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ABSTRACT

The computational benefits of iterative non-autoregressive transformers decrease as
the number of decoding steps increases. As a remedy, we introduce Distill Multiple
Steps (DiMS), a simple yet effective distillation technique to decrease the number
of required steps to reach a certain translation quality. The distilled model enjoys
the computational benefits of early iterations while preserving the enhancements

from several iterative steps. DIMS relies on two models namely student and teacher.

The student is optimized to predict the output of the teacher after multiple decoding
steps while the teacher follows the student via a slow-moving average. The moving
average keeps the teacher’s knowledge updated and enhances the quality of the
labels provided by the teacher. During inference, the student is used for translation
and no additional computation is added. We verify the effectiveness of DiMS on
various models obtaining 7 and 12.9 BLEU points improvements on distilled and

raw versions of WMT’ 14 De-En, respectively.

I INTRODUCTION

Neural machine translation models typically follow an
autoregressive decoding strategy, generating the target sen-
tence one token at a time. This sequential nature makes
the inference process slow and dependent on the output se-
quence length. To address this limitation Gu et al. (2018)
introduces the Non-Autoregressive Transformer (NAT).
NAT generates the entire target sentence in parallel, re-
ducing the latency by an order of magnitude. NAT can be
considered as a member of a broader family of iterative
non-autoregressive Transformers (iNAT) (Lee et al., 2020;
Stern et al., 2019; Ghazvininejad et al., 2019) where the
number of decoding steps is fixed and independent of the
sequence length. By tuning the number of decoding steps,
one can control the trade-off between speed and quality.
While iNATS can be considered as efficient alternatives
to their autoregressive counterparts, Kasai et al. (2020b)
shows that autoregressive models can be sped up without
loss in accuracy by combining shallow decoders with deep
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Figure 1: DiMS training. The student is
trained to match the predictions of the teacher
after several iterative steps. Teacher is up-
dated with an exponential moving average of
the student.

encoders. This diminishes the computational advantage of iNATs and challenges their motivation.
The focus of recent work has thus shifted to design single-step NAT models (Ghazvininejad et al.,

2020a; Qian et al., 2021; Du et al., 2021).

In order to preserve the enhancements obtained by multiple decoding iterations of iNATSs, we
introduce Distill Multiple Steps (DiMS), a distillation algorithm applicable to a wide range of
iterative models. Given a pre-trained iNAT, referred to as teacher, a student aims to replicate the
behavior of multiple iterative steps of the teacher with one decoding pass. This process resembles the
well-known knowledge distillation framework (Hinton et al., 2015). However, instead of reducing
the number of parameters, we aim to decrease the number of decoding passes. The final model then
enjoys the translation quality of multi-steps iNAT with the computational efficiency of single-step

translation.
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The proposed distillation can be repeated iteratively, where at the end of each round the newly
optimized student becomes the next teacher. While effective, iterative distillation is slow as it requires
multiple rounds of training until convergence. Alternatively, we propose updating the parameters of
the teacher with an exponential moving average (EMA) of the student. This gradually transfers the
new knowledge learned by the student to the teacher and can be viewed as a continuous variant of
iterative distillation. Figure 1 depicts the DiMS algorithm on a high level.

We demonstrate the effectiveness of our approach on several public datasets by showing that DiMS
obtains substantial improvements on single-step translation with gains of up to 7 BLEU points on
the distilled training dataset, while the gains on raw datasets are even greater. Notably, we are able
to surpass many leading NAT models designed specifically for single-step translation and we set a
new state of the art on raw datasets. We further show that EMA considerably speeds up training and
converges to a comparable accuracy with iterative distillation in a fraction of epochs.

2 BACKGROUND

In this section, we lay out a formal framework for iNATs. We use the setup of Conditional Masked
Language Models (CMLM), the approach first introduced in Ghazvininejad et al. (2019) and sub-
sequently adopted in many iNAT models (Ghazvininejad et al., 2020b; Kasai et al., 2020a; Saharia
et al., 2020; Huang et al., 2021). The source sentence, target sentence, and target sequence length are
denoted by x, y and IV, respectively.

