
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTEXT-AWARE KERNEL SEARCH FOR BAYESIAN
OPTIMIZATION WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficiency of Bayesian optimization (BO) relies on careful selection of the sur-
rogate model to balance exploration and exploitation under limited budget. Tra-
ditional BO methods often struggle with sub-optimal kernel choices when using
Gaussian processes (GPs) as the surrogate model. When the kernel is inadequately
chosen, BO may converge slowly or even get stuck at an undesired local mini-
mum. To address such drawback, we propose the novel Context-Aware Kernel
Search (CAKES) to automate optimal kernel design in BO with large language
models (LLMs). Concretely, CAKES exploits LLMs as crossover and mutation
operators to adaptively generate and refine GP kernels based on the observed data.
CAKES works entirely in-context and can be easily integrated into existing sys-
tems without requiring any fine-tuning. We further present a theoretical analysis
demonstrating that our method achieves sub-linear regret relative to the budget for
any input dimension. Experimental results demonstrate that CAKES outperforms
various salient baseline methods in numerous synthetic and real-world optimiza-
tion tasks. Notably, CAKES improves the overall performance on benchmark
functions by roughly 36%. In hyperparameter tuning tasks, CAKES can effec-
tively leverage fewer data samples to quickly identify high-performing configura-
tions and consistently ranks first across various datasets. As an encouraging real
application, we successfully applied CAKES to design photonic chips, achieving
significant improvements in key performance indicators while speeding up the de-
sign cycle by a factor of ten compared to the baselines. Our code is accessible at
https://github.com/cakes4bo/cakes.

1 INTRODUCTION

Many important scientific and engineering problems require optimizing objective functions that are
noisy and expensive to evaluate. These objective functions often lack closed-form expressions, let
alone gradient information, making optimization particularly difficult (Wang et al., 2023). Nonethe-
less, Bayesian optimization (BO) has shown remarkable success in optimizing such functions, due to
its ability to operate on limited data and incorporate prior knowledge to guide the optimization pro-
cess (Garnett, 2023). In the past couple of decades, BO has been used for diverse tasks ranging from
tuning hyperparameters in machine learning (Snoek et al., 2012; Liu et al., 2024) to designing poli-
cies in robotics (Calandra et al., 2016; Martinez-Cantin, 2017) and recommending new molecules
in drug discovery (Korovina et al., 2019; Tripp & Hernández-Lobato, 2024). The main idea behind
BO is to first construct a surrogate model, typically using a Gaussian process (GP, Rasmussen &
Williams, 2006), to represent the prior belief about the objective function. Then, by conditioning
on the observations and the prior, the posterior is calculated using Bayes’ rule to reflect the updated
belief about the objective function. Based on this posterior, an acquisition function is further used to
determine the next promising positions to query by balancing exploration (moving to regions with
high uncertainty) and exploitation (moving to regions with high expected value).

Although the past decades have witnessed rapid development of BO, much of the focus has been on
designing novel acquisition functions (Ament et al., 2023; Aglietti et al., 2024). In comparison, the
challenge of appropriately choosing the surrogate model has received comparatively less attention
(Shahriari et al., 2016). Many practitioners simply regard surrogate modeling as a “black art” and
perceive it as less critical to the optimization outcome compared to the acquisition function design
(Malkomes & Garnett, 2018). In the context of GPs, most off-the-shelf BO methods simply use

1

https://github.com/cakes4bo/cakes

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the proposed CAKES framework. Starting with an initial population of
kernels, the LLM acts as crossover and mutation operators, proposing new kernels based on the
given prompts. The proposed kernels are then evaluated using a fitness calculator, and the fittest
ones advance to the next generation.

general-purpose kernels, such as the squared exponential kernel or Matérn-5/2 kernel (Snoek et al.,
2012). While this seems reasonable at the first glance, the so-called one-size-fits-all approach has
significant limitations. Since the kernel encodes our assumptions about the underlying objective
function, the GP will be a poor fit if these assumptions do not match the reality (Roman et al.,
2019). It has also been studied that with a poor choice of the kernel, BO may converge very slowly,
especially when optimizing complex functions in moderate-to-high dimensional spaces (Gardner
et al., 2017). These considerations underscore the need for a more sophisticated kernel design in
BO.

While the pursuit for optimal kernel design is not new, existing approaches might not be straightfor-
ward in the setting of BO. In BO, the objective function is typically expensive to evaluate, resulting
in limited observations for tuning the kernel. The lack of known functional structure and gradi-
ent information further complicates the kernel selection process, making it difficult to choose the
most suitable kernel using traditional optimization-based methods (Bach, 2008; Gönen & Alpaydin,
2011). At its core, these challenges can be framed within the few-shot learning setting, where swift
learning and generalization from limited data are required. Notably, these challenges align with the
strengths of large language models (LLMs, Wei et al., 2022a), which excel at generalizing from
few-shot samples (Brown et al., 2020), thus enabling efficient exploration with limited data. The in-
context learning capability of LLMs also acts as implicit Bayesian inference (Xie et al., 2022; Han
et al., 2023), allowing them to encode prior knowledge about the optimization task, search space,
and other relevant information. LLMs’ ability in performing complex reasoning further enhances
their capacity to process contextual information and improve search performance (Yang et al., 2024).
Moreover, LLMs are also pre-trained on massive internet data, which potentially contains transfer-
able domain knowledge applicable to various optimization tasks. Given these insights, we aim to
investigate the following question,

“Can LLMs, with their encoded knowledge and few-shot prompting, help to en-
hance the kernel design in BO?”

Contributions. In this paper, we reveal the great potential of extending the capabilities of LLMs
beyond standard natural language tasks to automated kernel design in BO. Our primary contributions
are as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We conduct a thorough study to reveal the urgency for a more careful treatment of ker-
nel design in BO, as the conventional setups, which often rely on fixed kernels or naive
selection strategies, do not perform uniformly well across tasks.

• We propose CAKES, an adaptive kernel design method for BO that exploits LLMs as ge-
netic operators to generate and refine kernels based on the observed data (see Figure 1).
Our method can be applied entirely in-context and does not require any fine-tuning.

• We present a theoretical analysis based on regret and information gain, demonstrating that
our method achieves sub-linear regret relative to the budget for any input dimension.

• We demonstrate that our method consistently outperforms other baselines across numerous
optimization tasks, including globally optimizing benchmark functions, tuning hyperpa-
rameters of machine learning models, and optimizing photonic chip design.

2 PRELIMINARIES

We first review some key concepts in BO and the so-called kernel grammar, which serve as the
bedrock for the method proposed in this paper.

2.1 BAYESIAN OPTIMIZATION

Consider optimizing an objective function f : X ⊂ Rd → R,

x∗ = argmax
x∈X

f(x). (1)

Here, f is treated as a “black-box” function, meaning we can only obtain noisy evaluations of the
form y = f(x) + ϵ, where ϵ ∼ N (0, σ2

ϵ) represents the Gaussian noise. The evaluations of f are
also costly, limiting the number of queries we can make. In addition, the gradient of f is not directly
accessible and must be estimated from the noisy evaluations, further complicating the optimization
process. To address these challenges, Bayesian optimization (BO) employs a probabilistic surrogate
model g to approximate f on the fly (Garnett, 2023). A popular choice for g is the family of Gaussian
processes (GP, Rasmussen & Williams, 2006), where a GP can be fully defined by a mean function
m : X → R and a positive semi-definite covariance (or kernel) function k : X×X → R. In practice,
the mean function is often set to zero, allowing the GP to be solely characterized by the choice of the
kernel function. At each iteration t, the calibration of the posterior distribution p(gt | Dt) given the
previous observations Dt = {(xi, yi)}t−1

i=1 informs where to explore and exploit in X . Then, based
on p(gt | Dt), an acquisition function α : X → R defines a policy to choose the next best point
to evaluate. Common choices of α include expected improvement (EI, Jones et al., 1998), upper
confidence bound (UCB, Srinivas et al., 2012), and Thompson sampling (TS, Thompson, 1933).
After each evaluation, the surrogate model g is refined to reflect the updated belief about f . We refer
the readers to Appendix B.1 for a thorough treatment of BO with GPs.

2.2 KERNEL GRAMMAR

The kernel grammar introduced by Duvenaud et al. (2013) defines a comprehensive and flexible
space of kernels. Such space exploits the closure properties of kernel functions under addition and
multiplication, which ensures that: if k1(x,x′) and k2(x,x

′) are valid kernels, then both k1(x,x
′)+

k2(x,x
′) and k1(x,x

′)×k2(x,x
′) are also valid kernels (Smola & Schölkopf, 1998). Starting from

a set of base kernels, such as the squared exponential (SE), linear (LIN), periodic (PER), and rational
quadratic (RQ), one can construct more expressive kernels by combining such base kernels via the
addition and multiplication operators. For instance, LIN + PER kernel can capture periodic structure
with a linear trend and SE × PER kernel can capture locally periodic components. Let B denote a
base kernel and S denote a subexpression, the entire kernel space is described by all kernels that can
be constructed using the following grammar rules:

1. Add a base kernel to a subexpression: S → S + B;

2. Multiply a subexpression with a base kernel: S → S × B;

3. Replace a base kernel with another base kernel: B → B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Context-Aware Kernel Search (CAKES)
Input: Objective f , observations D, budget T , number of crossovers nc, probability of

mutation pm, population size np

Initialize the population K
for t = 1, . . . , T do

Feed D to the LLM with system prompt (see Fig. 4)
Measure the fitness of each kernel k ∈ K
for c = 1, . . . , nc do

Sample two parent kernels k1, k2 from K
Generate kernel through crossover (see Fig. 5a): kc ∼ crossover(k1, k2)
Add kc to K and measure its fitness

if rand() < pm then
Select the fittest kernel kf from K
Refine kernel through mutation (see Fig. 5b): km ∼ mutation(kf)
Add km to K and measure its fitness

Update population K by selecting the np fittest kernels
Obtain candidate points: xt,k = argmaxx∈X α(x;D, k) for each k ∈ K
Set k∗ = argmaxk∈K wkα(xt,k;D, k) and let xt = xt,k∗

Update observations: D ← D ∪ {(xt, yt)}

3 CONTEXT-AWARE KERNEL SEARCH

We propose Context-Aware Kernel Search (CAKES) to automate GP surrogate modeling in BO with
LLMs. CAKES uses LLMs as genetic operators to adaptively propose kernels based on the observed
data. The main motivation is to refine the kernel choice at each iteration before determining the next
query point. The complete procedure of CAKES is summarized in Algorithm 1 and the designed
prompts are shown in Appendix D.1.

Conditioning the LLM. We begin by randomly sampling n points from the input space X to ini-
tialize the observations D = {(xi, yi)}ni=1. These observations are then used as few-shot samples
to prompt the LLM for analysis. The prompt is designed based on the concept of conditioning on
high performance, as suggested by Zhou et al. (2023). Specifically, we start the prompt with a state-
ment, “You are an expert in machine learning, specializing in Gaussian processes”, to simulate the
reasoning of a human expert in the field. It has also been shown that chain-of-thought reasoning, or
generating intermediate reasoning steps, can improve the performance of LLMs (Wei et al., 2022b;
Kojima et al., 2022). Motivated by this, we instruct the LLM to analyze the provided observations
and identify patterns that can be represented by kernel functions, before proposing the kernels at
each iteration. To enhance the LLM’s understanding, we embed domain-specific knowledge by
including examples of kernel functions along with their characteristics.

Initializing the population. We draw some inspiration from the genetic algorithm (Holland, 1992),
where we maintain a population of candidates (kernels) throughout the optimization process. Our
initial population consists of six base kernels: squared exponential (SE), periodic (PER), linear
(LIN), rational quadratic (RQ), Matérn-3/2 (M3), and Matérn-5/2 (M5). We denote this initial set
as K = {SE,PER,LIN,RQ,M3,M5}. For each kernel k ∈ K, we measure its fitness using the
Bayesian Information Criterion (BIC, Schwarz, 1978), which balances model fit and complexity.
BIC is commonly used for model selection and can be seen as an approximation to the Laplace
approximation (Murphy, 2022). More detailed discussions on BIC and model selection for GPs can
be found in Appendix B.3.

Proposing the kernels. We consider a generalized notion of the kernel grammar, which involves a
set of base kernels {B1, . . . ,Br} and a set of operators {T1, . . . , Tl}, where r, l ∈ N. Each operator
Tj : K × K → K, for j = 1, . . . , l, is a closed operator (e.g., addition and multiplication) on the
space of kernels K. The grammar rules can be summarized in the following way:

1. Apply operator Tj on a subexpression and a base kernel: S → Tj(S,B);
2. Replace a base kernel with another base kernel: B → B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on these grammar rules, we can formally define the kernel grammar space as follows:
Definition 1. Let {k1, . . . , kr}, where r ∈ N, be a set of base kernels, and let {T1, . . . , Tl}, where
l ∈ N, be a set of operators defined by Tj : K ×K → K for j = 1, . . . , l. For i ∈ N, we can define
the kernel grammar space recursively as follows:

K0 := {k1, . . . , kr},
Ki := {Tj(k1, k2) | k1, k2 ∈ Ki−1, j = 1, . . . , l} ∪Ki−1.

