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ABSTRACT

Consistency constraint between the text prompts and the image contents is pivotal in text-to-image
(T2I) diffusion models for composing multiple object categories. However, such consistency con-
straint is often underemphasized in the denoising process of diffusion models. Although token
supervised diffusion models can mitigate this issue by learning object-wise consistency between the
image content and object segmentation maps, it tends to suffer from the problems of segmentation
map bias and semantic overlap conflict, especially when involving multiple objects. To address this,
we propose EviDiff, a new evidential learning-supervised T2I diffusion model, which leverages the
advantages of uncertainty metric and conflict detection to enhance the fault tolerance of unreliable
segmentation maps and suppress semantic conflicts, strengthening object-wise consistency learning.
Specifically, a pixel evidence loss is proposed to restrain overconfidence in unreliable labels through
evidential regularization, and a token conflict loss is designed to weaken the contradiction between
semantics through optimizing a measured conflict factor. Extensive experiments show that our Ev-
iDiff outperforms state-of-the-art T2I diffusion models in multi-object compositional generation
without requiring additional inference-time manipulations. Notably, our EviDiff can be seamlessly
extended to the existing training pipeline of T2I diffusion models. The code and the trained EviDiff
model are available at https://github.com/anonymity-coder/EviDiff.

1 INTRODUCTION

Recent advances in text-to-image (T2I) diffusion models (Chen et al., Feng et al., 2023, Yang et al., 2023, Ramesh
et al., 2021, Ramesh et al., 2022, Xue et al., 2023) have demonstrated remarkable progress within computer vision
applications, propelling the capabilities of general generative models to a new level. Leveraging their exceptional
generation ability, these models enable users to synthesize highly realistic and creative visual content through user-
specified text prompts. However, they often struggle to compose multiple objects into a coherent scene (as shown in
the SD v1.4 in Fig. 1) since the noise is predicted by a full text prompt in the denoising objective of T2I diffusion
models (Wang et al., 2024, Feng et al.), which requires the model to be equipped with the ability of understanding
both the full text prompt and individual linguistic concepts from the prompt.

Several studies (Wang et al., 2024, Feng et al., Liu et al., 2022, Liew et al., 2022, Chefer et al., 2023, Ma et al., 2024)
have addressed the challenge of generating images including multiple objects. They enable the generated images better
reflect the text prompts through utilizing fine-grained text information. As proposed in TokenCompose (Wang et al.,
2024), the fundamental idea is to perform consistency constraint between the text prompts and the image contents in
the finetuning stage by imposing training objectives at the token level. It adopts Grounding DINO (Liu et al., 2024a)
and Segment Anything (SAM) (Kirillov et al., 2023) to obtain the grounding segmentation map of each text token
for local supervision of each text token. Once fine-tuned, the model can generate images by composing different
combinations of words from text prompts in the inference stage. Although these methods have shown great success,
they still suffer from segmentation map bias and semantic overlap conflict, which is problematic particularly when the
generated image involves multiple objects (TokenCompose in Fig. 1).

We hypothesize that the limitations come from two aspects. On the one hand, the masks (the segmentation maps)
generated directly by SAM are not always reliable (Ji et al., 2024), which results in overfitting to spurious regions. On
the other hand, semantic overlaps result in conflicts (Ke et al., 2021) among different text tokens since the consistency
constraint between each noun token from the text prompt and its corresponding segmentation map is individually
optimized. Therefore, we seek to address the following problems: How to cope with segmentation map bias and
semantic overlap conflict for more effective consistency constraint in T2I diffusion models?

Motivation: Inspired by the above observation, we find it desirable to tackle such problems by considering the un-
certainty metric of pixel-level predictions and quantifying the semantic overlap conflict. Evidential Deep Learning

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A phoenix rising from a burning bookstack in 
an ancient library

A polar bear wearing sunglasses and holding a 
melting ice cream cone on an iceberg

A samurai warrior feeding koi fish in a garden 
during cherry blossom season

A wolf howling at a blood moon while standing 
on an ancient stone altar

SD V1.4 TokenCompose EviDiff(Ours)SD V1.4 TokenCompose EviDiff(Ours) SD V1.4 TokenCompose EviDiff(Ours)SD V1.4 TokenCompose EviDiff(Ours)

Figure 1: Our proposed EviDiff significantly enhances the baseline model on text condition following, demonstrating
superior capability in composing multiple object categories.

(EDL) (Sensoy et al., 2018, Malinin & Gales, 2018), which is able to collect evidence of each category and estimate
the epistemic uncertainty in a single forward pass. Given this, we consider each pixel of each noun token from the text
prompt of as a classification unit and provide evidence values per class to reflect both the confidence and the associated
uncertainty. In this way, the model tends to produce low-confidence predictions in mislabeled regions of the biased
segmentation map, thereby avoiding overfitting to incorrect supervision. Moreover, Dempster-Shafer Evidence The-
ory (DST) (Dempster, 2008), an evidence combination rule, allows beliefs from different evidences to be combined to
obtain a new belief (Sentz & Ferson, 2002, Jøsang & Hankin, 2012). It is able to quantify the conflict level through
introducing the conflict penalty item in overlapping areas. Inspired by this, we consider each noun token from the text
prompt as different evidences and utilize DST combination rule to measure their conflict. Therefore, the model can
perceive overlapping conflicts between different semantic evidences, effectively alleviating the semantic competition
problem caused by independent optimization.

To this end, we propose EviDiff, an end-to-end fine-tuning strategy to enhance multi-object composition through a
novel consistency constraint (i.e., EDL driven object-wise consistency constraint) between the text prompts and the
image contents. Specifically, a pixel evidence loss is proposed to cope with the segmentation map bias. It models the
per-token cross-attention maps as evidence distributions (i.e., Dirichlet distribution) and calculates the cross entropy
using the mean value of the predicted Dirichlet distribution instead of directly using point predictions. In this way,
when the uncertainty is high (i.e., the distribution is loose), the loss of EDL will not excessively penalize the model, al-
lowing the model to remain cautious when facing biased segmentation map and avoid being forced to learn incorrectly.
In addition, a token conflict loss is proposed to alleviate semantic overlap conflict. It regards per-token cross-attention
map as multiple evidence embeddings and utilizes DST combination rule to aggregate such multiple evidence em-
beddings for conflict measurement. The measured conflict is utilized as an optimization target, enabling the model to
adaptively adjust the spatial distribution of different tokens’ cross-attention maps, thus mitigating semantic conflicts
arising from attention map overlap.

