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Abstract

Equivariant Graph Neural Networks (GNNs) have
made remarkable success in a variety of scien-
tific applications. However, existing equivariant
GNNs encounter the efficiency issue for large ge-
ometric graphs and perform poorly if the input is
reduced to sparse and local graph for speed ac-
celeration. In this paper, we propose FastEGNN,
an enhanced model of equivariant GNNs on large
geometric graphs. The central idea is leveraging
a small ordered set of virtual nodes to approxi-
mate the large unordered graph of real nodes. In
particular, we distinguish the message passing
and aggregation for different virtual nodes to en-
courage mutual distinctiveness, and minimize the
Maximum Mean Discrepancy (MMD) between
virtual and real coordinates to realize the global
distributedness. FastEGNN meets all necessary
E(3) symmetries, with certain universal expres-
sivity assurance as well. Our experiments on N -
body systems (100 nodes), Proteins (800 nodes)
and Water-3D (8000 nodes), demonstrate that
FastEGNN achieves a promising balance between
accuracy and efficiency, and outperforms EGNN
in accuracy even after dropping all edges in real
systems like Proteins and Water-3D. Code is avail-
able at https://github.com/dhcpack/FastEGNN.

1. Introduction
Various scientific data, including chemical molecules, pro-
teins, and other particle-based physical systems, often take
the form of geometric graphs (Bronstein et al., 2021). Upon
the typical graph representation, geometric graphs further
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Figure 1. Our FastEGNN is able to learn distinctive virtual nodes
(denoted in green) that reflect different dynamical patterns of the
protein.

associate each node with specific types of geometric vectors,
such as 3D atom coordinates in molecules, or 3D states
(positions, velocities or spins) of each particle in general
physical systems. Geometric graphs prominently display
symmetries involving translations, rotations, and/or reflec-
tions, which arise from the uniformity of the physical laws
governing atom (or particle) dynamics, regardless of abso-
lute position and orientation. When addressing such data,
it’s crucial to integrate the aforementioned symmetries into
the model design, giving rise to the research of equivariant
Graph Neural Networks (GNNs) (Han et al., 2022c; Du-
val et al., 2023). In recent years, equivariant GNNs have
made remarkable success in scientific applications, includ-
ing physical dynamics simulation (Wu et al., 2024; Xu et al.,
2024), protein generation (Watson et al., 2023; Ingraham
et al., 2023), and many others.

Despite fruitful progress, existing equivariant GNNs will en-
counter the efficiency issue for large geometric graphs which
exist widely in physical dynamics simulation. For instance,
the message exchange in EGNN (Satorras et al., 2021), one
of the most prevailing models, leads to quadratic complexity
regarding the number of nodes for fully-connected graphs,
which is unacceptable in practical scenarios, such as fluid
dynamics simulation, where the number of particles are
usually more than tens of thousands. One natural way to
improve the efficiency is to decrease the edge number by,
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for example, limiting the exchange of messages to local
neighbors that are within a cutoff radius. Nevertheless, this
comes at the cost of sacrificing message passing over nodes
and probably leads to performance detriment.

In this paper, we tackle the aforementioned issue with the
aid of virtual nodes. We refer the nodes in the original
geometric graphs as real nodes for better discrimination.
By design, each virtual node is allowed to connect all real
nodes, and all other virtual nodes as well. It ensures that
the message exchange between each pair of real nodes is
maintained, although passing through virtual nodes. In this
way, we are still able to conduct globally dense message
passing and further improve the performance, even when we
reduce large geometric graphs into sparse ones for efficiency
consideration. Furthermore, from a physics standpoint, the
force interaction among a set of particles and any other
remotely located particle can be compactly translated as the
interaction between an equivalent particle of the set and the
distant particle (Darve, 2000). This equivalence principle
greatly motivates our study, as we expect to represent the
equivalent particles with our learned virtual nodes.

The central problem is how to learn these virtual nodes ef-
fectively. In principle, the virtual nodes we desire should
exhibit two geometric characteristics: mutual distinctive-
ness and global distributedness. The former characteristic
indicates that different virtual nodes should encode different
aspects of the entire geometric graph, including different
spatially clustering centers or other distinct geometric mea-
surements. The second characteristic suggests that the spa-
tial distribution of virtual nodes should align with the actual
nodes, which essentially encourages the virtual nodes to
function as equivalent substitutes for the real nodes. These
two aspects are correlated, as the mutual distinctiveness
promotes the global distributedness, and vice versa.

In summary, we propose FastEGNN upon the EGNN back-
bone (Satorras et al., 2021), with the following designs:

• We propose to learn a certain number of virtual nodes
that facilitate global message passing over the sparse
reduction of large geometric graphs. To the best of our
knowledge, we are the first to investigate equivariant
virtual nodes learning on large geometric graphs.

• Regarding the mutual distinctiveness, we treat the vir-
tual nodes as an ordered set and formulate their 3D co-
ordinates as different channels of a virtual matrix. The
virtual-virtual message passing is designed as an E(3)-
invariant inner-product of the center-translated virtual
matrix, with which we elaborate the E(3)-equivariant
real-virtual message passing by constructing different
aggregation functions for different virtual nodes.

• As for the global distributedness, we propose to lever-
age Maximum Mean Discrepancy (MMD) (Borgwardt

et al., 2006) which is equipped with an E(3)-invariant
kernel, to enforce the alignment between virtual and
real coordinates. The MMD objective is implemented
by sampling a small-scale subset of real nodes.

We prove that FastEGNN meets all necessary E(3) sym-
metries, with certain universal expressivity assurance de-
vised as well. Our experiments on three large-scale systems:
N -body systems, proteins and Water-3D, demonstrate that
FastEGNN achieves a promising balance between accuracy
and efficiency, and outperforms EGNN in accuracy even
when dropping all edges in proteins and water-3D.

Note that previous works (Gilmer et al., 2017; Han et al.,
2022a; Kong et al., 2023) have conducted the attempt by
injecting a global node into the input graph, but this injected
global node is simply considered as the mean of the graph,
or specifically designed via external knowledge, without
satisfying the above two mentioned characteristics. We will
demonstrate in our experiments that learning virtual nodes
under these constraints improves performance. Besides, one
might consider utilizing off-the-shelf clustering methods
(such as K-means) to locate the cluster centers as virtual
nodes. However, it will include more computation overhead
and is not end-to-end learnable by the target task.