2.1 TRAINING

Given a partially masked reference sentence y and the corresponding source context x, the model
is trained to reveal all the masked positions simultaneously (Ghazvininejad et al., 2019). From a
probabilistic perspective, this imposes a conditional independence assumption on the predicted tokens.
Formally, the training loss is:

Eymy) Y. - logpo(uilx,¥),
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where M is a distribution over all partially masked target sentences and £ is a function that returns the
set of masked indices. The training objective above implicitly assumes access to the target sentence
length. To resolve this issue, CMLM trains a parametric model, length predictor, to predict the output
length.

2.2 INFERENCE

The inference begins by creating a template ¥'? with N masked tokens, where N is the output of the
length predictor. At iteration ¢ of the inference, the model predicts the translation r(*) given y!=v
and x as inputs. Depending on the number of decoding iterations S, typically a linear unmasking
policy is used where at each step N /S tokens with the highest probability are revealed. This process
is repeated S times, resulting in a fully revealed sentence. Denoting the output probability of the
model by pj , the t-th step of the inference can be formally written as:

_1)}‘) = rft) if i € arg-topk {po (r}t)‘x,y“_l))} else _1]}‘_1)
v JeE )
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Note that multiple length candidates can be considered (e.g. N +1) with the average token probability
as a ranking criterion. This is similar to beam search in autoregressive models but applied to the
output sequence length. It is referred to as length beam.

3 DISTILLATION OF ITERATIVE NON-AUTOREGRESSIVE TRANSFORMERS

Increasing the number of decoding steps diminishes the computational advantage of iNATSs. Our ob-
jective is to limit the number of decoding steps without degrading the performance. More specifically,
we want to compress the performance gain from multiple iterative steps of a teacher into one decoding



Under review as a conference paper at ICLR 2023

v (O

y y
. Masked token
. Step one revealed | Teacher step 1 Teacher step 2
E— N
. Step two revealed
J

15,37, x,2)

-t

Figure 2: Two iterative steps of the teacher applied to a partially masked sentence.

pass of a student. For instance, consider an iterative model (teacher) that uses eight decoding steps.
By replicating four steps of the teacher with one decoding pass, two steps of the student would be
sufficient to reach a similar performance. Ideally, one would hope for a single iteration of the student
to replicate the top performance of the teacher, but the model’s limited expressiveness might prevent
this.

The standard way of knowledge distillation would have the teacher generate soft labels for all
intermediate iterations, and optimize the student to track the teacher’s output with fewer steps, but
doing such generation on-the-fly greatly increases the training cost. One can move this process
to a pre-processing phase, at the cost of large memory requirements. We propose to use partially
masked reference sentences as an approximation to the intermediate predictions of the teacher, which
eliminates the need for several decoding passes or large memory capacity.

The distillation process starts by initializing the student and the teacher to the same pre-trained model
with parameters ¢ i.e. #, = 6, = ¢ where 6, and 6, denote the parameters of the student and teacher
respectively. Then, the teacher processes a partially masked sentence y through 7 iterative steps with
a linear unmasking policy. More precisely, 7/n of the originally masked tokens are revealed up to
step ¢ and after the final pass, no masked token remains. This is similar to the inference procedure
explained in Section 2.2, but instead of starting from a fully masked sentence, it starts from a partially
masked one. The student is optimized to match the teacher’s soft labels and a temperature is used to
control the smoothness of the labels. With enough capacity, the student is expected to imitate the
behavior of n consecutive steps of the teacher with merely one decoding pass.

3.1 TRAINING LOSS

We denote the output distribution after n iterative steps on the partially masked sentence y by
Ty (y,x,n) where 0 represents the parameters of the model. The distillation loss can be described as:
Yice®) KL(p,;|p, ;) where p, = Zy, (y,x,n), p, = Zy, (¥,x, 1) and i in subscript denotes the
index in the sentence. Note that the teacher’s soft labels do not come from the same decoding iteration
i.e. whenever a token is revealed, the corresponding soft labels are fixed in p;. Thus, the student
receives labels from various decoding steps of the teacher. Figure 2 depicts the process teachers
follow to produce the labels for two iterative steps. From the student’s point of view, the primary
difference between DiMS and CMLM training (Section 2.1) is the use of soft labels generated by the
teacher instead of the ground truth tokens.