Our main contributions are summarized as the following:

• We formulate the problems of segmentation bias and semantic overlap conflict during the object-wise con-
sistency constraint between the text prompts and the image contents. And we propose a new T2I diffusion
model, EviDiff, which pioneeringly introducing EDL based pixel-level uncertainty metric and DST based
token-level conflict quantification to address these two problems. The proposed EviDiff can be seamlessly
integrated into the existing training pipeline of the T2I diffusion model.

• We design a pixel evidence loss to restrain overconfidence in unreliable labels through simultaneously con-
sidering pixel-level classification prediction and uncertainty estimation.

• We propose a token conflict loss to weaken the semantic overlap conflict through treating the conflict factor
measured by the DST combination rule as the optimization objective.
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Figure 2: Overview of EviDiff. The main components include: (1) The pixel evidence loss drives reliable consistency
constraint between the text prompts and the image contents through pixel-level uncertainty estimation; (2) The token
conflict loss weakens the contradiction between semantics.

• Extensive comparisons with previous outstanding methods demonstrate that EviDiff effectively improves the
performance in composing multiple objects without additional inference cost.

2 METHOD

Our EviDiff (Fig. 2) proposes a pixel evidence loss to restrain overconfidence in unreliable labels when conducting
pixel-level supervision between the image content and the object segmentation map, and designs a token conflict loss
to weaken the contradiction between semantics through optimizing a measured conflict factor. In Section 2.2, we first
illustrate the problem setup of the segmentation map bias. Following this, we detail how the pixel evidence loss address
this through pixel-level uncertainty metric. Subsequently, in Section 2.3, we clarify the semantic overlap conflict and
demonstrate how the token conflict loss alleviates such conflict through DST combination rule.

2.1 PROBLEM SETUP

Segmentation map bias. While consistency constraint based T2I diffusion methods have shown great success (Wang
et al., 2024, Zhou et al., 2025), the generation effect heavily depends on the quality of the segmentation map used
for consistency constraint. For example, when performing a training constraint between the text token guided cross-
attention map and the corresponding binary segmentation map, the model overfits to incorrect regions if binary seg-
mentation map is biased. We mathematically formulate this problem in Appendix B.1.

Semantic overlap conflict. Although Lpixel can focus the cross-attention map of nouns in text prompts on the target
area, a side effect of this loss is that separately optimizing each cross-attention map is contradictory when different
semantics overlap (Kim et al., 2025). To be specific, this per-noun supervision strategy inherently assumes that the vi-
sual concepts of different nouns are spatially disjoint. For example, in the phrase “a cat on a chair,” the noun “cat” and
“chair” may correspond to overlapping regions in the image due to physical interaction or spatial proximity. Supervis-
ing each noun’s cross-attention map with an independent segmentation map leads to semantic overlap conflicts, where
the same pixel may be simultaneously assigned to multiple concepts. This introduces contradicting gradients during
training, impairing the model’s ability of concept-to-region mappings. We mathematically formulate this problem in
Appendix B.2.
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Figure 3: Detailed diagram of pixel evidence loss and token conflict loss. For pixel evidence loss, the noun token’s
cross-attention maps are fed into the evidential Net to generate noun token’s evidences. Then, these evidences are
used to build the Dirichlet distribution, outputting pixel-level probabilities and the uncertainty for reliable pixel-level
supervision. For token conflict loss, the conflict coefficient of the overlapping area between noun token’s cross-
attention maps is calculated for optimization. Moreover, the activations of different noun tokens are aggregated into
respective corresponding spatial regions.

2.2 PIXEL EVIDENCE LOSS

To address the segmentation bias, our key insight is to add uncertainty metric between the cross-attention map and the
segmentation map to achieve more reliable consistency constraint. We accomplish this by leveraging the epistemic
uncertainty ability of EDL, which can quantify the credibility of its predictions. Instead of treating the attention score
of each pixel as a deterministic prediction, we reinterpret it as evidence supporting its foreground or background class.
As shown in Fig. 3, these evidence values are modeled via a Dirichlet distribution to construct an uncertainty-aware
attention learning process.

Evidence-based Attention Modeling. Given a cross-attention map A and the corresponding binary segmentation map
M , A is fed into an MLP evidence network fϕ(·) with an activation function (Softplus) to map A into the evidence
space, thus outputting evidence values e. For each pixel Ai,j , its evidence is defined as ei,j ∈ R≥0, from which
the parameters of a Dirichlet distribution D(p | α) are obtained as αi,j = ei,j + 1. The Dirichlet distribution
D(p | α) is considered as the conjugate prior to the multinomial distribution. It provides a predictive distribution for
the segmentation results, defned as follows:

D(p | α) =
{

1
β(α)

∏K
k=1 p

αk−1
k for p ∈ Ω

0 otherwise
(1)

where p = [p1, . . . pk] are the parameters of the multinomial distribution, β(α) is the high-dimensional multinomial
beta function, and Ω is the K − 1 dimensional unit simplex, defned as:

Ω =

{
p

∣∣∣∣∣
C∑

c=1

pc = 1 and 0 ≤ p1, . . . , pC ≤ 1

}
(2)

Subsequently, Subjective Logic (Jsang, 2018) is applied for the optimization of Dirichlet distribution parameter opti-
mization. It establishes a theoretical foundation linking Dirichlet distribution parameters to confidence and uncertainty
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quantification. Specifcally, for the predicted cross-attention map A, it provides a mass belief and uncertainty, satisfy-
ing:

uci,j +

C∑
c=1

bci,j = 1 (3)

where bi,j and uci,j are the cross-attention map probability of the pixel (i, j) for the c-th class and the uncertainty of
the pixel (i, j), respectively. The the mass of belief and uncertainty for the pixel (i, j) can be expressed as follows:

bci,j =
eci,j
S

=
αc
i,j − 1

S
and ui,j =

C

S
(4)

where S =
∑C

c=1

(
eci,j + 1

)
is the Dirichlet strength. It describes that the higher the allocated belief mass, the more

evidence is obtained for pixel (i, j). Conversely, the less evidence obtained, the greater the overall uncertainty for the
segmentation of pixel (i, j).