When we refer to a kernel k from the kernel grammar space, we actually refer to the associated
kernel family over its hyperparameters {kθ |θ ∈ Θ}. Hence, if we apply an operator T on two
kernels k1 and k2, we obtain another kernel family {T (k1,θ1

, k2,θ2
) |θ1 ∈ Θ1,θ2 ∈ Θ2}. By

leveraging this kernel grammar space, we can use the LLM as genetic operators to propose kernels
through the following steps:

• Crossover: We perform nc crossover operations. For each crossover, we sample two parent
kernels k1, k2 from K with probability proportional to their fitness. We then prompt the
LLM to propose a new kernel kc that has a lower BIC value, by applying an operator on
the parent kernels.

• Mutation: With probability pm, we perform a mutation operation. We select the fittest
kernel kf from K and prompt the LLM to suggest a new kernel km, by replacing one of the
base kernels in kf with another base kernel.

In the prompts, we also ask the LLM to report a brief analysis of its reasoning behind the proposed
kernels. This serves as a sanity check, enabling us to verify and interpret the choices made by the
LLM. The proposed kernels from both steps are added to K, and their fitnesses are measured. Then,
we select the top np fittest kernels to form the next generation of K.

Choosing the next query point. In our experiments, we observed that some kernels may promise
a good fit, but the actual improvement is not as substantial as expected when the proposed query
points are evaluated. For this reason, we do not always rely on the fittest kernel to choose the next
query point. Instead, we adopt the following weighting strategy,

k∗ = argmax
k∈K

wkα(xt,k;D, k), (2)

where wk = exp(−BICk)/
∑

j∈K exp(−BICj) and xt,k denotes the proposed query point for that
kernel. This strategy allows us to balance the kernel’s ability to fit the data (as indicated by wk) with
the expected improvement at the proposed query point (as measured by α). After determining k∗,
we set the next query point at xt = xt,k∗ and update the observations as D ← D ∪ {(xt, yt)}. This
iterative process continues until a predefined budget T is exhausted.

4 THEORETICAL ANALYSIS

To establish the theoretical guarantee of our proposed method, we will use regret as a measure of
convergence and information gain to assess the informativeness of the data samples. The instanta-
neous regret at iteration t is defined as rt = f(x∗)−f(xt), and the corresponding cumulative regret
after T iterations is RT =

∑T
t=1 rt. If we can show that the cumulative regret is sub-linear for a

given algorithm, then the algorithm converges to a value arbitrarily close to the optimal (Berkenkamp
et al., 2019). To measure the reduction in uncertainty about f from observing yA for a set of points
A = {x1, . . . ,xT } ⊂ X , we use information gain, which is defined as the mutual information
between f and yA,

I(yA; f) = H(yA)−H(yA | f), (3)

where H(·) denotes the entropy function. Following Wang & de Freitas (2014), we can define the
maximum information gain after T iterations as,

γT = max
A⊂X :|A|=T

I(yA; f) = max
A⊂X :|A|=T

1

2
log |I+ σ−2

ϵ KA;θ|, (4)

where I is the identity matrix and KA;θ is the kernel matrix evaluated at the observed points. Before
presenting our main result, we first make the following assumption:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Assumption 1 (Theorem 5 of (Ghosal & Roy, 2006)). Let X ⊂ Rd be compact and convex. There
exist constants a, b, L > 0 such that for any f(x) ∼ GP(0, k(x,x′)),

Pr

{
sup
x∈X

∣∣∣∣∂f(x)∂xj

∣∣∣∣ > L

}
≤ ae−(L/b)2 , ∀j = 1, , . . . , d. (5)

The cumulative regret can be bounded according to the following theorem:
Theorem 1. Pick δ ∈ (0, 1). Under Assumption 1, with probability 1 − δ, the cumulative regret of
CAKES over T iterations is bounded by,

RT ≤
√
C1TβT γT +

π2

6
, ∀T ≥ 1,

where C1 = 8/(log 1 + σ−2
ϵ) and βt = 2 log(t22π2/(3δ)) + 4d log(dtbr

√
log(4da/δ)).

The above theorem demonstrates that, with high probability, the cumulative regret of our method
is bounded in terms of the maximum information gain γT . We can further bound γT using the
following results from Srinivas et al. (2012):
Theorem 2 (Theorem 5 of (Srinivas et al., 2012)). Let X ⊂ Rd be compact and convex, d ∈ N.
Assume the kernel function satisfies k(x,x′) ≤ 1.

1. For the d-dimensional linear kernel: γT = O(d log T).
2. For the squared exponential kernel: γT = O((log T)d+1).

3. For Matérn kernels with ν > 1: γT = O(T d(d+1)/(2ν+d(d+1))(log T))

Combining these results with Theorem 1, our main result can be summarized as follows:

Theorem 3. With high probability, the cumulative regret of CAKES is bounded by Õ(√dTγT),
where Õ suppresses the logarithmic factors. Applying the information gain bounds from Theorem
2, this yields sub-linear regret in T for any dimension d.

We provide the detailed proof of our results in Appendix C. We also provide additional empirical
analysis in Section F.

5 RELATED WORK

Kernel design. Traditionally, kernel design relied on visually inspecting patterns in the data and
manually combining elementary kernels, such as squared exponential kernel and periodic kernel
(Rasmussen & Williams, 2006). However, this approach is highly subjective and requires expert
knowledge, making it impractical for complex data patterns. As a result, several methods have
been developed to automate the kernel selection process. One such method involved multiple kernel
learning techniques, which leverage data to identify the optimal kernel configuration by optimizing
a linear or nonlinear combination of elementary kernels (Bach, 2008; Gönen & Alpaydin, 2011).
Yet, these methods impose restrictions on the kernel space and require the hyperparameters to be
specified in advance. Another line of research focused on designing flexible kernel families that
can approximate arbitrary stationary kernels in the frequency domain (Lázaro-Gredilla et al., 2010;
Wilson & Adams, 2013; Yin et al., 2020). While these methods can capture a wide range of kernels,
they are limited by the stationarity assumption. Other works have also attempted to develop more
expressive kernels by integrating GPs with deep neural networks (Damianou & Lawrence, 2013;
Wilson et al., 2016). Unfortunately, these methods often require complex inference techniques that
are computationally more expensive than traditional kernels. In contrast to these approaches, our
method is based on the kernel grammar and in-context learning with pre-trained LLMs, which offers
a flexible yet computationally feasible approach.

Surrogate modeling in BO. When using GPs as the surrogate model in BO, the kernel is typi-
cally selected a priori based on expert knowledge about the problem at hand. Unfortunately, when
there is no prior knowledge available, most BO methods simply use default kernels such as squared
exponential kernel or Matérn-5/2 kernel (Snoek et al., 2012). While this seems reasonable, it has

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function Fixed Adaptive DGP EGP CAKES
SE M5 Random Utility BIC

Ackley-2 0.1773 0.1220 0.1358 0.1062 0.1863 0.2510 0.1878 0.0783
Ackley-5 0.3185 0.2369 0.1722 0.2278 0.3590 0.3110 0.2285 0.1732
Beale 0.3554 0.3522 0.2855 0.4410 0.3571 0.4775 0.3088 0.2565
Branin 0.0183 0.0055 0.0227 0.0372 0.0371 0.4810 0.2045 0.0070
Dropwave 0.5110 0.5411 0.5460 0.5265 0.5461 0.5560 0.6290 0.4690
Eggholder 0.4941 0.3545 0.4015 0.4855 0.5485 0.4535 0.4345 0.1241
Griewank-2 0.1196 0.1282 0.1295 0.1310 0.1272 0.1156 0.0935 0.0267
Griewank-5 0.0204 0.0223 0.0232 0.0178 0.0281 0.0815 0.0478 0.0185
Hartmann 0.0007 0.0019 0.0021 0.0358 0.6800 0.1305 0.1780 0.0001
Levy-2 0.1562 0.0418 0.0835 0.0255 0.1145 0.1965 0.0765 0.0353
Levy-3 0.1141 0.1422 0.1495 0.0880 0.1125 0.2265 0.0805 0.0505
Rastringin-2 0.4325 0.4251 0.5310 0.3455 0.4490 0.5405 0.3869 0.3341
Rastringin-4 0.5765 0.5461 0.4815 0.5905 0.5200 0.5340 0.3270 0.3128
Rosenbrock 0.1025 0.0898 0.1015 0.1405 0.1475 0.5340 0.6040 0.0483
Six-Hump Camel 0.2840 0.1507 0.3455 0.3310 0.3265 0.4940 0.5345 0.1015
Mean regret 0.2454 0.2111 0.2271 0.2355 0.3021 0.3585 0.2881 0.1358
Median regret 0.1773 0.1422 0.1495 0.1400 0.3265 0.4530 0.2285 0.0783

been studied that with poor or overly general choices of the kernel, BO can converge very slowly
(Gardner et al., 2017). For this reason, deep GPs (DGPs) have been proposed as a promising alter-
native to traditional GPs in BO, particularly for capturing non-stationary behaviors (Hebbal et al.,
2021). However, DGPs suffer from high computational complexity, which grows with the number
of layers. Other prior works have explored adaptively changing the kernel during the optimization
process. For example, Ginsbourger et al. (2008) used a discrete mixture of GPs, while Viana et al.
(2013) and Roman et al. (2019) maintained multiple GPs with different kernels in parallel. More re-
cently, Lu et al. (2023) proposed using an ensemble of GPs to adaptively select the surrogate model
by adjusting the weights on the fly. We extend this line of research by using pre-trained LLMs to
automatically generate and refine kernels during the optimization process, enabling a new-fashioned
adaptive kernel design.

LLMs as genetic operators. As the model size and amount of training data increase, LLMs exhibit
several emergent abilities that improve their performance across diverse tasks (Wei et al., 2022a).
One such ability is few-shot learning, where the model can generalize from a few samples without
adjusting its parameters (Brown et al., 2020). This generalization is achieved through in-context
learning, in which the model identifies the patterns in the samples and extrapolates them via next-
token prediction. Inspired by these abilities, recent works have explored the use of LLMs for op-
timization tasks, notably as genetic operators in evolutionary algorithms. For example, Meyerson
et al. (2024) utilized LLMs to propose evolutionary crossovers on tasks such as image and code
generation, while Lehman et al. (2023) trained an LLM on computer programs to act as a mutation
operator for robot simulations. Chen et al. (2024) combined evolutionary search with soft prompt
tuning to evolve neural network architectures using LLMs. To the best of our knowledge, the cur-
rent work is the first to use LLMs as genetic operators for GP kernel design in BO. Compared to the
state-of-the-art, our method can be applied entirely in-context and does not require any fine-tuning.

6 EXPERIMENTS

We evaluate the performance of our proposed method against several baselines across different tasks,
including globally optimizing benchmark functions, tuning hyperparameters of machine learning
models, and designing photonic chips with optimal configurations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20
0.136

0.140

0.144

0.148
R

eg
re

t
(↓

)

LR

0 10 20

0.10

0.11

0.12

0.13

SVM

0 10 20

0.11

0.12

0.13

0.14

RF

0 10 20

Trials

0.095

0.100

0.105

0.110

R
eg

re
t

(↓
)

XGB

0 10 20

Trials

0.096

0.104

0.112

0.120

MLP

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 2: Average regret (↓) over 5 random seeds for different ML models on all datasets.

Setup. Our experiments are conducted using the software package BoTorch (Balandat et al., 2020),
where we use the expected improvement (EI) as the acquisition function. For the LLM, we use Ope-
nAI’s gpt-4o-mini model, with the hyperparameters temperature=0.7 and top p=0.95.
We give additional insights on the selection of these hyperparameters in Appendix D.1. To facilitate
reproducibility, our code is publicly available at https://github.com/cakes4bo/cakes.

Baselines. We compare our proposed method against the following baselines:

• Fixed: This is the default method in BO, where we fix the kernel throughout the optimiza-
tion process. We consider the two most commonly-used kernels in BO: squared exponential
(SE) and Matérn-5/2 (M5).

• Adaptive: This is the adaptive kernel selection method proposed in (Roman et al., 2019).
We employ the same six base kernels as in CAKES and use three different selection criteria
to adaptively change the kernel: Random, Utility, and BIC.

• Deep GP: This baseline uses a deep GP (DGP) as the surrogate model, implemeted through
a functional composition of stationary GPs (Hebbal et al., 2021).

• Ensemble GP: This baseline uses an ensemble of GPs (EGP) to adaptively select the sur-
rogate model (Lu et al., 2023). The kernel dictionary consists of the same six kernels used
in CAKES.

In the interest of space, we provide more details of the chosen baselines in Appendix D.2.

6.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Setup. Our first set of tasks involve optimizing test functions commonly used as benchmark for
optimization (Surjanovic & Bingham, 2013). The goal is to find the global minimum of each test
function, where the maximum number of function evaluations is limited to 10 times the dimension-
ality of the function domain, i.e., T = 10 × d. We provide more information about the chosen
functions in Appendix E.1.

