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ABSTRACT

We introduce the Scene Language, a visual scene representation that concisely and
precisely describes the structure, semantics, and identity of visual scenes. The
Scene Language represents a scene with three key components: a program that
specifies the hierarchical and relational structure of entities in the scene, words
in natural language that summarize the semantic class of each entity, and em-
beddings that capture the visual identity of each entity. This representation can
be inferred from pre-trained language models via a training-free inference tech-
nique, given text or image inputs. The resulting scene can be rendered into im-
ages using traditional, neural, or hybrid graphics renderers. Together, this forms
a robust, fully automated system for high-quality 3D and 4D scene generation.
Compared with existing representations like scene graphs, our proposed Scene
Language generates complex scenes with higher fidelity, while explicitly mod-
eling the scene structures to enable precise control and editing. Project page:
https://sclg-page.github.io/.

1 INTRODUCTION

How do you describe a scene? Imagine that you just traveled to Easter Island and would like to
explain to Alice the wondrous scene of Ahu Akivi: “There are seven moai in a row, facing the same
direction.” “What is a moai?” Alice asked. “A moai is a stone human figure without legs, but each
of them also looks slightly different.” At this point, you realize it seems difficult to precisely explain
the scene using natural language alone.

In fact, this example highlights a complete scene representation requires at least three types of com-
plementary information: (1) structural knowledge, which is about the joint distribution of multi-
ple instances, like “seven moai in a row, facing the same direction,” most naturally described as
programs; (2) category-level semantics, which may be shared across instances, often described in
words, such as “moai”; (3) instance-level intrinsics, tied to the identity of each specific object or
part, such as its geometry, color, and texture, which is hard to describe but easy to recognize.

Modern AI techniques provide natural grounding for each of the three modalities, while also falling
short of capturing all: in-context learning of pre-trained language models (LMs) enables the in-
ference of domain-specific programs (Brown et al., 2020); LMs capture rich semantic information
based on words in natural language; embeddings obtained via techniques like textual inversion (Gal
et al., 2023) or low-rank adaptation (Hu et al., 2021) best capture object identity. However, none of
these existing representations alone is sufficient for scene generation and editing.

We introduce the Scene Language, a representation that integrates the three modalities—programs,
words, and embeddings—to precisely and concisely describe the structure, semantics, and identity
of visual scenes. In the Scene Language, a program specifies a computation process that defines
the organization of a collection of entities in the scene, including extrinsics like poses and structural
regularity like repetitions. Each entity is associated with a word referring to its semantic group, as
well as an embedding describing its instance-specific attributes.

In addition to the representation itself, we propose a training-free inference module using a pre-
trained LM as a backbone to infer the Scene Language from texts and images. When provided with
a domain-specific language (DSL) for scenes, LMs decompose the task of complex scene genera-
tion into simpler tasks of scene component generation by predicting their corresponding modular
functions. We also discuss possible neural, traditional, and hybrid graphics engines that render the
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Generated 3D Scene (Two Views)

(bind "Ahu Akivi scene"
(lambda (<z_>)
(define create-moai
(lambda (i) (let* ((pose ...) 

(statue (call "moai" <z_>)))
(transform statue pose))))

(define statues 
(union-loop 7 create-moai))

(union statues ...)))
(bind “moai” ...)
...

Generate a scene of Moai in Ahu 
Akivi, with slight variations.

Generating the Scene Language…

Keep 2 statues, facing each other.

... pose ... 
union-loop 2 
... 

Change <z1> to <z1*>: 

Embeddings: [<z1>, <z2>, ..., <z9>]

<z1*>

Content Editing Style Transfer

Figure 1: Structured Scene Generation and Editing Using the Scene Language. We develop a scene rep-
resentation for 3D scene generation and editing tasks. Given textual scene descriptions, the representation can
be inferred by a pre-trained large language model, rendered in 3D, and edited following language instructions.
The representation contains a program consisting of semantic-aware functions bound to words, providing high
interpretability and an intuitive scene-editing interface, and embeddings enabling editing with fine controls,
e.g., transferring the style of <z1*> from a user-input image to the generated scene.

representation to images. Together, the Scene Language, the inference module, and the renderer
lead to a robust system for high-quality, detailed 3D and 4D scene generation and editing.

In summary, our contributions are as follows.

1. A scene representation, the Scene Language, capturing structure, semantics, and identity
of visual scenes using programs, words, and embeddings.

2. A training-free method that infers the representation from texts and/or images using pre-
trained language models.

3. A generic rendering module that renders the Scene Language into an image.

4. Empirical results on text- and image-conditioned scene generation and editing tasks.

2 RELATED WORK

Visual scene representations are arguably the most fundamental problem in computer vision; thus,
for sure, we may not enumerate all related work. As our Scene Language comprises programs,
words, and embeddings, we will organize our discussion accordingly into three categories: scene
representations that use program-based representations (Section 2.1), semantic graph-based repre-
sentations (Section 2.2), and a pre-trained generative model’s latent space (Section 2.3).

2.1 REPRESENTING SCENES AS PROGRAMS

Programs can specify not only the relations among scene components mentioned in Section 2.2, but
also structural patterns such as hierarchy and repetitions, making them suitable as explicit descrip-
tions of scene structures. Prior works have proposed to use programs in the form of sequences of
execution commands as object-centric representations, followed by neural executors that render the
programs into 3D shapes (Tian et al., 2019; Sharma et al., 2018; Deng et al., 2022). In comparison,
ShapeAssembly (Jones et al., 2020) introduces higher-level functions with semantically meaningful
function names, e.g., “chair” and “back”, to its program representation. Both ShapeAssembly and
ours adopt the design principle of function abstraction, which results in clearly stated hierarchy re-
lation among components and better program editability. However, ShapeAssembly uses cuboids
as the shape representation and does not model appearance, while ours allows for more precise
geometry and appearance modeling using expressive neural embeddings.

All the representations mentioned above require 3D datasets for training. More recently, with the
advance of language models (LMs), several methods (Zhou et al., 2024b; Hu et al., 2024; Yamada
et al., 2024; Sun et al., 2023; Zhang et al., 2023a; Tam et al., 2024) have proposed to use zero-shot
LM inference for generating programs that will be rendered into scenes. These methods operate on
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Section 3.1 Section 3.2 Definition

Operations

Ψtransform transform Transform an entity
Ψunion union Compose entities

fw : z 7→ h
entity-func Entity function mapping embedding to entity
primitive-func Entity function mapping embedding to primitive

fw(z) (call word embedding) Function evaluation

Data Types

w Word Word describing semantics
t Matrix Entity pose
z Embedding Embedding specifying entity identity
h

Entity
An entity

s The represented scene

Table 1: Summary of Notations in Sections 3.1 and 3.2.

top of program syntax from specific graphics renderers such as Blender1, and they do not permit
parameters in high-dimensional embedding spaces unlike ours.

2.2 REPRESENTING SCENES WITH SEMANTIC GRAPHS

Prior semantic scene representations often adopt a graph to encode semantic scene components, such
as objects and parts. In particular, Yuille & Kersten (2006); Huang et al. (2018) propose to employ
a parse graph of context-free grammar, using terminal nodes to correspond to objects and their
attributes, to represent a scene. Both works employ an analysis-by-synthesis approach to infer the
representation from images that heavily rely on domain-specific priors. Alternative representations
include scene graph (Johnson et al., 2015; 2018; Gao et al., 2024), where each node in a graph
corresponds to an object and an edge corresponds to a pairwise relation, and StructureNet (Mo
et al., 2019), which focuses on an object-centric setting and uses nodes for object parts. While
these representations preserve the high-level semantics of scenes or objects, they leave out low-level
precision; thus, geometric, textural, or relational details that cannot be fully specified by language
or hand-crafted rules are often ignored. We address this issue via the inclusion of embeddings.

2.3 REPRESENTING SCENES WITH GENERATIVE MODEL LATENTS

The latent space of visual generative models can serve as a representation space for visual scenes.
Such latent space can effectively capture the exact visual content of scenes, including geometry and
appearance details, and can be either directly inferred, e.g., in variational inference (Kingma, 2013)
and model inversion (Zhu et al., 2016). More recently, text-to-image diffusion models have shown
remarkable results in image synthesis. This class of models offers several candidate representation
spaces including the space of textual embeddings (Gal et al., 2023), low-rank network weights (Hu
et al., 2021), full model weights (Ruiz et al., 2023), or noise vectors in the diffusion process (Song
et al., 2021; Mokady et al., 2023; Ho et al., 2020). However, such representations typically do
not offer interpretable semantics or explicitly encode hierarchical scene structures. We incorporate
textual embeddings into our structural representation in this work, leveraging its high expressivity
to preserve visual details.

3 THE SCENE LANGUAGE

We aim to design a visual scene representation that encodes the structure, semantics, and visual
content of scenes. Towards this goal, we propose the Scene Language, which represents a scene
with three components: a program that encodes scene structure by specifying the existence and
relations of scene components, which we will refer to as entities; words in natural language that
denote the semantic group of each entity in the scene; and neural embeddings that pertain the low-
level visual details and identities of the entities by permitting an expressive input parameter space.
In the following, we will first give a formal definition of the representation (Section 3.1), and then
introduce a domain-specific language (DSL) (Section 3.2) as its realization.

3.1 FORMAL DEFINITION

The Scene Language for a scene s, denoted as Φ(s), is formally defined as follows:

Φ(s) := (P,W,Z) . (1)

1https://www.blender.org/
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(bind "chessboard"
(lambda (<z_>)

(union
(call ”board” <z_>)
(call "chess pieces" <z_>))))

(bind "chess pieces"
(lambda (<z_>)

(define (create-pawns i)
(let* ((white-pawn (call "pawn" <z_>))

(black-pawn (call "pawn" <z_>))
(white-pose (translate (list (* i 0.125) 0.02 0.125)))
(black-pose (translate (list (* i 0.125) 0.02 0.75)))
(white-pawn-t (transform white-pawn white-pose))
(black-pawn-t (transform black-pawn black-pose)))

(union white-pawn-t black-pawn-t))) 
(define pieces-order

'("rook" "knight" "bishop" "queen" "king" 
"bishop" "knight" "rook"))

(define (create-other-pieces i)
(let* ((piece-order (list-ref pieces-order i))

(white-piece (call piece-order <z_>))
(black-piece (call piece-order <z_>))
(white-pose (translate (list (* i 0.125) 0.02 0)))
(black-pose (translate (list (* i 0.125) 0.02 0.875)))
(white-piece-t (transform white-piece white-pose))
(black-piece-t (transform black-piece black-pose)))

(union white-piece-t black-piece-t)))      
(union (union-loop 8 create-pawns) 

(union-loop 8 create-other-pieces))))

(bind "pawn"
(lambda (<z_>)

(transform (primitive-func <z_>) (scale (list 0.1 0.1 0.1)))))

;; ... (other binding expressions)

"chessboard” <z1>

"board” <z2>"chess pieces” <z67>

"pawn"
<z68>

"square"
<z3>

"square"
<z4>

"rook"
<z84>

"knight"
<z86>

"bishop"
<z88>

"queen"
<z90>

...

"pawn"
<z69>

Figure 2: Scene Language Overview. A Scene Language represents a scene with three components: a pro-
gram consisting of entity functions, a set of words (e.g., ‘‘pawn’’) denoting the semantic class of the entity
functions, and a list of embeddings (e.g., <z1>) capturing the identity of each entity in the scene. Each entity
function is bound with an entity class name given by a word, and maps an input embedding to an output entity
of that class. Executing the program effectively computes all entities; the computation graph is shown on the
right. Entity dependency, as indicated by arrows, reflects the hierarchical relation of entities in a scene. See
Section 3.1 for representation definitions and Section 3.2 for program syntax. The program shown is converted
from our inference method output, with text prompt “a chessboard at game start”; raw outputs in Appendix G.1.