To facilitate the distillation, we combine the KL-divergence with the Euclidean distance of the last
layers™ hidden states of the teacher and the student. This transfers the knowledge concealed within
the hidden states that might not be discernible in soft labels. We refer to this as hidden state loss.
Similar to the KL-divergence, the hidden state loss is computed over the masked indices. The fact
that the hidden states have a positive impact on the distillation has also been observed in previous
works (Romero et al., 2014; Sanh et al., 2019; Jiao et al., 2020).

To summarize, DiMS training loss has two terms: i) KL-divergence between distributions predicted
by the teacher and the student. ii) The Euclidean distance between the last hidden states of two
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Algorithm 1 DiMS

Require: Data set D, pre-trained model ¢, Hidden state loss factor A, teacher steps 7,
EMA momentum j, learning rate 7

0,0, + o > Initialize teacher and student

while not converged do
(x,y) ~D > Sample data
y ~M(y) > Sample masking
p, « Iy, (x,y,n) > Run the teacher for n iterative steps
p, «— Iy, (x,¥,1) > Run the student for a single step
Loivs < 3, KL(p,;|p.i) + Aller: —eqil? > Compute the DiMS loss
04 + Optimizer(6., Vg, Lpims, 1) > Gradient based optimization of the student
0 < (1 — )0y + pb, > EMA Update of the teacher

end while

models. Denoting teacher’s and student’s last hidden state by e; and e, DiMS loss can be written
formally as:

Lpims = Z KL(p,:|p,.:) + Aller: — es.i|?

1

where p, =7y, (y,x,n) and p,=7Zy (¥,x,1).

The hyper-parameter A controls the contribution of hidden state loss. When the distillation is
completed, the student is used for evaluation following the teacher’s inference process explained in
Section 2.2, thus the computation remains the same.

3.2 EMA UPDATE OF THE TEACHER

As the distillation progresses, the performance gap between multiple steps of the teacher and a
single-pass of the student shrinks, making the teacher’s labels less informative. Two approaches can
be considered to sustain the usefulness of the teacher’s labels: i) Increasing the number of teacher’s
iterative steps. ii) Restarting the distillation where the recently optimized student becomes the new

teacher and repeating this process several times, i.e. 6\ « 6{"~'). The former makes the training
more expensive as the number of sequential steps grows and the latter requires repeated distillation
rounds leading to a longer training time.

Instead, we propose updating the teacher with the student’s recently learned knowledge. The idea is
that as the student’s single-step output approaches the teacher’s multi-step, the student’s multi-step
performance would improve as well, and it is in the interest of the distillation process to use the
improved student as the new teacher. However, replacing the teacher directly with the student would
hurt the training stability and can lead to a pathological solution of mapping everything to a constant
vector. This degenerate solution shortcuts the Lpivs loss by setting it to a global minimum of zero.
To alleviate this, we update the teacher with a slow-exponential-moving average of the student,
which transfers the new knowledge leamed by the student to the teacher in a controlled manner. The
updated teacher now provides a better training target for the student, creating a positive feedback
loop between the two models. Note that even with the slow-moving average, the degenerate solution
is inevitable with long enough training. In practice, we find that it can be appropriately controlled by
learning rate tuning and early stopping. The teacher can also benefit from the ensembling effects of
the EMA (Izmailov et al., 2018). Figure 1 depicts DiMS training conceptually.

Overall, DiMS introduces three new hyper-parameters: i) n, the number of iterative steps of the
teacher. ii) A, the coefficient that controls the balance between KL-divergence and hidden state loss,
and iii) y¢, the momentum of teacher’s EMA update. Algorithm 1 contains the pseudo-code for DiIMS
training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use the Fairseq library (Ott et al., 2019) for all the experiments and follow the default data
splits. All models are transformers with encoder-decoder architecture, each having 6 layers and
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Figure 3: CMLM and CMLMC models distilled with DiMS on four WMT tasks. For each teacher we plot
performance across various decoding steps and contrast it with a single-step performance of the student.

