
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTFLOW: ACCELERATING THE GENERATIVE FLOW
MATCHING MODELS WITH BANDIT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow-matching models deliver state-of-the-art fidelity in image and video genera-
tion, but the inherent sequential denoising process renders them slower. Existing
acceleration methods like distillation, trajectory truncation, and consistency ap-
proaches are static, require retraining, and often fail to generalize across tasks.
We propose FastFlow, a plug-and-play adaptive inference framework that accel-
erates generation in flow matching models. FastFlow identifies denoising steps
that produce only minor adjustments to the denoising path and approximates them
without using the full neural network models used for velocity predictions. The
approximation utilizes finite-difference velocity estimates from prior predictions
to efficiently extrapolate future states, enabling faster advancements along the de-
noising path at zero compute cost. This enables skipping computation at inter-
mediary steps. We model the decision of how many steps to safely skip before
requiring a full model computation as a multi-armed bandit problem. The bandit
learns the optimal skips to balance speed with performance. FastFlow integrates
seamlessly with existing pipelines and generalizes across image generation, video
generation, and editing tasks. Experiments demonstrate a speedup of over 2.6×
while maintaining high-quality outputs.

1 INTRODUCTION

Recently, flow-matching (FM) models Lipman et al. (2022) have emerged as an effective approach
for visual generation, offering both high fidelity and computational efficiency. By learning contin-
uous vector fields that transport simple distributions to complex data distributions, they generate
samples along smooth, iterative trajectories. Unlike diffusion models Croitoru et al. (2023), FM
achieves faster convergence and fewer sampling steps while maintaining comparable or better per-
ceptual quality. This framework allows precise control over the generative process, where increas-
ing the number of flow integration steps typically improves perceptual quality in both images and
videos. Despite these advances, inference speed remains a major bottleneck Yan et al. (2024);
Davtyan et al. (2025) due to the several reverse denoising steps that are performed sequentially. As
model sizes grow and generation tasks demand higher resolutions or longer video durations, the
computational cost becomes prohibitive, resulting in substantial latency during inference.

Several acceleration strategies—such as distillation Luhman & Luhman (2021); Yan et al. (2024);
Kornilov et al. (2024), trajectory truncation Dhariwal & Nichol (2021); Lu et al. (2022); Liu et al.
(2025a), and consistency training Yang et al. (2024); Zhang & Zhou (2025); Dao et al. (2025)—have
been proposed. While effective, these approaches have limitations: they require additional training
phases, rely on large-scale data, and incur non-trivial computational overhead. Moreover, they apply
a uniform inference schedule across all inputs, overlooking the fact that some samples may converge
with fewer steps, while others require longer trajectories to maintain fidelity. This one-size-fits-all
design leads to inefficiencies, as many intermediate steps contribute little to the final quality.

In this work, we propose a novel adaptive inference framework that reduces cost by approximat-
ing redundant intermediate denoising steps instead of fully computing them. Our approach builds
on the observation that flow-matching models often follow approximately linear denoising trajec-
tories Lipman et al. (2022) as they are trained to follow linear paths. Leveraging this property, we
approximate future states using Taylor series expansions and local velocity estimates derived from
the model dynamics, thereby reducing the number of expensive forward passes. We show that our

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MAB MAB MAB MAB MAB

Figure 1: Overview of our method. At each step, the multi-armed bandit (MAB) selects the number
of steps to approximate the trajectory. The bandit receives a reward proportional to the number of
steps successfully approximated, while deviations from the computed velocity incur a penalty. This
adaptive strategy allows the model to balance efficiency and accuracy across the trajectory.

approximation is sound by establishing a a theoretical bound on deviation of the final state of the
approximate trajectory with that of the full model. When approximation fails to maintain fidelity,
the system reverts to full model predictions. The central challenge, therefore, is to determine when
approximation suffices and when precise computation is necessary.

We address this challenge by formulating the decision process as a multi-armed bandit (MAB)
problem. At each step, a bandit adaptively selects how many future steps can be approximated
before requiring the next full model evaluation. Each arm corresponds to the number of steps to
approximate, and a subsequent full evaluation provides feedback to assess approximation accuracy.
The reward balances two competing objectives: (i) reducing computational cost by skipping evalu-
ations, and (ii) limiting deviation from the true model trajectory. This adaptation allows the system
to adjust inference complexity on a per-sample basis, learning over time when approximation is
reliable and when exact prediction is necessary. Fig. 1 illustrates our method (details in Section 3.2).

In existing caching-based acceleration approaches, TeaCache Liu et al. (2025a), caches residuals
and re-uses them at later inference steps. However, they use a hand-crafted relative-L1 distance-
based criteria to decide if a cache can be reused. In our experiments, we also observed that when
a specific speedup (e.g., 2×) is required, TeaCache unintentionally ends up with a fixed caching
schedule across generations, consistently skipping the same subset of timesteps regardless of in-
put complexity. Finally, TeaCache relies on handcrafted polynomial fitting of noisy inputs, which
typically requires prior model- or task-specific knowledge to perform optimally (see Appendix A.1).

Our approach is both efficient and adaptive: at every timestep, the bandit dynamically learns to
minimize redundancy by adapting to the complexity of the data distribution. Unlike prior accelera-
tion strategies, our method introduces zero retraining overhead, requires no auxiliary networks, and
integrates seamlessly as a true plug-and-play solution. In summary, our key contributions are:

• We propose FastFlow, a method to accelerate visual generation skipping redundant denois-
ing steps, where skipped steps are efficiently approximated using a Taylor series expansion.
We establish a theoretical bound on the deviation of the final state from the approximated
trajectories with that obtained by the full model (see Thm. 3.1).