Here, P := {fw}w∈W is a program consisting of a set of entity functions fw, where each entity
function fw defines a class of entities in the scene, such as “board” and “pawn” illustrated in Fig. 2
and is uniquely identified by such a word, e.g., w = “board” in natural language, which succinctly
summarizes its semantic meaning. W denotes the collection of words corresponding to all the entity
functions in the program. Each entity function fw maps a neural embedding z to a specific entity h
in the scene, where z specifies the attributes and identity of the output entity, like a specific color of
a “pawn”. Hence, the complete Scene Language Φ(s) of a particular scene s also contains a list of
neural embeddings Z := [z1, z2, · · · , zJ ] encoding J specific entities [h1, h2, · · · , hJ ] in the scene.

Crucially, the program P captures scene structures in three aspects. First, each entity function fw in
P transforms and composes multiple sub-entities (e.g., 64 squares) into a new, more complex entity
(e.g., board), naturally reflecting the hierarchical, part-whole relations in the scene, as the arrows
in Fig. 2 highlight. Second, multiple entities hj in the scene may belong to the same semantic
class w (e.g., “square”), and can thus be represented by reusing the same entity function fw with
distinct embeddings zj . Finally, each entity function also captures the precise spatial layout of the
sub-entities by specifying their relative poses during the composition, such as 64 squares forming
an 8× 8 grid.

In the following, we will expand on how functions from P are defined, followed by the program
execution procedure to compute the represented scene s. Notations are summarized in Table 1.

Entity Function Definitions. An entity function fw : z 7→ h maps an embedding z to an entity h,
and h is said to have an identity specified by z and belongs to a semantic class w. Specifically, to
obtain an entity h, fw is applied recursively:

h = fw(z; Ω(z)) := Ψunion(Ψtransform(h
(1), t(1)), · · · ,Ψtransform(h

(N), t(N))),

where h(i) = fw(i)(z(i); Ω(z(i))), i = 1, 2, · · · , N,
(2)

4
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Data Types

Word // Word specifying semantics
Embedding // Embedding specifying intrinsic attributes
Vector ::= Array[Float] // Vector in R3

Matrix ::= Array[Array[Float]] // Transformation in GA(3,R)
Entity ::= List[Entity] // Recursively defined

| Tuple[Word, Embedding, Matrix]

Grammar

entity-func ::= (lambda ( ::Embedding) create-entity)
create-entity ::= (call word embedding)

| (primitive-func embedding)
| (union create-entity create-entity)
| (union-loop loop-count loop-func)
| (transform create-entity matrix)

loop-func ::= (lambda ( ::Integer) create-entity)
word :: Word
embedding :: Embedding
loop-count :: Integer
matrix :: Matrix

Macros

primitive-func :: Embedding -> Entity // Create a primitive entity
union :: Entity -> Entity -> Entity // Compose entities
union-loop :: Int -> (Int -> Entity) -> Entity // Compose entities with for loop
transform :: Entity -> Matrix -> Entity // Transform entity pose

Special Forms

(bind <word> (lambda (<formal params>) <body>)) // Defines and binds a function
(call <word> <actual params>) // Calls a function identified by word

Table 2: The Domain-Specific Language. The following table contains the DSL specification used to define
our representation. Built-in data types (e.g., String), special forms (lambda, define, let, let*), and
conditionals (if) are omitted. ::= denotes definition; :: denotes type annotation; :: denotes type annota-
tion for an anonymous function formal parameter.

and Ω(z) = {z(1), z(2), · · · } retrieves the list of embeddings corresponding to its sub-entities. Here,
Ψtransform transforms a sub-entity h(i) with a pose t(i), and Ψunion composes multiple sub-entities
h(i) into one single entity h. Each sub-entity h(i) is computed from another entity function fw(i) by
applying Eq. (2) recursively. For instance, let fw denote the entity function that produces the board
in Fig. 2 (namely, w = “board”). This function fw composes 64 sub-entities h(i), i = 1, 2, ..., 64 of
the same class “square”, which are in turn obtained by executing the same entity function fw(i) =
f“square” with different embeddings z(i).

Program Execution. To obtain a scene s from the Scene Language Φ(s) = (P,W,Z), a program
executor identifies a root entity function fw1

from P that is not dependent by any other function
(e.g., w1 = “chessboard” from Fig. 2), and evaluates this root function using the first element of
the embeddings z1 ∈ Z to obtain s = fw1(z1). Evaluating fw1(z1) expands the computation
recursively to its children functions hj = fwj (zj) as defined in Eq. (2), obtaining a full sequence of
all the entities hj of the scene, where j = 2, 3, · · · , J , embedding zj ∈ Z, and word wj ∈ W . An
example of the expanded computation graph is visualized on the right of Fig. 2.

3.2 THE SCENE LANGUAGE AS A PROGRAMMING LANGUAGE

We now concretize the definition in Section 3.1 with a domain-specific language (DSL) specified
in Table 2. To define entity functions in the DSL, we introduce macro operations union for
Ψunion, union-loop which calls union on entities evaluated in a for-loop, and transform
for Ψtransform. We further include primitive-func in the DSL, which implements a primitive
entity function that only depends on itself (i.e., no children). We use these four macro operations
and function calls of dependent functions to define entity functions. In particular, we allow variable
assignment in the function body (e.g., let* and define in Fig. 2). Entity functions are identified
with the associated words in the DSL via two special forms: bind, which binds an entity function
fw to word w, and call, which retrieves fw given w.

5
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𝜃!, 𝑡! , 𝜃", 𝑡" , ⋯

[[(“moai”,<z2>,t2),
..., 
(“moai”,<z8>,t8)], 
(“base”,<z9>,t9)]

(b) Output Entity

Graphics Renderer

(d) Rendered Image

Rendering 
Operation ℛ

(c) Reparametrized Entity

(bind “scene” ...)
(bind “moai” ...)
(bind “base” ...) ...

(a) Scene Language

𝑔reparam

[<z1>,<z2>,...,<z9>]
Program 

Execution

Figure 3: Rendering. Given a Scene Language in (a), a program interpreter executes the program to obtain a
data object in (b). A graphics renderer first reparameterizes the data object from (b) into the renderer-specific
parameter space, and then executes the rendering operation R to obtain final image outputs in (d).

Renderer Examples

Rendering Operation R Parameters from Θ greparam

Primitive-based renderer Light transport simulation Shape and BRDF parameters LM inference
Asset-based renderer Ray tracing Asset metadata LM inference
SDS-based renderer Gaussian splatting 3D Gaussian parameters SDS optimization
T2I model Model feed-forward pass Text embeddings in Z CLIP text encoding

Table 3: Examples of Graphics Renderers. The module specification for graphics renderer from Fig. 3 can
be instantiated with different rendering approaches.

The data type of an entity h = fw(z) is denoted as Entity, which is recursively defined as a nested
list. At the base level, an entity data object has three data fields of types Word, Embedding, and
Matrix. These three fields describe the entity’s semantic group, identity, and pose in the frame of h,
respectively. In particular, Embedding captures the visual details of entities and requires a highly
expressive representation, such as neural embeddings. In this work, we employ the textual em-
bedding space of OpenCLIP-ViT/H (Ilharco et al., 2021) for attribute parameterization, denoted as
ZCLIP. It offers the advantage that embeddings can be either encoded directly from natural language
descriptions or inferred from images with Textual Inversion (Gal et al., 2023). Table 1 summarizes
the operations and data types in accordance with the notations introduced in Section 3.1.

4 RENDERING

Applying the proposed scene representation to image generation tasks requires rendering a Scene
Language Φ(s) into images. To do so, first, the program interpreter evaluates Φ(s) to obtain a
data object of type Entity. Afterward, a graphics renderer maps the Entity data object to its
rendering parameter space and renders it into a final image.

Renderer Specifications. We define the specification of a graphics renderer, a module in the pro-
posed representation, as follows. A graphics renderer is determined by (1) primitive parameter
space Θ and (2) a rendering operation R : P (Θ× T ) → I, where T is the space of 3D affine
transformations representing poses, P denotes all possible subsets, and I is the space of rendered
images. We assume access to a reparameterization function greparam that maps from Tuple[Word,
Embedding] to Θ, which consequently determines a mapping from program outputs of type
Entity to the admissible input domain of rendering operation R.

Renderer Instantiations. An example renderer instantiation is with Score Distillation Sampling
(SDS) (Poole et al., 2022) guidance, where Θ is a differentiable 3D representation and greparam :
ZCLIP → Θ corresponds to the SDS-guided optimization process of finding a solution that aligns
with the input of greparam. To compute z given a word, e.g., “pawn” for an entity of white pawn from
Fig. 2, and an embedding, e.g., <z68>, we use a manually specified language template c, or “a
pawn, <z68>, 3D model” in this example, to embed them into embedding z = gCLIP(c) ∈ ZCLIP;
gCLIP is the pre-trained CLIP text encoder.

For the underlying 3D representation, we use 3D Gaussian Splatting (Kerbl et al., 2023) where im-
ages are rendered by splatting a set of 3D Gaussians onto the image plane; other differentiable
3D representations such as neural fields will also be suitable. We base our implementation on
GALA3D (Zhou et al., 2024c), and use MVDream (Shi et al., 2023) and a depth-conditioned Con-
trolNet (Zhang et al., 2023b) for guidance.

6
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“A 8-layer shelf”

Ours (Two Views) MVDream GraphDreamer

“15 coke cans stacking in a pyramid”

Ours (Two Views) MVDream GraphDreamer

Figure 4: Text-Conditioned Scene Generation. Input text prompts are shown at the bottom of each row.
Compared to using no intermediate representation (MVDream) or scene graph (GraphDreamer), our Scene
Language results in more detailed and accurate outputs.

We will refer to the renderer above as the Gaussians renderer. Other possible renderers include
primitive-based renderers, such as Mitsuba (Jakob et al., 2022) with graphics primitives of cubes,
spheres, and cylinders, asset-based game engines, such as MineCraft2, and feed-forward inference of
layout-conditioned text-to-image (T2I) diffusion models, such as MIGC (Zhou et al., 2024a), which
achieves 2D bounding box conditioning by controlling attention layers from Stable Diffusion (Rom-
bach et al., 2022)). A summary is shown in Table 3 and details are deferred to Appendix D.

5 INFERENCE VIA PRE-TRAINED LANGUAGE MODELS

We introduce a training-free method to infer a Scene Language from text or image descriptions
of scenes using pre-trained language models (LMs). LMs have shown remarkable capability in
code generation with common programming languages such as Python. In our implementation, we
prompt LMs to generate a Python program, which is further executed with a program interpreter and
rendered into an image using a graphics renderer.

In particular, we include the following in the LM prompt: 1) the input condition, which is a scene
description in texts or an image; 2) a Python script of helper functions converted from the macros
from the DSL; and 3) an example program using the helper functions. We use Claude 3.5 Son-
net (Anthropic, 2024) for all experiments for our method and LM-dependent baselines. Full lan-
guage prompts for all experiments are listed in Appendix E.

Recall from Section 3.1 that functions in program P are evaluated on embeddings from Z. The
function arguments in the LM-generated programs, which are numeric values or string tokens, are
converted to embeddings from ZCLIP (Section 3.2) using language templates and the CLIP text
encoder gCLIP. For example, in the LM-generated program, function calls for white pieces in Fig. 2
have input attribute {‘‘color’’:(.9,.9,.9)}, and we prompt LM to describe the color value
as a word, and feed the word into gCLIP to compute <z68>. For image-conditioned tasks, for each
primitive entity in the execution output of P , we first use GroundingSAM (Kirillov et al., 2023; Ren
et al., 2024) to segment out the region defined by the word associated with the entity. We then use
Textual Inversion (Gal et al., 2023) to optimize an embedding to reconstruct the cropped image with
the diffusion model training objective. The full process is deferred to Appendix F.1.

