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Abstract—Crowdsourcing deals with combining and aggregat-
ing labels from crowds of annotators of unknown reliability.
While most works on label aggregation operate under the
assumption of independent and identically distributed data, the
present work introduces an algorithm that operates under known
data dependencies or correlations. To exploit these dependencies,
a novel graph autoencoder-based algorithm is developed that
fuses annotator labels for crowdsourced classification tasks.
Numerical tests on real data showcase the potential of the
proposed approach.

Index Terms—Crowdsourcing, Weak supervision, Graph au-
toencoder, Graph neural networks, Classification

I. INTRODUCTION

The proliferation of exceedingly large and deep neural net-
works and foundation models such as large language models,
calls for massive labeled datasets for their training and fine-
tuning. However, curating such datasets can be an expensive
and labor-intensive task, especially if the data labeling process
requires specialized knowledge. Crowdsourcing has recently
emerged as a potential solution to this challenge. At its core,
crowdsourcing utilizes crowds of human annotators to accom-
plish various tasks [1]. For dataset curation, crowdsourcing
assigns data to various annotators and combines the labels they
provide. Specifically, for classification tasks the annotators
provide categorical responses for each datum. Nevertheless,
human annotators may be unreliable and their labels erroneous
or noisy. Thus, a key challenge in crowdsourcing is appropri-
ately aggregating the potentially noisy labels provided by the
annotators.

Arguably, the simplest method for aggregating labels is the
majority vote rule. Under this rule, the label most annotators
agree on is the one assigned to each datum. While simple,
this method implicitly assumes that all annotators are of equal
ability, and thus can yield suboptimal performance in various
tasks. Seeking to improve the performance of majority voting,
alternative methods use parametric models of annotator be-
havior, and typically assume that annotators are conditionally
independent. The so-called Dawid and Skene model uses the
expectation-maximization algorithm to jointly estimate annota-
tor responses and aggregate noisy labels [2]. Building on the
Dawid and Skene model and ideas from moment matching
a plethora of algorithms that enjoy improved performance
have been developed [3]–[7]. Methods based on deep neural
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networks have been proposed in [8] and [9], with the former
using a restricted Boltzmann machine and the latter advocating
an autoencoder structure to fuse annotator responses. Aiming
to relax the conditional independence assumption, [10]–[13]
propose models that take into account dependencies between
annotators. Similar approaches are also advocated to identify
spammer or adversarial annotators from their responses [14]–
[17].

Most of the aforementioned algorithms typically operate
under the assumption that the data are independent and iden-
tically distributed (i.i.d.). However, this assumption may not
necessarily be true. For instance, time series data or text data,
such as the ones arising in natural language processing, exhibit
temporal or sequence dependencies. In addition, data arising
from social or communication networks exhibit correlations
or dependencies associated with the network structure. Ex-
tensions of the Dawid and Skene model for sequential and
networked data have been proposed in [18]–[20]. When data
features are available, recent works advocate so-called end-to-
end (E2E) models. These models seek to simultaneously train
a classifier and infer annotator reliability, using the available
data features and noisy annotator responses. Such E2E models
typically utilize Gaussian Processes [19], [21] or deep neural
networks [22], [23] as classifiers.

In this work, we develop a novel approach to combining
annotator responses under data dependencies, encoded by a
graph. Such pairwise dependencies may be known a priori or
can be estimated from auxiliary data related to the crowd-
sourcing task.

For the crowdsourcing task we propose to employ a graph
autoencoder (GAE) architecture [24] that does not require
any data features. The encoder part of GAE is a cascade of
message-passing Graph Neural Network (GNN) layers, while
the decoder reconstructs the graph from the dot product of data
pairs. Theoretical and empirical evidence suggest that GNN
encoders learn powerful node embeddings [25] that capture
the critical information from both the graph and the annotators
[26], [27]. In fact the expressive power of GNNs along with the
effectiveness of autoencoder architectures to learn informative
and concise representation is a key to the success of our
proposed method.