Considering that, on the simplex, the ideal Dirichlet distribution should concentrate its mass on the vertex correspond-
ing to the true class label. The distribution parameters should be close to 1 for all incorrect classes and significantly
larger for the correct one. Therefore, it is necessary to design a loss function that guides the model to optimize the
Dirichlet parameters in a way that minimizes segmentation uncertainty. Specifcally, We use the cross-entropy loss
Lce =

∑C
c=1 −yc log (pc) to link the Dirichlet distribution with the belief representation in subjective logic. Based on

the evidence, this loss can be reformulated to reflect the expected prediction under the Dirichlet distribution, enabling
the model to learn both accurate and uncertainty-aware segmentations, defned as follows:

Lice =

∫ [ C∑
c=1

−yc log(pc)

]
1

β(α)

C∏
c=1

(pc)
αc−1

dp =

C∑
c=1

yc (ψ (S)− ψ (αc)) (5)

where yc is the ground truth labels and ψ (·) is digamma function. We further incorporate a Kullback-Leibler (KL)
divergence loss to suppress evidence for incorrect classes while preventing the Dirichlet parameter of the ground-truth
class from being forced to 1, defined as:

LKL = log

 Γ
(∑C

c=1 α̃
c
)

Γ(C)
∑C

c=1 Γ (α̃c)

+

C∑
c=1

(α̃c − 1)

[
ψ (α̃c)− ψ

(
C∑

c=1

α̃c

)]
(6)

where α̃c = yc + (1− yc)⊙αc and Γ (·) is the gamma function.

The loss LPixEvi in this section consists of cross-entropy loss Lce, Lice, and LKL.

LPixEvi =
1

N

N∑
n=1

(λ1L(n)
ce + λ2(L(n)

ice + L(n)
KL)) (7)

where n represents each text token that belongs to a noun within the text prompt, and λ1, λ2, and λ3 are hyperparam-
eters to balance these three losses. The cross-entropy loss Lce is adopted to maximize the consistency between the
cross-attention map and the binary segmentation map.

2.3 TOKEN CONFLICT LOSS

To solve the semantic overlap conflict, we propose to aggregate all noun-level cross-attention maps using Dempster-
Shafer Evidence Theory (DST) (Dempster, 2008) to explicitly quantify inter-noun conflicts (Fig. 3), guiding the model
to learn semantically decoupled attention regions.

Cross-Attention Map Aggregation. Given a set of per-noun cross-attention maps {A1, A2, . . . , AN}, we construct
basic belief assignment function based on DST.

bn = γnAn ·Mn (8)

where bn is the belief evidence belonging to the n-th noun category. γn ∈ (0, 1) represents learnable factor. Mn is
the corresponding binary segmentation map. For tow nouns (v, w), the conflict coefficient within the overlapping area
Mv ∩Mw is calculated by:

Kv,w
i,j =

{
bvi,j · bwi,j , if(i, j) ∈Mv ∩Mw

0, otherwise
(9)
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Subsequently, we define a intra-object consistency loss Lintra to aggregate its activations of the cross-attention map
into certain subregions of its target regions and a inter-object conflict loss Linter to punish conflicting activations in
overlapping areas, defined as:

Lintra =
∑
n

(1− bn)2 (10)

Linter =
∑

(i,j)∈Mv∩Mw

Kv,w
i,j

1−Kv,w
i,j

· σ(Kv,w
i,j − τ) (11)

where σ is Sigmoid function and τ is constraint threshold. The final token conflict loss is the sum of Lintra and Linter,
defines as:

LTokCon =
1

N

N∑
n=1

(η1L(n)
intra + η2L(n)

inter) (12)

Finally, our EviDiff is jointly optimized by LLDM , LEviDiff , and LTokCon. The training objective is LEviDiff =
LLDM + LPixEvi + LTokCon

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION

Dataset for Finetuning. We follow the dataset setting in TokenCompose (Wang et al., 2024), which is a subset of
COCO image-caption pairs (Lin et al., 2014). To be specific, all unique images are from the Visual Spatial Reasoning
dataset (Liu et al., 2023) since these image-caption pairs have relatively low ambiguity in its visual language and the
rich diversity of object categories. The CLIP model (Radford et al., 2021) is used to choose the caption that has the
highest semantic correspondence to its paired image. The Grounded-SAM (Kirillov et al., 2023, Liu et al., 2024b) is
utilized to generate binary segmentation maps of all nouns from the captions. Finally, 4526 image-caption pairs and
their corresponding binary segmentation maps are finally obtained.

Evaluation metrics. We measure the following metrics: VISOR (Gokhale et al., 2022), MULTIGEN (Wang et al.,
2024), Fréchet Inception Distance (FID) (Heusel et al., 2017), CLIP Score (Kumari et al., 2023), Efficiency, and T2I-
CompBench (Huang et al., 2023). The detailed evaluation dataset and calculation rules based on these metrics are
described in Appendix C.

3.2 IMPLEMENTATION DETAILS AND BASELINE METHODS

Implementation Details. We follow the experiment settings outlined in TokenCompose (Wang et al., 2024), fine-
tuning our EviDiff based on Stable Diffusion v1.4 (Rombach et al., 2022). All experiments are implemented with
PyTorch and carried out with NVIDIA GeForce RTX 3090 GPU. The number of training steps is 24000, the initial
learning rate is 5e-6 with AdamW (Loshchilov & Hutter), and the batch size is 1 and 4 gradient accumulation steps on
a single GPU. Apart from the original denoised target LLDM , LPixEvi and LPixEvi and LTokCon are utilized in the
finetuning process, where (λ1, λ2, λ3) is set to (5e-5, 5e-7, 5e-7·min{1, nepoch/100} for LPixEvi and (η1, η2) is set
to (1e-4, 1e-4) for LTokCon. Appendix E provides the pseudocode of finetuning and inferencing.