• We setup the problem of determining the number of redundant steps as a Multi-Armed Ban-
dit (MAB), enabling the model to dynamically learn when full computation is necessary.

• Our framework is model-agnostic, requires no retraining or auxiliary networks, and can
be seamlessly integrated into existing flow-matching pipelines, making it a practical and
general solution for faster visual generation.

• Extensive experiments across image generation, video generation, and image editing
demonstrate more than 2.6× speedup while maintaining generation quality, showing that
our method achieves acceleration without sacrificing fidelity.

2 RELATED WORKS

Recently, Flow Matching Lipman et al. (2022); Dao et al. (2023); Labs et al. (2025); Deng et al.
(2025) has gained prominence as a strong counterpart to diffusion models Croitoru et al. (2023);
Xing et al. (2024); Yang et al. (2023); Zhu et al. (2023), since it establishes a deterministic corre-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

spondence between random noise and data. This benefits applications such as image inversion Deng
et al. (2024), editing Wang et al. (2024), and video synthesis Kong et al. (2024); Wan et al. (2025),
where reduced randomness leads to faster sampling with fewer neural evaluations. Multimodal vari-
ants, like FlowTok He et al. (2025), compress text and images into a joint token space to improve
inference speed, and large-scale systems like FLUX.1 Labs et al. (2025) demonstrate that flows can
approach the performance of diffusion models at low compute cost. In video domains, Pyramidal
Flow Matching Jin et al. (2024) cuts down complexity using hierarchical generation.

Nonetheless, the reliance on iterative sampling continues to hinder real-time deployment. To miti-
gate this, most acceleration work has involved retraining-based schemes Lee et al. (2023); Bartosh
et al. (2024). Knowledge distillation methods Luhman & Luhman (2021); Song et al. (2023); Liu
et al. (2022); Kornilov et al. (2024); Salimans & Ho (2022)—exemplified by InstaFlow Liu et al.
(2023), LeDiFlow Zwick et al. (2025), and Diff2Flow Schusterbauer et al. (2025)—leverage diffu-
sion priors for one- or few-step generation, while PeRFlow Yan et al. (2024) simplifies trajectories
with piecewise rectified flows. Sampling-adjustment approaches Dhariwal & Nichol (2021); Lu
et al. (2022); Shaul et al. (2023), such as TeaCache Liu et al. (2025a), identify and skip unneces-
sary steps through timestep embeddings, whereas consistency-based solutions Yang et al. (2024);
Zhang & Zhou (2025); Haber et al. (2025); Dao et al. (2025) integrate adversarial and consistency
objectives to enable high-fidelity few-step synthesis.

While existing methods remain static and often struggle to generalize across different models, tasks,
and datasets, FastFlow offers a universally compatible solution for any FM-based model. It dynami-
cally adapts, identifying and skipping redundant steps based on the incoming data distribution, while
the finite-difference approximation boosts efficiency to achieve significant speedups. Remarkably,
FastFlow is training-free and incurs negligible computational overhead, making it both practical and
highly effective in real-world scenarios.

3 METHODOLOGY

In this section, we provide details of our method, starting with a detailed description of the flow
matching models and then detailing our application to the flow matching models.

3.1 FLOW MATCHING OVERVIEW

Consider two probability densities π0 and π1 on Rd, representing the source and target distributions.
Flow Matching (FM) seeks to learn a deterministic, time-continuous flow that transports samples
from π0 to π1, governed by an ordinary differential equation (ODE). Formally, FM introduces a
time-dependent velocity field v : Rd × [0, 1]→ Rd, giving rise to the initial value problem

dxt

dt
= v(xt, t), x0 ∼ π0, t ∈ [0, 1]. (1)

Here, xt ∈ Rd denotes the sample state at time t, while the velocity field v(xt, t), typically pa-
rameterized by a neural network, is optimized such that the terminal distribution at t = 1 matches
π1. This ODE defines a flow map Φt(x0) that evolves samples along continuous trajectories, with
Φ1(x0) ∼ π1. The central task in FM is thus to learn a velocity field v(xt, t) that realizes this
transport.

Inference: As closed-form solutions for xt are generally unavailable for learned velocity fields,
numerical solvers are required. FM most often employs the forward Euler method for its simplicity
and efficiency. The interval [0, 1] is discretized into steps {t0 = 0, t1, . . . , tK = 1}, possibly with
non-uniform intervals. Starting from x0 ∼ π0, the trajectory is advanced as

xtk+1
= xtk +∆tk · v(xtk , tk), ∆tk = tk+1 − tk. (2)

This discretization approximates the continuous flow with a finite sequence of updates, where each
step moves the sample in the direction given by the velocity field. Owing to its low computational
cost and suitability for parallel hardware, Euler’s method remains the default choice in most FM
implementations.

For our method, we need to find all the redundant denoising steps, as there will be many due to
straight line trajectories that are learned during training and then replace them using some good
approximation of the true model predictions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 OUR METHOD

Approximating velocity. To accelerate sampling, we look at a simple mechanism to approximate
velocities at different timesteps, instead of re-computing from the model. Using the first-order Taylor
series expansion for xt+∆t and taking a time derivative results in:

v(xt+∆t, t+∆t) :=
dxt+∆t

dt
= v(xt, t) + ∆t · dv(xt, t)

dt
(3)

A natural direction for approximation is to use the most recent velocity estimate computed from the
model assuming dv(xt,t)

dt → 0. In previous works, this is accompanied by a static criteria to decide
whether re-computation from the model is necessary.

