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Figure 1: Comparison between classifier-free guidance (top) and our method (bottom) on ImageNet
512 x 512 class-conditioned generation (class: cock), with VAR as the backbone
model. Each column corresponds to a sampling step. Each heat map depicts the distribution of
guidance on tokens at the respective sampling step, ranging from purple (weak guidance) to
(strong guidance). Blue and red scores indicate the evenness and divergence at each step, where 1/,
indicates that higher/lower is better (see Section [ for further detail). Our method improves upon
classifier-free guidance by concentrating guidance towards regions of foreground objects.

ABSTRACT

Autoregressive (AR) models based on next-scale prediction are rapidly emerging
as a powerful tool for image generation, but they face a critical weakness: informa-
tion inconsistencies between patches across timesteps introduced by progressive
resolution scaling. These inconsistencies scatter guidance signals, causing them
to drift away from conditioning information and leaving behind ambiguous, un-
faithful features. We tackle this challenge with Information-Grounding Guidance
(IGG) — a novel mechanism that anchors guidance to semantically important
regions through attention. By adaptively reinforcing informative patches during
sampling, IGG ensures that guidance and content remain tightly aligned. Across
both class-conditioned and text-to-image generation tasks, IGG delivers sharper,
more coherent, and semantically grounded images, setting a new benchmark for
AR-based methods.

1 INTRODUCTION

Autoregressive (AR) modelling (Chen et al., 2020; [Esser et al., 2021; Ramesh et al., 2021}, [Li et al.,
20240} [Tian et al.}[2024}; [Zhang et al., 2024; Tang et al., 2024} Han et al., 2024} [Voronov et al.} 2025))

has established itself within the field of image generation due to its ability to produce high-quality
outputs. AR models, at their core, sample image patches from joint distributions of discrete tokens,
allowing generation of complex visual patterns.
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A notable advancement in AR modelling is the introduction of multi-scale tokenisation strategies
(Tian et al., |2024; Han et al., [2024; Voronov et al., 2025; [Zhang et al., 2024} Tang et al., [2024)),
which enable the models to capture features from coarse to fine levels. This hierarchical approach
better aligns with the inherent multi-scale structure of natural images, allowing AR models to effec-
tively model both global structures and fine-grained details. Building on this paradigm, [Tian et al.
(2024) redefined the autoregressive process as “next-scale” prediction, diverging from “next-token”
prediction, which has long been the standard of AR modelling. This methodology—henceforth re-
ferred to as scale-wise AR (SWAR) modelling as per |[Voronov et al.| (2025); Ren et al.| (2024)—is
able to generalise features across varying resolutions while effectively reducing the computation
of the sampling step, offering a competitive alternative to diffusion-based approaches in terms of
sampling quality and time.

Regardless of modelling approaches, the sampling process of generative models relies heavily on
various guidance techniques (Kynkéddnniemi et al., [2024; Hong et al.l |2023; [Ho & Salimans| 2022
Dinh et al., [2023aib; 2024 |[Karras et al.l [2024a). In diffusion-based models, guidance is widely
utilised to improve image fidelity at the expense of sample diversity, typically by modulating the
denoising trajectory with additional conditioning signals. This mechanism has proven effective in
improving visual quality and semantic alignment, particularly in class-conditioned generation tasks.
Inspired by the efficacy of diffusion-based guidance, some techniques have been adopted for SWAR
modelling. Most notably, [Tian et al.| (2024) employed classifier-free guidance (Ho & Salimans,
2022) on token predictions (instead of noise and score predictions in diffusion models). Never-
theless, despite impressive empirical results, AR-based guidance is considerably less understood
compared to its diffusion-based counterpart. This gap is especially prominent given the fundamen-
tal differences between diffusion and AR models.

In light of this, this work is dedicated to investigating the behaviour of AR-based guidance, with a
focus on SWAR modelling. In particular, our analysis reveals that guidance in SwWAR models is often
misaligned, in stark contrast to guidance in diffusion models. From this key insight, we propose IGG
(Information-Grounding Guidance), a novel guidance scheme designed to accentuate this behaviour,
which we posit improves the overall sampling quality of SWAR models. In particular, IGG infers the
semantical importance of each token from its surrounding context and applies guidance accordingly.
To the best of our knowledge, it is the first method specifically designed for SwWAR modelling. We
evaluate IGG on various generative tasks. Experimental results consistently surpasses state-of-the-
art (SOTA) performances, thereby validating both our hypothesis and the efficacy of our method.