2. Related Work
Geometric GNNs. Geometric GNNs can be classified into
invariant and equivariant models. Invariant GNNs, exempli-
fied by SchNet (Schütt et al., 2018) and DimeNet (Klicpera
et al., 2020), have made initial attempts to embed geometric
information into invariance features like distance and angles.
However, a notable gap still exists in achieving full equiv-
ariance within these models, leading to the study of equiv-
ariant GNNs. For example, high-degree steerable GNNs,
including TFN (Thomas et al., 2018), SEGNN (Brandstetter
et al., 2022), and SE(3)-Transformer (Fuchs et al., 2020),
leverage the equivariance of spherical harmonics, offering
commendable physical interpretability. Nevertheless, the
substantial computational cost associated with spherical
harmonic forms poses a significant limitation for their appli-
cation in large-scale tasks. In addition to the aforementioned
models, scalarization-based GNNs (Satorras et al., 2021;
Köhler et al., 2019; Jing et al., 2021) present a more elegant
and expedient approach to representing geometric informa-
tion, relying solely on linear combinations of geometric
vectors. Despite the rich literature and sophisticated archi-
tectures, the effectiveness of geometric GNNs usually relies
on fully-connected geometric graphs to ensure accuracy.
However, this necessity introduces square-level complexity,
thereby constraining the practical implementation of geo-
metric GNNs in large-scale scientific problems. Our work
tackles these challenges, aiming to enhance the scalability
and applicability of geometric GNNs in scientific domains.
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Virtual nodes for GNNs. In prior investigations on con-
ventional GNNs (Gilmer et al., 2017; Pham et al., 2017;
Hwang et al., 2022), attempts were made to maintain graph
connectivity by introducing virtual nodes connected to all
graph nodes. This design ensures that any two nodes can
exchange information through the process of reading from
and writing into virtual nodes at each step of message pass-
ing. In the realm of geometric GNNs, certain existing ap-
proaches treat virtual nodes as specifically defined clusters
based on prior knowledge. They are exclusively connected
to nodes belonging to the same cluster, such as different ob-
jects in SGNN (Han et al., 2022a) or distinct protein chains
in MEAN (Kong et al., 2023). In contrast to these meth-
ods, our approach involves end-to-end learning of virtual
nodes from the dataset, eliminating the reliance on prior
or external knowledge. Notably, the learning process for
virtual nodes is thoughtfully designed to ensure both mutual
distinctiveness and global distributedness.

3. Preliminaries
Geometric graph. A geometric graph ofN nodes is defined
as G⃗ := (X⃗,H; E), where X⃗ = [x⃗1, x⃗2, · · · , x⃗N ]⊤ ∈
RN×3 is the collection of 3D coordinates for the nodes,
H = [h1,h2, · · · ,hN ]⊤ ∈ RN×H is the node feature
matrix, and E is the set of edges representing the interac-
tions between nodes. In the physical dynamics simulation
scenarios, we are additionally provided with the velocities
V⃗ = [v⃗1, v⃗2, · · · , v⃗N ]⊤ ∈ RN×3 and optionally the edge
feature eij ∈ RE for every edge (i, j) ∈ E .

Equivariance. Formally, a function ϕ is equivariant w.r.t.
group G if ϕ(ρX (g)x) = ρY(g)ϕ(x),∀g ∈ G, where
ρX (g) and ρY(g) are the representation of transformation
g in the input space X and output space Y , respectively. In
this work, we focus on the 3D Euclidean group E(3), whose
elements g ∈ E(3) can be realized by an orthogonal matrix
O ∈ R3,O⊤O = I and a translation vector t⃗ ∈ R3. By
this means, every E(3)-equivariant GNN ϕ on geometric
graph G⃗ taking as input coordinates X⃗ , velocities V⃗ , and
node features H should satisfy the following constraint:

X⃗ ′O + t⃗,H ′ = ϕ(X⃗O + t⃗, V⃗ O,H, E),∀(O, t⃗) ∈ E(3),
(1)

where X⃗ ′,H ′ = ϕ(X⃗, V⃗ ,H, E) are the updated coordi-
nates and node features. Note that the velocities V⃗ are not
affected by the translation t⃗. We do not specify permuta-
tion equivariance in Eq. (1), since it has been intrinsically
encoded in GNNs.

Problem formulation. We mainly focus on the position
prediction task which is fundamental to many physical sim-
ulation scenarios (Fuchs et al., 2020; Satorras et al., 2021).
Specifically, given the initial geometric graph with coordi-
nates X⃗ , node features H , velocities V⃗ , edges E and their

attributes {eij : (i, j) ∈ E}, we seek to predict X⃗ ′ as the
positions after a fixed time ∆t. It is an E(3)-equivariant
task, since if we rotate or translate the initial positions, the
predicted positions should rotate or translate in accordance.
That is, we aim to design an E(3)-equivariant function ϕ
that meet the constraint of Eq. (1).

4. Our FastEGNN
In this section, we introduce the details of our proposed
FastEGNN. We first present the representation of virtual
nodes in § 4.1. Then, we design the message passing and
aggregation among the real and virtual nodes in § 4.2, and
provide the learning objectives of our model in § 4.3. Finally,
we will explain the benefit of involving virtual nodes in large
geometric graph learning in § 4.4.

As claimed in Introduction, FastEGNN is designed to ensure
the mutual distinctiveness and the global distributedness of
the virtual nodes. We will specify that the mutual distinc-
tiveness is guaranteed by the independent parameterization
of the virtual nodes in § 4.1, and separate message pass-
ing and aggregation with different functions in § 4.2. As
for the global distributedness, we achieve this property by
employing the MMD loss as a regularization term in § 4.3.

4.1. Geometric graphs with virtual nodes

With the input geometric graph G⃗ as defined before, we
create an augmented geometric graph G⃗v by adding a set
of C virtual nodes (Z⃗,S), where Z⃗ ∈ R3×C and S ∈
RH×C refer to the 3D coordinates and invariant features,
respectively. Each virtual node is connected to all real nodes
in G⃗, as well as each other virtual node. This augments the
original edge set E with new connections, leading to Ev.
Overall, G⃗v := (X⃗, V⃗ ,H; Z⃗,S; Ev).

As the virtual nodes are not observed in the input data, we
need to handcraft the initialization of their values. We adopt
the following initialization strategy for the virtual nodes:
Z⃗ = 1

N

∑N
i=1 x⃗i1

⊤, where each channel in Z⃗ is initialized
as the Center-of-Mass (CoM) of the input geometric graph,
ensuring E(3)-equivariance; each channel of S ∈ RH×C

is initialized as independent learnable parameters that are
optimized during training. In form, the virtual nodes are
initialized as a function of the real nodes, namely, Z⃗,S =
φint(X⃗,H), which should abide by:

OZ⃗ + t⃗,S = φint(PX⃗O + t⃗,PH), (2)

for any orthogonal transformation O ∈ R3×3, translation
t⃗ ∈ R3, and permutation P ∈ {0, 1}N×N . Z⃗ is E(3)-
equivariant and permutation-invariant with respect to X⃗ .

One crucial point we would like to emphasize is that the
channels of Z⃗ (and S) actually form an ordered set; in other
words, different channel, namely, different virtual node, is
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Figure 2. The overall architecture of FastEGNN. (X⃗,H) are the real coordinates and features; (Z⃗,S) are the virtual coordinates and
features. Each layer contains 5 components: Real-Real Message mr

ri,rj , Virtual Global Message mv , Real-Virtual Message mv
ri , Real

Aggregation, and Virtual Aggregation. The real-real and real-virtual edges are displayed with different colors to indicate that the message
passing and aggregation functions over the edges are different.

endowed with different meaning and can not be organized
in arbitrary permutation. This restriction, along with the
separate message passing mechanism in the next subsection,
serves our purpose of attaining the mutual distinctiveness
amongst the virtual nodes. Besides, such orderliness also
facilitates the derivation of the message function with uni-
versal expressivity, which will be detailed in § 4.4.

4.2. Message Passing and Aggregation

After obtaining the initialized virtual nodes, we conduct
the update of all virtual nodes and all real nodes via E(3)-
equivariant message passing, as illustrated in Figure 2. This
includes real-real message computation, virtual global mes-
sage calculation, real-virtual message derivation, real node
aggregation, and virtual node aggregation. We introduce
each component in detail below.