The rest of this paper is organized as follows: Section II
introduces the problem statement and relevant preliminaries,
while Section III presents our proposed algorithm. Numerical
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tests with real data are presented in Section IV and finally
concluding remarks and future research directions are given
in Section V.
Notation. Unless otherwise noted, lowercase bold letters, x,
denote column vectors, uppercase bold letters, X, represent
matrices, and calligraphic uppercase letters, X , stand for
sets. The (i, j)th entry of matrix X is denoted by [X]ij .
Pr denotes probability, or the probability mass function; ∼
denotes ”distributed as;” ⊤ represents transpose; and 1(A) is
the indicator function for the event A, that takes value 1 when
A occurs, and 0 otherwise.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data X := {xn}Nn=1,
where each datum can belong to one of K possible classes.
The class each datum is assigned to is encoded via the labels
{yn}Nn=1, e.g. yn = k if xn belongs to class k. Class priors
are collected in π := [Pr(yn = 1), . . . ,Pr(yn = K)]⊤. M
annotators or workers observe X , or subsets of it, and provide
estimates of labels, where y̌(m)

n ∈ {1, . . . ,K} denotes the label
assigned to the n-th datum by annotator m. When an annotator
does not provide a response for xn, we encode this by setting
y̌
(m)
n = 0. Note that, in general, there is no guarantee that
y̌
(m)
n = yn. Given only the annotator responses, collected in

the N×M matrix Y̌, where [Y̌]n,m = y̌
(m)
n , the crowdsourced

classification task involves fusing annotator responses to esti-
mate the ground-truth labels, namely {ŷn}Nn=1. Note that this
is an unsupervised problem, as we do not have access to the
ground-truth labels {yn}Nn=1.

A common assumption that most algorithms tackling the
label aggregation task adhere to, is that data are indepen-
dent and identically distributed according to some unknown
distribution. However, this i.i.d. assumption is often violated.
Suppose that the correlation or dependence between data in
X is known, and is encoded in a known graph G(V, E). Here,
V is the so-called vertex or node set, whose cardinality is the
total number of data, |V| = N , and E is the edge or link set.
G may be known from the physics of the problem, or can be
estimated from X using topology inference techniques [28].
Alternatively, such pairwise dependencies can be easily es-
timated if the annotators provide information regarding the
similarity of different data, alongside their label estimates.
Finally, a graph can be estimated via the similarity between
annotator responses. A graph can be compactly represented
by its N ×N adjacency matrix A, with entries [A]i,j = 1 if
(i, j) ∈ E , that is, if a link exists between nodes i and j, and
[A] = 0 otherwise. The next section will develop an algorithm
that considers both annotator responses and the graph G, to
fuse the labels for each datum.

III. GRAPH AUTOENCODER FOR CROWDSOURCING

For each datum n, the annotator responses {y̌(m)
n }Mm=1,

despite potential errors, contain information regarding the true
label yn. Thus, the crowdsourcing problem can be considered
as the task of condensing or “compressing” the per datum
responses into a single variable, that should be close, in some

sense, to the true label yn. Recent works have shown that this
“compression” is possible using an autoencoder structure [9].
An autoencoder is an algorithm that consists of two neural
networks: an encoder network, that compresses its’ input
into latent variables, and a decoder network that attempts to
reconstruct the input from the latent variables. In the setup
of this paper, and taking into account the available graph G,
that captures relationships between data, the “compression”
of annotator responses can be realized using a GAE. While
conceptually the same as an ordinary autoencoder, the encoder
and decoder networks in a GAE, are tailored to the graph G.
The encoder network constructs latent representations of the
inputs by taking into account G, and the decoder seeks to
reconstruct G, i.e. the adjacency A, from the aforementioned
latent representations.

Prior to using a GAE-based algorithm, all scalar annotator
responses in Y̌ are converted into so-called one-hot vectors,
i.e. y̌(m)

n = k is converted to a canonical K × 1 vector y̌
(m)
n

that has a 1 in it’s k-th entry, and zeroes elsewhere. Then per
datum n, all annotator responses can be stacked into a MK×1
vector y̌n, i.e.

y̌n = [y̌(1)
n

⊤, y̌(2)
n

⊤, . . . , y̌(M)
n

⊤]⊤. (1)

The encoder has to “compress” the per datum vector y̌n into
a K × 1 vector zn that encodes the label yn. The decoder
network then has to reconstruct the graph G from zn. The
ensuing subsections will describe in detail the structure of the
proposed graph autoencoder for crowdsourcing.