Our contributions in this paper are summarised as follows: (1) Present a technical analysis on the
dynamics of guidance in diffusion and SwWAR modelling, where it was found that guidance tends
to be misaligned in the latter. (2) Propose IGG, a novel technique that adaptively concentrates
guidance on semantically important tokens, and (3) Demonstrate the effectiveness of IGG through
extensive experiments on class-conditioned generation and text-to-image generation.

2 RELATED WORK

Diffusion models. Concurrent to the development of AR-based generative models, denoising dif-
fusion models have been receiving much attention for its impressive image generation capability
(Rombach et al., [2022; |Peebles & Xie, [2023; Karras et al., [2024b)). At its core, diffusion-based mod-
els learn how to make progressive denoising steps that transform pure noise into the target image.
To enhance the quality of the generated samples at the trade-off of diversity, diffusion models rely
on guidance methods (see below).

Autoregressive (AR) models. AR models have been highly regarded for their success in language
tasks. Prior adaptations of these transformer-based architectures for generative tasks |Chen et al.
(2020); [Esser et al.|(2021)) have been exploring the use of transformers to generate image patches in
a raster-scan order. Masked autoregressive models |Chang et al.| (2022); L1 et al.|(2024b); |[Fan et al.
(2024) changed this generation behaviour by sampling image patches in a random order at each step.
More notably, autoregressive models using the “next-scale prediction” paradigm pioneered by [Tian
et al. (2024) have been gaining attention for their competitive generation quality to diffusion models.

Classifier-free guidance (CFG). Amongst the breadth of guidance methods for generative mod-
elling (Dhariwal & Nichol, 2021} |Ho & Salimans| 2022; [Hong et al., 2023 [Dinh et al., [2023ajb;
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2024; Kynkéanniemi et al.l 2024} |[Karras et al |2024a), CFG (Ho & Salimans| 2022)) has remained
the de facto technique which has inspired many modern variants in and beyond computer vision,
most notably NLP |Li et al.|(2025); Liao et al.| (2025); [Zhang et al.| (2025). At its core, CFG uses
an unconditional model as the distribution to steer the class-conditioned version away from. This
mechanism is inspired by classifier guidance (Dhariwal & Nicholl 2021)) which opts for an explicit
classifier to guide the denoising process. Recent advancements have seen the application of CFG
to discrete diffusion and flow models (Nisonoff et al.l 2025} [Schiff et al.| [2025)). Given its demon-
strated generalisability, CFG has also been adapted to SWAR modelling (Tian et al.|[2024) where its
efficacy has been empirically verified.

3 BACKGROUND

Scale-wise autoregressive modelling. Given a vocabulary V), a foken map sj, is defined as a set
of hywy tokens {t11,%1,2, - ,th,w,} S V or, more intuitively, a hy x wy grid of tokens. In
its general form, a SWAR model constructs a series of token maps s := (s1,---,Sk) using an
encoder, such that h X wg matches the resolution of z. Then, a model is trained to predict s in an
autoregressive manner, maximising the likelihood p(s|c) = HkK:1 p(sk|s<k, ¢), where ¢ denotes the
conditioning signal. Finally, a reconstruction of the original x is produced from the predicted token
maps using a decoder.

SwAR-based classifier-free guidance. The mechanism of classifier-free guidance in SWAR mod-
elling is analogous to diffusion-based modelling, with the only exception in what is being guided
(token predictions, in contrast to noise/score predictions). In particular, guidance is applied on each
inference step by interpolating between the unconditioned model py(-) and its conditioned counter-
part pg(+|c), which may be expressed as

Po(sklc) = (14 Ak) po(sklc) — A po(sk), (1
where w € R is the guidance scale. Following guidance, sampling can be performed on py(si|c) to
obtain the final prediction 85, € V"** Wk Interestingly, while the original diffusion-based implemen-
tation (Ho & Salimans| [2022) fixes the guidance scales A\ = - - - = A\, it is possible to generalise it
to a guidance schedule. For example, |Tian et al.[(2024) defined the schedule A\, := w - k/(K — 1),
where w € R is a hyperparameter, to gradually accentuate guidance throughout inference. Guidance
is typically applied directly on the raw logit outputs of the models in practice. However, throughout
the paper, we will occasionally overload the notation py(+|c) to also denote the associated probabil-
ities, although it should be clear from context which quantities are being referred to.