8

https://github.com/cakes4bo/cakes

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Evaluation. To evaluate the performance of each method, we consider the normalized regret
(Arango et al., 2021):

f(xopt)− f(xbest)

f(xopt)− f(xinit)
, (6)

where f(xinit) is the best function value among the initial points, f(xbest) is the best value found
by the method, and f(xopt) is the ground truth optimum. This metric is useful as it provides a
normalized and task-agnostic measure to compare the optimization performance across different
tasks.

Results. Table 1 shows the normalized regret averaged over 20 seeds for different functions and
methods. Our results demonstrate that CAKES outperforms the baselines, achieving roughly a 36%
improvement in the mean regret and a 44% improvement in the median regret compared to the
runner-up method. Notably, CAKES ranks among the top two for all functions and achieves the best
performance in 12 out of 15 functions. Our results also reveal that fixed kernels are not universally
effective, underscoring the need for more adaptive and problem-specific methods. Specifically, the
default kernels in BO like SE and M5, actually underperform on many test functions. Due to space
limitations, we include additional results in Appendix G.1.

6.2 HYPERPARAMETER TUNING TASK

Setup. We consider the hyperparameter tuning tasks available in the HPOBench package
(Eggensperger et al., 2021). We included a total of 60 tasks, comprising 12 OpenML datasets and
5 machine learning (ML) models: logistic regression (LR), support vector machine (SVM), random
forest (RF), XGBoost (XGB), and multi-layer perceptron (MLP). We show more details on these
tasks in Appendix E.2.

Evaluation. Our goal for each task is to maximize the accuracy of the ML model on the unseen test
data. The performance of each method is measured by the simple regret, f(x∗)−max1≤i≤t f(xi).
We executed T = 25 trials using five different random seeds, where we ensure that all models share
the same initialization for each seed.

Results. Figure 2 shows the regret for all tasks averaged over 5 random seeds. The results demon-
strate that CAKES consistently achieves the lowest regret, and therefore the best tuning performance,
compared to the other methods across all tasks. It is also worth noting that CAKES excels in the
earlier stages of the optimization process, when fewer observations are available. This suggests that
CAKES is able to effectively leverage fewer data samples to quickly converge to high-performing
configurations. Table 8 further highlights the superior performance of CAKES, which achieves the
best average rank at the end of each tuning task. Our results also reveal significant variations in
performance for the fixed and adaptive kernel approaches. For instance, the SE kernel performs
reasonably well in tuning XGB and MLP models, but struggles with tuning SVM and RF. In con-
trast, CAKES demonstrates more consistent performance across all tasks, exhibiting less sensitivity
to the specific model being optimized. To provide a more comprehensive comparison, we report
the individual task results for each ML model and dataset in Appendix G.2. We have also included
two additional experiments that involve tuning a controller for the robot pushing task and the lunar
lander problem in Appendix G.4 and G.5 respectively.

6.3 PHOTONIC CHIP DESIGN

Motivation. To further evaluate our method in real-world optimization tasks, we consider optimiz-
ing the design parameters of photonic chips. This task has become a challenging problem in physics
and engineering (Li et al., 2023; Zhang et al., 2024), as it is infeasible to try all the combinations
(or even a few) of the parameters due to the high cost of the fabrication process. As a result, one
has to rely on extensive computer simulations to assess the chip’s performance without knowing any
gradient information or explicit form of the objective function. This task can be formulated as an
inverse design problem, where the goal is to optimize the chip to meet specific performance criteria.

Setup. In this problem, we consider five key indicators for assessing the chip’s performance: Q-
factor (f1), wavelength (f2), lasing area (f3), power (f4), and divergence angle (f5). Based on these

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

Trials

50

100

150

200

250

300

S
co

re
(↑

)

0 50 100 150 200 250

Trials

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
yp

er
vo

lu
m

e
(↑

)

Single-Task GP Additive GP CAKES

Figure 3: Score (↑) and hypervolume (↑) of the designed chip over 250 trials.

performance indicators, we can calculate the overall score for a given set of parameters:
αf1 + βf2 + γf3 + δf4 + ϵf5, (7)

where we set α = β = 1, γ = δ = 100, and ϵ = 20 to unify the dimensions between different
objectives. We provide more details about the objectives and problem setup in Appendix E.3.

Baselines. For the baselines, we consider two widely-used BO-based methods in the literature. The
first is the Single-Task GP, which serves as the default method, where a single Gaussian Process (GP)
is employed to model each objective independently, typically utilizing the M5 kernel. The second
method is the Additive GP, which models the overall objective as a sum of independent GPs, with
each GP utilizing a squared exponential (SE) kernel. We provide more comparisons with additional
baselines from the literature in Appendix G.3. For all methods, we set T = 250 with 6 different
random initializations and use the expected hypervolume improvement (EHVI) as the acquisition
function to identify the Pareto optimal solution (Couckuyt et al., 2014; Yang et al., 2019). We
refer the reader to Appendix B.4 for more detailed definitions of the Pareto optimal solution and
hypervolume.

Results. Figure 3 shows the score and hypervolume of the designed chip obtained by CAKES
against competing baselines. Compared to the baselines, CAKES achieved the highest score and
hypervolume, resulting in the best overall chip performance. The superiority of CAKES likely stems
from its ability to utilize different kernels tailored to specific objectives, unlike competing methods
that rely on a single kernel to model all objectives. Moreover, we can observe that the score of the
chip was significantly improved by CAKES in less than 30 trials, which is equivalent to a tenfold
speedup in the design cycle compared to the baselines. This could lead to significant reductions
in both time and cost needed to design the chips, thus accelerating the research and development
(R&D) process. We showcase the individual results on each objective in Appendix G.3.

7 CONCLUSION

We introduced CAKES, a novel kernel design method that integrates LLMs to automate surrogate
modeling in BO. By leveraging LLMs as crossover and mutation operators, CAKES adaptively
proposes kernels based on the observed data, bridging the gap between kernel selection and domain
expertise. Our theoretical analysis demonstrates that CAKES achieves sub-linear regret relative to
the budget for any input dimension. Experimental results strongly support our theoretical findings.
In benchmark function optimization, CAKES consistently ranked among the top two for all test
functions, achieving the best performance in 12 out of 15 cases. In hyperparameter tuning tasks,
CAKES obtained the lowest regret across all models, particularly excelling in the early stage of
optimization with fewer observations. In the photonic chip design problem, CAKES significantly
enhanced chip performance in fewer than 30 trials, resulting in a tenfold speedup of the design
cycle compared to baseline methods. We believe this work represents a solid step towards a fully
automated BO system that can be used by non-experts on arbitrary objectives.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco J. R. Ruiz, Alan Malek,
Alexis Bellot, and Silvia Chiappa. FunBO: Discovering acquisition functions for Bayesian opti-
mization with FunSearch. arXiv preprint arXiv:2406.04824, 2024.

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for Bayesian optimization. Advances in Neural
Information Processing Systems, 36, 2023.

Sebastian P Arango, Hadi S Jomaa, Martin Wistuba, and Josif Grabocka. HPO-B: A large-scale re-
producible benchmark for black-box HPO based on OpenML. In Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

Francis Bach. Exploring large feature spaces with hierarchical multiple kernel learning. arXiv
preprint arXiv:0809.1493, 2008.

Francis Bach. Learning theory from first principles. MIT press, 2024.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization.
Advances in Neural Information Processing Systems, 33, 2020.

Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. No-regret Bayesian optimization with
unknown hyperparameters. Journal of Machine Learning Research, 20(50):1–24, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33, 2020.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization
for learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):
5–23, 2016. ISSN 1573-7470.

Angelica Chen, David Dohan, and David So. EvoPrompting: Language models for code-level neural
architecture search. Advances in Neural Information Processing Systems, 36, 2024.

Lih-Ren Chen, Kuo-Bin Hong, Kuan-Chih Huang, Hsu-Tung Yen, and Tien-Chang Lu. Improve-
ment of output efficiency of p-face up photonic-crystal surface-emitting lasers. Optics Express,
29(7):11293–11300, 2021.

Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast calculation of multiobjective probability
of improvement and expected improvement criteria for Pareto optimization. Journal of Global
Optimization, 60:575–594, 2014.

Andreas Damianou and Neil D. Lawrence. Deep Gaussian processes. In International Conference
on Artificial Intelligence and Statistics, volume 31, pp. 207–215, 2013.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective Bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Struc-
ture discovery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning, pp. 1166–1174. PMLR, 2013.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos,
Kevin Leyton-Brown, et al. Towards an empirical foundation for assessing Bayesian optimiza-
tion of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice,
volume 10, pp. 1–5, 2013.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, Rene Sass, Aaron
Klein, Noor Awad, Marius Lindauer, and Frank Hutter. HPOBench: A collection of reproducible
multi-fidelity benchmark problems for HPO. In Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
exploiting additive structure for Bayesian optimization. In Artificial Intelligence and Statistics,
pp. 1311–1319. PMLR, 2017.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

S Ghosal and A Roy. Posterior consistency of Gaussian process prior for nonparametric binary
regression. Annals of Statistics, 34(5):2413–2429, 2006.

David Ginsbourger, Céline Helbert, and Laurent Carraro. Discrete mixtures of kernels for kriging-
based optimization. Quality and Reliability Engineering International, 24(6):681–691, 2008.

Mehmet Gönen and Ethem Alpaydin. Multiple kernel learning algorithms. Journal of Machine
Learning Research, 12(64):2211–2268, 2011.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. Explaining emergent in-context learning as kernel
regression. arXiv preprint arXiv:2305.12766, 2023.

Ali Hebbal, Loı̈c Brevault, Mathieu Balesdent, El-Ghazali Talbi, and Nouredine Melab. Bayesian
optimization using deep Gaussian processes with applications to aerospace system design. Opti-
mization and Engineering, 22:321–361, 2021.

John H Holland. Adaptation in natural and artificial systems: An introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

Ming-Yang Hsu, Gray Lin, and Chien-Hung Pan. Electrically injected 1.3-µm quantum-dot
photonic-crystal surface-emitting lasers. Optics Express, 25(26):32697–32704, 2017.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian opti-
misation and bandits via additive models. In International conference on machine learning, pp.
295–304. PMLR, 2015.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems,
35, 2022.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric P. Xing. ChemBO: Bayesian optimization of small organic molecules with
synthesizable recommendations. arXiv preprint arXiv:1908.01425, 2019.

Miguel Lázaro-Gredilla, Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Anı́bal R
Figueiras-Vidal. Sparse spectrum Gaussian process regression. The Journal of Machine Learning
Research, 11:1865–1881, 2010.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Renjie Li, Ceyao Zhang, Wentao Xie, Yuanhao Gong, Feilong Ding, Hui Dai, Zihan Chen, Feng
Yin, and Zhaoyu Zhang. Deep reinforcement learning empowers automated inverse design and
optimization of photonic crystals for nanoscale laser cavities. Nanophotonics, 12(2):319–334,
2023.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combina-
torial optimization. In International Conference on Learning Representations, 2022.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance Bayesian optimization. In International Conference on Learning Representations,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qin Lu, Konstantinos D Polyzos, Bingcong Li, and Georgios B Giannakis. Surrogate modeling for
Bayesian optimization beyond a single Gaussian process. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(9):11283–11296, 2023.

Gustavo Malkomes and Roman Garnett. Automating Bayesian optimization with Bayesian opti-
mization. Advances in Neural Information Processing Systems, 31, 2018.

Ruben Martinez-Cantin. Bayesian optimization with adaptive kernels for robot control. In IEEE
International Conference on Robotics and Automation, pp. 3350–3356, 2017.

Elliot Meyerson, Mark J. Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K. Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2024.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.

Dai Ohnishi, Takayuki Okano, Masahiro Imada, and Susumu Noda. Room temperature continu-
ous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Optics
Express, 12(8):1562–1568, 2004.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
MIT Press, Cambridge, Mass, 2006.

Ibai Roman, Roberto Santana, Alexander Mendiburu, and Jose A. Lozano. An experimental study
in adaptive kernel selection for Bayesian optimization. IEEE Access, 7:184294–184302, 2019.
doi: 10.1109/ACCESS.2019.2960498.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference for deep Gaussian
processes. Advances in Neural Information Processing Systems, 30, 2017.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of Bayesian optimization. IEEE, 104(1):148–175, 2016.

Alex J. Smola and Bernhard Schölkopf. Learning with kernels, volume 4. Citeseer, 1998.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. arXiv preprint arXiv:1206.2944, 2012.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic
regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, 2012.

Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Test functions and
datasets. URL http://www.sfu.ca/˜ssurjano, 2013.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Austin Tripp and José Miguel Hernández-Lobato. Diagnosing and fixing common problems in
Bayesian optimization for molecule design. arXiv preprint arXiv:2406.07709, 2024.

Felipe AC Viana, Raphael T Haftka, and Layne T Watson. Efficient global optimization algorithm
assisted by multiple surrogate techniques. Journal of Global Optimization, 56:669–689, 2013.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in Bayesian
optimization. ACM Computing Surveys, 55(13s), 2023.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian
optimization in high-dimensional spaces. In International Conference on Artificial Intelligence
and Statistics, pp. 745–754. PMLR, 2018.