However, we find that even in the regions where velocity seems to be smooth and linear, it makes
minor adjustments, ignoring those leads to accumulated errors during generation (see Figure 4),
making above strategy overly simplistic for aggressive skipping.

Instead of re-using the same velocity estimate, we update it using finite-difference approximation
of Eq. 3, utilizing the past velocity estimates. We write this approximation at discrete time steps as
follows (where p < k):

v(xk+1, tk+1) ≈ v(xk, tk) + ∆tk ·
v(xtk , tk)− v(xtp , tp)

tk − tp
. (4)

Below we establish a bound on the deviations in the flow value of the approximated velocity esti-
mates while skipping a set of time-steps during inference with that obtained by the full model.
Theorem 3.1. Let {xtrue

tk
} denote the trajectory obtained using the exact velocity field with the

forward Euler method, and let {xapprox
tk

} be the trajectory where velocity evaluations are skipped at
a subset of steps S ⊆ {0, . . . , T − 1} and are instead approximated, for simplicity, via a first-order
Taylor expansion in time. Under assumptions of smoothness of velocity field, the cumulative error
in the final state after T steps with a uniform step size ∆t = 1/T is bounded by:

eT := ∥xapprox
tT − xtrue

tT ∥ = O
(
|S|
T 3

)
.

The proof of this theorem can be found in Appendix B. This result shows that the final error grows
linearly with the number of steps skipped and thus provides a formal guarantee on the stability of
our approximation scheme.

Deciding Redundant Steps. A central challenge in our framework lies in determining when to
perform a model evaluation versus when to rely on an approximation. Since each approximation in-
evitably introduces error, uncontrolled propagation may cause the trajectory to deviate significantly
from the true dynamics. Moreover, the tolerance to approximation errors can vary across samples
of different complexity, implying that the decision criterion must adapt dynamically to the evolving
data distribution. Thus, we cast the problem of detecting redundant steps as an online sequential
decision-making problem, formalized via the Multi-Armed Bandit (MAB) framework.

In an MAB setup, an agent iteratively selects actions from a finite set, aiming to maximize cumu-
lative reward while balancing exploration of uncertain actions and exploitation of actions known to
yield high rewards. At timestep tk, let Atk denote the action set, where each action αtk ∈ Atk
corresponds to skipping αt steps before the next model evaluation. A separate bandit is instantiated
at each timestep, learning an adaptive policy for choosing αt based on approximation performance.

Let v(xtk , tk) denote the true model velocity, v̂(xtk , tk) its approximation under the chosen skip
strategy, and ℓ(·, ·) is a discrepancy measure (e.g., mean-squared error). We define the reward asso-
ciated with action αtk as

r(αtk) = µ · αtk − ℓ
(
v̂(xtk , tk), v(xtk , tk)

)
, (5)

The scalar µ > 0 balances the trade-off between efficiency (favoring larger αt) and accuracy (pe-
nalizing deviation from the true velocity).

This reward structure formalizes the intuition that skipping more steps accelerates inference, but
incurs a penalty proportional to the local error. The MAB objective then becomes

max
π

E

[
T∑

t=1

r(αtk)

]
, (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 FastFlow: Bandit-driven approach for accelerated Flow Matching inference

Require: Initial state xt0 , timesteps {t0, t1, . . . , tT }, velocity modelM, action sets {Atk} for ban-
dit agents {Btk}

T−1
k=0 , trade-off parameter µ, exploration constant γ = 2.0.

1: Initialize the mean arm rewards Q and arm counts N for bandit agents {Btk}
T−1
k=0 using the first

prompt.
2: Compute initial velocities v(xt0 , t0), v(xt1 , t1)←M(xt0 , t0),M(xt1 , t1) and set p← 0.
3: xt2 ← xt1 + v(xt1 , t1) · (t1 − t0).
4: k ← 2
5: while k ≤ T − 1 do
6: n← number of time Btk is invoked.

7: Bandit Btk selects skip length m := αtk ← argmaxα∈Atk

[
Q(α) + γ

√
lnn
N(α)

]
.

8: if m > 0 then
9: ∆t← tk+m−1 − tk; v̂ = v(xtk , tk) + ∆t · v(xtk

,tk)−v(xtp ,tp)

tk−tp
.

10: xtk+m−1
← xtk + v̂ ·∆t.

11: end if
12: ∆t← (tk+m − tk+m−1); v(xtk+m−1

, tk+m−1) =M(xtk+m−1
, tk+m−1)

13: xtk+m
← xtk+m−1

+ v(xtk+m−1
, tk+m−1) ·∆t.

14: Compute reward: r(αtk) = µ · αtk − ℓ
(
v̂, v(xtk+m−1

, tk+m−1)
)
.

15: Update bandit Btk statistics: N(αtk)← N(αtk) + 1, Q(αtk)←
∑k

j=1 r(αj)1{αj=αtk
}

N(αtk
) .

16: p← k; k ← k +m
17: end while
Ensure: Final trajectory {xtk}Tk=0.

where π denotes the adaptive policy that maps history of past rewards and actions to the choice of
αt. By construction, the optimal policy π⋆ learns to exploit redundancies in locally smooth regions
of the trajectory while reverting to exact model evaluations in regions of high curvature or instability.

Algorithm. Algorithm 1 presents the pseudo-code of FastFlow. The procedure begins with initial-
ization: we specify the timestep grid, the velocity prediction modelM, the action setsAtk available
to each bandit Btk , and the trade-off parameter µ. Each bandit is then initialized from a full genera-
tion using the first prompt, ensuring that each action is at least played once.

