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ABSTRACT

The efficiency of Bayesian optimization (BO) relies on careful selection of the sur-
rogate model to balance exploration and exploitation under limited budget. Tra-
ditional BO methods often struggle with sub-optimal kernel choices when using
Gaussian processes (GPs) as the surrogate model. When the kernel is inadequately
chosen, BO may converge slowly or even get stuck at an undesired local mini-
mum. To address such drawback, we propose the novel Context-Aware Kernel
Search (CAKES) to automate optimal kernel design in BO with large language
models (LLMs). Concretely, CAKES exploits LLMs as crossover and mutation
operators to adaptively generate and refine GP kernels based on the observed data.
CAKES works entirely in-context and can be easily integrated into existing sys-
tems without requiring any fine-tuning. We further present a theoretical analysis
demonstrating that our method achieves sub-linear regret relative to the budget for
any input dimension. Experimental results demonstrate that CAKES outperforms
various salient baseline methods in numerous synthetic and real-world optimiza-
tion tasks. Notably, CAKES improves the overall performance on benchmark
functions by roughly 36%. In hyperparameter tuning tasks, CAKES can effec-
tively leverage fewer data samples to quickly identify high-performing configura-
tions and consistently ranks first across various datasets. As an encouraging real
application, we successfully applied CAKES to design photonic chips, achieving
significant improvements in key performance indicators while speeding up the de-
sign cycle by a factor of ten compared to the baselines. Our code is accessible at
https://github.com/cakes4bo/cakes.

1 INTRODUCTION

Many important scientific and engineering problems require optimizing objective functions that are
noisy and expensive to evaluate. These objective functions often lack closed-form expressions, let
alone gradient information, making optimization particularly difficult (Wang et al., 2023). Nonethe-
less, Bayesian optimization (BO) has shown remarkable success in optimizing such functions, due to
its ability to operate on limited data and incorporate prior knowledge to guide the optimization pro-
cess (Garnett, 2023). In the past couple of decades, BO has been used for diverse tasks ranging from
tuning hyperparameters in machine learning (Snoek et al., 2012; Liu et al., 2024) to designing poli-
cies in robotics (Calandra et al., 2016; Martinez-Cantin, 2017) and recommending new molecules
in drug discovery (Korovina et al., 2019; Tripp & Hernández-Lobato, 2024). The main idea behind
BO is to first construct a surrogate model, typically using a Gaussian process (GP, Rasmussen &
Williams, 2006), to represent the prior belief about the objective function. Then, by conditioning
on the observations and the prior, the posterior is calculated using Bayes’ rule to reflect the updated
belief about the objective function. Based on this posterior, an acquisition function is further used to
determine the next promising positions to query by balancing exploration (moving to regions with
high uncertainty) and exploitation (moving to regions with high expected value).

Although the past decades have witnessed rapid development of BO, much of the focus has been on
designing novel acquisition functions (Ament et al., 2023; Aglietti et al., 2024). In comparison, the
challenge of appropriately choosing the surrogate model has received comparatively less attention
(Shahriari et al., 2016). Many practitioners simply regard surrogate modeling as a “black art” and
perceive it as less critical to the optimization outcome compared to the acquisition function design
(Malkomes & Garnett, 2018). In the context of GPs, most off-the-shelf BO methods simply use
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Figure 1: Overview of the proposed CAKES framework. Starting with an initial population of
kernels, the LLM acts as crossover and mutation operators, proposing new kernels based on the
given prompts. The proposed kernels are then evaluated using a fitness calculator, and the fittest
ones advance to the next generation.

general-purpose kernels, such as the squared exponential kernel or Matérn-5/2 kernel (Snoek et al.,
2012). While this seems reasonable at the first glance, the so-called one-size-fits-all approach has
significant limitations. Since the kernel encodes our assumptions about the underlying objective
function, the GP will be a poor fit if these assumptions do not match the reality (Roman et al.,
2019). It has also been studied that with a poor choice of the kernel, BO may converge very slowly,
especially when optimizing complex functions in moderate-to-high dimensional spaces (Gardner
et al., 2017). These considerations underscore the need for a more sophisticated kernel design in
BO.