13

http://www.sfu.ca/~ssurjano

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziyu Wang and Nando de Freitas. Theoretical analysis of Bayesian optimisation with unknown
Gaussian process hyper-parameters. arXiv preprint arXiv:1406.7758, 2014.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022b.

Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian process kernels for pattern discovery
and extrapolation. In International Conference on Machine Learning, pp. III–1067–III–1075,
2013.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In International Conference on Artificial Intelligence and Statistics, volume 51, pp. 370–378,
2016.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit Bayesian inference. arXiv preprint arXiv:2111.02080, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In International Conference on Learning Representations,
2024.

Kaifeng Yang, Michael Emmerich, André Deutz, and Thomas Bäck. Multi-objective Bayesian
global optimization using expected hypervolume improvement gradient. Swarm and evolutionary
computation, 44:945–956, 2019.

Feng Yin, Lishuo Pan, Tianshi Chen, Sergios Theodoridis, Zhi-Quan Tom Luo, and Abdelhak M.
Zoubir. Linear multiple low-rank kernel based stationary Gaussian processes regression for time
series. IEEE Transactions on Signal Processing, 68:5260–5275, 2020. ISSN 1941-0476.

Ceyao Zhang, Renjie Li, Cheng Zhang, Zhaoyu Zhang, and Feng Yin. Inverse design of photonic
crystal surface emitting lasers is a sequence modeling problem. arXiv preprint arXiv:2403.05149,
2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In International Confer-
ence on Learning Representations, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. In this work, we follow the recommendations from Azure OpenAI service when using GPT
models, where we ensure via the agreement that sensitive data is not sent for human review or stored,
thereby respecting the guidelines given by the dataset providers.

Reproducibility. Experimental results are shown in Section 6 with further details of the imple-
mentations, baselines, and benchmarks, included in Appendix D and Appendix E. Additional re-
sults are also given in Appendix G. We provide the code to reproduce our results at https:
//github.com/cakes4bo/cakes.

B MATHEMATICAL DETAILS

B.1 BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES

A Gaussian process (GP) describes a collection of random variables, any finite number of which
have a joint Gaussian distribution (Rasmussen & Williams, 2006). Mathematically, a GP can be
expressed as, GP (m(x), kθ(x,x

′;θ)), where m(x) is the mean function and kθ(x,x
′;θ) is the

covariance (kernel) function parameterized by some hyperparameters θ. Given any finite collection
of inputs X = x1:t, the outputs are jointly Gaussian,

f(X) ∼ N (mX,K(X,X;θ)) , (8)
where mX = m(X) ∈ Rt is the mean function vector evaluated at X, often assumed to be 0 in prac-
tice, and K(X,X;θ) ∈ Rt×t is the covariance matrix with entries [K(X,X;θ)]i,j = kθ(xi,xj).
We assume that the evaluations of f at any point xt are corrupted by a σ-sub-Gaussian noise,

yt = f(xt) + ϵt, (9)

where ϵt ∼ N (0, σ2
ϵ). Given the observed data Dt = {X,y}, where y = y1:t, the joint Gaussian

distribution of the observed data and an arbitrary query point x is:[
y

f(x)

]
∼ N

(
0,

[
Kt;θ + σ2

ϵ I kt;θ(x)
k⊤
t;θ(x) kθ(x,x)

])
, (10)

where Kt;θ = K(X,X;θ) and kt;θ(x) = kθ(X,x). It follows that, the posterior distribution of
any query point x is marginally Gaussian,

f(x)|Dt;θ ∼ N (µt(x;θ), σ
2
t (x;θ)), (11)

where
µt(x;θ) = E[f(x)|Dt] = k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1y, (12a)

σ2
t (x;θ) = E[f(x)f(x)|Dt] = kθ(x,x)− k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1kt,θ(x). (12b)

Based on the posterior distribution, the acquisition function must use its statistics to trade-off ex-
ploitation (where µt(x;θ) is high) and exploration (where σ2

t (x;θ) is high) effectively. Among the
various acquisition functions proposed, expected improvement (EI) remains the default choice in
many BO applications (Snoek et al., 2012). Let us define µ+

θ = maxx∈X µt(x;θ) as the best mean
value. The EI acquisition function can then be expressed in closed form as:

α(x;Dt) = E[max{0, f(x)− µ+
θ }] = σt(x;θ)[uΦ(u) + ϕ(u)], (13)

where u = (µt(x;θ)− µ+
θ)/σt(x;θ), and ϕ(·) and Φ(·) are the standard normal density and cumu-

lative distribution functions, respectively.

B.2 SUB-GAUSSIAN NOISE

We say ϵ is σ-sub-Gaussian if there exists σ ≥ 0 such that,

E[exp(ρϵ)] ≤ exp

(
ρ2σ2

2

)
, ∀ρ ∈ R. (14)

It is easy to show that if ϵ is σ-sub-Gaussian, then E[ϵ] = 0 and Var[ϵ] ≤ σ2. Examples of
sub-Gaussian variables include, zero-mean Gaussian random variables with variance σ2, symmetric
Bernoulli random variables, and symmetric uniform distributions (Bach, 2024).

15

https://github.com/cakes4bo/cakes
https://github.com/cakes4bo/cakes

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 MODEL SELECTION

We conduct model selection over a discrete, infinite space of kernels K = {k1, k2, . . .}. As each
kernel comes with its own hyperparameters, we are actually dealing with a space of kernel families.
Thus, when referring to a kernel k, we actually associate it with its whole family over hyperparam-
eters {kθ |θ ∈ Θ}. Given some model selection criteria h : K → R, our goal is to identify the
optimal kernel,

k∗ = argmax
k∈K

h(k | D). (15)

A commonly-used criterion for probabilistic models, such as GPs, is the marginal log-likelihood
(Murphy, 2022),

h(k | D) = log p(y |X, k) = log

∫
p(y |X,θ, k)p(θ)dθ. (16)

Unfortunately, the above likelihood is generally intractable for GPs (Rasmussen & Williams, 2006),
so we resort to the Laplace approximation,

log p(y |X, k) ≈ log p(y |X, θ̂, k) + log p(θ̂)− 1

2
log detΣ−1 +

dθ
2

log 2π (17)

where θ̂ denotes the maximum a posteriori (MAP) estimate of the hyperparameters with dθ being
its dimension. The term Σ−1 = −∇2 log p(θ | D, k)|θ=θ̂ represents the Hessian matrix evaluated
at the MAP estimate. Note that Eq. (17) can be interpreted as rewarding model fit while penalizing
model complexity. In our experiments, we use the BIC (Schwarz, 1978), which was also employed
by Duvenaud et al. (2013) and can be viewed as an approximation of the Laplace approximation.

B.4 MULTI-OBJECTIVE OPTIMIZATION

Setup. In our photonic chip inverse design problem, the solutions need to satisfy multiple, poten-
tially competing objectives simultaneously. Multi-objective optimization aims to find the Pareto
optimal solution, where no objective can be improved without degrading another (Lin et al., 2022).
A simplistic approach to jointly optimize the given objectives {fi(·)}Mi=1 is to consider an aggregate
objective, such as the weighted sum of all individual objectives:

x∗ = argmax
x∈X

∑
i

wifi(x) (18)

where wi is the weight of the i-th objective, considered as a hyperparameter. However, determining
appropriate weights for each objective function is a nontrivial task.

Pareto optimal solution. A more rigorous approach to multi-objective optimization involves intro-
ducing partial order and considering solutions from the Pareto frontier (Yang et al., 2019). In this
context, partial order is defined by comparing all objectives {fi(·)}Mi=1 for the given solutions. We
say a solution x′ surpasses x if every objective evaluated on x′ is greater than or equal to the same
objective evaluated on x (assuming maximization of objectives):

x′ ⪰ x⇔ ∀i, fi(x′) ≥ fi(x) (19)

For a given set of solutions S = {xj}mj=1, the Pareto frontier P (S) is defined as the set of non-
dominated solutions. For every solution x ∈ P (S), there is no other solution in S surpassing x:

P (S) = {x ∈ S : {x′ ∈ S : x′ ⪰ x,x′ ̸= x} = ∅} (20)

Hypervolume. Assuming bounded objectives, two Pareto frontiers can be compared by evaluating
their hypervolume (Couckuyt et al., 2014):

Volume(P (S)) = Volume

 ⋃
x∈P (S)

H(x)

 (21)

where H(x) is the hyperrectangle associated with the objectives evaluated on solution x, and
Volume(·) computes the Euclidean volume of the input set. In our experiments, we use EHVI as
the acquisition function and adopt the implementation outlined in (Daulton et al., 2020) for efficient
computation of EHVI.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PROOF OF RESULTS

C.1 PROOF OF THEOREM 1

Key lemmas. In this section, we provide the detailed proof of Theorem 1. We first observe that we
have confidence on all the decisions chosen according to the following lemma:

Lemma 1 (Lemma 5.5 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ), where∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β
1/2
t σt−1(xt), ∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. Fix t ≥ 1 and x ∈ X . Conditioned on yt−1 = [y1, y2, . . . , yt−1]
⊤, x1, . . . ,xt−1 are

deterministic and f(x) ∼ N (µt−1(x), σ
2
t−1(x)). If r ∼ N (0, 1), then

Pr{r > c} = e−c2/2(2π)−1/2

∫
e−(r−c)2/2−c(r−c) ≤ e−c2/2 Pr{r > 0} = 1

2
e−c2/2.

Let r = (f(x) − µt−1(x))/σt−1(x), then Pr{|f(x) − µt−1(x)| > β
1/2
t σt−1(x)} ≤ e−βt/2. By

using e−βt/2 = δ/πt and applying the union bound for t ∈ N, the statement holds.

For the sake of analysis, we consider a set of discretizations Xt ⊂ X , where Xt will be used at
iteration t in the analysis. The following lemma provides a confidence bound for these subsets.

Lemma 2 (Lemma 5.6 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(|Xt|πt/δ),
where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β
1/2
t σt−1(xt), ∀x ∈ Xt,∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. The proof is similar to that of Lemma 1, except now we use Xt at each iteration.

Now, by Assumption 1 and the union bound, we have

Pr

{∣∣∣∣ ∂f∂xj

∣∣∣∣ < L

}
≥ 1− dae−L2/b2 , ∀x ∈ X ,∀j, (22)

which implies that, with probability greater than 1− dae−L2/b2 ,

|f(x)− f(x′)| ≤ L∥x− x′∥1, ∀x ∈ X . (23)

This allows us to obtain confidence on x∗ as follows. Let us choose a discretization Xt of size (τt)
d

such that for all x ∈ Xt,

∥x− [x]t∥1 ≤ rd/τt, (24)

where [x]t is the closest point in Xt to x.

Lemma 3 (Lemma 5.7 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(2πt/βt) +

4d log(dtbr
√

log(2da/δ)), where
∑

t≥1 π
−1
t = 1, πt > 0. Let τt = dt2br

√
log(2da/δ), then

|f(x∗)− µt−1([x
∗]t)| ≤ β

1/2
t σt−1([x

∗]t) +
1

t2
, ∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. Using Eq. (23), we have,

|f(x)− f(x′)| ≤ b
√

log(2da/δ)∥x− x′∥1, ∀x ∈ X .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

with probability greater than 1− δ/2. It follows that,

|f(x)− f([x]t)| ≤ rdb
√
log(2da/δ)/τt, ∀x ∈ X .

By choosing τt = dt2br
√
log(2da/δ), we have

|f(x)− f([x]t)| ≤
1

t2
,

which implies that |Xt| = (dt2br
√

log(2da/δ))d. Using δ/2 in Lemma 2, we can apply the confi-
dence bound to [x∗]t to obtain the result.

Next, we would like to bound the regret using the following lemma:
Lemma 4 (Lemma 5.8 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(4πt/βt) +

4d log(dtbr
√
log(4da/δ)), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

rt ≤ 2β
1/2
t σt−1(xt) +

1

t2
, ∀t ∈ N,

holds with probability ≥ 1− δ.

Proof. We use δ/2 in Lemma 1 and Lemma 2 such that the events hold with probability greater than
1− δ. By using the definition of xt,

µt−1(xt) + β
1/2
t σt−1(xt) ≥ µt−1([x

∗]t) + β
1/2
t σt−1([x

∗]t).

By Lemma 3, we further have µt−1([x
∗]t) + β

1/2
t σt−1([x

∗]t) +
1
t2 ≥ f(x∗), which implies

µt−1(xt) + β
1/2
t σt−1(xt) ≥ f(x∗)− 1

t2
.

Therefore,

rt = f(x∗)− f(xt) ≤ µt−1(xt) + β
1/2
t σt−1(xt) +

1

t2
− f(xt) ≤ 2β

1/2
t σt−1(xt) +

1

t2
.