At inference time, when the trajectory reaches a state xtk , the corresponding bandit Btk selects
a skip length αtk via an upper-confidence bound strategy (line 5). This choice reflects a balance
between exploration of new skip patterns and exploitation of those that have yielded high reward.
The trajectory then advances αtk−1 steps using finite-difference extrapolation, followed by an exact
evaluation ofM at the terminal point.

The reward couples efficiency with reliability: longer skips are encouraged by the term µ · αtk , but
this gain is counterbalanced by a velocity mismatch loss that anchors accuracy. Concretely, if αtk =
m, the extrapolated velocity v̂(xtk+m

, tk+m) is contrasted with the true velocity v(xtk+m
, tk+m).

This loss is crucial, as it directly measures the drift introduced by approximation: even small ve-
locity errors accumulate along the trajectory, so penalizing the mismatch ensures stability. By con-
tinually updating bandit statistics under this trade-off, FastFlow adapts its policy across timesteps,
recomputing when approximation would deviate significantly, while exploiting skips where the loss
remains small.

Computational Complexity of Bandits: FastFlow employs multi-armed bandits (MABs) to deter-
mine the number of steps to skip and approximate. MABs are computationally lightweight, adding
negligible overhead, as they only maintain a list of rewards computed as in line 5 of Algorithm 1.
This efficiency is further confirmed empirically in our experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method SO TO CT CL ATTR PO Overall ↑ CLIPIQA ↑ Spd. ↑ Lat. ↓

Full Model

Full 50 0.99 0.90 0.81 0.85 0.59 0.54 0.78 0.85 1.00× 36.2
Full 25 0.99 0.91 0.78 0.84 0.62 0.51 0.77 0.82 2.00× 19.5
Full 10 0.99 0.88 0.68 0.84 0.56 0.48 0.74 0.75 5.00× 07.3

Static Speedup Methods

InstaFlow 0.86 0.20 0.21 0.66 0.04 0.02 0.33 0.74 50.0× 01.5
PerFlow 0.99 0.79 0.44 0.85 0.25 0.15 0.58 0.80 5.00× 08.2
Teacache 0.99 0.89 0.78 0.83 0.58 0.52 0.76 0.80 1.85× 20.6

Ours (FastFlow)

FastFlow-50 0.99 0.91 0.80 0.86 0.63 0.51 0.78 0.83 2.65× 13.7
FastFlow-25 0.99 0.91 0.76 0.84 0.59 0.50 0.77 0.80 4.54× 08.6
FastFlow-10 0.98 0.84 0.65 0.84 0.54 0.47 0.72 0.73 7.14× 05.5

Table 1: Comparison of flow-matching acceleration methods. SO: Single Object, TO: Two Object,
CT: Counting, CL: Color, ATTR: Color Attribute, PO: Position, Overall: Overall score, CLIPIQA:
Perceptual Image Quality. Speedup is relative to full-50 step generation. Latency is average infer-
ence time per image (s).

Method SO TO CO CL ATTR PO Overall ↑ CLIPIQA ↑ Spd. ↑ Lat. ↓

Full Model

Full 50 0.98 0.79 0.73 0.78 0.44 0.21 0.65 0.84 1.00× 33.8
Full 25 0.98 0.78 0.71 0.76 0.43 0.18 0.64 0.80 2.00× 17.5
Full 10 0.97 0.66 0.59 0.67 0.41 0.15 0.57 0.60 5.00× 07.1

TeaCache

TeaCache-50 0.98 0.79 0.71 0.76 0.43 0.21 0.64 0.80 1.91× 18.3
TeaCache-25 0.97 0.76 0.70 0.74 0.43 0.17 0.62 0.78 3.45× 10.3

FlowFast (Ours)

FlowFast 50 0.97 0.78 0.72 0.77 0.44 0.20 0.64 0.82 2.57× 13.9
FlowFast 25 0.97 0.78 0.71 0.75 0.42 0.18 0.63 0.79 4.21× 08.5
FlowFast 10 0.95 0.64 0.54 0.66 0.40 0.14 0.55 0.57 7.59× 05.2

Table 2: Comparison of Full model, TeaCache, and FlowFast (ours). Best values in each column
are bolded. FlowFast achieves significantly better performance-efficiency trade-offs while main-
taining competitive accuracy and perceptual quality.

4 EXPERIMENTS

We evaluate our approach across text-to-image generation, image editing, and text-to-video genera-
tion. Below we describe the datasets used in each setting.

Datasets: We use the GenEval benchmark Ghosh et al. (2023), a curated collection of 553 prompts
explicitly designed to evaluate compositional reasoning in text-to-image generation. The prompts
are organized to probe key abilities such as object occurrence, spatial relations, color binding, and
numerical consistency, making GenEval a widely adopted standard for testing fine-grained semantic
alignment.

For image editing, we adopt the GEdit benchmark Liu et al. (2025b), which comprises 606
real-world editing instructions in English. The instructions span a broad spectrum of opera-
tions—including object manipulation, color changes, layout adjustments, and stylization—allowing
systematic evaluation of both localized edits and global scene transformations.