4  ANALYSING THE BEHAVIOUR OF CFG DURING SAMPLING

This section aims to elucidate the key behaviours of CFG and differences between the guidance
dynamics of diffusion modelling as opposed to AR modelling, thereby shedding some light on the
gap in performance between these two approaches in practice. We begin by offering an alternative
perspective to the conventional interpretation of CFG as interpolating between unconditioned and
conditioned predictions:

Po(sklc) = po(sk) + vk (Po(sklc) — po(sk)) =: po(sk) + Py’ (sklc). 2
Note that Equation [2| becomes equivalent to Equation [I| by setting v := 1 4+ A;. Under this for-
mulation, CFG can be seen as “nudging” the unconditioned predictions towards the conditioned
predictions. This interpretation gives a concrete form to the concept of guidance that we can use
to validate our hypotheses below. Indeed, it is also consistent with the intention of the authors of
the original implementation of CFG, who remarked that the difference between the conditioned and
unconditioned score estimates resembles the gradient of an implicit classifier which is guiding the
main model (Ho & Salimans} [2022)). For ease of notations, we henceforth use p,” (+|e) to denote the
guidance signals characterising these “nudges”. A visualisation of these guidance signals is depicted
in Figure[T]

Guidance does not treat tokens equally. To validate our first hypothesis, we used Pielou’s evenness
index (Pielou, |1966)—or the normalised Shannon entropy—to evaluate the evenness of the guidance
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distribution associated with each token map,
H (pg’ (sklc))
In ( h LWE )

Note that PEI(-) € [0, 1], where a greater value indicates a more even distribution. In our evaluation,
for each image, we compute PEI(sk|c) for every sampling step & (although k£ = 1 is omitted for
SwAR models because it makes little sense to evaluate a distribution comprising a single value).
The overall PEI score for an image is computed as the weighted mean where each sampling step is
weighted by its corresponding output resolution (see Figure [2|for a visual illustration). For diffusion
models, since the output resolution is constant throughout the sampling process, the weighted mean
reduces to the unweighted mean. Comprehensive comparison between a representative model from
each paradigm (Table [I) reveals that diffusion modelling exhibits highly uneven guidance signals
while SWAR modelling remains lacklustre.

PEI(sk|c) = 3)

Guidance prioritises semantically important tokens.
Here, a token is considered to be semantically important
if it corresponds to a foreground object or an area within
the object with high level of detail in the final generated

Table 1: Comparison of the even-
ness (Evn, Equation and diver-
gence (Div, Equation ) of guidance in
EDM2 (Karras et al., [2024bl) and VAR

image. Assuming that this hypothesis indeed holds, it is
then natural to assume that the distribution of guidance
signals should significantly diverge from the default “un-
guided” distribution. However, it is not immediately clear
how such a distribution would be defined: if we simply
disable guidance then the guidance signals would not ex-

(Tian et al. [2024). Results are aver-
aged scores obtained through ImageNet
512 x 512 class-conditioned generation.
Our method closes the gap between
SwAR and diffusion models.

ist in the first place! Fortunately, it is possible to con-

struct a guidance distribution embodying this hypothet- ~ Model Evn (}) Div (1)
ical unguided distribution by sampling guidance signals  ppMo-S 0.486 0.983
on tokens that are nor semantically important. Then, the  gpM2-XXL 0.560 0.964
divergence between the original guided distributions and  yAR_436-CFG ~ 0.741 0.623
synthetic unguided distributions may be determined. In-  yAR.436-IGG  0.665 0.751

deed, if it does not hold that guidance focusses more on
semantically important tokens, then the nudges applied on background tokens should be roughly
equivalent to foreground tokens and the divergence between the two distributions should conse-
quently be low. To validate our second hypothesis, we performed the same comparison experiment.
Semantically important tokens were automatically identified by segmenting generated images with
YOLOvI11 (Khanam & Hussainl [2024) and extracting tokens lying inside the output segmentation
masks. Divergence is quantified using Jensen-Shannon distance (Endres & Schindelin, 2003),

ISD(p.q) = \/ $ Dxce. (pllm) + $ Dice.(gl|m). )
1

where m = =(p + ¢) denotes the mixture distribution between p and ¢. Note that JSD(-,-) also
ranges in [0, 12] where a greater value indicates greater divergence. The exact evaluation procedure
is outlined in Appendix [A.T] Comparison results (Table [I)) indicate significant deviation between
guided and unguided distributions in the diffusion model, while the SWAR model again struggles to
compete.