We denote by (X⃗(0), V⃗ (0),H(0); Z⃗(0),S(0); Ev) the ini-
tialization, and specify the l-th layer with superscript l.

Real-real message. We first derive the message between
all the real nodes in the way akin to EGNN (Satorras et al.,
2021), which is given by:

mr
ij = φ1(h

(l)
i ,h

(l)
j , ∥x⃗(l)

i − x⃗
(l)
j ∥2, eij), (3)

where φ1 is a Multi-Layer Perceptron (MLP).

Virtual global message. Distinct virtual node represents
distinct aspect of the geometric graph. Therefore, exhaust-
ing the correlation between each pair of the virtual nodes is
able the reflect the entire behavior of the input system. To
do so, we compute an invariant matrix extracted from the

inner-product of the center-translated virtual coordinates:

mv = (Z⃗(l) − x̄1⊤)⊤(Z⃗(l) − x̄1⊤), (4)

where x̄ = 1
N

∑N
i=1 x⃗i is the CoM of the geometric graph.

Clearly, mv ∈ RC×C is an E(3)-invariant matrix, and in-
deed an universal approximation of any E(3)-invariant func-
tion of the virtual coordinates Z⃗(l), according to the proof
of Lemma 2 in Huang et al. (2022).

Real-virtual message. The next step is to compute the
message between the real nodes and the virtual nodes by:

mv
i = φ2

(
h
(l)
i ,S(l),

C⊕
c=1

∥x⃗(l)
i − z⃗(l)

c ∥2,mv

)
, (5)

where
⊕

defines the concatenations along the channel di-
mension, and φ2 is an MLP. Eq. (5) returns the message
between each real node i and the global virtual set, which
will be consistently applied during the later real and virtual
node aggregation processes. Again, Eq. (5) is E(3)-invariant.
In our implementation, we find that computing message
between real node i and virtual node c separately, namely,
mv

ic = φ2

(
h
(l)
i , s

(l)
c , ∥x⃗(l)

i − z⃗
(l)
c ∥2,mv

c

)
enables more

effective training and better performance, in contrast to the
global message from all virtual nodes in Eq. (5). Here, mv

c

denotes the c-th column of mv .

Real aggregation. Given the real-real message mr
ij and

real-virtual message mv
i , we are ready to derive the message

4



Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning

aggregation for real node i as follows:

x⃗
(l+1)
i =x⃗

(l)
i + αi

∑
j∈N (i)

(x⃗
(l)
i − x⃗

(l)
j )φr

x(m
r
ij)+

1

C

C∑
c=1

(x⃗
(l)
i − z⃗(l)

c )φv
x(m

v
ic) + φv(h

(l)
i )v⃗

(0)
i ,

(6)

h
(l+1)
i =h

(l)
i + φh

h
(l)
i ,

C⊕
c=1

mv
ic, αi

∑
j∈N (i)

mr
ij

 ,

(7)

where αi = 1
|N (i)| , φ

r
x, φ

v
x, φv are MLPs outputting one-

dimensional scalars, and φh is also an MLP with the out-
put dimension complying with that of h(l+1)

i . The update
of x⃗(l+1)

i (and similarly h
(l+1)
i ) is inspired by EGNN but

further extended with the message from the virtual nodes,
namely, the term

∑C
c=1(x⃗

(l)
i − z⃗

(l)
j )φv

x(m
v
i ). Previous idea

of adding a global node in Han et al. (2022a) is more like a
degenerated version of Eq. (6) where φr

x and φv
x are shared.

Virtual aggregation. Now, we devise the virtual node
aggregation as:

z⃗(l+1)
c = z⃗(l)

c +
1

N

N∑
i=1

(z⃗(l)
c − x⃗

(l)
i )φZ(m

v
ic), (8)

s(l+1)
c = s(l)c + φS

(
s(l)c ,

1

N

∑N

i=1
mv

ic

)
, (9)

where, φZ ∈ R and φS are also MLPs. To be specific,
the calculation

∑N
i=1(z⃗

(l)
c − x⃗

(l)
i )φZ(m

v
ic) in Eq. (8) ag-

gregates all messages from all real nodes, multiplied with
different scalar (φZ(m

v
ic)). In this way, the update of dif-

ferent virtual node is independent to each other, for the sake
of encouraging better mutual distinctiveness.

We have the flowing theoretical assurance by our design:

Proposition 4.1. If the initialization of the virtual nodes
satisfies Eq. (2), then after Eqs. (3) to (9), the output
coordinates X⃗(L) are E(3)-equivariant and permutation-
equivaraint, the virtual coordinates Z⃗(L) are E(3)-
equivariant and permutation-invariant, with respect to the
input X⃗(0).

4.3. Learning Objectives

In this subsection, we exploit the MMD objective (Borg-
wardt et al., 2006) to enforce the alignment between virtual
and real coordinates. MMD is widely used in the research
of domain adaption. Here, we derive LMMD without the

original term k(x⃗
(L)
i , x⃗

(L)
j ) as:

1

C2

C∑
i=1

C∑
j=1

k(z⃗
(L)
i , z⃗

(L)
j )− 1

NC

N∑
i=1

C∑
j=1

k(x⃗
(L)
i , z⃗

(L)
j ),

(10)

where the RBF kernel k(x⃗, y⃗) = exp(−∥x⃗−y⃗∥2

2σ2 ) is E(3)-
invariant, hence the MMD loss is also E(3)-invariant. In-
terestingly, minimizing the first term in Eq. (10) is actually
enlarging the divergence between the virtual nodes, while
maximizing the second term enhances the similarity be-
tween the virtual nodes and the real ones. Note that we can
just sample a small-scale subset of the real nodes for the
MMD calculation at each iteration to avoid redundant costs.

The overall training loss L is a combination of the MSE
loss between the predicted positions and the ground truth,
together with the proposed auxiliary E(3)-invariant MMD
loss to expand the coverage of the virtual nodes towards the
data distribution:

L = LMSE(X⃗
(L), X⃗GT) + λLMMD(X⃗GT, Z⃗

(L)), (11)

where λ is the balancing factor between MSE and MMD.

4.4. Efficient Learning on Large Geometric Graphs

The main complexity of FastEGNN lies in the aggregation
processes for each node in Eq.(6-7), where the number of
the summation operations for all real nodes is NK +NC,
with K denoting neighbor size. To improve the efficiency
for large graphs, one solution is decreasing the value of
K, which yet will diminish the interaction between the
real nodes. Owing to the involvement of the virtual nodes,
in this subsection we will explain that such diminution is
alleviated and our FastEGNN will still perform well even
whenK is decreased to zero, if the distribution of the virtual
coordinates is well aligned with the real coordinates.

We focus on the update of the real coordinate x⃗i by aggregat-
ing messages from its neighbors. Without loss of generality,
we assume its neighbors to be the whole set X⃗ . The update
is denoted as the function x⃗′

i = f(x⃗i, X⃗), which should
be E(3)-equivariant w.r.t. the both inputs, and permutation-
invariant w.r.t. X⃗ . According to Proposition 10 in Villar
et al. (2021), we have the following result.