Proof of Theorem 1. Now, we are ready to complete the proof of Theorem 1. Since βt is non-
decreasing,

4βtσ
2
t−1(xt) ≤ 4βTσ

2
ϵ (σ

−2
ϵ σ2

t−1(xt)) ≤ 4βTσ
2
ϵC2 log(1 + σ−2

ϵ σ2
t−1(xt)),

with C2 = σ2
ϵ / log(1 + σ−2

ϵ) ≥ 1, since s2 ≤ C2 log(1 + s2) for s ∈ [0, σ−2
ϵ] and σ−2

ϵ σ2
t−1(xt) ≤

σ−2
ϵ k(xt,xt) ≤ σ−2

ϵ . By Lemma 5.3 of (Srinivas et al., 2012), for a finite set of observed points
A = {x1, . . . ,xT } ⊂ X , the information gain can be expressed as,

I(yA; f) =
1

2

T∑
t=1

log
(
1 + σ−2σ2

t−1(xt)
)
. (25)

Thus, by substituting the above expression and setting C1 = 8σ2
ϵC2, we can obtain

T∑
t=1

4βtσ
2
t−1(xt) ≤ C1βTI(yA; f) ≤ C1βT γT , ∀T ≥ 1, (26)

with probability greater than 1− δ. By Cauchy-Schwarz,
T∑

t=1

2β
1/2
t σt−1(xt) ≤

√
C1TβT γT , ∀T ≥ 1. (27)

Finally, by choosing πt = π2t2/6 in Lemma 4, we have

RT =

T∑
t=1

rt ≤
T∑

t=1

2β
1/2
t σt−1(xt) +

T∑
t=1

1

t2
≤
√

C1TβT γT +
π2

6
, ∀T ≥ 1.

This completes the proof of Theorem 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 PROOF OF THEOREM 3

In this section, we provide the proof of our main result, which is summarized in Theorem 3. From
Theorem 1, we have that with probability at least 1− δ,

RT ≤
√

C1TβT γT +
π2

6
,

where C1 = 8/(log(1 + σ−2
ϵ)) and

βT = 2 log

(
T 22π2

3δ

)
+ 4d log

(
dtbr

√
log

(
4da

δ

))
.

Since βT involves logarithmic terms and constants, we can express it using the Õ notation as βT =
Õ(d). Similarly, C1 is a constant that can be absorbed into the Õ notation. Therefore, the cumulative
regret bound simplifies to

RT ≤ Õ
(√

TdγT

)
.

We now combine this result with the bounds on γT from Theorem 2 for different kernels used in this
work:

1. Linear Kernel: Substituting γT = O(d log T) into the regret bound:

RT ≤ Õ
(√

Td · d log T
)
= Õ

(
d
√
T log T

)
.

2. Squared Exponential Kernel: Substituting γT = O((log T)d+1) into the regret bound:

RT ≤ Õ
(√

Td(log T)d+1

)
= Õ

(√
T (log T)d+1

)
.

3. Matérn Kernel with ν > 1: Substituting γT = O
(
T

d(d+1)
2ν+d(d+1) log T

)
into the regret

bound:

RT ≤ Õ
(√

Td · T
d(d+1)

2ν+d(d+1) log T

)
= Õ

(
T

1
2+

d(d+1)
4ν+2d(d+1)

√
log T

)
.

In all cases, the cumulative regret RT grows sub-linearly with T , ensuring that the regret per iteration
diminishes as T increases. This completes the proof for Theorem 3.

D IMPLEMENTATION DETAILS

In this section, we outline the implementation details of our method and considered baselines.

D.1 CAKES SETUP

Choice of LLM. We chose the gpt-4o-mini model as it offers an excellent balance of afford-
ability, fast inference, and intelligence for our implementation. We access the model through the
OpenAI API, which provides two key hyperparameters that allow us to control the randomness and
diversity of the generated output: temperature and top p. Concretely, temperature adjusts
the “sharpness” of the probability distribution used to select the next token. Lower values result in
more deterministic outputs, while higher values yield more random results. Conversely, top p (or
nucleus sampling) filters the probability distribution to consider only the most likely tokens that cu-
mulatively reach a specified threshold, typically between 0 and 1. In our experiments, we found that
setting temperature=0.7 and top p=0.95 strikes a good balance between generating relevant
outputs and introducing diversity. For further details, we refer the interested reader to the official
documentation: https://platform.openai.com/docs/overview. In our experiments,
we set the number of crossovers nc = 5, probability of mutation pm = 0.7, and population size
np = 10.

Prompt design. We show the designed system prompt in Figure 4 as well as the sample prompts
for the mutation and crossover steps in Figures 5b and 5a, respectively. Note that in all figures, {}
is used to indicate placeholders.

19

https://platform.openai.com/docs/overview

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

System Prompt

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

Figure 4: The designed system prompt for the LLM.

Crossover Prompt

You are given two parent kernels and their
Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower
BIC value. You can either combine the parent
kernels with + or ∗ operator. Your output
should follow the following format:

Kernel: <your proposed kernel here, only use
the kernel abbreviations and operators>
Analysis: <your analysis here, explaining
your reason behind the proposed kernel>

(a) Crossover prompt.

Mutation Prompt

You are given a kernel and its Bayesian
Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower
BIC value. You can only replace one of
the base kernels in the kernel with another
base kernel. Your output should follow the
following format:

Kernel: <your proposed kernel here, only use
the kernel abbreviations and operators>
Analysis: <your analysis here, explaining
your reason behind the proposed kernel>

(b) Mutation prompt.

Figure 5: Sample prompts for proposing the kernels.

D.2 BASELINES

To test our proposed method, we consider four categories of baselines: fixed kernel, adaptive kernel,
deep GP, and ensemble GP.

Fixed. For the fixed kernel baseline, we consider the following widely-used kernels in BO:

1. Squared exponential (SE):

k(x,x′) = exp

(
−1

2
(x− x′)⊤Θ−2(x− x′)

)
, (28)

where Θ is the lengthscale parameter.
2. Periodic (PER):

k(x,x′) = exp

(
−2
∑
i

sin2 (π(xi − x′
i)/p)

λ

)
, (29)

where p is the period length parameter and λ is the lengthscale parameter.
3. Linear (LIN):

k(x,x′) = vx⊤x′, (30)

where v is the variance parameter.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

4. Rational quadratic (RQ):

k(x,x′) =

(
1 +

1

2α
(x− x′)⊤Θ−2(x− x′)

)−α

, (31)

where Θ is the lengthscale parameter and α is the relative weighting parameter.
5. Matérn:

k(x,x′) =
21−ν

Γ(ν)

(√
2νD

)ν
Kν

(√
2νD

)
, (32)

where

D = (x− x′)⊤Θ−2(x− x′) (33)

is the distance between x and x′ scaled by the lengthscale parameter and Kν is the mod-
ified Bessel function. In our experiments, the smoothness parameter ν is set to 1/2, 3/2,
or 5/2, corresponding to Matérn-1/2 (M1), Matérn-3/2 (M3), or Matérn-5/2 (M5) kernels
respectively.

Adaptive. For the adaptive kernel baseline, we adopt the implementation from Roman et al. (2019)
and apply the following selection criteria:

1. Random: This criterion selects a kernel randomly from the set of available kernels.
2. Utility: Based on the proposed query points from each kernel, this criterion selects the

kernel with the highest utility (acquisition) value:

k∗ = argmax
k∈K

α(xt,k;D, k). (34)

3. BIC: This criterion selects the kernel with the lowest BIC value:

k∗ = argmin
k∈K

BIC(k;D). (35)

Deep GP. For the deep GP baseline, we use the DeepGP implementation from GPyTorch, where
training and inference are conducted using the doubly stochastic variational inference method (Sal-
imbeni & Deisenroth, 2017).

Ensemble GP. For the ensemble GP baseline, we follow the implementation suggested by Lu et al.
(2023), using the six base kernels used in CAKES to form the kernel dictionary.

E EXPERIMENTAL DETAILS

In this section, we provide additional details on the benchmarks employed in our experiments.

E.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Test functions. We provide additional details on test functions, including the function domain and
dimensionality, in Table 2. The analytic expression as well as the global optimum of these functions
can be found at https://www.sfu.ca/˜ssurjano/optimization.html. We visualize
the optimization landscapes of the two-dimensional test functions in Figure 6. From the figure, one
can see the challenging nature of these functions, which is characterized by many local minima,
multi-modality, and steep ridges.

E.2 HYPERPARAMETER TUNING TASK

Datasets. We include 12 OpenML datasets available in the HPOBench package (Eggensperger et al.,
2021). The details of the selected datasets are given in Table 3.

Search space. We follow the search space designated in HPOBench, where we discretize the
search space to facilitate efficient tabular lookup operations for various configurations (Eggensperger
et al., 2013). The search space for each ML model is summarized below, i.e., {type: [space,
lower bound, upper bound]}:

21

https://www.sfu.ca/~ssurjano/optimization.html

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Ackley-2 (b) Beale (c) Branin (d) Dropwave

(e) Eggholder (f) Griewank-2 (g) Levy-2 (h) Rosenbrock

(i) Rastrigin-2 (j) Six-Hump Camel

Figure 6: Visualization of the optimization landscapes of two-dimensional test functions.

Table 2: Details of the test functions used in the experiments.

Function Domain d

Ackley-d [−5, 5]d 2, 5
Beale [−1, 1]2 2
Branin [−5, 10]2 2
Dropwave [−5.12, 5.12]2 2
Eggholder [−512, 512]2 2
Griewank-d [−600, 600]d 2, 5
Hartmann [0, 1]3 3
Levy [−10, 10]d 2, 3
Rastringin-d [−5.12, 5.12]d 2, 4
Rosenbrock [−5, 10]2 2
Six-Hump Camel [−3, 3]× [−2, 2] 2

• Logistic Regression (d = 2): {alpha: [log, 0.001, 1.0], eta0: [log, 0.001, 1.0]}
• Support Vector Machine (d = 2): {C: [log, 0.01, 10.0], gamma: [log, 0.001, 1.0]}
• Random Forest (d = 4): {max depth: [log, 1, 50], max features: [linear, 0.0, 1.0],
min samples leaf: [linear, 1, 2], min samples split: [log, 2, 128]}

• XGBoost (d = 4): {colsample bytree: [linear, 0.1, 1.0], eta: [log, 0.001, 1.0],
max depth: [log, 1, 50], reg lambda: [log, 0.1, 10.0]}

• Multi-Layer Perceptron (d = 5): {alpha: [log, 0.001, 1.0], batch size: [log, 16,
128], depth: [linear, 1, 3], learning rate init: [log, 0.001, 1.0]}, width: [log,
16, 128]}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: Details of the OpenML datasets used in the experiments. More information can be found
at https://www.openml.org.

Dataset Task ID Number of Instances Number of Features

credit g 31 1000 21
vehicle 53 846 19
kc1 2109 2109 22
phoneme 9952 5404 6
blood transfusion 10101 748 5
australian 146818 690 15
car 146821 1728 7
segment 146822 2310 20
heart h 50 294 14
tic tac toe 145804 958 10
kr vs kp 3 3196 37
qsar 9957 1055 42

Figure 7: Illustration of a photonic chip and its design parameters. The inverse design problem
focuses on optimizing these parameters to satisfy certain performance indicators.

E.3 PHOTONIC CHIP DESIGN

Objective. The design parameters and indicators for optimizing the photonic chip are detailed in
Figure 7. We established target values based on our experiments and a review of the literature to
identify optimal standards for high-quality chip lasing (Li et al., 2023). For instance, a wavelength
of 1310 nm is crucial for telecommunications and satellite applications, while high output power
is essential for fields such as autonomous driving and medicine. Additionally, a small divergence
angle is vital for ensuring high beam quality and effective long-distance light propagation. Based on
these performance indicators, we can define the objectives as follows,

f1 = 1− Q∗ −Q

Q∗ , (36)

f2 = 1− |λ
∗ − λ|
λ∗ , (37)

f3 = 1− A∗ −A

A∗ , (38)

f4 = 1− P ∗ − P

P ∗ , (39)

f5 = 1 +
ω∗ − ω

ω∗ . (40)

Q-factor (f1) is related to the loss and threshold of the laser, wavelength (f2) is the operation wave-
length of the laser, lasing area (f3) is the area of the laser beam at the laser’s top surface, power

23

https://www.openml.org

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Fitness

0

2

4

6

D
en

si
ty

Initial population After crossover After mutation

Figure 8: Comparison of the fitness distributions between an initial population of kernels before and
after applying crossover and mutation operations.

(f4) is the lasing power of the laser in watts, and divergence angle (f5) is the angle between outer
boundary and centerline of the laser beam.

F EMPIRICAL ANALYSIS

In this section, we provide additional empirical analysis on our proposed method in Section 3.

F.1 CROSSOVER AND MUTATION WITH LLMS

To demonstrate the benefits of using LLMs for kernel generation, we conduct an experiment to
analyze the fitness distributions of an initial population of kernels before and after applying crossover
and mutation operations. Specifically, we consider the hyper-parameter tuning tasks in Section 6.2
and evaluate the fitness values of the initial population. We then use the LLM to perform crossover
and mutation on this population, and re-evaluate the fitness values. Figure 8 shows the comparison
of fitness distributions across these three different stages. From the figure, we can observe that
the initial population exhibits a wide distribution, with a noticeable peak at lower fitness values.
After performing crossover, the distribution shifts slightly toward higher fitness values, indicating
that the LLM can effectively combine the kernels and enhance the overall fitness of the population.
Furthermore, we can see that applying mutation shifts the distribution toward even higher fitness
values, suggesting that further refining the kernels can yield higher fitness values. Overall, these
findings demonstrate that LLM can act as a good crossover and mutation operators.