6 APPLICATIONS

We apply the inference method from Section 5 to the tasks of text-conditioned 3D scene generation
(Section 6.1) and editing (Section 6.2), image-conditioned scene generation (Section 6.3), and 4D
scene generation (Section 6.4).

6.1 TEXT-CONDITIONED SCENE GENERATION

This task aims to synthesize scenes conditioned on a textual scene description.

Baselines. To evaluate the proposed representation, we compare our inference pipeline with 3D
scene generation methods using alternative intermediate representations, e.g., scene graph. In par-
ticular, we compare with GraphDreamer (Gao et al., 2024) as an exemplar approach, which gener-
ates scene graphs from input texts via LM prompting and then synthesizes scenes conditioned on
the graphs via SDS guidance. We further ablate the role of structural representation in this task by
comparing ours with the backbone of our SDS-based renderer, MVDream (Shi et al., 2023), as a
direct scene generation approach. Full implementation details in Appendix F.2.

2https://www.minecraft.net
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Methods Alignment Counting

GraphDreamer 3.56±7.38 0.11
MVDream 10.79±12.83 0.11
Ours 85.65±13.71 1.0

Table 4: Quantitative Evaluation Re-
sults. We perform a user study to com-
pare with prior methods on the text-
conditioned 3D generation task and re-
port the percentages of user preferences
for prompt alignment. We also report the
counting accuracy (0 for inaccurate and 1
for accurate). Results are averaged across
9 scene prompts and 103 users; ± denotes
standard deviation.

Results. Text-conditioned scene generation results ren-
dered with the SDS-based renderer are shown in Fig. 4.
Compared to the direct 3D scene generation method MV-
Dream, our approach is compositional and adheres more
closely to input prompts in scenes involving multiple ob-
jects. Compared to a scene graph representation, where en-
tity relations are restricted to be between two objects and
are bottlenecked by the coarseness of natural language de-
scriptions, e.g., “aligned in a row”, a program-based rep-
resentation offers more flexible and precise specifications
for relations, e.g., the particular coke can arrangement in
Fig. 4. This brings the practical benefit of offloading the
burden of generating scenes involving complex entity rela-
tions from the T2I model (used for SDS guidance in both
ours and GraphDreamer) towards LM, leading to accurate
and detailed generation results.

To quantitatively compare our method with baselines, we conduct a user study on Prolific3 and
ask users to choose one of the three animated scenes, synthesized by ours and two baselines in a
randomized order, that aligns the best with the text prompt for the scene. Details are deferred to
Appendix F.3. We further report whether the synthesized scenes have the correct object count. As
shown in Table 4, our method achieves a more favorable prompt alignment than the baselines and
has a clear advantage in counting accuracy.

6.2 TEXT-INSTRUCTED SCENE EDITING

Scenes synthesized from our proposed representation can further be edited following natural lan-
guage instructions by prompting LM with its previously generated program and an editing instruc-
tion. The results are shown in Fig. 5. Our representation provides an interpretable and intuitive
interface for scene editing, as 1) functions have explicit semantic meanings associated with words,
and 2) function reuse greatly improves the readability of programs. Furthermore, since the struc-
ture of programs reflects the structure of scenes, editing program parameters leads to changes in the
scenes while preserving the original structure, e.g., the circular arrangement of staircases in Fig. 5.
The desirable editing effects involving multiple primitives, or all staircases in this example, can be
effectively achieved via only small changes in the program space. Finally, the program structure
itself, e.g., the function header in the Jenga set example, can be adjusted for editing, achieving
localized edits that only affect relevant parts of the scene.

Input Image Ours (Mitsuba) GraphDreamerOurs (Gaussians)

Input Image Ours (Mitsuba) GraphDreamerOurs (Gaussians)

Input Image Ours (Mitsuba) GraphDreamerOurs (Gaussians)

Figure 6: Image-Conditioned Scene Generation. Both our
method and GraphDreamer parse an input image to seman-
tic entities. Compared to the baseline, programs from our
representation encode additional scene structure, e.g., repe-
titions, and specify geometric relations among entities more
precisely. Embeddings from ours further enable visual iden-
tity preservation in the renderings.

The composibility of our representation di-
rectly benefits localized scene editing. In
comparison, MVDream from Section 6.1
does not apply to this task, as the full scene
is parameterized with a single 3D repre-
sentation. Precisely encoding the geomet-
ric relations of scene components further
enhances the controllability of generated
scenes. In comparison, GraphDreamer rep-
resents the binary relation of scene compo-
nents with coarse language descriptions and
therefore does not apply to editing tasks in-
volving precise geometric controls, e.g., in
the first example from Fig. 5.

6.3 IMAGE-CONDITIONED
SCENE GENERATION

We further show that the proposed repre-
sentation can be used for image parsing and
generating 3D scenes consistent with the
parsed image structure and content.

3https://www.prolific.com/
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“Rene Magritte The Son of Man” “Move the apple to the left”

...
(define apple 
(call “apple” 
...))
(transform apple 
translate((0, 
0.62, 0.15)))
...

-0.15

Initial (Mitsuba) Scene Language Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

“Paul Klee Castle and Sun” “Change all castles to be the middle one”

...
(union (transform 
left-tower ...)
(transform 
right-rower ...)
(transform 
center-tower 
...))...

center-tower

center-
tower

Initial (Mitsuba) Scene Language Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

“Bramante Staircase, Vatican Museums” “Shrink staircase radius by 80%”

...
(define 
staircase-
radius 5.0)
(define column-
radius 0.5)
...

4.0

0.4

Initial (Mitsuba) Scene Language Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

“A 8-layer 3-color Jenga set at game start” “Remove 2 blocks from second top layer 
and the tower should not fall”

...
(bind “Jenga 
layer” (lambda 
(is-horizontal 
y-offset 
colors) ...))
... remove-blocks

Initial (Mitsuba) Scene Language Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

Figure 5: Scene Editing with Language Instructions. The program structure from our representation is highly
interpretable, which benefits user editing. The bottom of each row shows initial scene descriptions and editing
instructions in the format of user text prompts. We prompt an LM to infer the initial Scene Language as well
as the edits (shown with texts in red), and show image renderings with two renderers.

We compare our representation with scene graphs by comparing our method with GraphDreamer.
The results are shown in Fig. 6. The proposed representation explicitly encodes 1) semantic com-
ponents parsed from input images, 2) the high-level scene structures, e.g., the repetition of coke
cans, and 3) visual details, e.g., the glass bottles with particular shapes and colors. Compared with
our method, which preserves both structure and visual content from input images, GraphDreamer
only reconstructs semantics from input images and leaves out entity poses and identities, due to the
information loss in the intermediate scene graph representation.

6.4 TEXT-CONDITIONED 4D SCENE GENERATION

We apply the inference method from Section 5 to generate 4D scenes. The 4D scene representation
in this task is identical to the definition in Eq. (1), except that there is an additional 4D entity function
in the program P . The corresponding DSL extends from Table 2 as specified in Appendix C.

Allowing for a flexible set of primitive entities is a crucial property of our representation that makes
it suitable for generating diverse 4D scenes of different scales, including objects with moving parts
(e.g., the wind turbine from Fig. 7) and scenes with moving objects (e.g., the carousel). Specifically,

9
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“Solar system 
model”

“A toy wind 
turbine”

“Carousel with a 
small canopy”

Figure 7: Text-Conditioned 4D Scene Generation.
The proposed representation captures the structure
not only for static, but also for dynamic scenes, and
can be applied for synthesizing 4D scenes. It explic-
itly represents the temporal correspondence of an en-
tity in a dynamic scene. Each colored trajectory de-
notes tracking of a temporally moving point.

(a) Rendering 
(First Frame)

(b) Semantic 
Segmentation

(c) Instance 
Segmentation

(d) Instance 
Correspondence

Figure 8: Visualizations of Discriminative Maps.
The proposed representation contains semantics in-
formation for scene components, visualized using se-
mantic segmentation shown in (b). It is composi-
tional and directly informs instance segmentation (c).
Furthermore, it specifies the dense correspondence
across repeated entities (d).

primitives have granularity adapted to the particular scene being represented, instead of being chosen
from a fixed set (Tian et al., 2019; Sharma et al., 2018) or object-centric as in scene graphs (Johnson
et al., 2015).

Moreover, the hierarchical scene structure encapsulated by our program-based representation makes
it possible to represent 4D scenes compactly, serving as a regularization for generation output. En-
tities (e.g., multiple horses from the function “horse” from the carousel scene in Fig. 7) can be
grouped into one function (“horses”) and thereby share the same temporal transformation. Writing
composible functions for entity grouping effectively reduces the dimension of the temporal motion
space and improves motion fidelity. See Appendix B for better visualizations.

6.5 DIFFERENT GRAPHICS RENDERERS

O
ut

pu
t (

2 
vi

ew
s)

“An interior scene of 
a university lecture hall”

“A detailed model of 
a tennis court”

MinecraftGaussians MinecraftGaussians

Gaussians T2I Gaussians T2I
“City skyline at sunset” “Marionette”

O
ut

pu
t

Figure 9: Renderings Across Graphics Renderers.
Different renderers produce renderings that adhere
to the same representation and therefore are visually
aligned, while each exhibits a different imaging style.
Text inputs are shown at the bottom of the subfigures.

The same program can be rendered with differ-
ent renderers described in Section 4, showing the
versatility of the proposed representation. The re-
sults are shown in Fig. 9 with the same experi-
ment setup as in Section 6.1.

6.6 VISUALIZATION
OF DISCRIMINATIVE INFORMATION

As shown in Fig. 8, several pieces of discrimi-
native information can be directly obtained with
the proposed representation: semantic maps in
(b), as words represent per-entity semantics; in-
stance segmentation in (c), as the representation
is compositional with separable instances; cor-
respondence of the repeated instances in (d), as
programs specify repetitions existing in a scene;
dense temporal correspondence for 4D scenes, as
shown in Fig. 7.

7 CONCLUSION

We have introduced a visual scene representation,
termed the Scene Language, which encodes three key aspects of visual scenes: (1) scene structure,
such as hierarchy and repetition, specified via programs; (2) semantics of individual scene compo-
nents succinctly summarized via words in natural language; and (3) identities of each component
precisely captured via neural embeddings. We formalize the representation as a programming lan-
guage defined using a DSL. We show that the proposed representation can be efficiently inferred
from both text and image inputs using pre-trained language models. Once the program is executed,
the resulting scene can be rendered into images using a variety of graphics renderers. Compared
with existing methods, our Scene Language produces 3D and 4D scenes with significantly higher
fidelity, preserves complex scene structures, and enables easy and precise editing.
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Macros

translate :: Vector -> Matrix // Compute translation matrix
rotate :: Float -> Vector -> Vector -> Matrix // Compute rotation matrix
scale :: Vector -> Vector -> Matrix // Compute scaling matrix
reflect :: Vector -> Vector -> Matrix // Compute reflection matrix
@ :: Matrix -> Matrix -> Matrix // Matrix multiplication
compute-shape-center :: Entity -> Vector // Compute center of an entity’s bounding box
compute-shape-min :: Entity -> Vector // Compute minimum corner of an entity’s bounding box
compute-shape-max :: Entity -> Vector // Compute maximum corner of an entity’s bounding box
compute-shape-sizes :: Entity -> Vector // Compute sizes of an entity’s bounding box

Table 5: The Domain-Specific Language includes the definitions from Table 2 and the transformation-related
macros from this table.

Grammar

4D-entity-func ::= (lambda () create-entity-list) // Define a function that outputs a 4D scene
create-entity-list ::= (list create-entity*) // Represent a 4D scene as a temporal list of entities

Table 6: The Domain-Specific Language for 4D scenes. * indicates one or more expressions.

A OVERVIEW

The supplementary contains the following content: additional qualitative results (Appendix B), fol-
lowed by details for the representation definition (Appendix C), graphics renderers (Appendix D),
and experiments (Appendix F). Please refer to main text to see how they are integrated.

B ADDITIONAL RESULTS

Please refer to the webpage https://sclg-page.github.io/ for animated results.