512-dimensional hidden states. Adam optimizer with inverse squared root learning rate scheduler is
used along with mixed precision. EMA and hidden state loss are leveraged with two iterative steps
of the teacher unless otherwise stated. We use early stopping based on single-step BLEU score on
the validation set. The final model is the average of 5 best checkpoints. Dropout is disabled for the
teacher and the student since empirical improvements are observed. We conduct experiments on both
the raw and distilled dataset that is obtained from an autoregressive model (Gu et al., 2018). Training
is done with 4 Tesla V100 GPUs (32 GB) and we report all the hyper-parameters in Section C of the
appendix. The extra computational cost of distillation is a fraction of original training. We report a
detailed comparison in Section F of the appendix.

4.2 MAIN RESULTS

Our main experiments are conducted on WMT’ 14 En-De and WMT’16 En-Ro datasets with two
models: i) CMLM, a pivotal work in iNAT literature showing the effectiveness of conditional masked
language models. ii) CMLMC, a recent work improving CMLM by incorporating a correction
mechanism. The corresponding official repositories are used to train the teachers. Both models
exploit a length predictor that is conditioned on the encoder’s hidden states. To make the length
predictor compatible with changes in the encoder, we keep the length predictor loss during distillation.

Figure 3 contrasts the single-step BLEU score of students with teachers evaluated for various number
of decoding steps. DiMS considerably improves the translation quality of the single-step inference,
reducing or eliminating the gap with multi-step inference. For example, on the WMT’ 14 De-En
dataset, the single-step of CMLMC+DiMS matches the teacher’s 8-step performance. We also
compared our best single-step model with strong baselines in Table 1 showing the effectiveness of
DiMS. Note that noisy parallel decoding (NPD) refers to the usage of the autoregressive model that
generated the distilled the data to rerank the NAT’s predictions with different sentence lengths. NPD
is only applicable to models with length predictor.

The performance of the leading iNAT's is at best similar to the autoregressive model used for sequence
level knowledge distillation. This limits the final performance of iNATs and makes training without
distillation desirable (Huang et al., 2021). The columns corresponding to raw dataset in Table 1
show that DiMS improves the raw performance by a large margin even more than the corresponding
distilled variant. For instance, DiMS gets more than 12 BLEU scores improvements on single-step
evaluation of CMLMC.

For one decoding pass, when raw variants of CMLMC are distilled with DiMS the performance
is superior to training on the distilled dataset (without DiMS). This makes DiMS preferable to
sequence-level knowledge distillation. Nevertheless, the best performance is obtained when the two
distillation approaches are combined. On distilled datasets, DIMS either is competitive with state of
the art or outperforms it. To the best our knowledge, DiMS achieves a new state of the art on single
step evaluation over raw datasets.

It is not completely clear why knowledge distillation works in general. But when it comes to DiMS,
we hypothesize that the labels generated by the teacher make the task simpler for the student. In other
words, it is difficult for the model to close the gap between its single step prediction and ground truth
while distillation with teacher-generated labels reduces this gap. The importance of the gap between
labels and the model capacity has also been observed before Mirzadeh et al. (2020).
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Model WMT’14 WMT’16
En-De De-En En-Ro Ro-En

