionality of VE. Concretely, we allocate extra 051

free parameters for learning the alignment between 052

spaces of different modalities when conducting a 053

multimodal task; this is achieved by introducing 054

additional prompt vectors. As a result, VE can ded- 055

icate itself to extract high quality image represen- 056

tations. We hypothesize that disentanglement has 057

two benefits. First, higher modularity is achieved 058

compared to Frozen because VE is freed from the 059

objective of aligning modalities. Higher modular- 060

ity brings higher flexibility, which is not applicable 061

in systems like Frozen: We can easily change the 062

type of VE, e.g., replacing a CNN with a Trans- 063

former; adding extra modalities like speech data 064

is made possible as well. Our architecture meets 065

the desideratum stated by Srivastava et al. (2014): 066
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It should be possible to modularly add modalities067

to an existing multimodal system. Second, higher068

parameter efficiency is achieved by fixing the en-069

coders of different modalities during training; the070

prompt vectors are the only module to be trained071

for aligning the representation spaces when solving072

a multimodal task.073

We present PromptFuse, a prompting-based ap-074

proach extending PLMs to multimodal tasks in a075

modular and efficient manner. Our contributions:076

(i) We show that the new prompting paradigm of uti-077

lizing PLMs (Liu et al., 2021a) effectively strength-078

ens PLMs with the ability of processing data in079

modalities besides text. With only 15K trainable080

parameters, PromptFuse performs comparably to081

several multimodal fusion methods on visual ques-082

tion answering (VQAv2). (ii) We further devise083

BlindPrompt, which enforces that prompts solely084

learn task-specific information; it makes effective085

use of the generalization capabilities of PLMs and086

is less prone to overfitting.087

2 Related Work088

Prompting generally is a more data- and089

parameter-efficient method of using pretrained lan-090

guage models (PLMs; Devlin et al. (2019); Yang091

et al. (2019); Brown et al. (2020); Raffel et al.092

(2020)) than finetuning (Devlin et al., 2019). Con-093

cretely, Brown et al. (2020), Schick and Schütze094

(2021), Tam et al. (2021), Le Scao and Rush (2021),095

and Gao et al. (2021) show that prompting out-096

performs finetuning in many NLP tasks when la-097

beled data is limited, i.e., in few-shot learning. The098

fast growing number of parameters in PLMs en-099

courages researchers to devise more parameter-100

efficient methods than finetuning (Houlsby et al.,101

2019; Zhao et al., 2020). Li and Liang (2021b)102

introduce prefix-tuning, only updating the prompt103

vectors, keeping the PLM fixed. Lester et al. (2021)104

introduce prompt-tuning – a simple form of prefix-105

tuning – achieving performance comparable to fine-106

tuning when scaling up the number of parame-107

ters in PLMs. As large PLMs remain unchanged108

during prefix- and prompt-tuning, high parameter-109

efficiency is achieved.110

Multimodal pretraining. The success of pre-111

training PLMs (Devlin et al., 2019; Radford et al.,112

2019) and image encoders (Dosovitskiy et al.,113

2021; Liu et al., 2021b) has stimulated a surge of114

pretrained multimodal models that align texts with115

data in other modalities like image (Tan and Bansal,116

2019; Su et al., 2019; Cho et al., 2021; Wang et al., 117

2021; Kim et al., 2021), video (Sun et al., 2019) 118

and speech (Bapna et al., 2021). 119

Prompting methods for multimodal models were 120

recently devised. Zhou et al. (2021) learn con- 121

tinuous prompts rather than natural language de- 122

scriptions to model visual concepts. Yao et al. 123

(2021) mark image regions as prompts, adapting 124

pretrained vision-language models to downstream 125

tasks. In Frozen, for a fixed PLM, Tsimpoukelli 126

et al. (2021) pretrain a VE with image caption- 127

ing where image representations from the VE are 128