F.2 CASE STUDY

We conduct a case study to analyze the output from the LLM and test whether or not the LLM can
give helpful responses. Specifically, we show sample responses from the LLM for the crossover
and mutation steps, which are depicted in Figure 9. In Figure 9a, given the parent kernels LIN and
SE along with their BIC values, the LLM suggests combining them using the addition operator (+)
to minimize the BIC. The analysis explains the rationale behind this combination: the LIN kernel
captures linear trends, while the SE kernel models smoothness. By combining these properties, the
LIN + SE kernel effectively represents both linearity and smoothness in the data. In Figure 9b,
given the LIN + SE kernel and its BIC, the LLM recommends replacing the SE kernel with the RQ
kernel to achieve a lower BIC value. The analysis indicates that while the SE kernel assumes fixed
smoothness, the RQ kernel introduces varying smoothness, allowing the model to adapt better to
data with fluctuating noise levels. These examples illustrate that the LLM is familiar with kernel
properties and their applications. Its responses demonstrate a strong understanding of the relation-
ships between different kernels and their capacity to address specific data characteristics, enabling
it to make informed suggestions for the kernel selection.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Crossover Response

Prompt:
You are given two parent kernels and their Bayesian Information Criterion (BIC) values: LIN (BIC:
93.42),
SE (BIC: 118.59).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Response:
Kernel: LIN + SE
Analysis: The LIN kernel captures linear trends in the data, which may be present given the varying
function values across different inputs. The SE kernel, on the other hand, is effective in modeling
smooth variations in the data, which could account for the fluctuations observed in the function values
despite the overall linear trend. By combining these two kernels with the addition operator (+), we
can leverage the linear trend from the LIN kernel while also allowing for smooth deviations from this
trend through the SE kernel.

(a) Sample response for the crossover step.

Mutation Response

Prompt:
You are given a kernel and its Bayesian Information Criterion (BIC) value:
LIN + SE (BIC: 79.83).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Response:
Kernel: LIN + RQ
Analysis: The LIN + SE kernel captures a linear trend with smooth variations. However, the SE
kernel assumes a constant level of smoothness, which may not be appropriate for all data patterns. By
replacing the SE kernel with the RQ kernel, we can introduce varying smoothness, allowing the model
to adapt to different levels of noise in the data.

(b) Sample response for the mutation step.

Figure 9: Sample responses from the LLM for the kernel generation process.

F.3 ABLATION STUDY

Our prompts are designed based on the following components:

• Domain information: This include the role assignment as well as description of kernel
functions and their properties.

• Problem context: This includes the optimization history, which consists of the observa-
tions as well as the fitness values.

• Task instruction: This includes the guidelines on how to generate the kernels based on the
kernel grammar.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Trials

0.875

0.880

0.885

0.890

0.895

0.900

0.905

A
cc

u
ra

cy
(↑

)

0 5 10 15 20 25
Trials

0.095

0.100

0.105

0.110

0.115

0.120

0.125

R
eg

re
t

(↓
)

CAKES-NoInfo CAKES-NoContext CAKES-NoInstruct CAKES

Figure 10: Ablation of prompt designs on HPOBench averaged over 20 different random seeds.

To evaluate the influence of each component on the performance, we conduct an ablation study with
the following configurations:

• CAKES: This is the vanilla CAKES setup employed in our experiments, incorporating all
three components.

• CAKES-NoInfo: This variant assesses the impact of domain-specific information on per-
formance. Specifically, it omits the role assignment and kernel descriptions while keeping
the other components (see Figure 15).

• CAKES-NoContext: This variant evaluates the importance of problem context by remov-
ing the optimization history (i.e., the observations and fitness values), while keeping the
other components (see Figure 16).

• CAKES-NoInstruct: This variant excludes task instructions and omits the explicit kernel
generation guidelines, while keeping the other components (see Figure 17).

We evaluate the performance of our ablation setups on HPOBench, as outlined in Section 6.2. The
results, shown in Figure 10, reveal that the standard CAKES setup outperforms the other variants,
highlighting the significance of each prompt component in enhancing overall performance. No-
tably, the CAKES-NoInfo variant demonstrated similar optimization performance to CAKES de-
spite lacking domain-specific information. This suggests that the LLM may already possess valuable
prior knowledge, even without role assignments and kernel descriptions in the prompt. In contrast,
CAKES-NoContext exhibited worse performance than CAKES, indicating that optimization history
is crucial and that the LLM effectively leverages this information. Furthermore, the results show that
CAKES-NoInstruct performed poorly compared to the other variants. To investigate this, we exam-
ined the percentage of valid kernels, defined as the proportion of kernels that satisfy the necessary
properties. We found that CAKES-NoInstruct generated valid kernels only 68.72%(±0.45%) of the
time, while the other variants consistently produced valid kernels. This limitation can be attributed
to the absence of generation guidelines from the kernel grammar. These findings underscore the
importance of kernel grammar in the kernel generation process.

F.4 CHOICE OF LLM

In this section, we analyze the impact of the LLM choice on the performance of our
method. Specifically, we consider the following models: Meta’s llama-3.1-8b, Google’s
gemini-1.5-flash, Anthrophic’s claude-3.5-haiku, and OpenAI’s gpt-4o-mini. We
evaluate these models on the benchmark functions considered in Section 6.1. Based on the results
presented in Table 4, we can observe that gpt-4o-mini outperforms the other models in 8 of
15 test functions. Claude-3.5-haiku also demonstrates competitive performance, securing the best

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 4: Average normalized regret (↓) over 20 random seeds for different LLMs. The best value is
highlighted in bold and the second best value is underlined.

Function llama-3.1-8b gemini-1.5-flash claude-3.5-haiku gpt-4o-mini

Ackley-2 0.1019 0.0916 0.0812 0.0783
Ackley-5 0.2106 0.1907 0.1621 0.1732
Beale 0.2621 0.2595 0.2640 0.2565
Branin 0.0131 0.0199 0.0091 0.0070
Dropwave 0.4941 0.4640 0.4878 0.4690
Eggholder 0.1323 0.1309 0.1156 0.1241
Griewank-2 0.0337 0.0360 0.0289 0.0267
Griewank-5 0.0301 0.0247 0.0158 0.0185
Hartmann 0.0012 0.0005 0.0001 0.0001
Levy-2 0.0459 0.0426 0.0368 0.0353
Levy-3 0.0710 0.0667 0.0480 0.0505
Rastringin-2 0.3595 0.3611 0.3322 0.3341
Rastringin-4 0.3301 0.3147 0.3253 0.3128
Rosenbrock 0.0623 0.0501 0.0507 0.0483
Six-Hump Camel 0.1103 0.1002 0.1073 0.1015

results in 6 out of 15 test functions. Moreover, as of November 2024, gpt-4o-mini is priced
at $0.15 per million input tokens and $0.60 per million output tokens, making it significantly more
affordable than claude-3.5-haiku, which costs $1 per million input tokens and $5 per mil-
lion output tokens. In terms of speed, gpt-4o-mini delivers an output speed of approximately
104.5 tokens per second, outperforming claude-3.5-haiku’s 64.3 tokens per second. Consid-
ering the above metrics, we choose gpt-4o-mini as the default model in CAKES as it offers an
excellent balance of cost, speed, and intelligence for our implementation.

G ADDITIONAL OPTIMIZATION RESULTS

In this section, we show additional experimental results on the optimization tasks considered in
Section 6.

G.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Additional comparisons. We provide more comprehensive comparisons between our proposed
method and fixed kernel approaches in Table 5. Specifically, we include three additional kernels:
rational quadratic (RQ), Matérn-1/2 (M1), and Matérn-3/2 (M3). Overall, CAKES outperforms all
fixed kernel approaches in terms of the mean and median regret. Our results indicate that fixed
kernels do not perform uniformly well across all tasks, which is consistent with our findings in
Section 6.1.

Additional baselines. We compare our proposed method against the following baselines:

• Bag-of-models (BOM): This is a method proposed by Kandasamy et al. (2015) which
maintains a collection of kernels, each capturing different structures, that best explains the
observed data.

• Markov chain Monte Carlo (MCMC): This is a method proposed by Gardner et al.
(2017) which uses a Metropolis-Hastings algorithm to randomly sample kernels from the
grammar based on a proposal distribution.

• Automated BO (ABO)1: This is a method proposed by Malkomes & Garnett (2018), which
uses BO to dynamically select kernels that best explains the observed data.

For the above three baselines, we follow the setup suggested by the authors. We limited the number
of models to 50 and use the L-BFGS algorithm to optimize each model’s hyperparameters. As in

1We use the code provided by the authors in https://github.com/gustavomalkomes/abo.

27

https://github.com/gustavomalkomes/abo

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 5: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function Fixed CAKES
SE RQ M1 M3 M5

Ackley-2 0.1773 0.1605 0.1309 0.0878 0.1220 0.0783
Ackley-5 0.3185 0.2732 0.4949 0.2197 0.2369 0.1732
Beale 0.3554 0.2881 0.2455 0.2945 0.3522 0.2565
Branin 0.0183 0.0055 0.0323 0.0455 0.0117 0.0070
Dropwave 0.5110 0.5185 0.6669 0.5848 0.5411 0.4690
Eggholder 0.4941 0.5111 0.4195 0.4297 0.3545 0.1241
Griewank-2 0.1196 0.1365 0.0687 0.1362 0.1282 0.0267
Griewank-5 0.0204 0.0210 0.0419 0.0200 0.0223 0.0185
Hartmann 0.0007 0.0003 0.0915 0.0131 0.0019 0.0001
Levy-2 0.1562 0.0758 0.1190 0.0595 0.0418 0.0353
Levy-3 0.1141 0.1630 0.0873 0.1226 0.1422 0.0505
Rastringin-2 0.4325 0.4417 0.3573 0.4624 0.4251 0.3341
Rastringin-4 0.5765 0.5752 0.4009 0.4290 0.5461 0.3128
Rosenbrock 0.1030 0.1054 0.3375 0.2460 0.0898 0.0483
Six-Hump Camel 0.2840 0.3105 0.4410 0.1431 0.1507 0.1015
Mean regret 0.2454 0.2391 0.2623 0.2196 0.2111 0.1358
Median regret 0.1773 0.1630 0.2455 0.1431 0.1422 0.0783

Table 6: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function BOM MCMC ABO CAKES

Ackley-2 0.1016 0.1012 0.1020 0.0783
Ackley-5 0.5907 0.1312 0.1910 0.1732
Beale 0.3559 0.4040 0.3118 0.2565
Branin 0.0499 0.0301 0.0101 0.0070
Dropwave 0.5040 0.5788 0.5529 0.4690
Eggholder 0.4709 0.4536 0.4210 0.1241
Griewank-2 0.0460 0.0589 0.0357 0.0267
Griewank-5 0.2437 0.0258 0.0320 0.0185
Hartmann 0.0299 0.0001 0.0001 0.0001
Levy-2 0.0626 0.0668 0.0519 0.0353
Levy-3 0.0867 0.0580 0.0290 0.0505
Rastringin-2 0.3618 0.3722 0.3420 0.3341
Rastringin-4 0.3177 0.3285 0.3179 0.3128
Rosenbrock 0.0901 0.0907 0.0901 0.0483
Six-Hump Camel 0.1102 0.1071 0.1002 0.1015

Mean regret 0.2281 0.1871 0.1725 0.1358
Median regret 0.1102 0.1012 0.1002 0.0783

Section 6.1, we set T = 10 × d and repeat each experiment using 20 different random seeds. The
results in 6 shows that CAKES is superior compared to all the baselines in terms of the mean and
median regret. Notably, CAKES ranked first in 12 out of 15 instances and ranked a top-two ranking
in all instances.

Additional test functions. To further evaluate our method in higher-dimensional settings, we con-
ducted additional experiments using the Ackley and Levy functions across various input dimensions
d. Specifically, we tested with d ∈ {10, 20, 30}. As illustrated in Figure 6, both of these functions
are highly non-convex and possess numerous local minima, making them particularly challenging
to optimize. We set T = 10 × d and repeat each experiment using 20 different random seeds. The

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 7: Average normalized regret (↓) over 20 random seeds for Ackley and Levy functions with
varying dimensions. The best value is highlighted in bold and the second best value is underlined.

Function Fixed Adaptive DGP EGP CAKES
SE M5 Random Utility BIC

Ackley-2 0.1773 0.1220 0.1358 0.1062 0.1863 0.2510 0.1878 0.0783
Ackley-5 0.3185 0.2369 0.1722 0.2278 0.3590 0.3110 0.2285 0.1732
Ackley-10 0.3645 0.3225 0.2725 0.4122 0.3157 0.4557 0.3108 0.2356
Ackley-20 0.4523 0.4152 0.5103 0.5509 0.5021 0.5043 0.4237 0.3281
Ackley-30 0.5331 0.5114 0.6460 0.5966 0.5664 0.6056 0.6210 0.4596
Levy-2 0.1562 0.0418 0.0835 0.0255 0.1145 0.1965 0.0765 0.0353
Levy-3 0.1141 0.1422 0.1495 0.0880 0.1125 0.2265 0.0805 0.0505
Levy-10 0.3215 0.2514 0.2310 0.1545 0.1940 0.2845 0.1069 0.0941
Levy-20 0.3657 0.4061 0.3815 0.1905 0.2762 0.3450 0.1703 0.1208
Levy-30 0.4205 0.4598 0.4515 0.2405 0.3147 0.4534 0.2040 0.1483

Table 8: Average rank (↓) ± standard deviation achieved by different methods over 5 random seeds.