Guidance is misaligned in SWAR models. In addition to the above quantitative evaluations, we also
qualitatively compared the guidance dynamics of the two generative modelling paradigms. Visual-
isation of sampled images from SwWAR model revealed numerous instances where guidance signals
became progressively dispersed at increasing scale levels, leading to adversarial features in gener-
ated images. On the other hand, the diffusion model exhibits guidance signals that are consistently
sharp and aligned to semantically important tokens (Figure 2)).

5 INFORMATION-GROUNDING GUIDANCE

Building on the observations in Section [f] we hypothesise that the potential of CFG has not been
fully utilised in SWAR models. In SWAR models, guidance signals often weakens progressively
with each sampling step, making it disadvantageous to directly apply guidance strategies deployed in
diffusion models, as illustrated in Figure[2] This gap can be narrowed by tuning the guidance signals
of AR models so that they more closely align with the evenness and divergence patterns observed
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Figure 2: Distribution of guidance throughout the sampling process of EDM2 (Karras et al.| 2024b)
(top) and VAR (bottom) on ImageNet 512 x 512 class-conditioned generation
(class: sports car). For the sake of comparison, the original number of sampling steps of EDM2 (32
steps) has been modified to match VAR. Sampling steps are respectively labelled with their evenness
and divergence scores, with opaqueness corresponding to relative contributions to the weighted
mean score. While EDM2 exhibits guidance signals that are sharp and consistently aligned
to foreground objects, VAR exhibits guidance signals that are poorly aligned and becomes
progressively fainter. Additional examples can be found in Appendix [A.2] and a visualisation of
guidance in EDM2 across the full 32 sampling steps in Appendix@

in diffusion models. Such an effect could be achieved through alternative guidance methods that
selectively emphasise certain important regions or foreground features of the image. In light of this,
we introduce a new guidance framework based on the key observation from Section [4] that not all
tokens should be equally guided. As alluded to in the previous paragraph, our method needs to
identify semantically important features at inference time and amplify their corresponding guidance
signals. In its general form, our framework is defined as

Po(sklc) = po(sk) + v - fu(skle) - vy’ (skle), S
We define fj, : VX we — RMXWk a5 a function that assigns weights to tokens according to
their relative importance. Intuitively, tokens representing the same region tend to carry similar
values, and a token surrounded by other salient tokens should itself be considered important. This
naturally leads us to the attention mechanism, which is well-suited for capturing such contextual

relationships. Prior work has demonstrated that attention is highly effective for selecting informative
tokens across diverse vision tasks—including classification Ryoo et al|(2022), captioning
(2016), and in-painting (2019). In particular, Ryoo et al|(2022) showed that pairwise
attention can automatically highlight critical visual tokens while maintaining efficiency comparable
to state-of-the-art methods. In our framework, however, it is more appropriate to apply attention not
to the tokens themselves but to the guidance signals p,” (-|c), since these directly steer the sampling
process. Accordingly, we realise f, as a self-attention operation over these guidance signals:

— — T
fr(sk|c) = softmax (pg (8k|c%(skc)] ) . (6)
Plugging Equation [f] into Equation [5] yields our proposed guidance scheme, which we term
Information-Grounding Guidance (1GG).

6 EXPERIMENTAL RESULTS

This section presents extensive evaluations of IGG and quantitative analysis on the metrics pro-
posed in Section ] For class-conditioned image generation, we sampled 50,000 images across
1,000 classes provided by ImageNet (Deng et all, 2009). For text-to-image generation, we con-
ducted experiments on three prompt sets—MJHQ, MS-COCO, and GenEval-—sampling 1 image
per prompt for the first two set and 4 images per prompt for the last set.
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Table 2: Comparison of IGG against guidance techniques on ImageNet class-conditioned genera-
tion task using representative diffusion (Dhariwal & Nichol, 2021} Rombach et al.| [2022; |Peebles
& Xie, [2023) and SWAR models (Tian et al., 2024). Included guidance methods include classifier
guidance (CLSG, |Dhariwal & Nichol (2021)), entropy-driven sampling (EDS, Zheng et al.|(2022)),
PixelAsParam (PXP, Dinh et al.| (2023a)), classifier-free guidance (CFG, Ho & Salimans| (2022)),
progressive guidance (PROG, Dinh et al.[(2023b)), and representative guidance (REPG, Dinh et al.
(2024)). Wherever possible, we report the guidance schedule scale w (see Section [3). Note that
all models but VAR used a fixed guidance schedule. 1/] indicates that higher/lower is better. Best
results for each resolution are bolded. Our method further improves the performance of VAR
and achieves new SOTA.