used as prompt vectors. The VE in Frozen needs 129

to achieve two objectives: Extracting high qual- 130

ity image representations and properly aligning 131

image/text spaces. In this work, we show that dis- 132

entangling the two functionalities results in a more 133

modular and efficient multimodal system. 134

3 Prompting as Multimodal Fusing 135

We propose to decompose the functionality of VE 136

in Frozen into: (i) providing high quality image 137

representations to the PLM; (ii) aligning the image 138

and text spaces for a multimodal task. Achieving (i) 139

is straightforward – we leverage off-the-shelf pre- 140

trained image encoders, e.g., Vision Transformer 141

(ViT; Dosovitskiy et al. (2021)). We align the two 142

representation spaces by prompt-tuning (Li and 143

Liang, 2021b; Lester et al., 2021), i.e., by introduc- 144

ing prompt vectors. Concretely, we randomly ini- 145

tialize N trainable vectors in the embedding layer 146

of PLM. When processing downstream multimodal 147

tasks, we finetune the prompt vectors but fix PLM 148

and VE. Figure 1 illustrates our model. We call 149

our method PromptFuse. Due to the small num- 150

ber of trainable parameters, PromptFuse performs 151

strongly in low-resource regimes. 152

We design a special attention mask for the 153

PLM’s encoder, shown in Figure 2. It enforces 154

prompts to be blind to all input data. We refer 155

to this variant of PromptFuse as BlindPrompt. 156

BlindPrompt fuses data in all modalities using the 157

prompt vectors in self-attention layers. This further 158

emphasizes that prompt vectors should be focusing 159

on the alignment between modalities rather than 160

on specifics of the content of a modality. As a 161

result, BlindPrompt is more robust to spurious sta- 162

tistical cues (Niven and Kao, 2019) like answering 163

“poodles” in response to question “What do dogs 164

chase?” 165
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Figure 2: BlindPrompt attention mask in PLM encoder.
Prompt vectors cannot attend to the input content, so
their parameters solely serve to align the modalities.

4 Experiments: Two Modalities166

4.1 Setup167

Our model is designed to be modular, maximizing168

the utility of widely used pretrained image and169

language models: ViT as our VE and BART (Lewis170

et al., 2020) as our PLM. For both models we use171

the pretrained base checkpoints from HuggingFace172

(Wolf et al., 2020). We use the embedding v of173

[CLS] as the image representation unless otherwise174

noted; we use cross-entropy loss during training175

and use greedy search when decoding.176

We experiment with visual question answer-177

ing (VQAv2; Goyal et al. (2017)), for which un-178

derstanding both image and language is neces-179

sary when answering a question about an image.180

VQAv2 consists of 443,757 samples, categorized181

into three types: Number, Yes/No, and Other.182

We simulate low-resource regimes by sampling183

128 and 512 shots of training data. We show that184

PromptFuse and BlindPrompt are less prone to185

overfitting in low-resource scenarios than baseline186

methods, in which the model tends to place extra187

emphasis on samples of the majority answer type188

Yes/No but pays less attention to Other. This is189

because the two answering words of Yes/No have190

much higher frequency in the text corpus than the191

answers of the open-ended questions, i.e., Other.192

We train the models for two epochs on the193

full dataset and 100 epochs on the sampled low-194

resource datasets. For prompting, we set the195

prompt length N to 20 and learning rate to 5e-1.1196

We use learning rate 5e-4 in all other experiments.197

Batch size is 32 and the Adam optimizer (Kingma198

and Ba, 2015) is used.199

1We empirically found that a large learning rate leads to
better performance, similar to Lester et al. (2021).

Finetune Linear JointProj PromptFuse BlindPrompt
86M 0.5M 1M 15K 15K

Table 1: Number of trainable parameters of different
fusion methods in million (M) and thousand (K).