Proposition 4.2 ((Villar et al., 2021)). The update function
must take the form f(x⃗i, X⃗) = x⃗i+

∑N
j=1(x⃗j−x⃗i)ψ(x⃗j−

x⃗i, x⃗1 − x⃗i, · · · , x⃗j−1 − x⃗i, x⃗j+1 − x⃗i, · · · , x⃗N − x⃗i),
where ψ : R3N → R is orthogonality-invariant, and
permutation-invariant with respect to the last N − 1 in-
puts.

While this result is theoretically elegant, it is not so practi-
cally helpful, since the universal form of ψ is still unknown.
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Existing equivariant GNNs (such as EGNN) only exploit its
reduced but not sufficiently expressive version.

In our model, we need to aggregate the message from the vir-
tual nodes Z⃗. The update function becomes x⃗′

i = f(x⃗i, Z⃗).
Notably, different from X⃗ , the matrix Z⃗ is an ordered set
by our design, which entails that the permutation invariance
of f is no longer required. This enables us to derive a more
informative form of f as follows.

Proposition 4.3. The update function must
take the form f(x⃗i, Z⃗) = x⃗i +

∑C
c=1(z⃗c −

x⃗i)ψc

(⊕C
c=1 ∥z⃗c − x⃗i∥2,mv

)
, where ψc : RC+C2 → R

is an arbitrary non-linear function, and mv is an
E(3)-invariant term by Eq. (5).

The proof is based on Proposition 1 in Han et al. (2022a),
and provided in Theorem A.6. Proposition 4.3 is practi-
cally realizable by just implementing ψc via MLP, which
is actually the form in our FastEGNN (Eq. (5)). More im-
portantly, Proposition 4.3 suggests that f(x⃗i, Z⃗) is able
to universally approximate the messages from all the real
nodes, if the virtual coordinates Z⃗ can well approximate
the real ones X⃗ . As presented in the last subjection, we
achieve this goal by penalizing the MMD loss. Our latter
experiments will also support the theoretical analyses here,
showing that FastEGNN with a small value of C can still
perform promisingly even when all edges are dropped, while
EGNN behaves poorly.

5. Experiments
In this section, we conduct comprehensive evaluations of
FastEGNN on three challenging benchmarks of physical
simulation on large geometric graphs. We describe the
general experiment setup in § 5.1, and present our main
results in § 5.2. Ablation studies are also performed and
delivered in § 5.3. Moreover, we generalize FastEGNN by
taking other backbones into account in § 6

5.1. Experimental Setups

Datasets. We comprehensively benchmark our FastEGNN
on three large-scale simulation scenarios, including:

• N -body system (Satorras et al., 2021; Kipf et al.,
2018). In this simulation, each system comprises N =
100 charged particles with random charge ci ∈ {0, 1},
whose movements are driven by Coulomb force. The
graph is constructed in a fully-connected manner and
the edge features are the product of the charges cicj for
each pair of nodes, following standard practice (Sator-
ras et al., 2021). We use 5000 samples for training,
2000 for validation, and 2000 for testing. The task is to
predict the final positions after ∆t = 10 frames given

the initial positions and velocities of the particles.

• Protein MD (Han et al., 2022b). The protein molec-
ular dynamics dataset is processed from MDAnaly-
sis (Gowers et al., 2016), which depicts a long-range
AdK equilibrium MD trajectory (Seyler & Beckstein,
2017). Following previous work (Han et al., 2022b),
we model the dynamics of the backbone atoms, lead-
ing to 855 nodes per data point. A total number of
55108 edges (on average) are connected between the
atoms within a distance cutoff of 10Å. The dataset
has been split into train/validation/test sets that contain
2481/827/878 frame pairs respectively, with the time
span ∆t = 15.

• Water-3D (Sanchez-Gonzalez et al., 2020). We fur-
ther evaluate FastEGNN on the challenging benchmark
Water-3D, a large-scale particle-based fluid simulation
dataset generated with smoothed-particle hydrodynam-
ics (SPH). The dataset records the dynamics of water
falling in a box, with 1000 trajectories for training,
100 for validation, and 100 for testing. There are on
average a large amount of 7806 particles and 94999
edges (on average) in each system, where the edges are
connected with a cutoff of 0.035.

Baselines. We compare FastEGNN with the following
baselines: the simplest equivariant model Linear dynam-
ics (Satorras et al., 2021), the non-equivariant Message-
Passing Neural Network (MPNN) (Gilmer et al., 2017), the
invariant GNN SchNet (Schütt et al., 2018), and the equivari-
ant GNNs including Tensor Field Networks (TFN) (Thomas
et al., 2018), Radial Field (RF) (Köhler et al., 2019), and
EGNN (Satorras et al., 2021). We also evaluate EGNN∗, a
variant of EGNN that removes all edges in the graph, as a
reference.

Implementation. For our FastEGNN, we implement sev-
eral instantiations of it by exploring different combinations
of the number of virtual nodes C and the edge dropping
rate p, denoted as FastEGNN-⟨C, p⟩. We employ the fol-
lowing edge dropping strategy: We sort all edges based on
the distance between the connected nodes ∥x⃗i − x⃗j∥2 and
drop the top p% longest edges. For other hyper-parameters
on all three datasets such as the number of layers, hidden
dimension, and learning rate, we defer detailed descriptions
in Table 5 in Appendix C.2.

Metrics. 1. MSE: We use the Mean Squared Error (MSE)
between the predicted position and the ground truth on the
testing set as the metric to measure the prediction accuracy.
2. Relative Time: To demonstrate the speed-up effect of
FastEGNN, we also benchmark the inference time for all
models to traverse through the entire testing set, and com-
pute their relative scales w.r.t. the inference time of EGNN.
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Table 1. MSE and Inference time ratio with EGNN (Satorras et al., 2021) on N -body System (∼ 100 nodes), Protein Dynamics (∼ 800
nodes), and Water-3D (∼ 8000 nodes). FastEGNN-⟨C, p⟩ denotes the model with C virtual nodes and edge dropping rate as p. We also
report the results of EGNN* which indicates the EGNN model with all edges dropped. Note that for Protein Dynamics and Water-3D,
all input graphs have already been reduced to sparse local graphs to enable the efficient implementation for all methods. Since
TFN is much more time-consuming than other models, we chose not to test it on the Water-3D data set.