Model Guidance | FID() IS (1) Pre (1) Rec (1)
CLSG (w=1.00) 459 186.70 0.82 0.52
EDS 409 21,57 0.83 0.50
PxP 400 216,11 0.81 0.53
ADM CFG 3.76 191.31 0.77 0.53
© PROG 381 222.09 0.77 0.53
b REPG 334 23326 0.85 0.52
v LDM CFG (w=150) | 360 246.67 0.87 0.48
o CFG (w=1.50) 227 27824 0.83 0.57
DIT-XL/2 PROG 225 27936 0.82 0.58
REPG 217 268.42 0.80 0.60
CFG (w=1.75) 193 315.64 0.82 0.59
VAR-d30 1GG (w=1.85) 1.92 321.28 0.82 0.59
N ADM CLsG EEE 17271 0.87 042
7 DIT-XL/2 CFG | 304 240,82 0.84 0.54

[\l

S CFG (w=1.50) 261 293.7 0.82 0.56
g VAR-d36 1GG (w=2.10) 2.56 3143 0.82 0.57

6.1 CLASS-CONDITIONED IMAGE GENERATION

Quantitative results. To assess the scalability of IGG, we apply it to guide the generation of both
256 x 256 and 512 x 512 images, with VAR [Tian et al.| (2024) as the backbone model. To further
evaluate its off-the-shelf practicality, we directly used pre-trained models provided by the authors on
HuggingFac Our results in Tabledemonstrate that IGG consistently outperforms CFG on VAR
in terms of both FID and IS and achieves a new SOTA amongst guidance methods in both diffusion
and SWAR modelling. Furthermore, we observe that the superiority of IGG is more pronounced for
512 x 512 image generation. We attribute this phenomenon to the notion that VAR-d36 is required
to predict larger token maps and, consequently, leaves more room for improvement regarding the
task of concentrating on semantically important tokens. Indeed, this notion is supported by the fact
that the evenness and divergence scores for VAR-d36 are worse than those of VAR-d30.

Qualitative results. We perform side-by-side visual comparisons between CFG and our method
similar to our analysis in Section [d] Figure [I] depicts a representative comparison. In numerous
cases, IGG gathers guidance signals towards semantically important tokens and forms contours
clearly resembling the corresponding foreground objects, mimicking the patterns of CFG in dif-
fusion modelling (Figure[2). This finding, along with the improvement of our method over CFG,
further reinforces the notion that the superiority of diffusion models can be explained by the insights
presented in Section 4}

6.2 TEXT-TO-IMAGE GENERATION

Quantitative results. To test the effectiveness of IGG on SWAR models for text-to-image tasks,
we compare IGG against CFG on the MJHQ (Li et al., 2024a), MS-COCO (Lin et al., [2014)), and
GenEval (Ghosh et al.| 2023) benchmarks. Two recent SWAR backbones, VAR-CLIP (Zhang et al.,
2024) and Switti (Voronov et al., [2025)), were considered for IGG, while we also include baselines
for other popular backbones (SDXL (Podell et al., 2023), LlamaGen (Sun et al.| 2024), and HART

'https://huggingface.co/FoundationVision/var.
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Table 3: Comparison of IGG against classifier-free guidance (CFG) on various text-to-image
benchmarks using VAR-CLIP and Switti. Popular baselines using CFG are also included.1/| indi-
cates that higher/lower is better. Best results for each resolution are bolded. Our method demon-
strates strong overall performance across all benchmarks.