To measure temporal and multimodal consistency in video generation, we use a subset of VBench
dataset . We construct a representative evaluation set by sampling 80 prompts, uniformly selecting
5 from each of the 16 dimensions defined by the benchmark. This ensures balanced coverage across

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8

5.0

5.5

6.0

6.5

7.0

Sc
or

e
(B

AG
EL

)

Semantic Consistency (G_SC)

1 2 3 4 5 6 7 8

Perceptual Quality (G_PQ)

1 2 3 4 5 6 7 8

Overall (G_O)
Step Sizes

Steps 50
Steps 25
Steps 10

1 2 3 4 5 6 7 8

4.0

4.5

5.0

5.5

6.0

Sc
or

e
(F

LU
X)

Semantic Consistency (G_SC)

1 2 3 4 5 6 7 8

Perceptual Quality (G_PQ)

1 2 3 4 5 6 7 8

Overall (G_O)
Step Sizes

Steps 50
Steps 25
Steps 10

Full Model TeaCache FastFlow

Figure 2: Comparison of editing quality across two models: BAGEL and FLUX. Each subfigure
reports semantic consistency (G SC), perceptual quality (G PQ), and overall score (G O) versus
speedup.

diverse factors such as motion dynamics, object persistence, camera control, and scene composition,
yielding a challenging yet comprehensive testbed for generative video models.

Baselines We compare our method against the following baselines:

Full Generation: The standard sampling procedure, where the model executes the complete de-
noising trajectory without acceleration. This serves as the fidelity upper bound and the reference
point for all accelerated methods.
TeaCache: TeaCache accelerates generation by caching intermediate representations and reusing
them across timesteps. This eliminates redundant computation and reduces inference time, though
fidelity can degrade due to approximations introduced in cached states.
InstaFlow: A flow-matching–based sampler trained for ultra-fast generation (down to a single step)
on the Stable-Diffusion-v1.5 model. While highly efficient, it sacrifices fidelity compared to full
sampling. We evaluate InstaFlow using the released Stable-Diffusion-v1.5 weights.
PeRFlow (Piecewise Rectified Flow): PeRFlow Yan et al. (2024) straightens the diffusion trajec-
tory via piecewise-linear rectification over segmented timesteps, enabling few-step generation with
favorable quality–efficiency tradeoffs. We report using the official Stable-Diffusion-XL checkpoints.
Ours: Our approach accelerates inference by selectively approximating redundant steps. A Multi-
Armed Bandit dynamically decides where to apply approximation, balancing efficiency with fidelity.

For all baselines, we adopt the official hyperparameters provided in their codebases. In Table 1, Tea-
Cache is applied is as released, and in Figure 2, we further evaluate it across timesteps to emphasise
its plug-and-play flexibility. An ablation over µ is given in Figure 6.

Models. To demonstrate the versatility of our approach, we evaluate across multiple state-of-the-art
models: for image generation, BAGEL, Flux-Kontext, and PeRFlow; for image editing, BAGEL,
Flux-Kontext, and Step-1X-Edit; and for video generation, HunyuanVideo.

Hyperparameters. We consider two key hyperparameters. (i) Arm set: Each arm represents the
number of steps to skip. Since the feasible skip length naturally decreases as the remaining steps
shrink, we design the arm set adaptively with respect to the current generation step. For fairness,
the arm set is kept fixed across models and tasks, and updated only when the generation horizon
changes. (ii) Error scaling factor µ: To normalize rewards, we define µ = maxt MSE(v̂t,vt)

total steps , where
the maximum MSE is estimated from the first full generation pass. This choice rescales error values
to the same order as step counts, ensuring stable bandit updates while explicitly encoding the trade-
off between efficiency (fewer steps) and fidelity (lower error). We run the experiments on a single
NVIDIA A100 GPU.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7
Speedup (×)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Sc
or

e

Vbench

1 2 3 4 5 6 7
Speedup (×)

42

44

46

48

50

52

54

56

BRISQUE

Steps
50 Steps
25 Steps
10 Steps

Full Model TeaCache FastFlow

Figure 3: Comparison of the Video generation for the HunYuanVideo model. We report the VBench
score an the BRISQUE metric for the quality of frames generated.

Zoomed in Zoomed in

Figure 4: Mean squared error between consecutive velocity predictions in the BAGEL model. While
the trajectories may appear constant at intermediate scales, a finer analysis uncovers subtle yet sys-
tematic variations, indicating that the underlying dynamics are not strictly stable.

4.1 RESULTS

Image Generation: Tables 1 and 2 present a comprehensive evaluation of FastFlow against existing
baselines across multiple dimensions, including single-object (SO) and two-object (TO) generation,
compositional accuracy, and object positioning. While semantic correctness is important, percep-
tual quality is equally critical; to capture this, we report CLIPIQA scores—a state-of-the-art Image
Quality Assessment metric. Our method consistently surpasses prior approaches, achieving sub-
stantial speedups over full-step generation while maintaining competitive fidelity. Notably, speedup
is measured relative to the full 50-step generation. Although InstaFlow and PerFlow (Table 1) are
trained on Stable-Diffusion variants—rendering speedup comparisons inexact—the reported latency
still provides a meaningful wall-clock comparison.

Image Editing: Figure 2 illustrates the performance of our method on image editing using BAGEL
and FLUX models. Evaluations are conducted on the GEdit dataset, with GPT-4.1 serving as an
automatic judge to score edits on semantic consistency (G SC), perceptual quality (G PQ), and an
overall quality measure (G O). Our approach achieves the highest speedup among all baselines while
preserving, and in many cases improving, the quality of the edits.

Video Generation. Figure 3 reports results on video synthesis using the VBench benchmark, which
multiple dimensions including motion dynamics, temporal consistency, and scene composition. For
perceptual assessment of individual frames, we additionally employ the no-reference BRISQUE
metric. Our method consistently surpasses baselines, delivering sharper frames and more coherent
temporal evolution while achieving substantial acceleration.

Collectively, these results demonstrate that FastFlow offers a transformative trade-off between effi-
ciency and quality. By dramatically reducing computation without sacrificing perceptual or semantic
fidelity, our method sets a new standard for fast, high-quality image generation and editing. This
opens the door to practical, real-time applications on resource-constrained devices, making advanced
generative modeling more accessible and scalable.