Full dataset Other Yes/No Number Overall
Finetune 20.3±0.5 69.3±0.3 29.5±0.2 40.1±0.3

Linear 8.5±0.6 63.9±0.2 23.3±0.3 30.1±0.3
JointProj 19.2±0.4 67.7±0.2 28.9±0.4 38.9±0.1

BlackImage 8.3±0.7 60.4±0.5 15.3±0.4 23.7±0.5
PromptFuse 12.2±0.6 64.9±0.4 27.1±0.2 34.1±0.4

BlindPrompt 13.3±0.9 64.5±0.4 27.4±0.1 34.8±0.8

128 shots Other Yes/No Number Overall
Finetune 6.6±0.3 57.9±0.9 14.7±0.3 26.8±0.5

Linear 2.3±0.1 46.4±0.7 16.2±0.4 18.2±0.4
JointProj 3.9±0.5 63.3±0.1 19.4±0.6 28.4±0.3

BlackImage 0.9±0.1 38.9±0.8 6.2±0.4 14.4±0.5
PromptFuse 4.9±0.6 63.7±0.3 16.9±0.2 28.3±0.6

BlindPrompt 8.0±1.1 62.1±0.2 19.8±0.3 28.0±0.9

512 shots Other Yes/No Number Overall
Finetune 7.3±0.3 61.1±0.2 20.2±0.4 29.2±0.3

Linear 4.3±0.4 62.2±0.5 19.2±0.4 26.6±0.4
JointProj 3.8±0.1 63.8±0.3 23.8±0.4 28.7±0.3

BlackImage 3.5±0.6 48.2±0.6 10.3±0.5 18.8±0.5
PromptFuse 6.3±0.5 63.9±0.1 21.5±0.3 29.4±0.5

BlindPrompt 8.4±0.9 63.1±0.2 22.6±0.3 29.7±0.6

Table 2: Results (accuracy) on VQAv2 validation set.
We report Overall and separate performance of the three
types: Other, Yes/No, Number.