N -body System Protein Dynamics Water-3D
MSE (×10−2) Relative Time MSE Relative Time MSE (×10−4) Relative Time

Linear 12.66 0.01 2.26 0.01 14.06 0.01
MPNN (Gilmer et al., 2017) 3.06 0.62 150.56 0.62 5299.30 0.61
SchNet (Schütt et al., 2018) 24.83 1.39 2.56 1.40 35.02 2.44
RF (Köhler et al., 2019) 5.76 0.26 2.25 0.25 12.94 0.14
TFN (Thomas et al., 2018) 1.62 17.02 2.26 17.81 − −
EGNN (Satorras et al., 2021) 1.41 1.00 2.25 1.00 6.00 1.00
EGNN* (Satorras et al., 2021) 11.62 0.03 2.26 0.06 12.38 0.11

FastEGNN-⟨3, 0.00⟩ 1.12± 0.04 1.07 1.82± 0.02 1.39 2.49± 0.14 1.36
FastEGNN-⟨3, 0.75⟩ 1.10± 0.10 0.35 1.88± 0.01 0.96 2.83± 0.13 1.00
FastEGNN-⟨3, 1.00⟩ 9.52± 0.02 0.15 1.88± 0.01 0.80 3.40± 0.04 0.42

0.25 0.50 0.75 1.00 1.25Inference Time Ratio with EGNN0.91.01.11.21.31.41.5

MSE (×
102 )

EGNN- 0, 0.00EGNN- 0, 0.75

FastEGNN- 1, 0.00FastEGNN- 1, 0.75
FastEGNN- 3, 0.00FastEGNN- 3, 0.75

(a) N -body System

0.0 0.5 1.0Inference Time Ratio with EGNN
1.81.92.02.12.22.32.4

MSE

EGNN-⟨0, 0.00⟩EGNN-⟨0, 0.75⟩EGNN-⟨0, 1.00⟩

FastEGNN-⟨1, 0.00⟩FastEGNN-⟨1, 0.75⟩FastEGNN-⟨1, 1.00⟩
FastEGNN-⟨3, 0.00⟩FastEGNN-⟨3, 0.75⟩FastEGNN-⟨3, 1.00⟩

(b) Protein Dynamics

0.25 0.50 0.75 1.00 1.25Inference Time Ratio with EGNN
2.5
3.0
3.5
4.0

MSE (×
10−4 ) FastEGNN-⟨1, 0.00⟩FastEGNN-⟨1, 0.75⟩

FastEGNN-⟨1, 1.00⟩

FastEGNN-⟨3, 0.00⟩FastEGNN-⟨3, 0.75⟩
FastEGNN-⟨3, 1.00⟩

(c) Water-3D
Figure 3. Ablation studies on the number of virtual nodes C and the edge dropping rate p. We eliminate the results of all methods when
p = 1 on N-body and the performance of EGNN on Water-3D, since these values are poor to display along with the reported ones.
Besides, FastEGNN with 10 virtual nodes is also evaluated, with the results provided in Table 6 of Appendix.

5.2. Main Results

The main quantitative results are presented in Table 1. We
have the following observations: 1. Our FastEGNN yields
the lowest simulation error on all three large-scale bench-
marks, consistently outperforming the competitive baselines
by a significant margin. For instance, FastEGNN yields
28% and 24% improvement in terms of MSE over the best-
performed baseline EGNN on N -body system and protein
MD datasets, respectively. On the most challenging dataset
Water-3D with an average of 7806 particles in each sys-
tem, FastEGNN reaches a remarkably low simulation er-
ror of 3.40×10−4, as opposed to EGNN with an MSE of
6.00× 10−4. The strong results unanimously demonstrate
the superiority of FastEGNN in learning to simulate physical
dynamics and especially scaling to large and complicated
systems. 2. The equivariant GNNs including our FastEGNN
generally perform better than the non-equivariant MPNN
and the invariant GNN SchNet, demonstrating the impor-
tance of preserving physical symmetry for simulation. 3.

With the help of edge sampling, FastEGNN is able to con-
duct inference in a substantially faster manner. Such effect
is evident in the Relative Time metric, where FastEGNN
with an edge dropping rate of 0.75 or 1.00 increase the in-
ference speed. Notably, FastEGNN with 75% of the edges
dropped delivers the lowest MSE on N -body system while
only using 0.340 of the inference time of EGNN.

4. When all edges are preserved, FastEGNN performs fa-
vorably across all datasets compared with EGNN, thanks
to the proposed virtual node learning technique that boosts
the model expressivity. Interestingly, we also observe the
performance is only slightly influenced even when a large
proportion of the edges are dropped. For example on Protein
Dynamics, FastEGNN-⟨3, 1.00⟩ with all edges dropped still
obtains an MSE of 1.88, close to 1.82 when no edges are
dropped, remarkably lower than the MSE of 2.25 produced
by EGNN. By contrast, EGNN∗ performs poorly in all cases,
with performance close to Linear Dynamics. Overall, the
results show that our virtual learning enhances the expres-
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MSE: 2.582

(a) FastEGNN w/ Global Nodes

MSE: 2.214

(b) FastEGNN w/o MMD

MSE: 1.560

(c) FastEGNN (d) Ground Truth

Figure 4. Visualization of different variants of FastEGNN on Protein Dynamics. We illustrate the predicted position of the protein, as well
as the learned location of the virtual nodes (denoted in green). The dashed box marks highlight the region of interest where FastEGNN
yields more accurate prediction. For FastEGNN w/ Global Nodes, the learned coordinates of 3 virtual nodes are almost the same.

Table 2. Ablation studies on the design of virtual node learning.
Experiments are conducted on protein MD dataset and all variants
of FastEGNN in this experiment contains 3 virtual nodes. Results
are collected with edge dropping rates as 0.5, 0.75, and 1. The
performance of EGNN is also reported.

0.5 0.75 1

EGNN 2.249 2.244 2.257

FastEGNN w/ Global Nodes 1.888 1.967 2.121
FastEGNN w/o MMD 1.882 1.883 1.923
FastEGNN 1.863 1.878 1.876

sivity of the model and improves the performance, while
also enabling edge dropping for higher inference speed with
minimal sacrifice in prediction accuracy.

5.3. Ablation Studies

The number of virtual nodes. We investigate the effect of
the number of virtual nodes together with the edge dropping
rate on N -body system and protein MD datasets. We sweep
the number of virtual nodes in {1, 3, 10} and the edge drop-
ping rate in {0.00, 0.75, 1.00}, with the results illustrated
in Fig. 3. We also involve the results of EGNN with the
same edge dropping rates for reference. It is clear that when
using the same edge dropping rate, FastEGNN consistently
outperforms EGNN, with the aid of virtual node modeling.
Interestingly, we find that using 1 virtual node already leads
to the best performance on N -body, while the lowest error
is achieved with 3 virtual nodes on Protein MD dataset and
Water-3D, due to the higher complexity and broader spatial
coverage of protein MD and Water-3D. Moreover, when
keeping the same edge dropping rate, FastEGNN with vir-
tual nodes only adds very little inference time over EGNN,
thanks to our carefully designed message computation and
aggregation scheme for the virtual nodes.

0.6 0.8 1.0 1.2 1.4Balancing Factor λ1.80
1.85
1.90
1.95
2.00

MSE

(a) Fixed σ = 1.0

0.75 1.00 1.25 1.50 1.75Bandwidth σ1.821.841.861.881.901.921.941.96

MSE
(b) Fixed λ = 0.5

Figure 5. Influence of different hyper-parameters of the MMD loss
on protein MD dataset with the model FastEGNN-⟨3, 0.75⟩.

Modeling virtual nodes as ordered set. We have proposed
to model the virtual nodes as an ordered set instead of an
unordered set, which enforces mutual distinctiveness as an
inductive bias. We demonstrate the validity of such design
in Table 2, where we implement a variant of FastEGNN
that treats virtual nodes as global nodes with permutation-
equivariant message passing in between. We discover that
naively viewing them as global nodes leads to worse perfor-
mance and indistinguishable assignment of the virtual nodes
(Fig. 4(a)), with MSE increases from 1.888 to 2.121 while
the dropping rate increases from 0.5 to 1. Our approach in-
stead empowers the virtual nodes with orders and different
roles, which generally yields lower MSE.