Resolution Model Guidance GenEval MIHQ-30K €OCO-30K
Overall (1) | FID (}) CLIP () PickScore (1) IR (T) | FID(}) CLIP (1) PickScore (1) IR (1)
s ] CFG 022 | 3295  0.84 0177 78 | 1095 0.264 0.198 -0.87
256°  VARCLIP 1qq 0.23 3227 0221 0.180 158 | 1093 0264 0.198 -0.89
SDXL CFG | 055 | 76 0384 0217 078 | 144 0360 0.226 0.77
52 UamaGen CFG | 03 | 269 0288 0.194 045 | 448 0274 0.208 025
HART  CFG | 055 | 58 0366 0216 084 | 209 0341 0.223 0.75
soi | CFG 062 | 95 0.388 0.221 115 | 176 0355 0.228 0.93
1GG 0.64 700 0389 0.220 L14 | 169 0357 0.228 0.97

(Tang et al. [2024)) for ease of comparison. The metrics to compare were GenEval, FID, CLIP,
PickScore (Kirstain et al., [2023)), and ImageReward (IR) (Xu et al.,[2023). As shown in Table [3]
IGG helps Switti to achieve significant improvement on different metrics, especially Geneval and
FID. These improvements translate to stronger complex prompt modelling capacity and arguably
enhance image quality. Reasoning for these improvements similar to class-conditioned generation,
since the misalignment property is relaxed, images generated under IGG received more guidance
on semantically important regions without introducing more text-conditioned artefacts in the less
important regions.

Qualitative results Sample generations from Switti were shown in Figure [3|for comparison between
the three guidance schemes: No guidance, CFG, and IGG. Observing the samples, we see that
IGG achieve the best generation overall. With the no guidance scheme, due to receiving less text
conditioning, the generation became too simple, with incomplete or prompt-disobedient objects. For
CFG, while the objects were more complex, each patch receiving equal text-conditioning introduces
artefacts to the generations. IGG, on the other hand, alternating guidance in regions of the image,
resulted in less artefact-prone, more prompt-following and complex generations. This behaviour
follows what we observed in the quantitative results, affirming the efficacy of our method.

6.3 METRIC ANALYSIS
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Figure 4: Analysing the relationships between various metric scores attained by VAR-d30-1GG.
From left to right: effect of changing guidance scales on reported evenness and divergence scores,
where dashed and solid lines depict raw and scaled scores respectively; correspondence between
FID and scaled evenness and divergence scores; and FID-IS trade-off curve.

Guidance scale vs. evenness and divergence. To better understand the dynamics between guidance
weight w and the evenness and divergence metrics detailed in Sectiond we computed these metrics
over an extensive range of guidance weights on VAR-d30-IGG. However, we note that there is an
inherent correlation between each metric with w since the nudges they evaluate include the guid-
ance scales 7, (see Equation [2), whose values depend on w by design. Thus, to disassociate these
metrics, we scaled them by a factor corresponding to the (reciprocal of the) respective guidance
scales applied. Both the original scores (dashed lines) and scaled scores (solid lines) were plotted in
Figure 4] (left). Interestingly, evenness and divergence exhibit a similar trend: they improve with in-
creasing w, at a decaying rate proportional to w. Notably, these two scores meet at w = 1.35 (black
line). Evaluating VAR-d30-IGG at this guidance weight yielded an FID of ~ 1.98, which is not
too far off the optimal FID obtained at w = 1.85 (grey line). This result demonstrates the potential
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Figure 3: Example 1024 x 1024 generations of Switti under three guidance schemes: no guidance,
CFG, and IGG (ours). Without IGG, CFG or vanilla sampling of Switti has higher chance of
generating failure features, around one in four samples.

of evenness and divergence to approximate the optimal guidance weight to apply to a model, which
could significantly alleviate the labour of hyperparameter tuning for large models.

Evenness and divergence vs. FID. We also investigated the relationship between the proposed
metrics and FID, as depicted in Figure [] (centre). The similarity between the (scaled) scores is
once again reflected. In particular, they both exhibit a sharp FID curve. Notably, the optimal FID
is achieved at almost-equal evenness and divergence (within 0.06 away from each other). This in-
dicates a close connection between evenness-divergence equilibrium and FID optimality, providing
further support for the notion raised in the above analysis.
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FID vs. IS. Figure [4| (right) depicts the trade-off between sample diversity (IS) and fidelity (FID)
of our method compared to CFG. As IS increases, both methods initially achieve lower FID, but
beyond IS of ~ 320, further increases in diversity come at the cost of worsening fidelity, suggesting
a natural limit to the achievable balance. Notably, within the proximity of the optimal trade-off, our
method consistently outperforms CFG. Overall, the curve underscores that our method provides a
slightly more favourable balance between diversity and realism. As suggested in Table[2] we expect
this advantage to increase with model scale.