C DOMAIN-SPECIFIC LANGUAGE

The complete DSL includes the ones listed in Table 2, with additional macros for computing trans-
formation matrices as listed in Table 5, and grammar for 4D scenes as listed in Table 6.

D DETAILS OF GRAPHICS RENDERERS

This section expands the instantiation of three graphics renderers from Section 4 in detail. For
each rendere, we will discuss its parameter space Θ and T , renderer R, and the reparameterization
function greparam.

D.1 SDS-BASED RENDERER

Parameter Space with 3D Gaussians. For this renderer, Θ is the space of 3D Gaussian pa-
rameters and T is the space of 3D affine transformation matrices. In particular, each primi-
tive is parameterized as a set of K 3D Gaussians under a 3D affine transformation t, written as
(θ, t) = (K, {ϕi}Ki=1, t) ∈ Θ×T , where ϕi is the set of parameters for a single 3D Gaussian, and t
is a 3D transformation matrix. Each Gaussian parameter ϕ is defined as ϕ := (µ, α, s, q, c), denoting
the 3D center position, opacity, scale, rotation in quaternion, and color of the Gaussian, respectively.
An entity consisting of N primitives is parameterized as {(θj , tj)}Nj=1 = {(Kj , {ϕji}

Kj

i=1, tj)}Nj=1.

Differentiable Rendering. The rendering operation R for the 3D Gaussian renderer is as follows.

Following Kerbl et al. (2023), a single Gaussian is defined by

G(x) = e−
1
2 (x−µ)

TΣ−1(x−µ),

where x ∈ R3 is a point in world coordinate, Σ := (RS)(RS)T the 3D covariance matrix, R the
rotation matrix computed from q, and S the scaling matrix computed from s.

A Gaussian under transformation t ∈ T with t(x) = RtStx+ pt, where Rt, St, pt are the rotation,
scaling, and translation components, respectively, is then computed with Gt satisfying the follows:

Gt(t(x)) = G(x).
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We assume that diagonal entries of the scaling matrix St are all positive, and therefore t is invertible.
Combining the above gives

Gt(x) = e−
1
2 (x−µt)

TΣ−1
t (x−µt),

where µt = t(µ) and Σt = ((RtR)(StS))((RtR)(StS))
T . Let t̃(ϕ) be the Gaussian after applying

transformation t on ϕ. Then t̃(ϕ) has center µt, rotation RtR, scale StS, and has α and c remaining
unchanged as derived above.

The rendering operation R to convert an entity consisting of N primitives, {(θj , tj)}Nj=1 =

{(Kj , {ϕji}
Kj

i=1, tj)}Nj=1, to the image space simply amounts to rendering all post-transformation
3D Gaussians in the scene, {t̃j(θj)}j := {t̃j(ϕi)}i,j , following the projection and blending process
from Kerbl et al. (2023).

Primitive Reparameterization via SDS Guidance. Recall that greparam aims to obtain 3D Gaussian
primitive parameters for per-primitive conditional embeddings {zj}Nj=1 and global condition zglobal,
where zj = gCLIP(cj) is explained in Section 4, and zglobal = gCLIP(cglobal) is computed from a global
scene description in texts, cglobal. We now expand Section 4 to describe the optimization process of
greparam in detail.

We write the SDS objective originally proposed in Poole et al. (2022) as follows:

g(ψ; z, ϵ̂) := ∇ψLSDS(x = R(ψ); z, ϵ̂) = Eη∼U(0,1),ϵ∼N (0,I)

[
w(η)(ϵ̂(αηx+ αηϵ, z, η)− ϵ)

∂x

∂ψ

]
,

where ϵ̂ is a pre-trained image denoising network, η is diffusion timestep, and w(·), αη come from
diffusion schedule.

With the notations from above, for entity {(θj , tj)}Nj=1, let

L({zj}j , zglobal, {tinit,j}j) :=LSDS({t̃j(θj)}j ; zglobal, ϵ̂ControlNet) +
∑
j

LSDS(θj ; zj , ϵ̂MVDream)

+
∑
j

Lreg(θj ,StopGrad(tj)) +
∑
j

Llayout(θj , tinit,j),

where Lreg,Llayout are regularization terms following the definition from Zhou et al. (2024c) and
StopGrad stops gradients from backpropagation. Here, Lreg penalizes Gaussian ellipsoids that are
too long, and Llayout penalizes Gaussians that lie outside the intial bounding box specified by tinit.

Finally, we have
greparam = arg min

{(θj ,tj)}N
j=1

L.

During optimization, if primitives j1 and j2 have the same condition and initial normalized bounding

box scale, i.e., (zj1 = zj2) ∧ (
Stj1

∥Stj1
∥2

=
Stj2

∥Stj2
∥2
), they are enforced to have the same parameters θ

(but still distinct tj1 and tj2 ), which greatly reduces the number of parameters in the solution space.

In practice, for certain scenes, LM outputs treat detailed object parts as primitives, e.g., the hat rim
and hat top from the first example in Fig. 5, and the backbone model for SDS guidance cannot ef-
fectively model such fine-grained parts. Therefore, we treat the hat as a primitive, whose pose is
computed from the minimum bounding box containing both the hat rim and hat top, before carrying
out the above optimization. This process effectively adapts the granularity of the computation graph,
originally specified in LM inference outputs, to the graphics renderer being used, by assigning in-
termediate nodes from the original computation graph as the new leaf nodes.

D.2 MITSUBA RENDERER

Parameter Space. For this renderer, Θ is the parameter space for three types of graphics primitives
supported by Mitsuba: cube, sphere, and cylinder, as specified in the function header for
primitive call in Appendix E.1. T is the 3D affine transformation space.

Renderer. We use the path tracer with maximum depth 8 implemented in Mitsuba.
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Reparameterization. Since we directly prompt LM to generate Mitsuba primitive parameters in
its outputs as specified in Appendix E.1, the function parameters from raw LM outputs are already
in the parameter space Θ and are directly used for rendering, instead of being encoded into CLIP
embeddings z ∈ ZCLIP.

D.3 MINECRAFT RENDERER

Parameter Space. For this renderer, Θ is the asset parameters for Mincraft blocks, and T is the
space of 3D similarity transformation matrices, i.e., of scaling and translation transformations. Note
that we prevent rotation transformations in Minecraft, since that could lead to shapes that are impos-
sible to render correctly in Minecraft.

Specifically, Θ is specified in the docstring from Appendix E.4 and is expanded below. We introduce
two types of primitives that let us construct in-game elements.

The first is set cuboid. This primitive facilitates the creation of a cuboid within the Minecraft
environment. The function accepts three arguments: (1) A string denoting the Minecraft block type
(e.g., ‘minecraft:white concrete‘); (2) A tuple of three integers representing the scaling
along the x, y, and z axes; (3) A boolean flag, fill, that specifies whether the cuboid should be
solid or hollow. The cuboid is anchored at the coordinate origin (0, 0, 0), which corresponds to its
front-left-bottom vertex.

The second is delete blocks. This primitive allows for the deletion of a previously placed
cuboid. It accepts a single parameter, which is a tuple of three integers denoting the scaling along
the x, y, and z axes. This operation removes the cuboid with its front-left-bottom vertex at the origin
(0, 0, 0), effectively clearing the designated space.

Note that we do not provide the Minecraft block type in the prompt, but instead let the model choose
this parameter. Since there is a large amount of Minecraft data files on the web, the model performs
decently well in choosing appropriate Minecraft blocks. We also augment this by building safety
checks; for example, if the model chooses a Minecraft block that doesn’t exist in our version of
Minecraft, we will use semantic similarity to choose the most similar block from our library.

We also are able to translate easily from Minecraft renderings to Mitsuba renderings, by converting
Minecraft blocks to corresponding cuboids in Mitsuba. We also color the Mitsuba blocks accord-
ingly to the average color of the Minecraft block.

Renderer. We use WebGL4 and Deepslate5 for rendering Minecraft builds.

Reparameterization. Similar to Mitsuba, function parameters from LM-generated programs are
directly used for rendering without CLIP encoding or parameterization.

D.4 TEXT-TO-IMAGE (T2I) MODEL RENDERER

Parameter Space. We employ MIGC (Zhou et al., 2024a) as the backbone model for this renderer,
which originally uses a CLIP text encoder (Radford et al., 2021) and a pre-trained UNet from Stable
Diffusion (Rombach et al., 2022) for layout-conditioned text-to-image generation. The parameter
space Θ for this renderer is the CLIP text embedding space.

Renderer. We first project the 3D bounding boxes of primitives from an execution output of our
representation to a 2D layout under a specified camera viewpoint, and then run the forward pass
of the T2I model conditioned on the 2D layout, where each 2D bounding box corresponds to an
aforementioned CLIP embedding θ ∈ Θ .

Reparameterization. Function parameters from LM-generated programs are directly encoded by
the CLIP text encoder using the language templates described in Section 5.

4https://get.webgl.org/
5https://misode.github.io/deepslate/
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E LANGUAGE MODEL PROMPTS

E.1 TEXT- AND IMAGE-CONDITIONED SCENE GENERATION

In Section 5, we introduced an inference method for the representation by prompting LMs. The
full system prompt is displayed below. The system prompt defines the data types and the function
headers of macros from the DSL, written in Python.

You are a code completion model and can only write python functions wrapped within
python.

You are provided with the following helper.py which defines the given functions and
definitions:

"""This module contains a Domain-Specific Language (DSL) designed
with built-in support for loops and functions for shape construction and transformation.
"""

from typing import NamedTuple, Any, Callable, Literal
import math
import numpy as np

# type aliases and DSL syntax sugar
P = Any # 3D vector, e.g., a point or direction
T = Any # 4x4 transformation matrix
Shape = list[dict[str, Any]] # a shape is a list of primitive shapes

# shape function library utils

def register(docstring: str):
"""
Registers a function whose name must be unique. Provide keyword argument defaults for

easier debugging.↪→
"""

def library_call(func_name: str, **kwargs) -> Shape:
"""
Call a function from the library and return its outputs. You are responsible for

registering the function with `register`.↪→

Args:
func_name (str): Function name.
**kwargs: Keyword arguments passed to the function.

"""

def primitive_call(name: Literal['cube', 'sphere', 'cylinder'], shape_kwargs: dict[str,
Any], color: tuple[float, float, float] = (1.0, 1.0, 1.0)) -> Shape:↪→
"""
Constructs a primitive shape.

Args:
name: str - 'cube', 'sphere', or 'cylinder'.
shape_kwargs: dict[str, Any] - keyword arguments for the primitive shape.

- For 'cube': {'scale': P} - 3-tuple of floats for scaling along x, y, z
axes.↪→

- For 'sphere': {'radius': float} - radius of the sphere.
- For 'cylinder': {'radius': float, 'p0': P, 'p1': P}

- radius: float - radius of the cylinder.
- p0: P - 3-tuple of floats for the start point of the cylinder's

centerline.↪→
- p1: P - 3-tuple of floats for the end point of the cylinder's

centerline.↪→
color: Tuple[float, float, float] - RGB color in range [0, 1]ˆ3.

Returns:
Shape - the primitive shape.

Examples:
- `primitive_call('cube', shape_kwargs={'scale': (1, 2, 1)})`
Returns a cube with corners (-0.5, -1, -0.5) and (0.5, 1, 0.5).

- `primitive_call('sphere', shape_kwargs={'radius': 0.5})`
Returns a sphere with radius 0.5, with bounding box corners (-0.5, -0.5, -0.5)

and (0.5, 0.5, 0.5).↪→
- `primitive_call('cylinder', shape_kwargs={'radius': 0.5, 'height': 1})`

Returns a cylinder with radius 0.5, height 1, with bounding box corners (-0.5,
-0.5, -0.5) and (0.5, 0.5, 0.5).↪→

"""

# control flows

def loop(n: int, fn: Callable[[int], Shape]) -> Shape:
"""
Simple loop executing a function `n` times and concatenating the results.