The impact of the MMD loss. From Table 2, we ob-
serve that without enforcing the MMD loss during training,
FastEGNN becomes less effective in encouraging the di-
verse roles of the virtual nodes and thus incurs larger error.
The effect of MMD is further illustrated in Fig. 4, where the
learned positions of the virtual nodes without MMD loss fail
to capture the underlying geometric structure of the protein,
while our FastEGNN produces reasonable allocation of the
virtual nodes over spatial distribution of the data.
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Table 3. MSE of EGNN (Satorras et al., 2021), RF (Köhler et al., 2019), TFN (Thomas et al., 2018), SchNet (Schütt et al., 2018) and their
enhanced models involving virtual nodes learning.

MSE

Dropping Rate 0.00 0.50 0.75 0.90 1.00

EGNN (Satorras et al., 2021) 2.25 2.25 2.24 2.25 2.26
FastEGNN-1 1.86 1.91 1.94 1.92 2.14
FastEGNN-3 1.82 1.86 1.88 1.86 1.88
FastEGNN-10 1.87 1.89 1.95 1.89 1.97

RF (Köhler et al., 2019) 2.25 2.26 2.26 2.26 2.26
FastRF-3 2.07 2.02 2.02 2.02 2.05

TFN (Thomas et al., 2018) 2.25 2.26 2.26 2.26 −
FastTFN-3 1.84 2.01 1.90 2.06 −
SchNet (Schütt et al., 2018) 2.56 2.57 2.56 2.56 2.60
FastSchNet-3 1.99 2.01 2.01 2.06 2.08

Sensitivity analysis. We study the sensitivity of the model
w.r.t. the hyper-parameters in the MMD loss, namely σ,
which is the bandwidth in the MMD kernel, and λ, which
is the balancing factor in the hybrid loss. The results are
depicted in Fig. 5. We observe that our FastEGNN in general
remains non-sensitive to the choices of both σ and λ, with
the MSEs being generally lower than 1.9, outperforming
other models by a significant margin.

6. More Backbones Besides EGNN
We explore the generality of our method by further intro-
ducing virtual nodes to three-widely used GNNs, includ-
ing RF, TFN and SchNet, leading to FastRF, FastTFN and
FastSchNet. The implementation details are deferred to Ap-
pendix B. The enhanced models are evaluated on the Protein-
Dynamics dataset under different edge dropping rates. Re-
sults in Table 3 demonstrate that FastRF-3, FastTFN-3 and
FastSchNet-3 (with 3 virtual nodes) remarkably outperform
RF, TFN and SchNet in all cases. Overall, FastEGNN-3 still
achieves the best performance, probably because the EGNN
architecture is more suitable for this task, compared to RF,
TFN and SchNet.

7. Conclusion
We propose FastEGNN, an advanced model that operates on
large geometric graphs. The core insight lies in constructing
an ordered set of virtual nodes to perform expressive mes-
sage passing that enjoys both distinctiveness and distribut-
edness. The entire framework is also guaranteed the critical
E(3)-equivariance for enhanced performance. Comprehen-
sive evaluations on 100-body simulation, protein molecular
dynamics, and particle-based fluid simulation Water-3D
consistently demonstrate the superiority of FastEGNN in
terms of achieving remarkably lower simulation error and
significant speed-up due to sparsification.
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A. Proof
Theorem A.1 (Propostion 4.1). If the initialization of the virtual nodes satisfies Eq. (2), then after Eqs. (3) to (9), the output
coordinates X⃗(L) are E(3)-equivariant and permutation-equivaraint, the virtual coordinates Z⃗(L) are E(3)-equivariant and
permutation-invariant, with respect to the input X⃗(0).

Proof. Consider a sequence composed of functions {ϕi : X (i−1) → X (i)}Ni=1 equivariant to a same group G, the
equivariance lead to an interesting property that

ϕN ◦ · · · ◦ ϕi+1 ◦ ρX (i)(g)ϕi ◦ · · · ◦ ϕ1 = ϕN ◦ · · · ◦ ϕj+1 ◦ ρX (j)(g)ϕj ◦ · · · ◦ ϕ1,

holds for all i, j = 1, 2, . . . , N and g ∈ G, which means that the group elements g can be freely exchanged in the composite
sequence of equivariant functions. In particular, if one of the equivariant functions (e.g. ϕk) is replaced by an invariant
function, the group element g will be absorbed, that means

ϕN ◦ · · · ◦ ϕk ◦ · · · ◦ ϕi+1 ◦ ρX (i)(g)ϕi ◦ · · · ◦ ϕ1 = ϕN ◦ · · · ◦ ϕ1.

holds for all g ∈ G but only i = 1, 2, . . . , k. Although ϕN ◦ · · · ◦ ϕk is still equivariant, because the group elements must be
input starting from ϕ1, the overall ϕN ◦ · · · ◦ ϕ1 is still an invariant function.

Since Eq. (2) is the definition of a function with E(3)-equivariance and permutation-invaraince, and the pooling operators
like sum or mean maintain permutation-equivariance of the whole model. Now to prove the E(3)-equivarianceof the whole
model, we choose to give a stronger conclusion, namely each of Eqs. (3) to (5), (7) and (9) is an E(3)-invariant function,
and each of Eqs. (6) and (8) is an E(3)-equivariant function.

It is obvious that each input in Eqs. (3) to (5), (7) and (9) is either a constant or an inner product term, thus ensuring the
E(3)-invariance of each function. And each of Eqs. (6) and (8) is linear combination of three-dimensional vectors with an
E(3)-invariant weight, thus ensuring the E(3)-equivariance of each function.

Theorem A.2. The E(3)-equivaraint function f(x⃗i, Z⃗) in Theorem 4.3 can be decomposed into an O(3)-equivaraint and
translation-invariant function of Z⃗ − x⃗i, and the addition of x⃗i.

Proof. Since f(x⃗i, Z⃗) is equivaraint to translation t⃗, considering t⃗ = −x⃗i, we get

f(x⃗i, Z⃗) = f(x⃗i, Z⃗)− x⃗i + x⃗i = f(x⃗i − x⃗i, Z⃗ − x⃗i) + x⃗i = f(0⃗, Z⃗ − x⃗i) + x⃗i := h(Z⃗ − x⃗i) + x⃗i.

Lemma A.3. For any O(3)-equivariant function f̂(Z⃗), it must fall into the subspace spanned by the columns of Z⃗, namely,
there exists a function s(Z⃗), satisfying f̂(Z⃗) = Z⃗s(Z⃗).

Proof. The proof is given by (Villar et al., 2021). Essentially, suppose Z⃗⊥ is the orthogonal complement of the column
space of Z⃗. Then there must exit functions s(Z⃗) and s⊥(Z⃗), satisfying f̂(Z⃗) = Z⃗s(Z⃗) + Z⃗⊥s⊥(Z⃗). We can always
find an orthogonal transformation O allowing OZ⃗ = Z⃗ while OZ⃗⊥ = −Z⃗⊥. With this transformation O, we have
f̂(OZ⃗) = f̂(Z⃗) = Z⃗s(Z⃗) + Z⃗⊥s⊥(Z⃗), and Of̂(Z⃗) = Z⃗s(Z⃗) − Z⃗⊥s⊥(Z⃗). The equivariance property of f̂ implies
Z⃗s(Z⃗) + Z⃗⊥s⊥(Z⃗) = Z⃗s(Z⃗)− Z⃗⊥s⊥(Z⃗), which derives s⊥(Z⃗) = 0. Hence, the proof is concluded.