Baseline Methods. To validate the effectiveness of our EviDiff, we compare our method with several representative
T2I generation methods, such as Stable Diffusion (Rombach et al., 2022), Composable Diffusion (Liu et al., 2022),
Layout Guidance Diffusion (Chen et al., 2024), Structured Diffusion (Feng et al.), Attend-and-Excite (Chefer et al.,
2023), SD3 (Esser et al., 2024), and TokenCompose (Wang et al., 2024). See Appendix D for details of these baselines.

3.3 MAIN RESULTS

Results of Multi-category Instance Composition: Object Accuracy (OA) & MULTIGEN We quantitatively
evaluate the compositionality of EviDiff based on OA (a metric from VISOR) (Gokhale et al., 2022) and MULTIGEN
(Wang et al., 2024) compared to the outstanding T2I models. As demonstrated in Table 1, EviDiff achieves state-
of-the-art performance on OA, which is 0.0348 higher than the suboptimal TokenCompose (Wang et al., 2024). For
MG2-5, it is clear that our EviDiff and TokenCompose show significant improvements apart from MG5. To verify
whether our method is benefit for finetuning other versions of T2I model, we add our fine-tuning strategy to Stable
Diffusion v2.1 and SD v3 Medium. As shown in Table 2, the results of Multi-category Instance Composition and
Photorealism indicate that our EviDiff significantly improves Stable Diffusion v2.1 and noticeably outperforms To-
kenCompose. On SD v2.1, compared to TokenCompose, our fine-tuning method improved OA by 0.1106 and MG4 by
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Table 1: Evaluation results of our model against baselines. EviDiff holistically demonstrates the best performance
regarding Multi-category Instance Composition, Photorealism, Realism and Efficiency. The best score is in blue , with
the second-best score in green. (C) denotes the COCO instance validation set and (F) denotes the Flickr30K instance
validation set.

Model
Multi-category Instance Composition Photorealism Efficiency

OA↑ MG2↑ MG3↑ MG4↑ MG5↑ FID(C)↓ FID(F)↓ CLIP(C)↑ CLIP(F)↑ Latency↓

SD v1.4 (Jsang, 2018) 0.2986 0.90721.33 0.50740.89 0.11480.45 0.00880.21 22.06 57.24 0.3022 0.3082 7.540.17

Composable (Liu et al., 2022) 0.2783 0.63330.59 0.21871.01 0.03250.45 0.00230.18 21.71 60.32 0.3123 0.2987 13.810.15

Layout (Chen et al., 2024) 0.4359 0.93220.69 0.60151.58 0.19490.88 0.02270.44 23.18 58.77 0.2851 0.3042 18.890.20

Structured (Feng et al.) 0.2964 0.90401.06 0.48641.32 0.10710.92 0.00680.25 22.09 56.73 0.2706 0.2931 7.740.17

Attend-Excite (Chefer et al., 2023) 0.4513 0.93640.76 0.65101.24 0.28010.90 0.06010.61 21.57 57.05 0.3018 0.3044 25.434.89

TokenCompose (Wang et al., 2024) 0.5215 0.98080.40 0.76161.04 0.28810.95 0.03280.48 21.12 56.93 0.3112 0.3205 7.560.14

EviDiff(Ours) 0.5563 0.97360.65 0.76601.15 0.29621.58 0.03530.47 20.84 55.36 0.3204 0.3299 7.540.24

Table 2: To evaluate the model generalization, we apply our finetuning strategy to Stable Diffusion v2.1 and SD v3
Medium, and report results on multi-category instance composition, FID, and CLIP score.

Model
Multi-category Instance Composition Photorealism

OA↑ MG3↑ MG4↑ MG5↑ FID(C)↓ FID(F)↓ CLIP(C)↑ CLIP(F)↑

SD v2.1 frozen 0.4728 0.7014 0.2557 0.0327 21.79 56.83 0.3045 0.3159
SD v2.1 ft. w. LLDM 0.5509 0.7643 0.3207 0.0473 21.94 57.02 0.3122 0.3231
SD v2.1 ft. w. TokenCompose 0.6010 0.8048 0.3669 0.0571 20.77 56.43 0.3209 0.3264
SD v2.1 ft. w. Ours 0.7116 0.8870 0.5401 0.1392 20.09 55.12 0.3241 0.3348
SD v3 frozen 0.8084 0.9996 0.9696 0.7328 18.21 54.33 0.3185 32.66
SD v3 ft. w. LLDM 0.8010 0.9996 0.9702 0.7345 18.94 55.14 0.3174 32.43
SD v3 ft. w. TokenCompose 0.8233 0.9997 0.9839 0.7569 18.05 54.87 0.3198 32.87
SD v3 ft. w. Ours 0.8644 0.9997 0.9964 0.8171 17.66 54.79 0.3247 32.78

0.1732. In addition, on SD v3 Medium, our method has also achieves competitive performance. These improvements
are largely attributed to the consistency constraint between the text prompts and the image contents, which greatly en-
hances the model’s ability of composing multiple object categories. By finetuning the Stable Diffusion thorugh pixel
evidence loss and token conflict loss, EviDiff provides reliable consistency constraint during the denoising process
and achieves outstanding generation results involving multiple objects. For qualitative experiments, as shown in Fig.
5, EviDiff achieves a high level of image quality in conjunction with multi-category instance composition, compared
with outstanding T2I models. The generation results of different finetuning methods based on Stable Diffusion v2.1
are provided in Appendix G.

Results of Photorealism: FID & CLIP Score As shown in Table 1, our EviDiff consistently outperforms out-
standing T2I models in both FID (Heusel et al., 2017) and CLIP Score (Kumari et al., 2023). Specifically, EviDiff is
0.28 and 1.37 lower than the suboptimal method on Fid(C) and Fid(F), respectively. It also 0.0081 and 0.0094 higher
than the suboptimal method on CLIP Score(C) and CLIP Score(F) respectively. We attribute these performance advan-
tages to the proposed pixel evidence loss and token conflict loss, which enhances image photorealism when composing
multiple categories of instances.