Args:
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n (int): Number of iterations.
fn (Callable[[int], Shape]): Function that takes the current iteration index

returns a shape.↪→

Returns:
Concatenated shapes from each iteration.

"""

# shape manipulation

def concat_shapes(*shapes: Shape) -> Shape:
"""
Combines multiple shapes into a single shape.
"""

def transform_shape(shape: Shape, pose: T) -> Shape:
"""
Args:

shape: Shape
pose: T - If pose is A @ B, then B is applied first, followed by A.

Returns:
The input shape transformed by the given pose.

"""

# pose transformation

def rotation_matrix(angle: float, direction: P, point: P) -> T:
"""
Args:

angle (float) : the angle of rotation in radians
direction (P) : the axis of rotation
point (P) : the point about which the rotation is performed

"""
def translation_matrix(offset: P) -> T:

"""
Args:

offset (P) : the translation vector
"""

def scale_matrix(scale: float, origin: P) -> T:
"""
Args:

scale (float) - the scaling factor, only uniform scaling is supported
origin (P) - the origin of the scaling operation

"""
def identity_matrix() -> T:

"""
Returns the identity matrix in SE(3).
"""

# calculate locations and sizes of shape bounding boxes

def compute_shape_center(shape: Shape) -> P:
"""
Returns the shape center.
"""

def compute_shape_min(shape: Shape) -> P:
"""
Returns the min corner of the shape.
"""

def compute_shape_max(shape: Shape) -> P:
"""
Returns the max corner of the shape.
"""

def compute_shape_sizes(shape: Shape) -> P:
"""
Returns the shape sizes along x, y, and z axes.
"""

STRICTLY follow these rules:

1. Only use the functions and imported libraries in helper.py.

2. You can only write functions. Follow a modular approach and use the register
decorator to define semantic shapes or shape groups.

3. Camera coordinate system: +x is right, +y is up, +z is backward.

4. You can use shape primitives to approximate shape components that are too
complex. You must make sure shape have correct poses. Be careful about set mode
and set to from primitive call.

5. You must use library call to call registered functions.

6. Use compute shape * from helper.py if possible to compute transformations.

You should be precise and creative.
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The full user prompt for image or text-conditioned 3D generation is displayed below. It includes
an example valid program, and the task specification indicated with a placeholder {task}. For
text-conditioned generation (Section 6.1), it is replaced with the input textual scene description. For
image-conditioned generation (Section 6.3), it is replaced with ‘‘Reconstruct the input
scene’’, and the input image is also fed into LM.

Here are some examples of how to use helper.py:

from helper import *

"""
A pile of books on a desk
"""

@register("book")
def book(scale: P) -> Shape:

return primitive_call('cube', color=(.6, .3, .1), shape_kwargs={'scale': scale})

@register("books")
def books(width: float, length: float, book_height: float, num_books: int) -> Shape:

def loop_fn(i) -> Shape:
book_shape = library_call('book', scale=(width, book_height, length))
book_shape = transform_shape(book_shape,

translation_matrix([np.random.uniform(-0.05, 0.05), i * book_height,
np.random.uniform(-0.05, 0.05)])) # FIRST translate

↪→
↪→
book_center = compute_shape_center(book_shape) # must be computed AFTER

transformation!!↪→
return transform_shape(book_shape, rotation_matrix(np.random.uniform(-0.1, 0.1),

direction=(0, 1, 0), point=book_center)) # THEN tilt↪→

return loop(num_books, loop_fn)

@register("desk")
def desk(scale: P) -> Shape:

return primitive_call('cube', color=(.4, .2, .1), shape_kwargs={'scale': scale})

@register('desk with books')
def desk_with_books() -> Shape:

desk_shape = library_call('desk', scale=(1, .1, .5))
books_shape = library_call('books', width=.21, length=.29, book_height=.05,

num_books=3)↪→
_, desk_top, _ = compute_shape_max(desk_shape)
_, books_bottom, _ = compute_shape_min(books_shape)
return concat_shapes(

desk_shape,
transform_shape(books_shape, translation_matrix((0, desk_top - books_bottom, 0)))

# stack books on top of desk↪→
)

IMPORTANT: THE FUNCTIONS ABOVE ARE JUST EXAMPLES, YOU CANNOT USE THEM IN YOUR PROGRAM!

Now, write a similar program for the given task:

from helper import *

"""
{task}
"""

E.2 SCENE EDITING

For scene editing (Section 6.2), we prompt the LM in two rounds, first with a textual scene descrip-
tion with the same protocol from Section 6.1, and then with an editing instruction, e.g., ‘‘move
the apple to the left’’. In the second round, the system prompt remains the same as
Appendix E.1. The user prompt is as follows, where {program} is the LM output from first round,
and {task} is the editing instruction.

Here is a program using helper.py:

{program}

Now, do minimal edit to the program such that the scene function, when called, will
follow the instruction: {task}. Your code starts here.
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from helper import *

"""
{task}
"""

E.3 4D GENERATION

For 4D generation, we include one more macro definition in the system prompt as shown below.
The remaining system prompt is the same as above.

def register_animation(docstring: str | None = None):
"""
Registers an animation function which is stored in the global `animation_func`. You

can pass an optional docstring.↪→

If you register a function, there a couple of rules:
- That function should never be called anywhere else in the program. This

function gets used later by the rendering engine.↪→
- This function needs a return type of `Generator[Shape, None, None]`.

"""

The full user prompt for 4D generation is displayed below.

Here are some examples of how to use helper.py:

from helper import *

"""
three ghosts chasing a yellow pacman
"""

@register()
def pacman() -> Shape:

return primitive_call('cube', color=(1, 1, 0), scale=.8)

@register()
def ghosts() -> Shape:

return loop(3, lambda i: transform_shape(
library_call('ghost', color=(i / 3, 1 - i / 3, 1 - i / 3)),
translation_matrix([i, 0, 0])

))

@register()
def ghost(color) -> Shape:

return primitive_call('sphere', color=color, scale=.8)

@register_animation()
def pacman_chase_animation() -> Generator[Shape, None, None]:

# an animated scene
total_frames = 4 # Number of frames in the animation

for frame in range(total_frames):
pacman_x = - frame / total_frames
ghost_x_offset = - 2 * frame / total_frames

# Move pacman and ghost
pacman = transform_shape(library_call('pacman'), translation_matrix([pacman_x, 0,

0]))↪→
ghosts = transform_shape(library_call('ghosts'), translation_matrix([2 +

ghost_x_offset, 0, 0]))↪→

# Export the shape, which is a frame in the animation
yield concat_shapes(pacman, ghosts)

IMPORTANT: THE FUNCTIONS ABOVE ARE JUST EXAMPLES, YOU CANNOT USE THEM IN YOUR PROGRAM!

Now, write a similar program for the given task:

from helper import *

"""
{task}
"""
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E.4 MINECRAFT RENDERING

To prompt LM to generate Minecraft-compatible outputs, we remove rotation matrix and
reflection matrix from the system prompt in Appendix E.1 and change the function header
for primitive call to the follows:

def primitive_call(name: Literal['set_cuboid', 'delete_blocks'], **kwargs) -> Shape:
"""
Args:

name: str - the name of the primitive action
support 'set_cuboid', 'delete_blocks'

...: Any - additional arguments for the primitive action
For 'set_cuboid':

- block_type: a string that denotes the block type, e.g. 'oak_log'. THESE
MUST BE VALID LITEMATIC BLOCK TYPES.↪→

- block_kwargs: a dict[str, str] of additional properties to define a
block's state fully, e.g. for 'oak_log', we need to define the axis
with possible values 'x', 'y', or 'z'

↪→
↪→
- scale: a list of 3 elements, denoting the scaling along the positive x,

y, and z axises respectively. IMPORTANT: THESE CAN ONLY BE INTEGERS!↪→
- fill: a boolean, describing whether the cuboid should be filled, or be

hollow. Hint: this can be useful for creating structures that should
be hollow, such as a building.

↪→
↪→

For 'delete_blocks':
- scale: a list of 3 elements, denoting the scaling along the positive x,

y, and z axises respectively. IMPORTANT: THESE CAN ONLY BE INTEGERS!↪→
Returns:

Shape -
For 'set_cuboid': a cuboid composed of Minecraft blocks, with the closest

block at (0, 0, 0) and furthest (right, back-most) block at (scale[0],
scale[1], scale[2]).

↪→
↪→
For 'delete_blocks': an empty cuboid-shaped space without any blocks,

starting from the closest block at (0, 0, 0) and furthest (right,
back-most) block at (scale[0], scale[1], scale[2]).

↪→
↪→

"""

And we change the example program for user prompt accordingly to the follows:

from helper import *

"""
A red cube on the top left of a blue pyramid of height 4.
"""

@register()
def cube_set() -> Shape:

return concat_shapes(
library_call('red_cube'), # expects a cube with left-bottom-front corner block

at (-2, 7, 2) and dims 2x2x2↪→
library_call('blue_pyramid'), # expects a blue pyramid of height 4

) # hint: these library calls must be implemented to be compatible with the usage

@register()
def red_cube() -> Shape:

return transform_shape(
primitive_call('set_cuboid', block_type='minecraft:redstone_block', scale=(2, 2,

2), fill=True),↪→
translation_matrix([-2, 7, 2]))

@register()
def blue_pyramid(n: int = 4) -> Shape:

def create_pyramid_layer(i):
# Logic here is that for the ith layer, it has dims (2*i + 1) x1x(2*i + 1.
# We need to then shift that in the x dimension to center it, and then also in

the y dimension to lift to the right layer of the pyramid.↪→
side_length = i * 2 + 1
last_layer_length = n * 2 + 1
x_z_offset = (last_layer_length - side_length) // 2
y_offset = n - i - 1
return transform_shape(

primitive_call('set_cuboid', block_type='minecraft:lapis_block',
scale=(side_length, 1, side_length),↪→

fill=True),
translation_matrix([x_z_offset, y_offset, x_z_offset]))

return loop(4, create_pyramid_layer)

"""
A forest of trees of varying heights.
"""

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

@register()
def forest(leaf_size: int = 3) -> Shape:

# Double for loop for placing the trees
tree_padding = leaf_size * 2 + 3 # This is how far the center point of each tree

should be from each other↪→
return loop(4, lambda i: loop(4, lambda j:
transform_shape(library_call('simple_tree', height=random.randint(3, 7)), # Make it

random to give the appearance of having varying heights↪→
translation_matrix([i * leaf_size + tree_padding, 0, j * leaf_size +

tree_padding]))))↪→

@register()
def simple_tree(height: int = 4) -> Shape:

return concat_shapes(
library_call('trunk', trunk_height=height),
transform_shape(library_call('leaves', leaf_size=3), # If you pass in extra

arguments to library_call, they need to be NAMED arguments. Passing in 3 here
without "leaf_size" will error.

↪→
↪→

translation_matrix([-1, height, -1]) # Center the leaves on top
of the trunk↪→

))

@register()
def leaves(leaf_size: int = 3) -> Shape:

return primitive_call('set_cuboid', block_type='minecraft:oak_leaves',
block_kwargs={'distance': '7', 'persistent': "true", 'waterlogged': "false"},
scale=(leaf_size, leaf_size, leaf_size), fill=True)

↪→
↪→

@register()
def trunk(trunk_height: int = 4) -> Shape:

return primitive_call('set_cuboid', block_type='minecraft:oak_log',
block_kwargs={'axis': 'y'}, scale=(1, trunk_height, 1), fill=True)↪→

F EXPERIMENT DETAILS

F.1 TEXTUAL INVERSION OPTIMIZATION

To obtain image-conditioned embedding, we follow the procedure proposed in Gal et al. (2023). For
the input image I and text prompt cj , we first use cj as guidance of GroundingSAM to obtain the
desired mask of the corresponding entity. The cropped region is pad to square and resized to desired
resolution, resulting in image target Ij . The background of Ij is set to random grayscale color as
used in Shi et al. (2023).