Lemma A.4. If the O(3)-equivariant function f̂(Z⃗) lies in the subspace spanned by the columns of Z⃗, then there exists a
function σ satisfying f̂(Z⃗) = Z⃗σ(Z⃗⊤Z).

Proof. The proof is provided by Corollary 2 in (Huang et al., 2022). The basic idea is that f̂(Z⃗) can be transformed to
f̂(Z⃗) = Z⃗η(Z⃗) where η(Z⃗) is O(3)-invariant. According to Lemma 1-2 in (Huang et al., 2022), η(Z⃗) must be written as
η(Z⃗) = σ(Z⃗⊤Z⃗), which completes the proof.

Theorem A.5. There exists a surjection from dao to (Z⃗ − x⃗i)
⊤(Z⃗ − x⃗i), that is

∃ a funcion ζ, (Z⃗ − x⃗i)
⊤(Z⃗ − x⃗i) = ζ

(
C⊕

c=1

∥z⃗c − x⃗i∥2, (Z⃗ − x̄)⊤(Z⃗ − x̄)

)
.

12
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Proof. First, we simplify the notation as

A := (Z⃗ − x⃗i)
⊤(Z⃗ − x⃗i), D := (Z⃗ − x̄)⊤(Z⃗ − x̄), Y :=

C⊕
c=1

∥z⃗c − x⃗i∥2.

Since Z⃗ − x⃗i = (Z⃗ − x̄)− (x⃗i − x̄), letting Z⃗ ′ = Z⃗ − x̄, x⃗′ = x⃗i − x̄, z⃗′
c = Z⃗ ′

:,c, we have

A = (Z⃗ ′ − x⃗′)⊤(Z⃗ ′ − x⃗′), D = Z⃗ ′⊤Z⃗ ′, Y =

C⊕
c=1

∥z⃗′
c − x⃗′∥2.

Thus, we find the following equations:

Amn = ⟨z⃗′
m − x⃗′, z⃗′

n − x⃗′⟩

= ⟨z⃗′
m, z⃗

′
n⟩+

1

2
(⟨x⃗′, x⃗′ − 2z⃗′

m⟩+ ⟨x⃗′, x⃗′ − 2z⃗′
n⟩)

= ⟨z⃗′
m, z⃗

′
n⟩+

1

2

((
∥z⃗′

m − x⃗′∥2 − ∥z⃗′
m∥2

)
+
(
∥z⃗′

n − x⃗′∥2 − ∥z⃗′
n∥2
))

= Dmn +
1

2
((Ym −Dmm) + (Yn −Dnn)) ,

and

Ym = Amm,

Dmn = Amn − 1

2
(Amm +Ann) +

1

2
(Dmm +Dnn),

which means there is a a surjection from
⊕C

c=1 ∥z⃗c − x⃗i∥2, (Z⃗ − x̄)⊤(Z⃗ − x̄) to (Z⃗ − x⃗i)
⊤(Z⃗ − x⃗i).

Theorem A.6 (Propostion 4.3). The update function must take the form f(x⃗i, Z⃗) = x⃗i +
∑C

c=1(z⃗c −
x⃗i)ψc

(⊕C
c=1 ∥z⃗c − x⃗i∥2,mv

)
, where ψc : RC+C2 → R is an arbitrary non-linear function, and mv is an E(3)-invariant

term by Eq. (5).

Proof. According to Theorem A.2, there exists an O(3)-equivaraint and transform-invariant function h, thus

f(x⃗i, Z⃗) = h(Z⃗ − x⃗i) + x⃗i.

Then, from Lemma A.4, we rewrite the O(3)-equivarint h into a product of the vector Z⃗ − x⃗i and a scalar function η with
an inner-product input, that is,

f(x⃗i, Z⃗) = (Z⃗ − x⃗i)η
(
(Z⃗ − x⃗i)

⊤(Z⃗ − x⃗i)
)
+ x⃗i.

Finally, with Theorem A.5, we transform it into a more expressive function as

f(x⃗i, Z⃗) = (Z⃗ − x⃗i)ψ

(
C⊕

c=1

∥z⃗c − x⃗i∥2, (Z⃗ − x̄)⊤(Z⃗ − x̄)

)
+ x⃗i,

which is equivalent to Eq. (5).

13
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B. Generality Analysis
We introduce virtual nodes to RF, TFN and SchNet to explore the generality of our proposed method. Here is implementation
details.

B.1. Implementation of FastRF

For FastRF, the implementation is similar to FastEGNN by only removing the update of hidden features h.

B.2. Implementation of FastTFN

To implement FastTFN, we first reduce the number of the channels used in the original TFN to be 1, yielding single-channel
TFN, which performs almost the same as the original TFN but is found to be more compatible with virtual node learning.
Upon single-channel TFN, we design 4 blocks in total. In each block, we first employ one TFN layer to obtain the updated
real coordinates, which are then fed to the following equations to combine messages from virtual nodes:

x⃗
(l+1)
i =

x⃗(l)
i +

∑
j∈Ni

YL

(
x⃗
(l)
i − x⃗

(l)
j

∥x⃗(l)
i − x⃗

(l)
j ∥

)
⊗W

cg

(
h
(l)
j ∥v⃗(0)

j

)
upd_by_TFN

+

[
1

C

C∑
c=1

(x⃗
(l)
i − z⃗(l)

c )φv
x(m

v
ic)

]
,

where the x⃗
(l)
i is the coordinate of real node i, and YL(·) embeds the distance between real node i and j into spherical

harmonics with type in set L = {0, 1, 2, . . . ,max_degree}. ⊗W
cg(·, ·) means Clebsch-Gordan (CG) tensor product with W

being the set of weight (Han et al., 2024), hj and v⃗j are features (type-0) and velocity (type-1) of real node j respectively.
Additionally, the update formula for virtual nodes is same as FastEGNN in Eq. (8).

B.3. Implementation of FastSchNet

The design of FastSchNet is similar as FastTFN. It also leverages the coordinates updated by SchNet and messages from
virtual nodes to update the real nodes, which is:

x⃗
(l+1)
i =

x⃗(l)
i +

∑
j∈Ni

σ(h
(l)
i ,h

(l)
j , ∥x⃗(l)

i − x⃗
(l)
j ∥)(x⃗(l)

i − x⃗
(l)
j )


upd_by_SchNet

+

[
1

C

C∑
c=1

(x⃗
(l)
i − z⃗(l)

c )φv
x(m

v
ic)

]
,

The update of virtual nodes is also in Eq. (8).
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C. Experiment Details
C.1. Dataset Details

Table 4. Basic parameters of three datasets. It is worth noting that only the N -body task uses a fully connected method to construct the
graph, and other tasks have initially deleted some edges. We counted the number (or average) of samples, nodes and edges of all tasks,
and converted them into an Initial Cutoff Rate item.