Raw Dist. Raw Distt. Raw Dist. Raw  Dist.
CTC (Libovicky & Helcl (2018)) 17.4 - 19.8 - 19.9 - 24.7 -
CMLM (Ghazvininejad et al. (2019)) 10.6 18.1 - 21.8 212 273 - 28.2
SMART (Ghazvininejad et al. (2020b)) - 18.6 - 23.8 - - - -
CMLMC (Huang et al. (2021)) 1.7 196 164 236 214 282 21.8 290
Aux. Reg. (Wang etal. (2019)) - 20.7 - 24 .8 - - - -
Bag-of-ngram (Shao et al. (2020)) - 209 - 24.6 - 283 - 293
Hint-based Loss (Shao et al. (2020)) - 21.1 - 25.2 - - - -
Bigram CRF (Sun et al. (2019) - 234 - 27.2 - - - -
AXE (Ghazvininejad et al. (2020a)) 204 235 249 279 305 308 314 315
EM+0ODD (Sun & Yang (2020) - 24.5 - 279 - - - -
ENGINE (Tu etal. (2020)) - - - 28.1 - - - 28.2
Imputer (Saharia et al. (2020)) 156 258 - 28.4 - 323 - 31.7
OAXE (Du etal. (2021)) 224 261 26.8 30.2 - 324 - 33.3
FullyNAT + GLAT(Gu & Kong (2020)) 21.8 272 - 314 - 33.7 - 34.2
Flowseq + NPD (m=30) (Maetal. 2019 21.15 253 26.04 30.7 31.7 322 325 328
GLAT + NPD (m=7) (Qian et al. (2021) - 26.5 - 31.0 - 32.9 - 33.5
CMLMC + DiMS 232 267 293 308 312 330 327 336
CMLMC + DiMS + NPD (m=7) 237 273 299 316 322 337 336 345

Table 1: Comparison of the single-step test set BLEU score with previously published works.

4.3 RESULTS ON AN ALIGNMENT BASED MODEL

To show the versatility of DiMS, we conduct experiment on alingment-based models leveraging
Connectionist Temporal Classification (CTC) (Graves et al., 2006) objective. The main difference
between alignment-based models (Libovicky & Helcl, 2018) and CMLM family is the method used
for modeling the output length. In an alignment-based model, output length is set to a large enough
number (e.g. twice the length of the source sentence). By introducing a special blank token, the
model has the ability to decide the sentence length since blanks are removed from the final prediction.
Training such models requires an objective that considers all the alignments mapping to the same
target which is what CTC objective does efficiently via dynamic programming. For example if the
target sentence is “ABC” and the output length is set to four, then CTC considers “_ABC”, “A_BC”,
“AB_C”, “ABC_" as valid target sentences where “_" denotes the blank token.

Imputer (Saharia et al., 2020) is among a few iterative models in this family. There is no official
implementation of Imputer available online, therefore we implement a version ourselves (denoted
with 1) '. We compare our implementation with the original paper in Section A of the appendix and
show that two models have a similar performance. Table 2 summarizes the results of the base DiMS
applied to Imputer for both directions of the WMT’ 14 English-German dataset. DiMS outperforms
its teacher which shows that the applicability of DiMS is not limited to models trained with the
cross-entropy objective. Further details of Imputer training and distillation are explained in Section D
of the appendix.

Method WMT’14 En-De  WMT’14 De-En
Imputer’ 25.87 28.96
Imputer’ + DIMS 26.43 29.75

Table 2: Sinlge-step test set BLEU score for Imputer models trained on WMT’ 14 English-German.

'Based on the following implementation: https://github.com/rosinality/
imputer—-pytorch
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Figure 4: Test set BLEU score on WMT’14 De-En for models trained with U-DiMS

splitted based on the target sentence length for CMLM
teacher and student.

4.4 UNSUPERVISED DIMS

In previous sections, we assume access to a parallel dataset and feed a partially masked reference
sentence to both student and teacher. One can use the teacher to generate synthetic target sentences
during the distillation. This relaxes the dependence on the references and enables using monolingual
datasets for distillation. As usual, there is a trade-off between computation and sample quality i.e.
using more decoding passes leads to better data while increasing the computational requirements.
We refer to this unsupervised distillation variant as U-DiMS. Note that unsupervised only refers to
the distillation, and for training the teacher we still require access to a parallel dataset. The only
distinction between U-DiMS and DiMS is the usage of synthetic data generated by the teacher and the
remaining parts are untouched. We run U-DiMS on WMT’ 14 De-En for CMLM and CMLMC using
two iterative steps to generate the synthetic samples. Table 3 shows the effectiveness of U-DiMS,
obtaining a similar performance to DiMS.