We adopt the language template “<cls>, 3d model, in the style of <style>” in all the textual
inversion experiments. The template is first converted into token embeddings, then using CLIP
text-encoder gCLIP to transform to embeddings zj for diffusion model ϵ̂MVDream. In each textual-
inversion iteration, we optimize the token embeddings vj1, vj2 for <cls> and <style> while
freezing others. We use the similar objective as in diffusion model training:

v∗j1, v
∗
j2 = argmin

vj1,vj2

Eη∼U(0,1),ϵ∼N (0,1)

[
∥ϵ− ϵ̂MVDream(αηIj + αηϵ, η, zj(vj1, vj2))∥22

]
.

For each entity, we optimize the corresponding embeddings for 100 iterations with learning rate
1e-2. Empirically we find this setting is enough to fit the image conditions. After textual inver-
sion, the embedding zj is computed with optimized token embeddings, and used to guide the entity
optimization as explaint in Appendix D.

F.2 GRAPHDREAMER IMPLEMENTATION

Since the original paper didn’t release the script for automatic scene graph generation, we follow
the descriptions in the paper and re-implement this stage to query LM to output scene graphs in json
format to avoid manually converting LM outputs to model configurations. The full system prompt
is shown below:

You are helpful agent and can only write output wrapped in json.

The full user prompt is shown below, where the given example input and output are taken from the
teaser figure of the original paper (Gao et al., 2024). In below, {task} is a placeholder for input
text prompts of scenes.
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Please follow the examples in the Visual Genome dataset and generate a scene graph in
json format that best describes an input text. The output must contain four fields:
"scene", "nodes", "edges", and "attributes".

• "scene" is the description of the input scene.

• "nodes" is a list of objects in the scene. Maximum is three objects.

• "edges" is a cyclic list of relationships between objects. Namely, each edge is
a list of three elements: [object1, relationship, object2], where object1 and
object2 are in the "nodes" list. The number of edges must be no more than number
of possible pairs of objects in the "nodes" list.

• "attributes" is a dictionary where each key is an object in the "nodes" list and
the value is a list of its attributes.

Exampl input:

A Wizard standing in front of a Wooden Desk, gazing into a Crystal Ball placed on the
Wooden Desk, with a Stack of Ancient Spell Books sitting on the Wooden Desk and next to
the crystal ball.

Example output:

{
"scene": "A Wizard standing in front of a Wooden Desk, gazing into a Crystal Ball

placed on the Wooden Desk, with a Stack of Ancient Spell Books sitting on the
Wooden Desk and next to the crystal ball.",

↪→
↪→
"nodes": ["Wizard", "Wooden Desk", "Crystal Ball", "Stack of Ancient Spell Books"],
"edges": [

["Wizard", "standing in front of", "Wooden Desk"],
["Crystal Ball", "placed on", "Wooden Desk"],
["Wizard", "gazing into", "Crystal Ball"],
["Stack of Ancient Spell Books", "sitting on", "Wooden Desk"],
["Stack of Ancient Spell Books", "next to", "Crystal Ball"]

],
"attributes": {

"Wizard": ["bearded", "robed", "wise-looking"],
"Crystal Ball": ["small", "glowing", "transparent", "mystical"],
"Stack of Ancient Spell Books": ["leather-bound", "weathered", "rune-etched"],
"Wooden Desk": ["sturdy", "carved", "aged"]

}

Your input:

{task}

Your output starts here. The output must be in a valid json format.

After generating scene graphs with aforementioned prompt, we follow the released implementation
to run Graphdreamer optimization. Each object in nodes list is represented as an individual object
SDF and color field, and adopts Instant-NGP (Müller et al., 2022) as the backbone. The SDS loss
optimizes not only each object, but also object pairs described in edges list. Note that Graphdreamer
didn’t explicitly model the repetition of objects when dealing with scenes containing repetitive com-
ponents. As a result, when the raw scene graph output contains too many objects, we’ll rerun the
graph generation and add ”The maximum number of objects is three.” in text prompt to avoid reach-
ing memory limitation during optimization.

F.3 USER STUDY DETAILS

We provide the following instruction in the user study: “In the following questions, you’ll be pro-
vided a list of text descriptions and corresponding three generation results. Please choose the one
that has best text-alignment, taking into account both the visual quality and the adherence to the
layout structure outlined in the text prompt.” For each of the 9 scenes being evaluated, we ask the
user to choose one of the three video rendering results, generated by our method and two baselines
in randomized order. All videos shown in the user study are displayed on the website in Appendix B.

G LANGUAGE MODEL OUTPUTS

G.1 TEXT-CONDITIONED 3D GENERATION

Example 1. This example corresponds to Fig. 1.

Input: ‘‘Moai in Ahu Akivi, with slight variations’’. Output:
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Here’s a program to create Moai statues in Ahu Akivi with slight variations:

from helper import *

"""
Moai in Ahu Akivi, with slight variations
"""

@register()
def moai_head(scale: float) -> Shape:

head = primitive_call('cube', color=(0.5, 0.5, 0.5), shape_kwargs={'scale': (scale,
scale*1.5, scale*0.8)})↪→

nose = primitive_call('cube', color=(0.45, 0.45, 0.45), shape_kwargs={'scale':
(scale*0.2, scale*0.4, scale*0.3)})↪→

nose = transform_shape(nose, translation_matrix((0, -scale*0.2, scale*0.4)))
return concat_shapes(head, nose)

@register()
def moai_body(scale: float) -> Shape:

body = primitive_call('cube', color=(0.55, 0.55, 0.55), shape_kwargs={'scale':
(scale*0.8, scale*2, scale*0.6)})↪→

return body

@register()
def moai(scale: float) -> Shape:

head = library_call('moai_head', scale=scale)
body = library_call('moai_body', scale=scale)

head_min = compute_shape_min(head)
body_max = compute_shape_max(body)

head = transform_shape(head, translation_matrix((0, body_max[1] - head_min[1], 0)))

return concat_shapes(body, head)

@register()
def ahu_platform(width: float, height: float, depth: float) -> Shape:

platform = primitive_call('cube', color=(0.3, 0.3, 0.3), shape_kwargs={'scale':
(width, height, depth)})↪→

return platform

@register()
def moai_with_variation(base_scale: float) -> Shape:

scale_variation = np.random.uniform(0.9, 1.1)
rotation_variation = np.random.uniform(-0.05, 0.05)

moai_statue = library_call('moai', scale=base_scale * scale_variation)
moai_center = compute_shape_center(moai_statue)

return transform_shape(moai_statue, rotation_matrix(rotation_variation, (0, 1, 0),
moai_center))↪→

@register()
def ahu_akivi_scene() -> Shape:

platform = library_call('ahu_platform', width=14, height=1, depth=4)
platform_top = compute_shape_max(platform)[1]

def create_moai(i: int) -> Shape:
moai = library_call('moai_with_variation', base_scale=1.5)
moai_bottom = compute_shape_min(moai)[1]
x_position = (i - 3) * 2 # Distribute 7 Moai evenly
return transform_shape(moai, translation_matrix((x_position, platform_top -

moai_bottom, 0)))↪→

moai_statues = loop(7, create_moai)

return concat_shapes(platform, moai_statues)

This program creates a scene of Moai statues in Ahu Akivi with the following components:

1. moai head: Creates a simplified Moai head using cubes for the main head and
nose.

2. moai body: Creates a simplified Moai body using a cube.
3. moai: Combines the head and body to form a complete Moai statue.
4. ahu platform: Creates the stone platform (ahu) on which the Moai stand.
5. moai with variation: Applies slight variations in scale and rotation to each

Moai.
6. ahu akivi scene: Creates the entire scene with a platform and seven Moai statues.

The scene features seven Moai statues standing on a stone platform, similar to the real

Ahu Akivi site. Each Moai has slight variations in size and rotation to add visual

interest and realism to the scene.

Example 2. This example corresponds to Fig. 2.
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Input: ‘‘a chessboard at game start’’. Output:

Here’s a program to create a chessboard at game start using the provided helper.py:

from helper import *

"""
a chessboard at game start
"""

@register("chess_square")
def chess_square(color: tuple[float, float, float]) -> Shape:

return primitive_call('cube', color=color, shape_kwargs={'scale': (0.125, 0.02,
0.125)})↪→

@register("chessboard")
def chessboard() -> Shape:

def loop_fn(i) -> Shape:
row = i // 8
col = i % 8
color = (0.9, 0.9, 0.9) if (row + col) % 2 == 0 else (0.1, 0.1, 0.1)
square = library_call('chess_square', color=color)
return transform_shape(square, translation_matrix((col * 0.125, 0, row * 0.125)))

return loop(64, loop_fn)

@register("chess_pawn")
def chess_pawn(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.05, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→

body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.04, 'p0':
(0, 0.02, 0), 'p1': (0, 0.08, 0)})↪→

head = primitive_call('sphere', color=color, shape_kwargs={'radius': 0.035})
head = transform_shape(head, translation_matrix((0, 0.115, 0)))
return concat_shapes(base, body, head)

@register("chess_rook")
def chess_rook(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.05, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→

body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.04, 'p0':
(0, 0.02, 0), 'p1': (0, 0.1, 0)})↪→

top = primitive_call('cube', color=color, shape_kwargs={'scale': (0.09, 0.03, 0.09)})
top = transform_shape(top, translation_matrix((0, 0.115, 0)))
return concat_shapes(base, body, top)

@register("chess_knight")
def chess_knight(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.05, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→

body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.04, 'p0':
(0, 0.02, 0), 'p1': (0, 0.08, 0)})↪→

head = primitive_call('cube', color=color, shape_kwargs={'scale': (0.06, 0.08,
0.04)})↪→

head = transform_shape(head, translation_matrix((0.01, 0.11, 0)))
head = transform_shape(head, rotation_matrix(0.3, (0, 0, 1), (0, 0.11, 0)))
return concat_shapes(base, body, head)

@register("chess_bishop")
def chess_bishop(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.05, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→

body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.04, 'p0':
(0, 0.02, 0), 'p1': (0, 0.1, 0)})↪→

head = primitive_call('sphere', color=color, shape_kwargs={'radius': 0.03})
head = transform_shape(head, translation_matrix((0, 0.13, 0)))
top = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.01, 'p0': (0,

0.13, 0), 'p1': (0, 0.16, 0)})↪→
return concat_shapes(base, body, head, top)

@register("chess_queen")
def chess_queen(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.055, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→

body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.045, 'p0':
(0, 0.02, 0), 'p1': (0, 0.12, 0)})↪→

crown = primitive_call('sphere', color=color, shape_kwargs={'radius': 0.04})
crown = transform_shape(crown, translation_matrix((0, 0.16, 0)))
top = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.01, 'p0': (0,

0.16, 0), 'p1': (0, 0.2, 0)})↪→
return concat_shapes(base, body, crown, top)

@register("chess_king")
def chess_king(color: tuple[float, float, float]) -> Shape:

base = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.06, 'p0':
(0, 0, 0), 'p1': (0, 0.02, 0)})↪→
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body = primitive_call('cylinder', color=color, shape_kwargs={'radius': 0.05, 'p0':
(0, 0.02, 0), 'p1': (0, 0.14, 0)})↪→

crown = primitive_call('cube', color=color, shape_kwargs={'scale': (0.1, 0.03, 0.1)})
crown = transform_shape(crown, translation_matrix((0, 0.17, 0)))
cross_v = primitive_call('cube', color=color, shape_kwargs={'scale': (0.02, 0.06,

0.02)})↪→
cross_v = transform_shape(cross_v, translation_matrix((0, 0.215, 0)))
cross_h = primitive_call('cube', color=color, shape_kwargs={'scale': (0.06, 0.02,

0.02)})↪→
cross_h = transform_shape(cross_h, translation_matrix((0, 0.215, 0)))
return concat_shapes(base, body, crown, cross_v, cross_h)

@register("chess_pieces")
def chess_pieces() -> Shape:

white = (0.9, 0.9, 0.9)
black = (0.1, 0.1, 0.1)
pieces = []

# Place pawns
for i in range(8):

white_pawn = library_call('chess_pawn', color=white)
black_pawn = library_call('chess_pawn', color=black)
pieces.append(transform_shape(white_pawn, translation_matrix((i * 0.125, 0.02,

0.125))))↪→
pieces.append(transform_shape(black_pawn, translation_matrix((i * 0.125, 0.02,

0.75))))↪→

# Place other pieces
piece_order = ['rook', 'knight', 'bishop', 'queen', 'king', 'bishop', 'knight',

'rook']↪→
for i, piece in enumerate(piece_order):

white_piece = library_call(f'chess_{piece}', color=white)
black_piece = library_call(f'chess_{piece}', color=black)
pieces.append(transform_shape(white_piece, translation_matrix((i * 0.125, 0.02,

0))))↪→
pieces.append(transform_shape(black_piece, translation_matrix((i * 0.125, 0.02,

0.875))))↪→

return concat_shapes(*pieces)

@register("chessboard_at_game_start")
def chessboard_at_game_start() -> Shape:

board = library_call('chessboard')
pieces = library_call('chess_pieces')
return concat_shapes(board, pieces)

This program creates a chessboard at game start with the following components:

1. A chessboard made of alternating white and black squares.
2. Chess pieces for both white and black sides, including pawns, rooks, knights,

bishops, queens, and kings.
3. The pieces are placed in their correct starting positions on the board.