N -body System Protein Dynamics Water-3D

Number of Samples (Train / Valid / Test) 5, 000/2, 000/2, 000 2, 481/827/863 15, 000/1, 500/1, 500

Number of Nodes (N ) 100 855 7, 806 (Avg)

Number of Edges (|E|) 9, 900 55, 107 (Avg) 94, 999 (Avg)
Initial Cutoff Rate
(η0 = (1− |E|/N(N − 1))× 100%) 0.00% 92.45% (Avg) 99.82% (Avg)

C.2. Implementation Details

Table 5. Hyper-parameters of FastEGNN

Hyperparameter N -body System Protein Dynamics Water-3D

Bandwidth σ in Eq. (10) 1.5 1.0 1.5

Balancing factor λ in Eq. (11) 0.03 0.50 0.01

Number of Virtual Channel C {1, 3, 10} {1, 3, 10} {1, 3, 10}

Learning Rate 5e-4 5e-4 5e-4

Weight Decay 1e-12 1e-12 1e-12

Epochs 2500 800 800

Initial Cutoff Threshold fully_connected λ = 10Å R = 0.035

Initial Cutoff Rate (η0) 0 0.9245 0.9982

Dropping Edge Rate (p) {0, 0.75, 1} {0, 0.75, 1} {0, 0.75, 1}
Total Cutoff Rate (1− (1− η0)(1− η)) {0, 0.75, 1} {0.9245, 0.9811, 1} {0.9982, 9996, 1}

C.3. More Experiment Results

15
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Table 6. MSE and time-consuming ratio with EGNN (Satorras et al., 2021) on N -body System, Molecular Dynamics on Proteins and
Physical Simulation. FastEGNN-⟨C, p⟩ here means the experiment is set with corresponding hyper-parameters.

N -body System Protein Dynamics Water-3D
MSE (×10−2) Relative Time MSE Relative Time MSE (×10−4) Relative Time

Linear 12.66 0.01 2.26 0.01 14.06 0.01
MPNN (Gilmer et al., 2017) 3.06 0.62 150.56 0.62 5299.30 0.61
SchNet (Schütt et al., 2018) 24.83 1.39 2.56 1.40 35.02 2.44
RF (Köhler et al., 2019) 5.76 0.26 2.25 0.25 12.94 0.14
GVP-GNN (Jing et al., 2021) 7.59 2.17 − 2.19 − 3.84
TFN (Thomas et al., 2018) 1.62 17.02 2.26 17.81 − −
EGNN (Satorras et al., 2021) 1.41 1.00 2.25 1.00 6.00 1.00
EGNN-⟨0, 0.75⟩ 1.34 0.29 2.24 0.27 9.87 0.33
EGNN-⟨0, 1.00⟩ 11.62 0.03 2.26 0.06 12.38 0.11

FastEGNN-⟨1, 0.00⟩ 1.05 1.05 1.86 1.35 3.01 1.06
FastEGNN-⟨1, 0.75⟩ 0.99 0.33 1.94 0.96 3.30 0.71
FastEGNN-⟨1, 1.00⟩ 9.72 0.13 2.14 0.76 3.75 0.32

FastEGNN-⟨3, 0.00⟩ 1.12 1.07 1.82 1.39 2.49 1.36
FastEGNN-⟨3, 0.75⟩ 1.10 0.35 1.88 0.96 2.83 1.00
FastEGNN-⟨3, 1.00⟩ 9.52 0.15 1.88 0.80 3.40 0.42

FastEGNN-⟨10, 0.00⟩ 1.19 1.15 1.87 1.44 − −
FastEGNN-⟨10, 0.75⟩ 0.99 0.42 1.95 0.97 − −
FastEGNN-⟨10, 1.00⟩ 9.38 0.19 1.97 0.80 − −
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Table 7. We further introduce virtual nodes to RF (Köhler et al., 2019), SchNet (Schütt et al., 2018) and TFN (Thomas et al., 2018) to
explore the generality of our method. We call them FastRF-channels, FastSchNet-channels and FastTFN-channels respectively.
Together with former mentioned FastEGNN and all base models, we report their MSE and time-comsuming ratio compared with
EGNN (Satorras et al., 2021) on Protein Dynamics Dataset in this table. Experiments show that our virtual node strategy enhances the
performance of all these three models under all Dropping Rates, thus verify its effectiveness.

MSE

Dropping Rate 0.00 0.50 0.75 0.90 1.00

Linear 2.26 2.26 2.26 2.26 2.26
MPNN (Gilmer et al., 2017) 150.56 546.76 804.37 738.33 269.84
EGHN (Han et al., 2022b) 1.84 2.02 2.08 2.24 2.24

EGNN (Satorras et al., 2021) 2.25 2.25 2.24 2.25 2.26
FastEGNN-1 1.86 1.91 1.94 1.92 2.14
FastEGNN-3 1.82 1.86 1.88 1.86 1.88
FastEGNN-10 1.87 1.89 1.95 1.89 1.97

RF (Köhler et al., 2019) 2.25 2.26 2.26 2.26 2.26
FastRF-3 2.07 2.02 2.02 2.02 2.05

SchNet (Schütt et al., 2018) 2.56 2.57 2.56 2.56 2.60
FastSchNet-3 1.99 2.01 2.01 2.06 2.08

TFN (Thomas et al., 2018) 2.25 2.26 2.26 2.26 −
FastTFN-3 1.84 2.01 1.90 2.06 −

Relative Time

Dropping Rate 0.00 0.50 0.75 0.90 1.00

Linear 0.01 0.01 0.01 0.01 0.01
MPNN (Gilmer et al., 2017) 0.62 0.32 0.17 0.08 0.03
EGHN (Han et al., 2022b) 4.90 4.52 4.35 4.16 4.26

EGNN (Satorras et al., 2021) 1.00 0.51 0.27 0.12 0.06
FastEGNN-1 1.35 1.08 0.96 0.92 0.76
FastEGNN-3 1.39 1.08 0.96 0.92 0.80
FastEGNN-10 1.44 1.10 0.97 0.92 0.80

RF (Köhler et al., 2019) 0.25 0.13 0.07 0.05 0.04
FastRF-3 0.94 0.52 0.31 0.19 0.11

SchNet (Schütt et al., 2018) 1.40 0.73 0.40 0.20 0.08
FastSchNet-3 2.17 1.52 1.24 1.12 1.00

TFN (Thomas et al., 2018) 2.50 1.83 1.63 1.55 −
FastTFN-3 3.17 2.40 2.16 2.05 −
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Table 8. We implement VN-EGNN as proposed by Sestak et al. (2023) and compare the MSE loss and time-consuming ratios among
EGNN, FastEGNN, and VN-EGNN. The results are presented in the table below. It should be noted that VN-EGNN is not an equivariant
model, and it reports extremely higher prediction loss when rotations or translations are applied to the input graphs.

MSE

Dropping Rate 0.00 0.50 0.75 0.90 1.00

EGNN (Satorras et al., 2021) 2.25 2.25 2.24 2.25 2.26
FastEGNN-3 1.82 1.86 1.88 1.86 1.88
VN-EGNN-3 (Sestak et al., 2023)
(test equivariance)

− − − − 2703

VN-EGNN-3 1.84 1.88 1.90 1.97 1.92

Relative Time

Dropping Rate 0.00 0.50 0.75 0.90 1.00

EGNN (Satorras et al., 2021) 1.00 0.51 0.27 0.12 0.06
FastEGNN-3 1.39 1.08 0.96 0.92 0.80
VN-EGNN-3 (Sestak et al., 2023) 2.70 2.08 1.87 1.75 1.33
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