4.5 ABLATION STUDIES

We conduct all of the ablation studies on CMLM over WMT’ 16 En-Ro as it is smaller than WMT’ 14
and the validation set is used for evaluation.

4.5.1 HIDDEN STATE LOSS

To investigate the effects of hidden state loss, we conduct an ablation study in this section. The first
block in Table 4 includes BLEU scores for the base DiMS model with and without this term. The
single-step performance of the distilled model is improved over 2 BLEU points by leveraging this
loss. This supports the fact that the hidden states contain extra information that is not available in soft
labels. The exact value of A is selected based on a grid search reported in Section E of the appendix.

45.2 EMA

In order to establish the computational advantages of the slow-moving average, we compare it with
running the base variant for 9 iterative rounds. Figure 5 demonstrates that the EMA variant is able to
match the iterative distillation with far fewer updates (almost equal to one round of the distillation).

We observed that it is essential to move the teacher toward the student slowly. For example, when
¢ < 0.9, the collapse to a degenerate solution (explained in Section 3.2) occurs before the end of the
first epoch. We plot the validation curve for various values of  in Section B of the appendix showing
the importance of the slow-moving average.

4.5.3 TEACHER DECODING STEPS

One hyper-parameter in DiMS algorithm is the number of teacher’s decoding steps. In order to
investigate the effect of this hyper-parameter, we set it to 2, 4, and 8 while turning EMA on and off.
The two bottom blocks of Table 4 include the results of this ablation. Although running the teacher
for 4 decoding steps shows superior performance without EMA, as soon as we turn it on the gap
disappears. This shows that EMA can gradually improve the teacher and remove the need for several
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Method 1-Step BLEU 316

CMLM 25.77 314

CMLM + DiMS 30.85 312

CMLM + DiMS - Hidden. 28.69 2

CMLM + DiMS (T=4) 31.04 e

CMLM + DiMS (T=8) 30.97 308 s

CMLM + DiMS + EMA 31.63 06 = ey = s

CMLM + DiMS (T=4) + EMA 31.52 0 —oung = A

CMLM + DiMS (T=8) + EMA 31.36 ' 40 ggoch 40 150 240
Table 4: BLEU score on WMT’16 En-Ro val- Figure 5: Validation set BLEU score on WMT’16
idation set with beam length set to one as its En-Ro for iterative distillation and a EMA model.
done for early stopping. T stands for the num- Each round of iterative distillation is shown with a
ber of teacher decoding steps and it is set to two unique color and the end of the round is noted by
if not specified. a black dot. The number of steps differs in various

rounds as we use early stopping.

iterative steps. Thus, we find no reason to set this hyper-parameter larger than 2 as it only increases
distillation’s computational cost.

4.6 ANALYSIS

We study the effect of target sentence lengths on DiMS performance. The test set is divided into five
equally-sized buckets based on the target length. The BLEU scores are reported for each bucket in
Figure 4. The main benefit of the iterative model is manifested by large sentences. The reason might
be the fact that longer sentences require a context and modeling it becomes challenging with the
conditional independence assumption in NAT. It is clear in Figure 4, that the performance is improved
in every bucket. This improvement is most visible in the bucket with the highest average sentence
length. This is because of the fact that the same bucket has the largest gap between the teacher’s
single and multi-step evaluation.

We combine the length predictor objective with ours to account for changes in the encoder’s parame-
ters. Interestingly enough, DiMS improves the performance of the length predictor as depicted in
Figure 6. This shows that the encoder benefits from the distillation as well enhancing the length
prediction accuracy.

0.0 0.1 0.2 03 0.4 0.5 0.6 0.0 01 0.2 0.3 0.4 0.5

CMLM on WMT" 16 En-Ro CMLM on WMT" 14 De-En

Figure 6: Comparison of teachers and students in predicting the target length. Top-1 means predicting the target
exactly correct and Top-3 and Top-5 means being incorrect by 1 and 2 offsets, respectively.