Results of Efficiency: Latency Compared to the standard T2I diffusion, our EviDiff does not require additional
inference time during the inference stage. As shown in Table 1, EviDiff achieves the best generation performance
using the least amount of inference time. The latency results in Table 1 represent the number of seconds required to
generate an image with 50 DDIM steps.

Results of Attribute Binding and Object Relationship: T2I-CompBench As illustrated in the Table 3, our
EviDiff observes significant gains in all seven evaluation tasks. compared with other finetuing methods. It is clear
that EviDiff show significant improvements in color and spatial compared with the TokenCompose finetuning method.
It is notable that Evidiff improves attribute binding and object relationship by enhancing the model’s multi-object
composition ability without specifically optimizing color, shape, texture, and the relationships between objects.

3.4 ABLATION STUDY

Importance of Pixel Evidence Loss LPixEvi As shown in Table 4, we show the Multi-category Instance Compo-
sition and Photorealism results, aiming to identify the effectiveness of pixel evidence loss. It is clear that without the
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Table 3: Evaluation results about compositionality on T2I-CompBench. Based on SD v2.1 and SD v3 Medium, EviDiff
consistently shows the best performance regarding attribute binding, object relationships, numeracy and complex.

Model
Attribute Binding Object Relationship

Numeracy↑
Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

SD v2.1 frozen 0.5309 0.4447 0.4929 0.1355 0.3099 0.4896
SD v2.1 ft. w. LLDM 0.5514 0.5007 0.5376 0.1644 0.3192 0.5042
SD v2.1 ft. w. TokenCompose 0.6063 0.4934 0.6131 0.1789 0.3185 0.5094
SD v2.1 ft. w. Ours 0.6604 0.5125 0.6287 0.2238 0.3204 0.5366
SD v3 frozen 0.8033 0.5831 0.7154 0.3102 0.4010 0.6043
SD v3 ft. w. LLDM 0.8152 0.5641 0.7184 0.3361 0.4122 0.5961
SD v3 ft. w. TokenCompose 0.8314 0.5766 0.7463 0.3651 0.4574 0.6243
SD v3 ft. w. Ours 0.8466 0.6037 0.7355 0.3984 0.4722 0.6520

Table 4: Ablation studies of different objectives with LLDM , LPixEvi, and LTokCon.

Model LLDM LPixEvi LTokCon

Multi-category Instance Composition Photorealism

OA↑ MG2↑ MG3↑ MG4↑ MG5↑ FID(C)↓ FID(F)↓ CLIP(C)↑ CLIP(F)↑

SD v1.4 0.2986 0.90721.33 0.50740.89 0.11480.45 0.00880.21 22.06 57.24 0.3022 0.3082
SD v1.4 ✓ 0.3821 0.91440.21 0.63721.11 0.19560.94 0.18970.32 24.57 60.14 0.3028 0.3106
SD v1.4 ✓ ✓ 0.5466 0.98210.30 0.76480.88 0.29341.14 0.33610.21 21.17 55.98 0.3178 0.3246
SD v1.4 ✓ ✓ ✓ 0.5563 0.97360.65 0.76601.15 0.29621.58 0.35300.47 20.84 55.36 0.3204 0.3299

use of the pixel evidence loss, Multi-category Instance Composition and Photorealism have significantly worsened.
This is because the text prompt and the object in the image are not aligned during the denoising process, leading to
poor multi-categories generation.

Effectiveness of Token Conflict Loss LTokCon We demonstrate the advantages of token conflict loss by introducing
the token conflict loss into the pixel evidence loss. As shown in Table 4, compared to before adding the token conflict
loss, the performance metrics of Multi-category Instance Composition and Photorealism after adding the token conflict
loss achieves consistent improvements apart from MG2. This is because the token conflict loss avoids multi-object
semantic overlap conflicts in the image when conducting the consistency constraint between text prompts and image
contents.

Figure 4: Ablation visualization demonstrates that
finetuning the Stable Diffusion with only LLDM does
not clearly identify the target objects. By introducing
LPixEvi and LTokCon, the model shows substantial
improvement in text-object correspondence.

The ablation visualization (Fig. 4) clearly shows that fine-
tuning Stable Diffusion with only LLDM struggles to accu-
rately capture the target objects. When the pixel evidence loss
LPixEvi is incorporated, the model improves the reliability
of object localization. Furthermore, adding the token conflict
loss LTokCon results in a enhancement of text-to-object con-
sistency. The ablation visualization demonstrates the effective-
ness of the proposed loss in capturing the objects correspond-
ing to nouns in the text.

4 RELATED WORK

Text-to-Image Synthesis. The field of text-to-image synthe-
sis (Du et al., 2023, Hao et al., 2023, Podell et al., Sun et al.,
2023, Xu et al., 2024, Zhang et al., 2023) has demonstrated
remarkable generative power in various fields, such as text-to-
image generation (Rombach et al., 2022, Saharia et al., 2022),
text-to-video generation (Blattmann et al., 2023, Singer et al.),
and text-to-3D generation (Poole et al., Lin et al., 2023). By
encoding text prompts into a condition vector using a pre-
trained CLIP (Radford et al., 2021), T2I diffusion models
have achieved successful applications in image generation. Al-
though progress has been made, compositional generation still
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Figure 5: Qualitative comparison between our EviDiff and the other T2I models.

struggles when text prompts involve multiple objects and intri-
cate relationships (Wu et al., 2024). One potential method to generate multi-target images is manipulating the latent
and/or cross-attention maps (Liu et al., 2022, Chen et al., 2024, Chefer et al., 2023, Feng et al., Rassin et al., 2023,
Wang et al., 2024, Jsang, 2018, Ma et al., 2024). More recently, TokenCompose (Wang et al., 2024) optimizes the
cross-attention maps based on segmentation maps to provide dense consistency constraint. It achieves strong composi-
tionality and image quality without additional inference time. Despite its superiority, it suffers from the segmentation
bias and optimizing multiple objects individually leads to semantic overlap conflicts, resulting in degraded image gen-
eration quality. In this work, we present a different approach to address these problems for more reliable multi-category
image composition through consistency constraint with evidential supervision.