4.2 Baseline 200

We consider four baselines of fusing the modalities: 201

Finetune. As the baseline Frozenfinetuned in 202

Tsimpoukelli et al. (2021), we finetune all param- 203

eters of VE, such that the visual embedding space 204

is expected to be aligned with PLM’s language 205

embedding space. 206

Linear. We fix VE, but train a linear layer to 207

project its output, i.e., the visual embedding, while 208

retaining its dimensionality. 209

JointProj. We concatenate the visual em- 210

bedding v to the embedding vector wi of each 211

(sub)word in the sentence. Next, we train a lin- 212

ear layer to project the concatenated vectors to the 213

PLM hidden dimension. The resulting vectors are 214

input to the encoder layers. 215

BlackImage. To verify that the prompt vectors 216

use visual information from VE (as opposed to 217

simply conditioning on spurious features of the 218

text, as in the above “poodle” example), we train 219

the prompt vectors with black images. 220

Table 1 shows the number of trained parameters 221

of the methods. PromptFuse and BlindPrompt are 222

much more parameter-efficient. 223

4.3 Results 224

Table 2 compares the performance of baselines 225

and our prompting methods. We report mean and 226

3



standard deviation over three runs with different227

random seeds.228

PromptFuse outperforms the BlackImage and229

Linear baselines on all experiments, showing that230

prompting successfully utilizes visual information231

and fuses the two modalities.232

For 128 and 512 shots, PromptFuse achieves233

accuracy comparable with baselines Finetune and234

JointProj. However, PromptFuse and BlindPrompt235

are more parameter-efficient as shown in Table 1.236

Prompting methods perform worse than Finetune237

and JointProj on full data.2 We conjecture that this238

is due to having much fewer parameters, i.e., 15K,239

which is even smaller than the training set size240

443,757. Thus we argue that PromptFuse better241

suits low-resource scenarios.242

In low-resource experiments, PromptFuse and243

BlindPrompt achieve higher accuracy on Other and244

Number; the performance drops on Yes/No com-245

pared with Finetune and JointProj. This also hap-246

pens between PromptFuse and BlindPrompt. For247

example, on 128 shots, we find that BlindPrompt248

outperforms PromptFuse with 3% on Number and249

3% on Other. The results indicate that our prompt-250

ing methods, especially BlindPrompt, can better251

utilize the generalization capability of PLM to han-252

dle open-ended questions and are less prone to253

falling into Yes/No samples.254

5 Experiments: Three Modalities255

Disentangling functionality of the modality data256

encoder, e.g., VE, makes PromptFuse and Blind-257

Prompt more modular than Frozen. Applying our258

methods to tasks involving more than two modali-259

ties is straightforward. In contrast, Frozen incurs260

the high cost of pretraining encoders for new modal-261

ities. We experiment on the sarcasm detection262

dataset MUStARD (Castro et al., 2019) with video,263

audio, and text data.3264

Setup. To process video, we first use Open-265

Face (Baltrusaitis et al., 2018) to sample important266

frames containing human faces. Next, ViT is lever-267

aged to extract visual representations from each268

frame. We then average visual representations of269

2Finetune (40.1) performs worse than FrozenVQA (48.4).
We hypothesize this is because Frozen uses a much larger
PLM (7 billion) than ours (139 million).

3To highlight modularity, we utilize pretrained encoders
rather than the data preprocessing pipelines in Castro et al.
(2019). For example, we use pretrained wav2vec2 (Baevski
et al., 2020) rather than Mel-Frequency Cepstral Coefficients
(Davis and Mermelstein, 1980) when processing audio data.

Full dataset Precision Recall F-Score
Finetune 65.6±0.2 73.9±2.7 68.4±0.5

PromptFuse 64.2±0.4 72.1±3.6 66.2±0.7
BlindPrompt 63.8±0.5 71.9±3.1 66.5±0.8

8 shots Precision Recall F-Score
Finetune 42.8±4.3 69.5±9.9 52.7±5.5

PromptFuse 41.1±4.8 71.0±13.1 53.1±5.8
BlindPrompt 44.2±4.5 71.8±12.8 54.0±6.1

32 shots Precision Recall F-Score
Finetune 53.9±4.1 70.6±9.1 59.1±5.2

PromptFuse 53.8±4.7 71.1±10.8 58.5±5.4
BlindPrompt 54.6±4.1 69.7±10.3 58.7±5.5

64 shots Precision Recall F-Score
Finetune 59.5±2.3 70.4±7.7 61.4±2.8

PromptFuse 59.2±2.7 70.2±7.4 62.0±3.3
BlindPrompt 60.1±2.4 70.9±7.8 61.7±3.1

Table 3: Results on Mustard test set.

all frames to represent the video. To process audio, 270

we use librosa (McFee et al., 2015) to remove back- 271

ground noise and convert audio to waveform with 272

a sampling rate of 16,000 Hz. We then use pre- 273

trained wav2vec2 (Baevski et al., 2020) to encode 274

the waveform and apply the same averaging strat- 275

egy as for video. BART is used as our PLM. We 276

use a verbalizer of True/False in this experiment. 277

We adopt the speaker-dependent setup in MUS- 278

tARD: 334 training and 356 testing samples. We 279

compare PromptFuse, BlindPrompt, and Finetune 280

for 8, 32, and 64 shots. Note that Finetune uses 281

180M trainable parameters in the vision and audio 282

encoders. We also conduct an experiment training 283

on the full dataset for 5 epochs. The remaining 284

setup is the same as §4.1. 285

Results. Table 3 reports performance over ten 286

runs. PromptFuse and BlindPrompt outperform 287

Finetune in 8- and 64-shot experiments. Prompting 288

methods perform comparably to Finetune in other 289

experiments, while they are clearly more parameter- 290

efficient. Overall, the three-modality experiment 291

provides observations in line with §4.3. More im- 292

portantly, it highlights two strengths of prompting: 293

High modularity and parameter-efficiency. 294

6 Conclusion 295

We devise PromptFuse and BlindPrompt as meth- 296

ods for aligning different modalities in a modu- 297

lar and parameter-efficient manner. We show that 298

prompting, which needs few trainable parameters, 299

performs comparably to several multimodal fusion 300

methods. Our methods better utilize PLM’s gener- 301

ation ability for open-ended answers, and the high 302

modularity supports flexible addition of modalities 303

at low cost (i.e., without having to finetune large 304

pretrained models). 305
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