A. Message-passing encoder

To jointly process the information of each annotator along
with the relational structure of the data the encoder layer is
designed using graph message-passing operations. In partic-
ular, a graph neural network (GNN) encoder is employed,
which consists of a cascade of layers defined by the following
recursive equation:

x(l)
n = g(l−1)

(
f (l−1)

({
x(l−1)
u : u ∈ N (n)

}))
, (2)

where N (n) is the neighborhood of vertex n, i.e., u ∈ N (n)
if and only if (u, n) ∈ E . The function f (l) aggregates
information from the multiset of neighboring signals, whereas
g(l) performs a transformation of the aggregated signals. The
proposed encoder uses an architecture similar to the graph
convolutional network (GCN) [29]. In particular, for each layer
l, f (l) is the elementwise mean pooling and g(l) is an affine
transformation followed by a sigmoid function. In other words
g(l) is a multi-layer perceptron (MLP) with sigmoid activation.
Overall (2) takes the form:

X(l) = σ
(
H(l)X(l−1)D− 1

2AD− 1
2

)
, (3)

where X(l) is a matrix whose n-th column is x
(l)
n , D is

a diagonal matrix with elements the degrees of each node
(datum), H(l) is a Fl × Fl−1 matrix containing the trainable
parameters of layer l, and σ is the sigmoid function, applied
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Fig. 1: Proposed Encoder Architecture

elementwise. The per datum input to the GNN is the vector
of annotator responses, i.e., x(0)

n = y̌n. The encoder used in
this paper consists of three layers, as described in (2), with
(F0, F1, F2, F3) = (MK, 2K, 2K,K). The embedding at the
output of the encoder is refined by a softmax layer to ensure
that the output z lies in a probability simplex. As a result, the
per datum output is a K×1 vector zn, where zn[k] represents
the probability of datum n to belong to class k. Specifically,
the i-th entry of z is

[z]i =
e[x

(3)]i∑K
j=1 e

[x(3)]j
. (4)

The proposed encoder architecture is illustrated in Fig. 1.

B. Decoder network

The autoencoder architecture considered here reconstructs
the graph instead of the annotator responses. The intuition is
that in a graph with community structure, the most informative
node feature would be the node label. In other words, given
a categorical variable for each node, the categorical variable
that would reconstruct the graph with the lowest possible error
would be the label of the node (datum).

Similar to a standard graph autoencoder, the decoder net-
work here consists of an ”inner product decoder”, whose goal
is to reconstruct the adjacency matrix A of the graph G. Given
two latent variables zi, zj corresponding to data (nodes) i and
j, the probability of (i, j)-th edge of the graph is estimated as

Pr([Â]i,j = 1) = σ(ziz
⊤
j ). (5)

Algorithm 1 Crowd Graph Autoencoder (CrowdGAE)

1: Input: Annotator responses {y̌(m)
n }N,M

n=1,m=1, K, graph
G(V, E), regularization constant λ > 0

2: Output: Estimated labels {ŷn}Nn=1

3: Convert annotator responses per datum n into vector
format as (1).

4: Train autoencoder via (7)
5: Obtain latent representations zn for n = 1, . . . , N .
6: Estimate label ŷn via (10) for n = 1, . . . , N

Dataset N M K
Citeseer 3, 312 10 7

Cora 2, 708 10 10
Pubmed 19, 717 10 3

Music Genre 700 44 10
Sentence Polarity 5, 000 203 2

Bluebird 108 39 2

TABLE I: Dataset properties

Letting Z = [z1, . . . , zN ] the overall probability of the
reconstructed adjacency matrix is given as

Pr(Â) = σ(ZZ⊤). (6)

C. Training

The graph autoencoder treats the process of finding low-
dimensional embeddings in the context of link prediction, or
binary classification. The unknown parameters of the model,
collected in Θ = {H(0),H(1),H(2)}, are estimated by solving
the following optimization problem

min
Θ

H(A,Pr(Â)) + λR(Y̌,Z) (7)

where H(A,Pr(Â)) is the binary cross-entropy [30] between
the edges in A and the estimated edges in Â, R(Y̌,Z) is
a regularization term, and λ > 0. The cross-entropy term
promotes accurate reconstruction of the graph, while the
regularization term R(Y̌,Z) is used to ensure that indices of
the latent variables z maintain the proper ordering. Specifically
the regularization term is

R(Y̌,Z) =

N∑
n=1

DKL(zn||π̂n), (8)

where DKL(p||q) is the Kullback-Leibler divergence between
two discrete distributions p and q [30]. Thus the regularization
term forces the latent variables zn to be ”close” to some prior
distribution π̂n. Here, the distribution π̂n per datum can be
directly obtained by averaging annotator responses, i.e.