Evidential Deep Learning. EDL is gradually developed and refined based on Dempster-Shafer theory of evidence
(Dempster, 2008) and Subjective Logic theory (Bao et al., 2021). The core idea of EDL is to collect evidence of each
category and construct a Dirichlet distribution parameterized over the collected evidence to model the distribution of
class probabilities. In addition to the probability of each category, the predictive uncertainty can be quantified from the
distribution by Subjective Logic theory in the forward pass. EDL has been applied in a variety of research areas, e.g.,
EDL based classification (Fu et al., 2023, Fu et al., 2023, Zhao et al., 2020), evidential models for regression (Amini
et al., 2020, Pandey & Yu, 2023), adversarial robustness (Kopetzki et al., 2021) and calibration (Tomani & Buettner,
2021). Most existing EDL approaches typically incorporate evidential loss along with evidence regularization to guide
the uncertainty behavior (Pandey & Yu, 2022, Shi et al., 2020) of the evidence. In this work, we focus on EDL loss for
segmentation and DST for multi-evidence aggregation. It is a promising way to tackle the problem of segmentation
map bias and semantic overlap conflict, enabling more effective image synthesis involving multiple objects.

5 CONCLUSION

In this paper, we formulate the problems of segmentation map bias and semantic overlap conflict in performing the
consistency constraint between text prompts and image contents, and propose EviDiff, an end-to-end T2I diffusion
model fine-tuning strategy equipped with consistency constraint between text prompts and image contents. We identify
the causes of these two problems and propose two key components to explicitly address them. The pixel evidence loss
judges the reliability of consistency supervision through pixel-level uncertainty metric. Besides, we introduce the
token conflict loss to address the semantic overlap conflict among objects in the image. Despite achieving superior
generation results, EviDiff shortcomings in attribute binding task. In future work, we will continue to improve this
framework by considering applying constraints on color, shape, texture, etc.

9
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This supplementary material contains several sections that provide additional details related to our work on EviDiff.
Specifically, it will cover the following topics:

• In Appendix A, we provide a preliminary of Stable Diffusion Model and Cross-attention layer.
• In Appendix B.1, we derivate the problem of segmentation map bias.
• In Appendix B.2, we derivate the problem of semantic overlap conflict.
• In Appendix C, we provide a detailed explanation of the evaluation metrics used in this work.
• In Appendix D, we provide a detailed introduction of the baselines used in this work.
• In Appendix E, we provide the pseudocode for EviDiff to thoroughly demonstrate its finetuning and infer-

encing process.
• In Appendix F, we provide the generation results of different finetuning methods based on Stable Diffusion

v2.1 and SD v3 Medium.

A PRELIMINARY

Stable Diffusion Model. This work focuses on the Stable Diffusion Model (SD) [46] which functions within the
latent space of an autoencoder. To be specific, an image x0 is encoded to a latent code z0 = E(x0) using a variational
autoencoder (VAE) [22]. Subsequently, a normally distributed noise ϵ is added to the original latent code z0 with a
variable extent based on a timestep t sampling from {1, ..., T}. During denoising, the denoising function ϵθ param-
eterized by a UNet [47] backbone is trained to predict the noise added to z0 with the text prompt y and the current
latent zt as the input. The text prompt y is first encoded to the text embedding c = fCLIP(y) through a pre-trained
CLIP [42] text encoder fCLIP. The following shows the denoising objective.

LLDM = Ez0,t,c,ϵ∼N (0,I)

[
∥ϵ− ϵθ (zt, t, c)∥2

]
(13)

During inference, a latent variable zT is sampled from the standard Gaussian distribution N (0, 1), and then iteratively
uses ϵθ to estimate the noise and compute the next latent sample, thus deriving a refined latent representation z0.

Cross-attention layer. Text image interaction in SD is achieved through the cross-attention layer, facilitating text
condition guidance. Specifically, for each cross-attention layer, linear projections are employed to extract the key K
and value V from c, while the query Q is projected by the intermediate features of UNet. The cross-attention map
A(k) ∈ Rh×w×l is computed by:

A(k) = Softmax(
Q(k)(K(k))T√

d
) (14)

where k is the index of head. h and w are the resolution of the latent code. l is the token length of the text embedding,
and d is the feature dimension. An

i,j is the attention score assigned to n-th text token for the (x, y)-th spatial patch of
the intermediate feature map.

B PROBLEM DERIVATION

B.1 SEGMENTATION MAP BIAS

Assuming the cross-attention map is Ai,j ∈ [0, 1], it represents the probability that pixel (i, j) belongs to the fore-
ground. The true segmentation map is M∗

i,j ∈ {0, 1}. The segmentation map actually provided for model training is
Mi,j ∈ {0, 1}, which is biased, defined as:

εi,j :=Mi,j −M∗
i,j ∈ {−1, 0,+1} (15)

The model fits the segmentation map Mi,j with the cross-attention map Ai,j . The loss is defined as follows:

L = −
∑
i,j

[Mi,j · logAi,j + (1−Mi,j) · log(1−Ai,j)] (16)

Bring in Mi,j =M∗
i,j + εi,j :

L = −
∑
i,j

[
(M∗

i,j + εi,j) logAi,j + (1−M∗
i,j − εi,j) log(1−Ai,j)

]
(17)
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Unfold it as:

L = −
∑
i,j

[
M∗

i,j logAi,j + (1−M∗
i,j) log(1−Ai,j)

]
︸ ︷︷ ︸

Ideal supervision objective

−
∑
i,j

[
εi,j log

Ai,j

1−Ai,j

]
︸ ︷︷ ︸

Bias term

(18)

For the Bias term:

Lbias := −
∑
i,j

εi,j log
Ai,j

1−Ai,j
(19)

It represents the perturbation of the biased segmentation map for model learning. We analyze different situations as
follows:

Situation 1: False Positive. That is, M∗
i,j = 0, Mi,j = 1, then εi,j = 1. The bias term becomes: − log

Ai,j

1−Ai,j
.

When Ai,j < 0.5, the gradient is positive, and the decrease of loss drives Ai,j to increase. Consequently, the model is
encouraged to improve the response of the error area, incorrectly focusing on foreground area.

Situation 2: False Negative. That is, M∗
i,j = 1, Mi,j = 0, then εi,j = −1. The bias term becomes: log

Ai,j

1−Ai,j
.