6.4 ABLATION STUDY

Table 4: Ablation study on VAR-d30-IGG. Each row (except the first row) presents the results of
a single modification to the original implementation (first row). 1/] indicates that higher/lower is
better. Best results are bolded and second-best results are underlined.

Description FID (}) IS(f) Pre(t) Rec(?) Evn({) Div(1)
Vanilla (no changes) 192 3212 0.82 0.59 0.646 0.757
Mixed scheme (w=w'=0.75) 548 4156  0.88 0.48 0.492 0.827
Fixed schedule (y,=1.85) 4.29 359.5 0.87 0.50 0.727 0.684

Sliding window (sg=+/hrwk) 1.92 321.5 0.82 0.60 0.608 0.759

Mixed guidance schemes. Following the success of mixing CFG and IGG in text-to-image gen-
eration, we wanted to investigate its effect on other evaluation metrics. In our experiment, we used
an equal guidance weight of 0.75 for both the CFG and IGG components (Equation[7). Although
the resulting model was able to improve upon evenness and divergence, it fell short in terms of FID.
This discrepancy emphasises the importance of achieving an equilibrium between evenness and di-
vergence as opposed to arbitrarily improving them independently, as revealed in Section[6.3] It also,
once again, calls for further investigation on the reason why mixing guidance schemes works so well
in diffusion modelling.

Fixed guidance schedule. To assess the importance of choosing the right guidance schedule, we
replaced the default schedule in |Tian et al.| (2024) with a fixed schedule. Specifically, we set the
guidance scale vy, at every scale level to 1.85. This change turns out to be detrimental to the model’s
performance, with a worse FID, evenness, and divergence compared to the vanilla implementation.
This result is a testament to the major role that the ratio-based guidance schedule plays in the efficacy
of IGG and, quite likely, also CFG.

Sliding-window guidance. The original implementation of IGG performs a global attention com-
putation at each scale level (see Equation[6)). Inspired by the successes of localised attention mech-
anism in NLP (Beltagy et al.l [2020), we implemented a variant of IGG which utilises a scale-wise
2-D sliding window for attention computation, where the size s, of the sliding window is scaled ac-
cordingly at step k. In our experiment, we set si := +/hiwy. The result of the experiment does not
indicate any non-negligible improvement from the original implementation. Despite this, we expect
that the computational cost saved through using localised attention will become greatly beneficial
for sampling high-resolution images (e.g., 1024 x 1024), since the model will then likely need to
predict more token maps at greater sizes.

7 CONCLUSION

In this work, we investigated the dynamics of guidance in scale-wise autoregressive (SWAR) mod-
els and revealed a key limitation: unlike diffusion models, guidance in SWAR is often dispersed and
misaligned, weakening semantic consistency. Building on this insight, we introduced a novel guid-
ance framework that aims to anchor guidance signals to semantically important tokens via contextual
attention, and propose a realisation in Information-Grounding Guidance (IGG). Our experiments
across both class-conditioned and text-to-image generation tasks demonstrated that IGG consis-
tently improves fidelity, coherence, and alignment over classifier-free guidance, while also provid-
ing interpretable metrics that correlate with sampling quality. Beyond immediate performance gains,
our analysis highlights the broader principle that not all tokens should be guided equally, opening
avenues for future research on new guidance strategies in autoregressive generative modelling by
utilising our proposed framework.
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A APPENDIX

A.1 DIVERGENCE EVALUATION PROCEDURE

Algorithm [T] details the procedure for systematically computing the divergence score as defined in
Section ]

Algorithm 1 Procedure for computing divergence score.

Require: Sampled image = and associated token maps s := (s1, - - , sx ) of sizes {hy, wy }5<_;.