Model LR SVM RF XGB MLP

Fixed SE 3.33 ± 2.09 4.58 ± 2.02 4.00 ± 2.35 3.42 ± 1.98 3.42 ± 1.93
M5 4.25 ± 1.30 4.50 ± 2.63 4.08 ± 1.93 4.92 ± 1.98 5.58 ± 1.75

Adaptive
Random 5.17 ± 1.40 4.42 ± 1.71 5.08 ± 2.36 5.83 ± 1.57 6.08 ± 1.66
Utility 6.17 ± 1.77 4.08 ± 2.14 3.92 ± 1.85 5.00 ± 2.38 4.42 ± 2.50
BIC 7.33 ± 1.18 5.67 ± 2.01 5.25 ± 2.05 3.83 ± 2.03 4.83 ± 2.70

DGP 3.33 ± 2.36 5.92 ± 2.06 5.08 ± 2.63 5.17 ± 2.51 4.08 ± 2.18
EGP 4.17 ± 1.40 4.33 ± 2.32 5.17 ± 2.73 5.00 ± 2.12 4.92 ± 1.80

CAKES 2.25 ± 1.64 2.50 ± 1.50 3.42 ± 1.26 2.83 ± 1.95 2.67 ± 1.49

results, presented in Table 7, demonstrate that CAKES consistently outperforms the other methods,
even as d increases. This suggests that our method can scale effectively in more complex search
spaces. In addition, the results reveal that fixed kernel methods (SE and M5) perform poorly com-
pared to the adaptive and multiple kernel approaches.

G.2 HYPERPARAMETER TUNING TASK

Individual task results. We present the individual task results from HPOBench for CAKES and
other methods in Figures 18-27. Our findings reveal that there are significant variations in perfor-
mance for fixed and adaptive kernel baselines, which align with the results presented in Section 6.2.
Table 8 further highlights the superior performance of CAKES, which achieves the best average
rank at the end of each tuning task.

Tuning accuracy. Figure 11 depicts the average accuracy in tuning different ML models over five
random seeds. We further show the accuracy achieved by different methods on individual tasks in
Figures 23-27 Overall, CAKES consistently achieves the highest accuracy in tuning all machine
learning models compared to the other methods.

G.3 PHOTONIC CHIP DESIGN

Individual objective results. We plot the individual performance on each objective in Figure 12.
The results show that the CAKES algorithm outperforms the other baseline approaches across multi-
ple performance indicators. Particularly for objectives f3 and f4, CAKES achieves higher objective
values more quickly compared to the baselines. This is particularly desirable as the third and fourth
objectives are much more important than the other ones, especially from an practical engineering
(e.g., autonomous driving or military laser weapon) point of view. This is because we want the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 10 20

0.852

0.856

0.860

0.864

A
cc

u
ra

cy
(↑

)

LR

0 10 20

0.87

0.88

0.89

0.90

SVM

0 10 20
0.86

0.87

0.88

0.89

RF

0 10 20

Trials

0.890

0.895

0.900

0.905

A
cc

u
ra

cy
(↑

)

XGB

0 10 20

Trials

0.880

0.888

0.896

0.904

MLP

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 11: Average accuracy (↑) over 5 random seeds for different ML models on all datasets.

0 100 200
0

10

20

f 1
(↑

)

0 100 200
0.0675

0.0700

0.0725

0.0750

f 2
(↑

)

0 100 200

0.25

0.30

0.35

f 3
(↑

)

0 100 200

Trials

0

1

2

f 4
(↑

)

0 100 200

Trials

1.0

1.2

1.4

f 5
(↑

) Single-Task GP

Additive GP

CAKES

Figure 12: Comparison of individual objective results for photonic chip design across 250 trials.

photonic chip to have large lasing area (f3) to produce a large light field coverage and have higher
power (f4) to transmit signal/beam faster and farther. Besides, CAKES also maintains a competitive
performance for the other objectives throughout the trials. These results demonstrate that CAKES
is not only effective in the early stages of the optimization process, but also capable of achieving
long-term performance improvements.

Additional baselines. To further validate our results, we compare the optimized performance in-
dicators obtained by our method with some additional baselines in the literature. In Table 9, we
compare the five objectives (f1 through f5) against three state-of-the-art photonic chips of the same
category from existing literature. Notably, our work is the only one to report power (f4), which are
crucial for LiDAR and military applications. In addition, we achieved the highest Q-factor, indicat-

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 9: Comparison of optimized performance indicators obtained by our method and various
baselines from the literature. NA denotes unreported values.

Method Q-factor Wavelength Lasing area Power Divergence

Ohnishi et al. (2004) NA 959.4 2.8× 10−9 NA 1.1
Hsu et al. (2017) 5.0× 103 1299 1.8× 10−8 NA 2.0
Chen et al. (2021) 2.9× 103 948 6.2× 10−9 NA 0.75
Ours 2.5× 107 1309.3 1.3× 10−13 0.99 1.2

0 20 40 60 80 100
Iteration

0

1

2

3

4

5

6

R
ew

ar
d

(↑
)

0 20 40 60 80 100
Iteration

5

6

7

8

9

10

11

R
eg

re
t

(↓
)

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 13: Reward (↑) and regret (↓) for the robot pushing problem.

ing high efficiency and a low threshold. Our lasing area is smaller than the literature benchmarks
due to our chip size of 4 square microns, which is several orders of magnitude smaller. This minia-
turization is essential for integration into circuits and for enabling high-performance AI computing
chips. It is worth mentioning that we could easily increase the lasing area by scaling up the chip
size. Overall, these results demonstrate that the chip designed by CAKES remains competitive or
even superior to these additional baselines.

G.4 ROBOT PUSHING

The robot pushing problem was initially considered by Wang et al. (2018). The objective is to de-
velop a controller for two robotic hands tasked with pushing two objects to specified target positions.
The robot controller is defined by d = 14 parameters that determine the position and orientation of
the hands, the pushing speed, the direction of movement, and the duration of the push. The reward
function is given by:

f(x) = −
2∑

i=1

|xgi − xsi| − |xgi − xfi| (41)

where xsi represents the initial positions of the objects, xfi denotes their final positions, and xgi

indicates the goal . The objective is to minimize the total distance from the initial and final positions
of the objects to their respective goal positions, thus maximizing the reward. We run each method
for a total of T = 100 iterations using 10 different random seeds. To evaluate the performance
of each method, we conduct a series of simulations, running each method for a total of T = 100
iterations, using 10 different initial positions. The results, illustrated in Figure 13, show that the
CAKES method outperformed the other approaches in terms of achieving the highest reward and
minimizing the regret.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Iteration

0

50

100

150

200

R
ew

ar
d

(↑
)

0 50 100 150 200 250
Iteration

0

50

100

150

200

R
eg

re
t

(↓
)

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 14: Reward (↑) and regret (↓) for the lunar lander problem.

G.5 LUNAR LANDER

We consider tuning a controller for a lunar lander implemented in OpenAI Gym2. The state space
of the lunar lander consists of its position, angle, time derivatives, and indicators of whether either
leg is in contact with the ground. This results in an 8-dimensional state vector, which is passed
to a handcrafted parameterized controller that determines the appropriate action to take. There
are four possible actions for each frame: firing the main engine, fire the left orientation engine,
fire the right orientation engine, or doing nothing. The handcrafted control policy is defined by
d = 12 parameters, which parameterize linear score functions based on the state vector and establish
thresholds that dictate which action to prioritize. The reward system is defined as follows:

• Successful landing yields +100 points, while crashing incurs a penalty of −100 points.
• Each leg in contact with the ground yields +10 points.
• Firing the main engine incurs a penalty of −0.3 points per frame, and firing side engines

incurs a penalty of −0.03 points per frame.

The benchmark for winning the game is 200 points, so we use it as the target objective. We run
the simulation for T = 250 iterations and average the results over 50 randomly generated terrains,
initial positions, and velocities. The results, illustrated in Figure 13, demonstrate that the controller
optimized by CAKES significantly outperforms other methods, achieving both the highest rewards
and the lowest regret. Specifically, CAKES consistently reached or exceeded the target objective of
200 points across various terrains, while the other methods struggled to maintain high scores and
often incurred greater penalties due to crashes or inefficient landings. In our simulations, we also
found that CAKES not only optimized the landing strategies but also minimized unnecessary engine
usage, resulting in lower penalties over time.

H LIMITATIONS AND FUTURE WORK

Computational cost. While CAKES can be applied entirely in-context and does not require any
fine-tuning, using LLMs for inference may result in a larger computational footprint compared to
traditional BO methods. Despite this, our findings indicate that CAKES trades this off with improved
sample efficiency, which is a particularly desirable property for black-box optimization tasks. This
suggests the potential for integrating CAKES with more computationally efficient approaches, such
as deploying it in the earlier stage of the optimization process.

Choice of LLM. We have demonstrated the potential of integrating LLMs to enhance kernel design
in BO using the gpt-4o-mini model. We chose gpt-4o-mini as it offers an excellent balance

2https://www.gymlibrary.dev/environments/box2d/lunar_lander/

32

https://www.gymlibrary.dev/environments/box2d/lunar_lander/

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

of affordability, fast inference, and intelligence for our implementation. While we acknowledge
that the choice of the LLM may influence the results, the overall methodology and key insights
presented in this work are generally applicable, and extend beyond the specifics of any particular
LLM. A promising direction for future research would be to benchmark various LLMs to better
understand their strengths and limitations across different BO problem settings.

Generalized kernel grammar. While we focus on addition and multiplication as initial proof-
of-concept operators, these operators are in fact good enough to form a rich and expressive space
of kernels. For example, by only using these operations, we can construct polynomial kernels to
capture non-linear patterns as well as multi-dimensional kernels to model interactions among input
features (Duvenaud et al., 2013). However, we would like that to note that the kernel grammar
can be extended using other operators that preserve the closure properties of kernel functions, such
as convolution, composition, and affine transformations (Smola & Schölkopf, 1998). We aim to
explore these possibilities further in future work.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

CAKES-NoInfo

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 15: The complete prompt for CAKES-NoInfo. Strikethrough indicate the parts that are
removed.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

CAKES-NoContext

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 16: The complete prompt for CAKES-NoContext. Strikethrough indicate the parts that are
removed.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

CAKES-NoInstruct

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 17: The complete prompt for CAKES-NoInstruct. Strikethrough indicate the parts that are
removed.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.190

0.195

0.200

0.205

0.210

0.215
R

eg
re

t
(↓

)

lr credit g

0 5 10 15 20 25

0.170

0.172

0.174

0.176

0.178

0.180

0.182

0.184
lr vehicle

0 5 10 15 20 25

0.134

0.135

0.136

0.137

0.138

0.139

0.140

0.141

lr kc1

0 5 10 15 20 25

0.230

0.232

0.234

0.236

0.238

R
eg

re
t

(↓
)

lr phoneme

0 5 10 15 20 25

0.224

0.226

0.228

0.230

0.232

0.234

0.236

0.238
lr blood transfusion

0 5 10 15 20 25
0.080

0.085

0.090

0.095

0.100

0.105
lr australian

0 5 10 15 20 25

0.1150

0.1175

0.1200

0.1225

0.1250

0.1275

0.1300

0.1325

R
eg

re
t

(↓
)

lr car

0 5 10 15 20 25

0.146

0.148

0.150

0.152

0.154

0.156
lr segment

0 5 10 15 20 25

0.175

0.180

0.185

0.190

0.195

0.200

0.205

lr heart h

0 5 10 15 20 25
Trials

0.036

0.037

0.038

0.039

R
eg

re
t

(↓
)

lr tic tac toe

0 5 10 15 20 25
Trials

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

lr kr vs kp

0 5 10 15 20 25
Trials

0.095

0.100

0.105

0.110

0.115

lr qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 18: Average regret (↓) over 5 random seeds for the LR model tuned with different methods
on individual tasks.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
R

eg
re

t
(↓

)

svm credit g

0 5 10 15 20 25

0.150

0.155

0.160

0.165

0.170

0.175

0.180

0.185

svm vehicle

0 5 10 15 20 25

0.1225

0.1250

0.1275

0.1300

0.1325

0.1350

0.1375

svm kc1

0 5 10 15 20 25

0.105

0.110

0.115

0.120

0.125

R
eg

re
t

(↓
)

svm phoneme

0 5 10 15 20 25
0.2075

0.2100

0.2125

0.2150

0.2175

0.2200

0.2225

0.2250

0.2275
svm blood transfusion

0 5 10 15 20 25

0.05

0.06

0.07

0.08

0.09

svm australian

0 5 10 15 20 25

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
eg

re
t

(↓
)

svm car

0 5 10 15 20 25

0.060

0.065

0.070

0.075

0.080

0.085

svm segment

0 5 10 15 20 25

0.16

0.18

0.20

0.22

0.24

0.26

0.28

svm heart h

0 5 10 15 20 25
Trials

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

R
eg

re
t

(↓
)

svm tic tac toe

0 5 10 15 20 25
Trials

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

svm kr vs kp

0 5 10 15 20 25
Trials

0.10

0.11

0.12

0.13

0.14

svm qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 19: Average regret (↓) over 5 random seeds for the SVM model tuned with different methods
on individual tasks.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.19