4.2 ANALYSIS

Empirical evidence motivating approximation: In Figure 4, we illustrate the L1-relative error
||v(xtk

,tk)−v(xtk+1
,tk+1)||

||v(xtk+1
,tk+1)|| of velocity predictions across consecutive steps, providing insight into how

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

50 Steps 25 Steps 50 Steps+TeaCache
1.85x Speedup

50 Steps+FastFlow
2.67x Speedup

Prompt: A photo of a red giraffe with black cellphone.

Prompt: A photo of a red umbrella and a green cow.

50 Steps 25 Steps 50 Steps+TeaCache
1.88x Speedup

50 Steps+FastFlow
2.75x Speedup

B
A

G
E

L
FL

U
X

Figure 5: Generated instance for image generation task for BAGEL and FLUX models.

the model refines trajectories over time. We observe a clear three-phase pattern: the model first
establishes the coarse flow, then performs subtle refinements during intermediate steps, and finally
adjusts again in the later steps to finalize the trajectory.

Prior work Liu et al. (2025a) has largely relied on zoomed-out trends, where intermediate updates
appear nearly constant, motivating strategies that approximate future states solely from the last step.
However, a finer-grained inspection reveals that these intermediate refinements, though small, are
not negligible—subtle fluctuations accumulate and can lead to significant deviations if ignored. This
phenomenon, consistently observed in both generation and editing tasks, highlights the need for
approximation methods that capture intermediate dynamics rather than oversimplifying them.

Qualitative Analysis. Figure 5 illustrates image generation with BAGEL and FLUX. Simply trun-
cating steps severely harms fidelity, especially for challenging prompts, yielding incomplete or dis-
torted images. TeaCache produces closer outputs but still misses fine-grained details and realism.
In contrast, FastFlow delivers results nearly indistinguishable from full-step generation, while being
substantially faster.

Figure 7 shows editing examples. Direct step reduction either fails to apply edits or introduces visual
artifacts. TeaCache improves but struggles with precise integration. FastFlow, however, incorporates
edits as faithfully as full generation, consistently preserving both semantic intent and visual quality.

In summary, the strong speedup of FastFlow stems from its aggressive yet principled approximation,
which skips redundant updates without diverging from the model trajectory. The multi-armed bandit
controller further adapts to dataset and model dynamics (see Figure 8), learning where to skip and
where to refine, enabling acceleration without sacrificing quality.

5 CONCLUSION

We introduced a new framework FastFlow that accelerates flow-based generative models by adap-
tively skipping redundant steps while safely approximating the underlying trajectory. Unlike
static reduction strategies, our approach dynamically adjusts to the difficulty of incoming sam-
ples—skipping more aggressively for easy cases while allocating more model computation to harder
ones. The trajectory approximation further empowers the decision-maker (MAB) to capture fine-
grained variations, enabling efficient yet faithful generation. Across diverse datasets and tasks, our
method consistently outperforms existing baselines, establishing a new paradigm for fast, high-
fidelity generative modeling. One limitation of using MAB is the speedup may not be observed in
the initial steps due to inherent explorations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS AND REPRODUCIBILITY STATEMENT

We have read and adhere to the Code of Ethics as detailed out for this conference. To the best of our
knowledge, this is our original work and all related work has been appropriately cited. All authors
have contributed towards this work and are responsible for it’s content. There is no implicit use of
Large Language Models (LLMs), except for the cases where these models are already part of our
technical method, and in cases where the use has already been disclosed.

We describe a detailed algorithm to reproduce our work. Additionally, we provide the source
code using which the results of this work can be reproduced in this anonymized repository
https://anonymous.4open.science/r/fastflow_flux-B90F/README.md. The
results from related works are taken from their official manuscripts and/or official source reposito-
ries (as separately specified for each such work).

REFERENCES

Grigory Bartosh, Dmitry P Vetrov, and Christian Andersson Naesseth. Neural flow diffusion models:
Learnable forward process for improved diffusion modelling. Advances in Neural Information
Processing Systems, 37:73952–73985, 2024.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE transactions on pattern analysis and machine intelligence, 45(9):
10850–10869, 2023.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Quan Dao, Hao Phung, Trung Tuan Dao, Dimitris N Metaxas, and Anh Tran. Self-corrected flow
distillation for consistent one-step and few-step image generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 2654–2662, 2025.

Aram Davtyan, Leello Tadesse Dadi, Volkan Cevher, and Paolo Favaro. Faster inference of flow-
based generative models via improved data-noise coupling. In The Thirteenth International Con-
ference on Learning Representations, 2025.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, and Fan Tang. Fireflow: Fast inver-
sion of rectified flow for image semantic editing. arXiv preprint arXiv:2412.07517, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Eldad Haber, Shadab Ahamed, Md Shahriar Rahim Siddiqui, Niloufar Zakariaei, and Moshe Eliasof.
Iterative flow matching–path correction and gradual refinement for enhanced generative model-
ing. arXiv preprint arXiv:2502.16445, 2025.

Ju He, Qihang Yu, Qihao Liu, and Liang-Chieh Chen. Flowtok: Flowing seamlessly across text and
image tokens. arXiv preprint arXiv:2503.10772, 2025.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
arXiv preprint arXiv:2410.05954, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

10

https://anonymous.4open.science/r/fastflow_flux-B90F/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-
ing: Learning straight trajectories in just one step. Advances in Neural Information Processing
Systems, 37:104180–104204, 2024.

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
Flow matching for in-context image generation and editing in latent space. arXiv preprint
arXiv:2506.15742, 2025.

Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ode-based gen-
erative models. In International Conference on Machine Learning, pp. 18957–18973. PMLR,
2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–
7363, 2025a.

Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
editing. arXiv preprint arXiv:2504.17761, 2025b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Johannes Schusterbauer, Ming Gui, Frank Fundel, and Björn Ommer. Diff2flow: Training flow
matching models via diffusion model alignment. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 28347–28357, 2025.

Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
solvers for generative flow models. arXiv preprint arXiv:2310.19075, 2023.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 57(2):1–42, 2024.

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. Advances in Neural Information
Processing Systems, 37:78630–78652, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Speedup

73

74

75

76

77

78

Ge
ne

va
l S

co
re

 (%
)

50 Steps
25 Steps

0.0001

0.0005

0.001

0.005

0.01

 v
al

ue
s

Figure 6: Caption

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1–39, 2023.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency. arXiv preprint arXiv:2407.02398, 2024.

Yuchen Zhang and Jian Zhou. Inverse flow and consistency models. In Forty-second International
Conference on Machine Learning, 2025.

Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. Conditional text image
generation with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14235–14245, 2023.

Pascal Zwick, Nils Friederich, Maximilian Beichter, Lennart Hilbert, Ralf Mikut, and Oliver Bring-
mann. Lediflow: Learned distribution-guided flow matching to accelerate image generation. arXiv
preprint arXiv:2505.20723, 2025.

A APPENDIX

A.1 FASTFLOW VS. TEACACHE VS. DIRECT REDUCTION

FastFlow vs. Direct Reduction. A natural question arises: why not simply reduce the number
of diffusion steps directly? While straightforward, this approach is fundamentally different from
FastFlow. Direct reduction applies a static truncation of steps, which effectively assumes that the
velocity at a removed step can be approximated by reusing the velocity from the previous step. This
oversimplification discards useful intermediate information and can degrade generation quality.

In contrast, FastFlow is adaptive. Instead of discarding steps outright, it selectively identifies which
steps must be computed by the model and which can be approximated using prior computations.
This ensures that efficiency is achieved without sacrificing fidelity, especially for complex prompts.

FastFlow vs. TeaCache. TeaCache approaches acceleration differently: it uses timestep embed-
dings of noisy inputs and applies a polynomial fitting scheme to determine whether a step should
be cached. While conceptually simple, this design comes with two key limitations: 1) It requires
calibration via polynomial fitting, which introduces task- and model-specific tuning overhead. 2) It
is not truly dynamic — the caching threshold is fixed once a target speedup is specified, and in our
empirical evaluation (50 video generations and 100 image generations), we consistently observed

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Flux BAGEL

Hyperparam Generation Editing Generation Editing

Image resol. 1360×768 – 1024 × 1024 –
Guidance scale 2.5 2.5 cfg text scale = 4 cfg text scale = 4
Guidance rescale 0 0 cfg img scale = 1 cfg img scale = 2
µ 0.001 0.005 0.001 0.005
cfg interval – – [0.4, 1.0] [0.0, 1.0]
timestep shift – – 3 3
cfg renorm min – – 0 0
cfg renorm type – – “global” “text channel”
Arms [0,2,4,6] (50), [0,2,4,6] (25), [0,1,2,3] (10) same as BAGEL

Table 3: Hyperparameter settings for Flux and BAGEL. We report separate values for generation
and editing. Both models share the same arm configurations, while image resolution and condition-
ing scales differ.

that TeaCache converges to repetitive caching patterns (e.g., alternating steps for 2× speedup), re-
gardless of the complexity of the prompt. This indicates that the method does not effectively adapt
to prompt-specific generation difficulty, but rather applies a globally fixed caching strategy.

Advantages of FastFlow. Unlike TeaCache, FastFlow is truly dynamic. It learns on-the-fly during
inference and adapts to the complexity of each prompt. For simpler generations, it aggressively
reduces the number of model calls to maximize speedup, while for more complex prompts, it reverts
to additional steps to preserve quality. This adaptiveness enables FastFlow to provide consistently
better trade-offs between efficiency and fidelity compared to static baselines like TeaCache.

A.2 SPEEDUP VS PERFORMANCE CURVE

In Figure 6, we show the speedup vs performance trade-off in our method, it also gives a sense of
what number of steps to choose and with what µ, given a speedup. For instance, given a speedup
of 2.3×, whether user should choose 50 steps with some high value of µ or 25 steps with some low
values of µ.

A.3 FASTFLOW’S SKIP PATTERNS:

] Figure 9 illustrates how our method adapts skip decisions to the model’s internal dynamics. The
plot shows the mean squared error (MSE) of consecutive velocities alongside the frequency with
which different skip lengths are selected.

When velocity fluctuations are high, FastFlow consistently chooses shorter skips, preserving accu-
racy. During intermediate regions where changes are smoother, it shifts toward longer skips, accel-
erating computation. Finally, as fluctuations re-emerge toward later steps, the method automatically
reduces the skip length again. This adaptive behavior explains why FastFlow achieves significant
speedups without compromising fidelity: it skips aggressively only when the trajectory is stable and
reverts to fine-grained updates when the dynamics demand precision.

A.4 ADAPTIVENESS OF FASTFLOW

The adaptiveness of our method can be further seen in the Figure 8 we find that our method can
adjust the speedup based on the complexity of the incoming samples, if a sample required more
model computations it reverts back to lesser number of skips and approximations and in the case of
an easier generation the model can further gain speedup by aggressively skipping multiple redundant
steps making our method a go to choice for adaptive visual generation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Replace the text ‘Salmon’ with ‘Sandwich’

50 stepsOriginal image 25 steps 50 steps+FastFlow
2.91x speedup

Original image 50 steps 25 steps 50 steps+FastFlow
2.76x speedup

Change the text ‘hotwind’ to ‘cool breeze’

B
A

G
E

L
FL

U
X

Figure 7: Generated instance for image editing task for BAGEL and FLUX models.