When Ai,j > 0.5, the gradient is positive, and the decrease of loss drives Ai,j to decrease. Consequently, the model
suppresses real foreground response, ignoring the real foreground area.

Gradient Analysis: For Ai,j , its gradient is:

∂L
∂Ai,j

=
Ai,j −Mi,j

Ai,j(1−Ai,j)
(20)

In the ideal situation, it should be:
∂Lideal

∂Ai,j
=

Ai,j −M∗
i,j

Ai,j(1−Ai,j)
(21)

Therefore, in actual training, the direction of model optimization is:

∂L
∂Ai,j

=
Ai,j −M∗

i,j − εi,j

Ai,j(1−Ai,j)
=
∂Lideal

∂Ai,j
− εi,j
Ai,j(1−Ai,j)

(22)

The bias term term εi,j
Ai,j(1−Ai,j)

explicitly change the direction of the gradient, which makes the biased pixel dominate
the optimization direction of the model, causing the model to fit M∗ + ε instead of the true segmentation map M∗.

B.2 SEMANTIC OVERLAP CONFLICT

Assuming the text prompt contains N nouns {w1, . . . , wN}, each noun wn has a corresponding true segmentation
map Mn ∈ {0, 1}. The model predicts the cross-attention map An

i,j ∈ [0, 1] for each wn, defined as:

An
i,j = σ(ϕ(zi,j , e(wn))) for each pixel (i, j) (23)

where zi,j ∈ Rd is the visual feature of pixel (i, j), e(wn) ∈ Rd is the noun embedding, ϕ(·) is the cross-attention
fusion function, and σ is the activation function.

Let the target areas of two nouns w1, w2 overlap, i.e., there exists a pixel (i, j) such that:

M1
i,j = 1, M2

i,j = 1 (24)

We investigate whether the gradient direction of the shared image feature zi,j at the pixel (i, j) is consistent, that is

∇zi,jL1 vs ∇zi,jL2 (25)

If they have significant differences, it indicates that there is a optimization conflict during the training process.

For noun w1, Let:
a1 = ϕ(zi,j , e(w1)), A1

i,j = σ(a1) (26)

Then:
∂L1

∂zi,j
=

∂L1

∂A1
i,j

·
dA1

i,j

da1
· ∂a1
∂zi,j

(27)
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Expand item by item:
∂L1

∂A1
i,j

= −
M1

i,j

A1
i,j

+
1−M1

i,j

1−A1
i,j

(28)

dA1
i,j

da1
= A1

i,j(1−A1
i,j) (29)

if ϕ(zi,j , e(w1)) = z⊤i,je(w1) then
∂a1
∂zi,j

= e(w1) (30)

Based on the above analysis:

∇zi,jL1 =

(
−
M1

i,j

A1
i,j

+
1−M1

i,j

1−A1
i,j

)
·A1

i,j(1−A1
i,j) · e(w1) (31)

By analogy:

∇zi,jL2 =

(
−
M2

i,j

A2
i,j

+
1−M2

i,j

1−A2
i,j

)
·A2

i,j(1−A2
i,j) · e(w2) (32)

Define the overlapping area between w1 and w2 as:

Oi,j = {(i, j) ∈ [H]× [W ] |M1
i,j = 1andM2

i,j = 1} (33)

For the pixel (i, j) ∈ Oi,j ,

∇zi,jL1 ∝ (− 1

A1
i,j

) ·A1
i,j(1−A1

i,j) · e(w1) = −(1−A1
i,j) · e(w1) (34)

By analogy:
∇zi,jL2 ∝ −(1−A2

i,j) · e(w2) (35)

Finally, we obtained:

∇zi,jLtotal = ∇zi,jL1 +∇zi,jL2 = −[(1−A1
i,j)e(w1) + (1−A2

i,j)e(w2)] (36)

This is a weighted sum of two nouns w1, w2. If e(w1) and e(w2) has semantic overlap, then there will be conflict in
the overall gradient direction during optimization.

Specifically, when:
⟨e(w1), e(w2)⟩ < 0 (37)

The two gradient directions cancel each other out, ultimately leading to:

∥∇zi,jLtotal∥ < min{∥∇zi,jL1∥, ∥∇zi,jL2∥} (38)

It causes the gradient conflict.

C DETAILS OF EVALUATION METRICS

We measure the following metrics: 1) VISOR [13] can assess how accurately the spatial relationship described in text
is generated in the image. The VISOR benchmark generates all unique pairwise combinations of 80 COCO object
categories. Each pair (A, B) is converted into a text prompt following a template “¡A¿¡R¿¡B¿,” where R represents
an arbitrary spatial relationship. For example, one such prompt could be “a cat to the right of a table.” Finally, 31600
text prompts were constructed and used as conditions to generate 31600 images. Similarity, the open-vocabulary
detector [36] is used to detect the presence of each category in each generated image and the Object Accuracy (OA)
is employed to evaluate how successfully instances are generated from each of the two categories. 2) MULTIGEN
[55] is used to evaluate the ability of the model in combining instances of multiple categories. Specifically, given a set
of N distinct instance categories, five categories (e.g., A, B, C, D, and E) are randomly selected and formatted into a
sentence (e.g., ”A photo of A, B, C, D, and E”). This sentence serves as the conditional input for the T2I diffusion
model to generate the corresponding image. Subsequently, a robust open-vocabulary detector [36] is employed to
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assess whether the specified categories are accurately represented in the generated image. 1,000 text prompts are
built by randomly sampling 80 categories of COCO instances [28], which are used as inputs for the multi-category
instance combinations. To avoid inference variance, each prompt is used to generate 10 rounds of images, resulting in
a total of 10 × 1000 images. For each generated image, the open-vocabulary detector is used to determine how many
different categories of objects. Based on detection results, MG2-5 metrics are defined through the overall success
rates of generating 2-5 specified categories from 5 categories. 3) Fréchet Inception Distance (FID) [15] is used to
assess the quality of the generated images from two datasets: i) 25014 image-caption pairs sampled from the COCO
instance validation set; ii) 5000 image-caption pairs sampled from the Flickr30K instance validation set [39]. 4)
CLIP Score [25] is utilized to evaluate realism, which reflects the degree of match between generated images and text
prompts. The evaluation datasets is the same as FID. 5) Efficiency is used to compare the inference-time (i.e., the time
required to generate an image using the trained model) of our EviDiff with other baselines. 5) T2I-CompBench [16]
comprises 6,000 compositional text prompts evaluating 4 categories (attribute binding, object relationships, Numeracy,
and complex compositions) and 7 sub-categories (color binding, shape binding, texture binding, spatial relationships,
non-spatial relationships, numeracy and complex compositions).