0.20

0.21

0.22

0.23

0.24

R
eg

re
t

(↓
)

rf credit g

0 5 10 15 20 25

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

rf vehicle

0 5 10 15 20 25

0.112

0.114

0.116

0.118

0.120

0.122

0.124

rf kc1

0 5 10 15 20 25
0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

R
eg

re
t

(↓
)

rf phoneme

0 5 10 15 20 25

0.1925

0.1950

0.1975

0.2000

0.2025

0.2050

0.2075

0.2100

rf blood transfusion

0 5 10 15 20 25

0.065

0.070

0.075

0.080

0.085

0.090

0.095

rf australian

0 5 10 15 20 25

0.02

0.03

0.04

0.05

0.06

0.07

R
eg

re
t

(↓
)

rf car

0 5 10 15 20 25

0.060

0.062

0.064

0.066

0.068

0.070

0.072

rf segment

0 5 10 15 20 25

0.175

0.180

0.185

0.190

0.195

0.200

rf heart h

0 5 10 15 20 25
Trials

0.02

0.04

0.06

0.08

0.10

0.12

R
eg

re
t

(↓
)

rf tic tac toe

0 5 10 15 20 25
Trials

0.006

0.008

0.010

0.012

0.014

0.016

rf kr vs kp

0 5 10 15 20 25
Trials

0.09

0.10

0.11

0.12

0.13

rf qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 20: Average regret (↓) over 5 random seeds for the RF model tuned with different methods
on individual tasks.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.185

0.190

0.195

0.200

0.205

0.210
R

eg
re

t
(↓

)

xgb credit g

0 5 10 15 20 25

0.160

0.165

0.170

0.175

0.180

xgb vehicle

0 5 10 15 20 25

0.112

0.114

0.116

0.118

0.120

0.122

0.124

xgb kc1

0 5 10 15 20 25
0.090

0.095

0.100

0.105

0.110

0.115

R
eg

re
t

(↓
)

xgb phoneme

0 5 10 15 20 25

0.195

0.200

0.205

0.210

0.215

0.220

0.225

0.230

xgb blood transfusion

0 5 10 15 20 25
0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

xgb australian

0 5 10 15 20 25

0.000

0.002

0.004

0.006

0.008

0.010

R
eg

re
t

(↓
)

xgb car

0 5 10 15 20 25

0.054

0.055

0.056

0.057

0.058

xgb segment

0 5 10 15 20 25

0.140

0.145

0.150

0.155

0.160

0.165

0.170

xgb heart h

0 5 10 15 20 25
Trials

0.014

0.016

0.018

0.020

0.022

0.024

0.026

R
eg

re
t

(↓
)

xgb tic tac toe

0 5 10 15 20 25
Trials

0.002

0.003

0.004

0.005

0.006

xgb kr vs kp

0 5 10 15 20 25
Trials

0.0950

0.0975

0.1000

0.1025

0.1050

0.1075

0.1100

xgb qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 21: Average regret (↓) over 5 random seeds for the XGB model tuned with different methods
on individual tasks.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.190

0.195

0.200

0.205

0.210

0.215
R

eg
re

t
(↓

)

mlp credit g

0 5 10 15 20 25

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

mlp vehicle

0 5 10 15 20 25
0.120

0.122

0.124

0.126

0.128

0.130

0.132

0.134

0.136

mlp kc1

0 5 10 15 20 25

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.135

R
eg

re
t

(↓
)

mlp phoneme

0 5 10 15 20 25

0.2200

0.2225

0.2250

0.2275

0.2300

0.2325

0.2350

0.2375

mlp blood transfusion

0 5 10 15 20 25

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

mlp australian

0 5 10 15 20 25

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

R
eg

re
t

(↓
)

mlp car

0 5 10 15 20 25

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

mlp segment

0 5 10 15 20 25

0.155

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195
mlp heart h

0 5 10 15 20 25
Trials

0.022

0.024

0.026

0.028

0.030

0.032

R
eg

re
t

(↓
)

mlp tic tac toe

0 5 10 15 20 25
Trials

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225
mlp kr vs kp

0 5 10 15 20 25
Trials

0.085

0.090

0.095

0.100

0.105

0.110
mlp qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 22: Average regret (↓) over 5 random seeds for the MLP model tuned with different methods
on individual tasks.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.785

0.790

0.795

0.800

0.805

0.810

A
cc

u
ra

cy
(↑

)

lr credit g

0 5 10 15 20 25
0.816

0.818

0.820

0.822

0.824

0.826

0.828

0.830

lr vehicle

0 5 10 15 20 25

0.859

0.860

0.861

0.862

0.863

0.864

0.865

0.866

lr kc1

0 5 10 15 20 25

0.762

0.764

0.766

0.768

0.770

A
cc

u
ra

cy
(↑

)

lr phoneme

0 5 10 15 20 25
0.762

0.764

0.766

0.768

0.770

0.772

0.774

0.776

lr blood transfusion

0 5 10 15 20 25
0.895

0.900

0.905

0.910

0.915

0.920
lr australian

0 5 10 15 20 25
0.8675

0.8700

0.8725

0.8750

0.8775

0.8800

0.8825

0.8850

A
cc

u
ra

cy
(↑

)

lr car

0 5 10 15 20 25

0.844

0.846

0.848

0.850

0.852

0.854

lr segment

0 5 10 15 20 25

0.795

0.800

0.805

0.810

0.815

0.820

0.825

lr heart h

0 5 10 15 20 25
Trials

0.961

0.962

0.963

0.964

A
cc

u
ra

cy
(↑

)

lr tic tac toe

0 5 10 15 20 25
Trials

0.961

0.962

0.963

0.964

0.965

0.966

0.967

0.968

lr kr vs kp

0 5 10 15 20 25
Trials

0.885

0.890

0.895

0.900

0.905

lr qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 23: Average accuracy (↑) over 5 random seeds for the LR model tuned with different methods
on individual tasks.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

A
cc

u
ra

cy
(↑

)

svm credit g

0 5 10 15 20 25

0.815

0.820

0.825

0.830

0.835

0.840

0.845

0.850
svm vehicle

0 5 10 15 20 25

0.8625

0.8650

0.8675

0.8700

0.8725

0.8750

0.8775

svm kc1

0 5 10 15 20 25

0.875

0.880

0.885

0.890

0.895

A
cc

u
ra

cy
(↑

)

svm phoneme

0 5 10 15 20 25
0.7725

0.7750

0.7775

0.7800

0.7825

0.7850

0.7875

0.7900

0.7925
svm blood transfusion

0 5 10 15 20 25

0.91

0.92

0.93

0.94

0.95

svm australian

0 5 10 15 20 25

0.970

0.975

0.980

0.985

0.990

0.995

1.000

A
cc

u
ra

cy
(↑

)

svm car

0 5 10 15 20 25

0.915

0.920

0.925

0.930

0.935

0.940

svm segment

0 5 10 15 20 25

0.72

0.74

0.76

0.78

0.80

0.82

0.84

svm heart h

0 5 10 15 20 25
Trials

0.972

0.974

0.976

0.978

0.980

0.982

0.984

0.986

A
cc

u
ra

cy
(↑

)

svm tic tac toe

0 5 10 15 20 25
Trials

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996
svm kr vs kp

0 5 10 15 20 25
Trials

0.86

0.87

0.88

0.89

0.90

svm qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 24: Average accuracy (↑) over 5 random seeds for the SVM model tuned with different
methods on individual tasks.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.76

0.77

0.78

0.79

0.80

0.81
A

cc
u

ra
cy

(↑
)

rf credit g

0 5 10 15 20 25

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

rf vehicle

0 5 10 15 20 25

0.876

0.878

0.880

0.882

0.884

0.886

0.888

rf kc1

0 5 10 15 20 25

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

A
cc

u
ra

cy
(↑

)

rf phoneme

0 5 10 15 20 25

0.7900

0.7925

0.7950

0.7975

0.8000

0.8025

0.8050

0.8075

rf blood transfusion

0 5 10 15 20 25

0.905

0.910

0.915

0.920

0.925

0.930

0.935

rf australian

0 5 10 15 20 25

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

u
ra

cy
(↑

)

rf car

0 5 10 15 20 25

0.928

0.930

0.932

0.934

0.936

0.938

0.940

rf segment

0 5 10 15 20 25

0.800

0.805

0.810

0.815

0.820

0.825

rf heart h

0 5 10 15 20 25
Trials

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy
(↑

)

rf tic tac toe

0 5 10 15 20 25
Trials

0.984

0.986

0.988

0.990

0.992

0.994

rf kr vs kp

0 5 10 15 20 25
Trials

0.87

0.88

0.89

0.90

0.91

rf qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 25: Average accuracy (↑) over 5 random seeds for the RF model tuned with different methods
on individual tasks.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.790

0.795

0.800

0.805

0.810

0.815
A

cc
u

ra
cy

(↑
)

xgb credit g

0 5 10 15 20 25

0.820

0.825

0.830

0.835

0.840

xgb vehicle

0 5 10 15 20 25

0.876

0.878

0.880

0.882

0.884

0.886

0.888

xgb kc1

0 5 10 15 20 25

0.885

0.890

0.895

0.900

0.905

0.910

A
cc

u
ra

cy
(↑

)

xgb phoneme

0 5 10 15 20 25

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

xgb blood transfusion

0 5 10 15 20 25

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935
xgb australian

0 5 10 15 20 25

0.990

0.992

0.994

0.996

0.998

1.000

A
cc

u
ra

cy
(↑

)

xgb car

0 5 10 15 20 25

0.942

0.943

0.944

0.945

0.946

xgb segment

0 5 10 15 20 25
0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

xgb heart h

0 5 10 15 20 25
Trials

0.974

0.976

0.978

0.980

0.982

0.984

0.986

A
cc

u
ra

cy
(↑

)

xgb tic tac toe

0 5 10 15 20 25
Trials

0.994

0.995

0.996

0.997

0.998

0.999
xgb kr vs kp

0 5 10 15 20 25
Trials

0.8900

0.8925

0.8950

0.8975

0.9000

0.9025

0.9050

xgb qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 26: Average accuracy (↑) over 5 random seeds for the XGB model tuned with different
methods on individual tasks.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25

0.785

0.790

0.795

0.800

0.805

0.810
A

cc
u

ra
cy

(↑
)

mlp credit g

0 5 10 15 20 25

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90
mlp vehicle

0 5 10 15 20 25

0.864

0.866

0.868

0.870

0.872

0.874

0.876

0.878

0.880
mlp kc1

0 5 10 15 20 25

0.865

0.870

0.875

0.880

0.885

0.890

0.895

0.900

A
cc

u
ra

cy
(↑

)

mlp phoneme

0 5 10 15 20 25

0.7625

0.7650

0.7675

0.7700

0.7725

0.7750

0.7775

0.7800

mlp blood transfusion

0 5 10 15 20 25

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

0.925

mlp australian

0 5 10 15 20 25

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

A
cc

u
ra

cy
(↑

)

mlp car

0 5 10 15 20 25

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

mlp segment

0 5 10 15 20 25
0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

mlp heart h

0 5 10 15 20 25
Trials

0.968

0.970

0.972

0.974

0.976

0.978

A
cc

u
ra

cy
(↑

)

mlp tic tac toe

0 5 10 15 20 25
Trials

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

mlp kr vs kp

0 5 10 15 20 25
Trials

0.890

0.895

0.900

0.905

0.910

0.915

mlp qsar

SE

M5

Random

Utility

BIC

DGP

EGP

CAKES

Figure 27: Average accuracy (↑) over 5 random seeds for the MLP model tuned with different
methods on individual tasks.

46

	Introduction
	Preliminaries
	Bayesian Optimization
	Kernel Grammar

	Context-Aware Kernel Search
	Theoretical Analysis
	Related Work
	Experiments
	Optimization of Benchmark Functions
	Hyperparameter Tuning Task
	Photonic Chip Design

	Conclusion
	Ethics and Reproducibility Statements
	Mathematical Details
	Bayesian Optimization with Gaussian Processes
	Sub-Gaussian Noise
	Model Selection
	Multi-Objective Optimization

	Proof of Results
	Proof of Theorem 1
	Proof of Theorem 3

	Implementation Details
	CAKES Setup
	Baselines

	Experimental Details
	Optimization of Benchmark Functions
	Hyperparameter Tuning Task
	Photonic Chip Design

	Empirical Analysis
	Crossover and Mutation with LLMs
	Case Study
	Ablation Study
	Choice of LLM

	Additional Optimization Results
	Optimization of Benchmark Functions
	Hyperparameter Tuning Task
	Photonic Chip Design
	Robot Pushing
	Lunar Lander

	Limitations and Future Work