Te
aC

ac
he

Speed Up: 1.91x Speed Up: 1.91x

Fa
st

Fl
ow

Speed Up: 2.05x Speed Up: 2.70xAdaptiveness

Prompt: A cat and a lion eating noodles. Prompt: A photo of a cat.

Figure 8: An illustration of the adaptiveness of our method. For simpler generation prompts, it
achieves higher speedups by reducing inference calls, whereas for more complex samples, FastFlow
automatically reverts to additional model calls. In contrast, baselines such as Teacache remain static
across timesteps, showing no dependence on generation complexity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

L1
-R

el
at

iv
e

Ch
an

ge

L1-Relative change

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

ti
on

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Timestep 5
Timestep 15
Timestep 25
Timestep 35
Timestep 45

Figure 9: The figure illustrates how our method adaptively skips redundant steps in regions of slow
variation, while reverting to full model evaluations when velocity changes are significant.

B THEORETICAL ANALYSIS

Assumptions: The velocity field v(x, t) is assumed to be smooth and satisfy the following condi-
tions for constants Lx,M > 0:

1. Lipschitz continuity in space: ∥v(x, t)− v(y, t)∥ ≤ Lx∥x− y∥ for all x, y ∈ Rd.

2. Bounded second time-derivative:
∥∥∥∂2v(x,t)

∂t2

∥∥∥ ≤M for all x ∈ Rd.

Theorem B.1. Let {xtrue
tk
} denote the trajectory obtained using the exact velocity field with the

forward Euler method, and let {xapprox
tk

} be the trajectory where velocity evaluations are skipped at
a subset of steps S ⊆ {0, . . . , T − 1} and are instead approximated, for simplicity, via a first-order
Taylor expansion in time.

Under above assumptions, the cumulative error in the final state after T steps with a uniform step
size ∆t = 1/T is bounded by:

eT := ∥xapprox
tT − xtrue

tT ∥ = O
(
|S|
T 3

)
.

Proof. Let ek := ∥xapprox
tk

− xtrue
tk
∥ be the spatial error at timestep tk. The forward Euler updates

for the true and approximate trajectories are given by:

xtrue
tk+1

= xtrue
tk

+∆t · v(xtrue
tk

, tk)

xapprox
tk+1

= xapprox
tk

+∆t · ṽk

where ṽk is the (potentially approximated) velocity used at step k.

By subtracting the two update equations and applying the triangle inequality, we derive the error
recurrence:

ek+1 = ∥xapprox
tk

− xtrue
tk

+∆t(ṽk − v(xtrue
tk

, tk))∥
≤ ek +∆t · ∥ṽk − v(xtrue

tk
, tk)∥.

We bound the velocity mismatch term by splitting it into the approximation error and the propagated
error:

∥ṽk − v(xtrue
tk

, tk)∥ ≤ ∥ṽk − v(xapprox
tk

, tk)∥︸ ︷︷ ︸
Approximation Error

+ ∥v(xapprox
tk

, tk)− v(xtrue
tk

, tk)∥︸ ︷︷ ︸
Propagated Error

.

The propagated error is bounded by the spatial Lipschitz condition:

∥v(xapprox
tk

, tk)− v(xtrue
tk

, tk)∥ ≤ Lxek.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For the approximation error, if a skip occurs (k ∈ S), we use the bound on the second derivative.
The remainder term of a first-order Taylor expansion gives:

∥ṽk − v(xapprox
tk

, tk)∥ ≤
M

2
(∆t)2.

If no skip occurs (k /∈ S), this error is 0. Combining these bounds, the full error recurrence becomes:

ek+1 ≤ ek +∆t

(
1{k∈S} ·

M

2
(∆t)2 + Lxek

)
≤ (1 + Lx∆t)ek + 1{k∈S} ·

M

2
(∆t)3.

We unroll this recurrence starting from the initial condition e0 = 0:

eT ≤
T−1∑
k=0

1{k∈S} ·
M

2
(∆t)3 · (1 + Lx∆t)T−1−k.

Using the inequality (1 + x) ≤ ex, we can bound the exponential term:

(1 + Lx∆t)T−1−k ≤ eLx∆t(T−1−k) ≤ eLxT∆t = eLx .

Substituting this back, we get a sum over the |S| steps where an error was introduced:

eT ≤
∑
k∈S

M

2
(∆t)3 · eLx = |S| · MeLx

2
(∆t)3.

Finally, with ∆t = 1/T , the bound is:

eT ≤
(
|S|MeLx

2

)
1

T 3
,

which proves that eT = O
(

|S|
T 3

)
.

Interpretation: The upper bound on the overall error can be interpreted as:

1. The overall error grows linearly with the number of skipped steps, but decays rapidly with
the total number of timesteps.

2. The proof provides a strong theoretical motivation for our choice of the bandit reward. The
goal is to maximize the number of skipped steps, while lowering the local error.

3. Approximating velocities in regions of large curvature (i.e., large M) increases the overall
error.

16

	Introduction
	Related works
	Methodology
	Flow Matching Overview
	Our method

	Experiments
	Results
	Analysis

	Conclusion
	Ethics and Reproducibility Statement
	Appendix
	FastFlow vs. TeaCache vs. Direct Reduction
	Speedup vs performance curve
	FastFlow’s skip patterns:
	Adaptiveness of FastFlow

	Theoretical Analysis