Table 5 shows an example from the WMT’ 14 De-En dataset. The improvements in samples are
evident by comparing the predictions of the teacher and the student with the target sentence. We
provide more qualitative examples in Section G of the appendix.
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Target The antibodies hunt down any nicotine molecules in the bloodstream , neutralising
them before they reached the brain , preventing a smoker from getting a nicotine hit .

Teacher The antibodies hunt the nicotine molecules molecblood neutralize them before reach
brain a smoker not experience high nicotine .

Student  The antibodies hunt the nicotine molecules in the blood and neutralize them before
they reach the brain , so a smoker does not experience a nicotine high .

Table 5: A qualitative example from WMT" 14 De-En along with teacher and student’s predictions on CMLMC.

5 RELATED WORKS

Many techniques have been proposed for iterative non-autoregressive machine translation. Earlier
attempts include denoising autoencoder (Lee et al., 2018) and insertion-deletion (Stern et al., 2019;
Gu et al., 2019). More recently, Ghazvininejad et al. (2019) introduced the Mask-Predict improving
the performance of iNATs by employing a conditional masked language model. CMLMC (Huang
etal., 2021) and SMART (Ghazvininejad et al., 2020b) improve CMLM by incorporating a correction
mechanism. DisCo (Kasai et al., 2020b) is another variant conditioning each token on an arbitrary
subset of the other tokens. DiMS is entangled with the progress in this domain as it requires a
pre-trained iterative teacher.

The ordering assumption in cross-entropy can make the NAT training challenging, therefore
Ghazvininejad et al. (2020a) propose aligned cross-entropy (AXE), an objective that considers
the best monotonic alignment between the target and the model’s predictions. Du et al. (2021) relaxes
the monotonic assumption and introduces Order Agnostic Cross-Entropy (OAXE). CTC (Libovicky
& Helcl, 2018) is a similar alignment-based objective that fixes the model output length and considers
various alignments leading to the same target. Imputer (Saharia et al., 2020) extends CTC to benefit
from iterative refinements.

GLAT (Qian et al., 2021) shows that the optimization challenges of iNATs can be mitigated by
introducing a curriculum learning focusing on sentences with only a few masked tokens in the early
stages of the training and gradually increasing the masking ratio. ENGINE (Tu et al., 2020) assumes
access to a pre-trained autoregressive model and optimizes a NAT model to maximize the likelihood
under the probability distribution defined by the pre-trained model.

Salimans & Ho (2021) applies a distillation technique similar to DiMS on generative models to
decrease the number of required steps for generating high-quality images. In contrast to DiMS, the
distillation is applied progressively. DiMS eliminates the need for progressive distillation by updating
the teacher with EMA. Lastly, the proposed EMA has some resemblance to self-supervised learning
techniques (Grill et al., 2020; Caron et al., 2021; He et al., 2020) where two models are updated,
one through gradient-based optimization and the other one through EMA. Despite this similarity,
the motivations are quite different. In self-supervised learning, EMA is proposed as a technique to
remove large negative sets whereas here EMA enhances the quality of the labels generated by the
teacher.

6 CONCLUSION

We introduce DiMS, an efficient distillation algorithm that enhances the translation quality of a
pre-trained iterative model, especially with single-step translation. This is done by replicating the
model’s multi-step behavior through one decoding pass. The distillation can be repeated to achieve
greater gains, but this increases the training time noticeably. We show that the same benefits are
obtainable by setting the teacher as a moving average of the student while keeping the training
time comparable to one round of the distillation. Experiments over raw and distilled datasets on
four translation tasks with various models for supervised and unsupervised variants validate the
effectiveness and versatility of DiMS.

Potential directions for future works include: i) The same family of iterative models have been
applied to automatic speech recognition, thus DiMS is applicable to this domain. ii) One can
combine a pyramid of techniques introduced for iNATS to obtain a strong iterative model and make it
computationally efficient via DiMS. iii) Large monolingual sets can be used to distill models with
U-DiMS.
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