To use this program and generate the chessboard at game start, you would call:

chessboard_scene = library_call('chessboard_at_game_start')

This will return a complete chessboard with all pieces in their starting positions.

G.2 TEXT-CONDITIONED 3D EDITING

In this task, for each example, we prompt LM in two rounds—the first round with a scene description
as task specification, and the second round with editing instructions. LM outputs in the first round
are omitted.

Example 1. Input scene description: ‘‘Rene Magritte The Son of Man’’. Input edit-
ing instruction: ‘‘Move the apple to the left’’. Output:

Here’s the minimally edited program that moves the apple to the left:

from helper import *

"""
Move the apple to left
"""

@register()
def suit(width: float, height: float, depth: float) -> Shape:

return primitive_call('cube', color=(0.1, 0.1, 0.1), shape_kwargs={'scale': (width,
height, depth)})↪→
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@register()
def head(radius: float) -> Shape:

return primitive_call('sphere', color=(0.9, 0.75, 0.65), shape_kwargs={'radius':
radius})↪→

@register()
def apple(radius: float) -> Shape:

return primitive_call('sphere', color=(0.8, 0.1, 0.1), shape_kwargs={'radius':
radius})↪→

@register()
def hat(radius: float, height: float) -> Shape:

brim = primitive_call('cylinder', color=(0.1, 0.1, 0.1), shape_kwargs={'radius':
radius * 1.2, 'p0': (0, 0, 0), 'p1': (0, height * 0.1, 0)})↪→

top = primitive_call('cylinder', color=(0.1, 0.1, 0.1), shape_kwargs={'radius':
radius, 'p0': (0, height * 0.1, 0), 'p1': (0, height, 0)})↪→

return concat_shapes(brim, top)

@register()
def son_of_man() -> Shape:

# Create the suit
suit_shape = library_call('suit', width=0.6, height=1.0, depth=0.3)

# Create the head
head_shape = library_call('head', radius=0.15)
head_shape = transform_shape(head_shape, translation_matrix((0, 0.6, 0)))

# Create the apple
apple_shape = library_call('apple', radius=0.08)
apple_shape = transform_shape(apple_shape, translation_matrix((-0.15, 0.62, 0.15)))

# Changed x-coordinate to -0.15↪→

# Create the hat
hat_shape = library_call('hat', radius=0.12, height=0.15)
hat_shape = transform_shape(hat_shape, translation_matrix((0, 0.78, 0)))

# Combine all shapes
figure = concat_shapes(suit_shape, head_shape, apple_shape, hat_shape)

# Add a slight tilt to the figure
figure_center = compute_shape_center(figure)
tilted_figure = transform_shape(figure, rotation_matrix(0.1, (1, 0, 0),

figure_center))↪→

return tilted_figure

The only change made to the program is in the son of man() function. Specifically, the
translation of the apple shape has been modified. The x-coordinate in the translation
matrix for the apple has been changed from 0 to -0.15:

apple_shape = transform_shape(apple_shape, translation_matrix((-0.15, 0.62, 0.15))) #
Changed x-coordinate to -0.15↪→

This change moves the apple to the left by 0.15 units in the scene’s coordinate system,

where the negative x-direction corresponds to the left side of the figure. The y and z

coordinates remain the same, keeping the apple at the same height and depth relative to

the face.

Example 2. Input scene description: ‘‘Paul Klee Castle and Sun’’. Input editing in-
struction: ‘‘Change all castles to be the middle one’’. Output:

Here’s the minimally edited program to change all castles to be the middle one:

from helper import *

"""
Change all castles to be the middle one
"""

@register()
def rectangle(width: float, height: float, color: tuple[float, float, float]) -> Shape:

return primitive_call('cube', shape_kwargs={'scale': (width, height, 0.01)},
color=color)↪→

@register()
def triangle(base: float, height: float, color: tuple[float, float, float]) -> Shape:

triangle_shape = primitive_call('cube', shape_kwargs={'scale': (base, height, 0.01)},
color=color)↪→

return transform_shape(triangle_shape, translation_matrix((0, height/2, 0)))

@register()
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def sun(radius: float) -> Shape:
return primitive_call('sphere', shape_kwargs={'radius': radius}, color=(1.0, 0.8, 0))

@register()
def castle_block(width: float, height: float, color: tuple[float, float, float]) ->

Shape:↪→
return library_call('rectangle', width=width, height=height, color=color)

@register()
def castle_tower(width: float, height: float, color: tuple[float, float, float]) ->

Shape:↪→
tower = library_call('castle_block', width=width, height=height, color=color)
roof = library_call('triangle', base=width, height=width/2, color=color)
tower_height = compute_shape_sizes(tower)[1]
return concat_shapes(

tower,
transform_shape(roof, translation_matrix((0, tower_height, 0)))

)

@register()
def castle() -> Shape:

base = library_call('castle_block', width=0.8, height=0.4, color=(0.5, 0.5, 0.7))
center_tower = library_call('castle_tower', width=0.25, height=0.7, color=(0.5, 0.5,

0.7))↪→

base_width = compute_shape_sizes(base)[0]
center_tower_width = compute_shape_sizes(center_tower)[0]

return concat_shapes(
base,
transform_shape(center_tower, translation_matrix((-base_width/4, 0.4, 0))),
transform_shape(center_tower, translation_matrix((base_width/4, 0.4, 0))),
transform_shape(center_tower, translation_matrix((0, 0.4, 0)))

)

@register()
def background() -> Shape:

return library_call('rectangle', width=2, height=2, color=(0.95, 0.95, 0.8))

@register()
def castle_and_sun() -> Shape:

bg = library_call('background')
castle_shape = library_call('castle')
sun_shape = library_call('sun', radius=0.15)

return concat_shapes(
bg,
transform_shape(castle_shape, translation_matrix((0, -0.3, 0.01))),
transform_shape(sun_shape, translation_matrix((0.5, 0.5, 0.02)))

)

In this edited version, I made the following changes to fulfill the instruction "Change
all castles to be the middle one":

1. In the castle() function, I removed the left tower and right tower variables.
2. I changed the base color to match the center tower’s color: (0.5, 0.5, 0.7).
3. I replaced the left and right towers with two additional center towers.
4. I adjusted the positioning of the three center towers to be evenly spaced across

the base.

Now, when the castle and sun() function is called, it will create a scene where all

the castle towers are identical to the original middle tower, fulfilling the given

instruction.

Example 3. Input scene description: ‘‘Bramante Staircase, Vatican Museums’’.
Input editing instruction: ‘‘shrink staircase radius by 80%’’. Output:

Here’s the minimally edited program that shrinks the staircase radius by 80%:

from helper import *

"""
Shrink staircase radius by 80%
"""

@register()
def stair_step(width: float, height: float, depth: float) -> Shape:

return primitive_call('cube', color=(0.8, 0.8, 0.8), shape_kwargs={'scale': (width,
height, depth)})↪→

@register()
def spiral_staircase(radius: float, height: float, num_steps: int) -> Shape:
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def loop_fn(i: int) -> Shape:
angle = (i / num_steps) * 2 * math.pi
step_width = 0.8 * radius
step_height = height / num_steps
step_depth = 0.3 * radius

step = library_call('stair_step', width=step_width, height=step_height,
depth=step_depth)↪→

y_offset = i * step_height
x_offset = radius * math.cos(angle)
z_offset = radius * math.sin(angle)

step = transform_shape(step, translation_matrix((x_offset, y_offset, z_offset)))
return transform_shape(step, rotation_matrix(angle, (0, 1, 0), (x_offset,

y_offset, z_offset)))↪→

return loop(num_steps, loop_fn)

@register()
def central_column(radius: float, height: float) -> Shape:

return primitive_call('cylinder', color=(0.7, 0.7, 0.7),
shape_kwargs={'radius': radius, 'p0': (0, 0, 0), 'p1': (0,

height, 0)})↪→

@register()
def bramante_staircase() -> Shape:

staircase_radius = 5.0 * 0.2 # Shrink staircase radius by 80%
staircase_height = 15.0
num_steps = 60
column_radius = 0.5 * 0.2 # Shrink column radius proportionally

stairs = library_call('spiral_staircase', radius=staircase_radius,
height=staircase_height, num_steps=num_steps)↪→

column = library_call('central_column', radius=column_radius,
height=staircase_height)↪→

return concat_shapes(stairs, column)

In this edited version, I’ve made the following changes to shrink the staircase radius by
80%:

1. In the bramante staircase function, I’ve modified the staircase radius by
multiplying it by 0.2 (which is equivalent to reducing it by 80%):

staircase_radius = 5.0 * 0.2 # Shrink staircase radius by 80%

2. To maintain proportions, I’ve also adjusted the column radius by the same factor:

column_radius = 0.5 * 0.2 # Shrink column radius proportionally

These changes will result in a Bramante staircase that has a radius 80% smaller than the

original, while maintaining the same height and number of steps. The central column has

also been proportionally reduced to maintain the overall look of the structure.

Example 4. Input scene description: ‘‘a 8-layer 3-color Jenga set at game
start’’. Input editing instruction: ‘‘remove 2 blocks from second top layer
and the tower should not fall’’. Output:

Here’s the minimally edited program to remove 2 blocks from the second top layer of the
Jenga tower:

from helper import *

"""
Remove 2 blocks from second top layer and the tower should not fall
"""

@register()
def jenga_block(color: tuple[float, float, float]) -> Shape:

"""Create a single Jenga block"""
return primitive_call('cube', color=color, shape_kwargs={'scale': (0.75, 0.5, 2.25)})

@register()
def jenga_layer(is_horizontal: bool, y_offset: float, colors: list[tuple[float, float,

float]], remove_blocks: list[int] = []) -> Shape:↪→
"""Create a layer of 3 Jenga blocks, optionally removing specified blocks"""
def block_fn(i: int) -> Shape:

if i in remove_blocks:
return []

block = library_call('jenga_block', color=colors[i])
if is_horizontal:
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transform = translation_matrix((i * 0.75 - 0.75, y_offset, 0))
else:

transform = translation_matrix((0, y_offset, i * 0.75 - 0.75))
transform = transform @ rotation_matrix(math.pi/2, (0, 1, 0), (0, 0, 0))

return transform_shape(block, transform)

return loop(3, block_fn)

@register()
def jenga_tower() -> Shape:

"""Create an 8-layer Jenga tower with 2 blocks removed from the second top layer"""
colors = [(0.8, 0.4, 0.3), (0.9, 0.7, 0.5), (0.6, 0.3, 0.1)]

def layer_fn(i: int) -> Shape:
is_horizontal = i % 2 == 0
y_offset = i * 0.5
layer_colors = [colors[i % 3], colors[(i+1) % 3], colors[(i+2) % 3]]
remove_blocks = [0, 2] if i == 6 else [] # Remove blocks 0 and 2 from the second

top layer (index 6)↪→
return library_call('jenga_layer', is_horizontal=is_horizontal,

y_offset=y_offset, colors=layer_colors, remove_blocks=remove_blocks)↪→

return loop(8, layer_fn)

@register()
def jenga_set() -> Shape:

"""Create a complete Jenga set with 2 blocks removed from the second top layer"""
tower = library_call('jenga_tower')
base = primitive_call('cube', color=(0.4, 0.2, 0.1), shape_kwargs={'scale': (3, 0.1,

3)})↪→

tower_min = compute_shape_min(tower)
base_max = compute_shape_max(base)

return concat_shapes(
base,
transform_shape(tower, translation_matrix((0, base_max[1] - tower_min[1], 0)))

)

This modified version of the program removes 2 blocks from the second top layer of the
Jenga tower. Here are the changes made:

1. The jenga layer function now accepts an optional remove blocks parameter, which is
a list of block indices to remove from the layer.