Ensure: Divergence score for x.
1: M := segment(x) > Obtain binary segmentation mask
2. J:=0
3: for k € 2..K do > Skip s1 (see Section[d)
4: M, := interpolate( M, hy, wy,) > Down-sample mask to hy X wg
5: Py =Py (sklc) > Obtain guided nudge distribution
6: sy = sample(sg[—My], i, wk) > Sample with replacement hjwy, unguided tokens
7: g, =py (s}lc) > Obtain unguided nudge distribution
8: J = J+ hpwy/ Zfiz hiw; - divergence(py”, ¢i.”) > Weighted mean analogous to PEI
9: end for

10: return J

A.2 COMPARING GUIDANCE IN DIFFUSION AND SWAR MODELS

Figure [3 presents additional side-by-side comparisons of the guidance signals observed during the
sampling processes of EDM2 (Karras et al., 2024b) and VAR (Tian et al., 2024). These visualisa-
tions make it easier to contrast how guidance is distributed in diffusion models compared to SWAR
models. In particular, EDM2 exhibits relatively stable and balanced guidance, while VAR tends to
experience progressively weaker signals across sampling steps. This distinction provides further ev-
idence for our hypothesis that the uneven distribution of guidance contributes to the sampling quality
gap between the two model families.

A.3 COMPARING CFG AND IGG

In Figure[6] we present additional results comparing samples generated with CFG against those ob-
tained using IGG. These examples highlight the qualitative differences between the two approaches,
particularly in terms of semantic coherence and visual fidelity. While CFG often struggles to main-
tain consistency across fine-grained details, IGG demonstrates a stronger ability to emphasise and
preserve semantically important features. These examples further illustrate how our method bal-
ances guidance strength without sacrificing diversity in the generated outputs.

A.4 GUIDANCE IN DIFFUSION MODELS ACROSS ALL TIMESTEPS

Figure[7]visualises the full sampling process of EDM2 (Karras et al.|[2024b). Interestingly, guidance
signals seem to be the most pronounced in the middle of the sampling process, suggesting that the
role played by guidance is the most influential around this period. This is consistent with the finding
of Kynkédnniemi et al.|(2024), providing further support for our proposed interpretation of CFG.

A.5 APPLYING IGG TO DIFFUSION MODELS

Although IGG is tailored for SWaR modelling, we also evaluated it in diffusion modelling to assess
its generalisability and potential to be applied in this setting. To this end, we introduce a guidance
scheme that is a mixture of CFG and 1GG,

~MIX

Py (sile) = po(si) + vk By © (skle) + v Py © (skle), )
where ngG(-|c) is the guidance scheme defined in Equation Consequently, this mixed guidance
scheme requires a pair guidance weights (w,w’) to define the guidance schedules {7, }. In this
experiment, we used EDM2 (Karras et al.l [2024b)), also pre-trained, as our backbone model. We
opted for a fixed guidance schedule (that is, v, = w,~y;, = w’) to enable direct comparison with
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(a) volcano

(b) baseball player

Figure 5: Additional comparisons of guidance signals in EDM2 (Karras et al., [2024b) (top) and

VAR 2024) (bottom).

Table 5: Comparison of IGG against classifier-free guidance (CFG) on class-conditioned genera-
tion task using pre-trained EDM2 (Karras et al.|[2024b)). w is the guidance weight used to define the
guidance schedule (see Section E[) 1/{ indicates that higher/lower is better. Best results are bolded.

Model Guidance FID ({)
EDM2-S CFG (w=1.40) 2.29
(512x512)  CFG-IGG (w,w'=1.40,—0.40)  2.20
EDM2-XXI. CFG (w=1.20) 1.84

(512x512) CFG-IGG (w,w'=1.20,—0.20) 1.82

the original CFG implementation in EDM2, which also used a fixed schedule. We found that by
keeping w at the optimal value for vanilla CFG (as reported in [Kynk#anniemi et al|(2024)) and
setting w’ to a negative value improves the sampling quality of EDM2 (see Table [5), while setting
it to a positive value does not. We posit that this observation stems from the “denoising” nature
of diffusion modelling, namely, DDPMs (Ho et al, 2020} [Song et al.} [2020). In this context, it is
possible that removing some noise from semantically important regions leads to an acceleration in
the denoising process for those regions and, as a result, allows time for further refinements on areas
with high levels of detail in the fixed sampling time-frame. Nevertheless, we emphasise that this
hypothesis is based purely on empirical observations and that its validity would greatly benefit from
further research.
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(a) sports car
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Figure 6: Additional side-by-side comparisons of sampling in VAR-d36 (Tian et al., 2024) using
CFG and IGG.
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Figure 7: Visualisation of guidance signals for every timestep in the original sampling pro-
cess of EDM2 (Karras et al, [2024b). Timesteps falling within the guidance interval reported in
|[Kynkadnniemi et al.| (2024) are highlighted in orange. This interval coincides with the transition
from noise to image, which is where guidance plays the most influential role.
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