D DETAILS OF BASELINES

(1) Stable Diffusion [46], which improves traditional diffusion models by reducing the high computational cost. (2)
Composable Diffusion [30], which composes a set of diffusion models, with each of them modeling a certain compo-
nent of the image. (3) Layout Guidance Diffusion [6], which proposes backward guidance to bias the cross-attention
via energy minimization for desired layout matching. (4) Structured Diffusion [10], which employs consistency
trees or scene graphs to split the prompt into several noun phrases and manipulates the cross-attention layer for image
generation. (5) Attend-and-Excite [4], which refines the cross-attention units to focus on all subject tokens in the text
prompt, encouraging the model to generate all subjects described in the text prompt. (6) TokenCompose [55], which
conducts consistency constraint between text prompts and the image contents for multi-category instance composition.

E DETAILS OF FINETUNING AND INFERENCING

In Algorithm 1, We provide a detailed finetuning process for EviDiff, which addresses the segmentation map bias
and semantic overlap conflict during the consistency constraint between the text prompts and the image contents, by
pixel-level uncertainty estimation and token-level conflict optimization. The pseudocode for the denoising process of
EviDiff is as follows.

Algorithm 1 Finetuning for EviDiff
Require: A text prompt y, a clear image x0, and a pretrained stable diffusion model ϵθ.

1: t ∼ Uniform({1, . . . , T})
2: ϵ ∼ N (0, I)
3: c = fCLIP(y)
4: zt =

√
ᾱtfV AE(x0) +

√
1− ᾱtϵ

5: for step = 1, . . . , S do
6: LLDM = Ez0,t,c,ϵ∼N (0,I)

[
∥ϵ− ϵθ (zt, t, c)∥2

]
7: for layer = mid8, up16,up32, up64 do
8: get the noun token’s cross-attention maps [A(1), . . . , A(N)] from each layer
9: get the noun token’s segmentation maps [M(1), . . . ,M(N)] from SAM

10: for (A(n),M(n)) = (A(1),M(1)), . . . , (A(N),M(N)) do
11: compute L(n)

PixEvi(A(n),M(n)) from Eq. 7
12: compute L(n)

TokCon(A(n), A(n+1)) from Eq. 12
13: end for
14: end for
15: get LEviDiff from Eq. ??
16: end for

In Algorithm 2, We provide a detailed denoising process for EviDiff, which can be applied directly to the existing
training pipeline of T2I diffusion models.
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Algorithm 2 Inferencing for EviDiff
Input: A text prompt y and the trained EviDiff
Output: A clear latent z0

1: zT ∼ N (0, I)
2: c = fCLIP(y)
3: for t = T, . . . , 1 do
4: zt−1 = 1√

αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t, c)

)
5: end for
6: return z0

F HYPERPARAMETER ABLATION STUDY

Table 5: Results with different values of λ1.
λ1 OA↑ FID(C)↑ FID(F)↑ CLIP(C)↑ FID(F)↑

5e-4 0.7109 20.11 55.26 0.3229 0.3330
5e-5 0.7116 20.09 55.12 0.3241 0.3348
5e-6 0.7110 20.13 55.24 0.3237 0.3336

Table 6: Results with different values of λ2.
λ2 OA↑ FID(C)↑ FID(F)↑ CLIP(C)↑ FID(F)↑

5e-6 0.7105 20.17 55.33 0.3230 0.3328
5e-7 0.7116 20.09 55.12 0.3241 0.3348
5e-8 0.7097 20.14 55.15 0.3234 0.3343

Table 7: Results with different values of η1.
η1 OA↑ FID(C)↑ FID(F)↑ CLIP(C)↑ FID(F)↑

1e-3 0.7109 20.31 55.54 0.3226 0.3324
1e-4 0.7116 20.09 55.12 0.3241 0.3348
1e-5 0.7102 20.28 55.32 0.3230 0.3315
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Table 8: Results with different values of η2.
η2 OA↑ FID(C)↑ FID(F)↑ CLIP(C)↑ FID(F)↑

1e-3 0.7103 20.46 55.44 0.3213 0.3320
1e-4 0.7116 20.09 55.12 0.3241 0.3348
1e-5 0.7088 20.38 55.65 0.3219 0.3314

G GENERATION RESULTS FINETUNED BASED ON STABLE DIFFUSION V2.1 AND SD V3
MEDIUM

SD v2.1
frozen

Midnight waves crash against lighthouse on jagged cliffs

A blooming rose next to a sunflower

A car parked under a tree next to a bicycle

A child riding a scooter followed by a dog

A tiger standing on rocks with a waterfall and forest 
in the background

A weathered book resting on a wooden desk beside a 
flickering candle

SD v2.1
ft. w. 
LLDM

SD v2.1
ft. w. 

TokenCompose

SD v2.1
ft. w.
Ours

Figure 6: Qualitative comparison of finetuning methods based on Stable Diffusion v2.1.
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A futuristic city skyline at sunset, with towering glass skyscrapers, 

flying cars, and glowing neon billboards reflecting on the river.

A majestic white horse running across a snowy mountain valley, 

with pine trees, frozen rivers, and golden sunlight on the peaks.

A mysterious library with endless wooden shelves, floating books, 

glowing candles, and a spiral staircase reaching into the dark ceiling.

SD v3

frozen

SD v3

ft. w.

LLDM

SD v3

ft. w.

TokenCompsoe

SD v3

ft. w.

Ours

Figure 7: Qualitative comparison of finetuning methods based on SD v3 Medium.

H THE USE OF LLM

In this work, we employ a large language model (LLM) solely for language polishing of the manuscript.
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