2. In the jenga tower function, we modify the layer fn to remove blocks 0 and 2 (the
leftmost and rightmost blocks) from the second top layer (index 6, since we’re
counting from 0).

3. The rest of the program remains the same, ensuring that the tower is still placed
on the base and the overall structure is maintained.

These changes will result in a Jenga tower with two blocks missing from the second top

layer, while the rest of the tower remains intact. The tower should not fall because the

top layer is still fully supported by the remaining block in the second top layer.

G.3 TEXT-CONDITIONED 4D GENERATION

Example 1. Input: ‘‘carousel with a small canopy’’. Output:
Here’s a program that creates a carousel with a small canopy using the provided
helper.py:

from helper import *

"""
carousel with a small canopy
"""

@register()
def carousel_base() -> Shape:

base = primitive_call('cylinder', shape_kwargs={'radius': 2, 'p0': (0, 0, 0), 'p1':
(0, 0.2, 0)}, color=(0.6, 0.4, 0.2))↪→

return base

@register()
def carousel_platform() -> Shape:

platform = primitive_call('cylinder', shape_kwargs={'radius': 1.8, 'p0': (0, 0.2, 0),
'p1': (0, 0.3, 0)}, color=(0.8, 0.8, 0.8))↪→

return platform

@register()
def carousel_pole() -> Shape:
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pole = primitive_call('cylinder', shape_kwargs={'radius': 0.1, 'p0': (0, 0.3, 0),
'p1': (0, 3, 0)}, color=(0.7, 0.7, 0.7))↪→

return pole

@register()
def carousel_horse() -> Shape:

body = primitive_call('cylinder', shape_kwargs={'radius': 0.2, 'p0': (0, 0, -0.4),
'p1': (0, 0, 0.4)}, color=(1, 1, 1))↪→

head = primitive_call('sphere', shape_kwargs={'radius': 0.15}, color=(1, 1, 1))
head = transform_shape(head, translation_matrix((0, 0.2, -0.5)))
legs = loop(4, lambda i: transform_shape(

primitive_call('cylinder', shape_kwargs={'radius': 0.05, 'p0': (0, 0, 0), 'p1':
(0, -0.5, 0)}, color=(1, 1, 1)),↪→

translation_matrix((0.15 * (-1 if i % 2 == 0 else 1), -0.2, 0.3 * (-1 if i < 2
else 1)))↪→

))
horse = concat_shapes(body, head, legs)
return transform_shape(horse, translation_matrix((0, 1, 0)))

@register()
def carousel_horses() -> Shape:

return loop(4, lambda i: transform_shape(
library_call('carousel_horse'),
rotation_matrix(i * math.pi / 2, (0, 1, 0), (0, 0, 0)) @ translation_matrix((1.5,

0, 0))↪→
))

@register()
def canopy() -> Shape:

cone = primitive_call('cylinder', shape_kwargs={'radius': 2, 'p0': (0, 3, 0), 'p1':
(0, 3.5, 0)}, color=(1, 0.5, 0.5))↪→

top = primitive_call('sphere', shape_kwargs={'radius': 0.1}, color=(1, 0.7, 0.7))
top = transform_shape(top, translation_matrix((0, 3.6, 0)))
return concat_shapes(cone, top)

@register()
def carousel() -> Shape:

base = library_call('carousel_base')
platform = library_call('carousel_platform')
pole = library_call('carousel_pole')
horses = library_call('carousel_horses')
canopy_shape = library_call('canopy')
return concat_shapes(base, platform, pole, horses, canopy_shape)

@register_animation()
def carousel_animation() -> Generator[Shape, None, None]:

total_frames = 60
for frame in range(total_frames):

angle = frame * 2 * math.pi / total_frames
rotated_carousel = transform_shape(

library_call('carousel'),
rotation_matrix(angle, (0, 1, 0), (0, 0, 0))

)
yield rotated_carousel

This program creates a carousel with a small canopy. Here’s a breakdown of the
components:

1. carousel base: A cylindrical base for the carousel.
2. carousel platform: A slightly smaller cylinder on top of the base.
3. carousel pole: A central pole for the carousel.
4. carousel horse: A simple horse shape made from cylinders and a sphere.
5. carousel horses: Four horses arranged around the central pole.
6. canopy: A small conical canopy with a spherical top.
7. carousel: Combines all the components to create the complete carousel.
8. carousel animation: An animation that rotates the carousel.

The carousel is designed with a modular approach, allowing easy modifications and

adjustments to individual components. The animation function rotates the entire

carousel, simulating its movement.

Example 2. Input: ‘‘solar system model’’. Output:

Here’s a program that creates a simple solar system model using the provided helper.py:

from helper import *

"""
solar system model
"""

@register()
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def sun() -> Shape:
return primitive_call('sphere', shape_kwargs={'radius': 0.5}, color=(1, 0.7, 0))

@register()
def planet(radius: float, color: tuple[float, float, float]) -> Shape:

return primitive_call('sphere', shape_kwargs={'radius': radius}, color=color)

@register()
def orbit(radius: float) -> Shape:

points = 100
orbit_shape = []
for i in range(points):

angle = 2 * math.pi * i / points
x = radius * math.cos(angle)
z = radius * math.sin(angle)
orbit_point = primitive_call('sphere', shape_kwargs={'radius': 0.01}, color=(0.5,

0.5, 0.5))↪→
orbit_shape.append(transform_shape(orbit_point, translation_matrix((x, 0, z))))

return concat_shapes(*orbit_shape)

@register()
def solar_system() -> Shape:

sun_shape = library_call('sun')
mercury_orbit = library_call('orbit', radius=1.5)
venus_orbit = library_call('orbit', radius=2.5)
earth_orbit = library_call('orbit', radius=3.5)
mars_orbit = library_call('orbit', radius=4.5)

return concat_shapes(
sun_shape,
mercury_orbit,
venus_orbit,
earth_orbit,
mars_orbit

)

@register_animation()
def solar_system_animation() -> Generator[Shape, None, None]:

total_frames = 120

for frame in range(total_frames):
t = frame / total_frames

sun = library_call('sun')

mercury = transform_shape(
library_call('planet', radius=0.1, color=(0.7, 0.7, 0.7)),
rotation_matrix(t * 4 * math.pi, (0, 1, 0), (0, 0, 0)) @

translation_matrix((1.5, 0, 0))↪→
)

venus = transform_shape(
library_call('planet', radius=0.15, color=(0.9, 0.7, 0.4)),
rotation_matrix(t * 3 * math.pi, (0, 1, 0), (0, 0, 0)) @

translation_matrix((2.5, 0, 0))↪→
)

earth = transform_shape(
library_call('planet', radius=0.17, color=(0.2, 0.4, 0.8)),
rotation_matrix(t * 2 * math.pi, (0, 1, 0), (0, 0, 0)) @

translation_matrix((3.5, 0, 0))↪→
)

mars = transform_shape(
library_call('planet', radius=0.13, color=(0.8, 0.3, 0.1)),
rotation_matrix(t * 1.5 * math.pi, (0, 1, 0), (0, 0, 0)) @

translation_matrix((4.5, 0, 0))↪→
)

solar_system = library_call('solar_system')

yield concat_shapes(solar_system, sun, mercury, venus, earth, mars)

This program creates a simple solar system model with the following components:

1. A sun at the center.
2. Four planets (Mercury, Venus, Earth, and Mars) orbiting around the sun.
3. Orbit paths for each planet.

The solar system animation function generates an animation of the planets orbiting around
the sun. Each planet moves at a different speed, simulating their relative orbital
periods.

Here’s a breakdown of the functions:
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• sun(): Creates a yellow sphere representing the sun.
• planet(radius, color): Creates a sphere with the given radius and color,
representing a planet.

• orbit(radius): Creates a circular orbit path at the given radius.
• solar system(): Combines the sun and orbit paths into a static solar system
model.

• solar system animation(): Animates the planets orbiting around the sun.

The animation runs for 120 frames, with each planet completing a different fraction of

its orbit in that time. The sun remains stationary at the center while the planets

rotate around it.

Example 3. Input: ‘‘a toy wind turbine’’. Output:

Here’s a program to create a toy wind turbine using the provided helper.py:

from helper import *

"""
a toy wind turbine
"""

@register()
def turbine_base() -> Shape:

base = primitive_call('cylinder', shape_kwargs={'radius': 0.2, 'p0': (0, 0, 0), 'p1':
(0, 2, 0)}, color=(0.5, 0.5, 0.5))↪→

return base

@register()
def turbine_nacelle() -> Shape:

nacelle = primitive_call('cube', shape_kwargs={'scale': (0.6, 0.4, 0.8)}, color=(0.7,
0.7, 0.7))↪→

return transform_shape(nacelle, translation_matrix((0, 2.2, 0)))

@register()
def turbine_blade() -> Shape:

blade = primitive_call('cube', shape_kwargs={'scale': (0.1, 1.5, 0.05)}, color=(1, 1,
1))↪→

return transform_shape(blade, translation_matrix((0, 0.75, 0)))

@register()
def turbine_rotor() -> Shape:

return loop(3, lambda i: transform_shape(
library_call('turbine_blade'),
rotation_matrix(i * 2 * math.pi / 3, (0, 0, 1), (0, 0, 0))

))

@register()
def wind_turbine() -> Shape:

base = library_call('turbine_base')
nacelle = library_call('turbine_nacelle')
rotor = transform_shape(library_call('turbine_rotor'), translation_matrix((0, 2.2,

0.4)))↪→
return concat_shapes(base, nacelle, rotor)

@register_animation()
def wind_turbine_animation() -> Generator[Shape, None, None]:

total_frames = 60

for frame in range(total_frames):
angle = frame * 2 * math.pi / total_frames

base = library_call('turbine_base')
nacelle = library_call('turbine_nacelle')
rotor = transform_shape(

library_call('turbine_rotor'),
rotation_matrix(angle, (0, 0, 1), (0, 2.2, 0.4)) @ translation_matrix((0,

2.2, 0.4))↪→
)

yield concat_shapes(base, nacelle, rotor)

This program creates a toy wind turbine with the following components:

1. turbine base: A cylindrical base for the turbine.
2. turbine nacelle: A cuboid representing the nacelle (housing) at the top of the

turbine.
3. turbine blade: A single blade of the turbine.
4. turbine rotor: Three blades arranged in a rotor configuration.
5. wind turbine: The complete wind turbine, combining all the components.
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The wind turbine animation function creates an animation of the turbine with rotating

blades. It generates 60 frames, rotating the rotor by a full 360 degrees over the course

of the animation.
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