π̂n =
1

Mn

M∑
m=1

y̌(m)
n (9)

where Mn is the number of annotators that have provided
a response for datum n. It is important to note that, the

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:06:14 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm / Dataset Citeseer Cora Pubmed Music Genre Sentence Polarity Bluebird
MV 46.23 42.98 70.73 71.14 88.95 75.92
DS 55.40 58.60 75.12 76 91.48 87.96

LAA 48.422 45.34 72.52 77.57 88.177 90.7
CrowdGAE 62 63.51 77.69 82 95.69 93.51

TABLE II: Accuracy (higher is better) for real data experiments

training process of the graph autoencoder only requires the
noisy annotator labels and the graph.

D. Label Inference

After training the graph autoencoder and with the latent
variables for all n data {zn}Nn=1 at hand, the final aggregated
labels {ŷn}Nn=1 can be readily estimated. For datum n, the
estimated label ŷn is given as the index of zn that corresponds
to the entry of largest magnitude, i.e.

ŷn = argmax
k

[zn]k. (10)

The entire label aggregation procedure is tabulated in Alg. 1

IV. NUMERICAL TESTS

The performance of the proposed method is evaluated in
this section using six real datasets. The proposed algorithm,
denoted as CrowdGAE is compared with the EM algorithm of
Dawid and Skene initialized via majority voting, denoted as
DS, the majority voting rule, denoted as MV, and the label-
aware autoencoder algorithm of [9], denoted as LAA. Note, all
competing alternatives here, do not use any graph information.

The datasets considered are the Cora, Citeseer [31],
Pubmed [32], Music genre, Sentence Polarity [33] and Blue-
bird [34] datasets. Cora, Citeseer, and Pubmed are citation
network datasets, for which graphs and data features are pro-
vided. However, these datasets do not come with crowdsourced
labels. To emulate the effect of a crowd, 10 classification
algorithms are trained using the provided features on subsets
of the data. Each algorithm takes the role of an annotator.
Afterwards, the classification algorithms provide labels for
all the data. Music Genre, Sentence Polarity, and Bluebird
are crowdsourcing datasets, where human annotators have
provided responses for music genre identification, sentiment
analysis of movie reviews, and bird identification respectively.
For the Music Genre, Sentence Polarity and Bluebird datasets
graphs were not provided, and as such had to be created.
Graphs for these datasets were created using their ground-
truth labels. Specifically, if data i and j belong to the same
class, that is yi = yj , then an edge is drawn between them,
[A]i,j = 1, otherwise if yi ̸= yj [A]i,j = 0. Then entries
of A are subsampled to create the final graph: within class
entries are sampled with probability ε1 and random edges
between classes are added with probability ε2. Finally, 10%
of the edges in A are used during the training of CrowdGAE.
Properties of all datasets are listed in Tab. I.

Experiments were performed using Python, the PyTorch and
PyTorch geometric [35], [36] libraries and results represent

averages over 10 independent Monte Carlo runs. In all ex-
periments the parameter λ of CrowdGAE (see (7)) is set to
λ = 0.1. The sampling probabilities for the graphs created
for the Music Genre, Sentence Polarity and bluebird datasets
are ε1 = 0.8 and ε2 = 0.2. The figure of merit across all
experiments is the average accuracy

Acc = 100 ∗
∑N

n=1 1(yn = ŷn)

N
.

Table II shows the classification accuracy of considered
algorithms across all datasets. In all experiments, most meth-
ods outperform the majority voting rule. At the same time,
the proposed method achieves the highest accuracy among
the competing alternatives across all experiments, even with
minimal fine-tuning. From the findings of Table II we can
derive two main conclusions. First, that graph information can
be beneficial to the label aggregation task. The second and
most important conclusion is that the proposed CrowdGAE
can efficiently process both the graph and the annotators to
produce accurate classification results.

V. CONCLUSIONS

This contribution presented a graph autoencoder-based
method for aggregating labels in crowdsourced classification.
The proposed algorithm exhibits competitive performance in
multiple real datasets, and showcases the importance of tak-
ing data correlation into account when combining annotator
responses. Future work will involve developing a variational
counterpart to the proposed algorithm, interpretability analysis,
as well as alternative architectures.
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