While the pursuit for optimal kernel design is not new, existing approaches might not be straightfor-
ward in the setting of BO. In BO, the objective function is typically expensive to evaluate, resulting
in limited observations for tuning the kernel. The lack of known functional structure and gradi-
ent information further complicates the kernel selection process, making it difficult to choose the
most suitable kernel using traditional optimization-based methods (Bach, 2008; Gönen & Alpaydin,
2011). At its core, these challenges can be framed within the few-shot learning setting, where swift
learning and generalization from limited data are required. Notably, these challenges align with the
strengths of large language models (LLMs, Wei et al., 2022a), which excel at generalizing from
few-shot samples (Brown et al., 2020), thus enabling efficient exploration with limited data. The in-
context learning capability of LLMs also acts as implicit Bayesian inference (Xie et al., 2022; Han
et al., 2023), allowing them to encode prior knowledge about the optimization task, search space,
and other relevant information. LLMs’ ability in performing complex reasoning further enhances
their capacity to process contextual information and improve search performance (Yang et al., 2024).
Moreover, LLMs are also pre-trained on massive internet data, which potentially contains transfer-
able domain knowledge applicable to various optimization tasks. Given these insights, we aim to
investigate the following question,

“Can LLMs, with their encoded knowledge and few-shot prompting, help to en-
hance the kernel design in BO?”

Contributions. In this paper, we reveal the great potential of extending the capabilities of LLMs
beyond standard natural language tasks to automated kernel design in BO. Our primary contributions
are as follows:
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• We conduct a thorough study to reveal the urgency for a more careful treatment of ker-
nel design in BO, as the conventional setups, which often rely on fixed kernels or naive
selection strategies, do not perform uniformly well across tasks.

• We propose CAKES, an adaptive kernel design method for BO that exploits LLMs as ge-
netic operators to generate and refine kernels based on the observed data (see Figure 1).
Our method can be applied entirely in-context and does not require any fine-tuning.

• We present a theoretical analysis based on regret and information gain, demonstrating that
our method achieves sub-linear regret relative to the budget for any input dimension.

• We demonstrate that our method consistently outperforms other baselines across numerous
optimization tasks, including globally optimizing benchmark functions, tuning hyperpa-
rameters of machine learning models, and optimizing photonic chip design.

2 PRELIMINARIES

We first review some key concepts in BO and the so-called kernel grammar, which serve as the
bedrock for the method proposed in this paper.

2.1 BAYESIAN OPTIMIZATION

Consider optimizing an objective function f : X ⊂ Rd → R,

x∗ = argmax
x∈X

f(x). (1)

Here, f is treated as a “black-box” function, meaning we can only obtain noisy evaluations of the
form y = f(x) + ϵ, where ϵ ∼ N (0, σ2

ϵ ) represents the Gaussian noise. The evaluations of f are
also costly, limiting the number of queries we can make. In addition, the gradient of f is not directly
accessible and must be estimated from the noisy evaluations, further complicating the optimization
process. To address these challenges, Bayesian optimization (BO) employs a probabilistic surrogate
model g to approximate f on the fly (Garnett, 2023). A popular choice for g is the family of Gaussian
processes (GP, Rasmussen & Williams, 2006), where a GP can be fully defined by a mean function
m : X → R and a positive semi-definite covariance (or kernel) function k : X×X → R. In practice,
the mean function is often set to zero, allowing the GP to be solely characterized by the choice of the
kernel function. At each iteration t, the calibration of the posterior distribution p(gt | Dt) given the
previous observations Dt = {(xi, yi)}t−1

i=1 informs where to explore and exploit in X . Then, based
on p(gt | Dt), an acquisition function α : X → R defines a policy to choose the next best point
to evaluate. Common choices of α include expected improvement (EI, Jones et al., 1998), upper
confidence bound (UCB, Srinivas et al., 2012), and Thompson sampling (TS, Thompson, 1933).
After each evaluation, the surrogate model g is refined to reflect the updated belief about f . We refer
the readers to Appendix B.1 for a thorough treatment of BO with GPs.

2.2 KERNEL GRAMMAR

The kernel grammar introduced by Duvenaud et al. (2013) defines a comprehensive and flexible
space of kernels. Such space exploits the closure properties of kernel functions under addition and
multiplication, which ensures that: if k1(x,x′) and k2(x,x

′) are valid kernels, then both k1(x,x
′)+

k2(x,x
′) and k1(x,x

′)×k2(x,x
′) are also valid kernels (Smola & Schölkopf, 1998). Starting from

a set of base kernels, such as the squared exponential (SE), linear (LIN), periodic (PER), and rational
quadratic (RQ), one can construct more expressive kernels by combining such base kernels via the
addition and multiplication operators. For instance, LIN + PER kernel can capture periodic structure
with a linear trend and SE × PER kernel can capture locally periodic components. Let B denote a
base kernel and S denote a subexpression, the entire kernel space is described by all kernels that can
be constructed using the following grammar rules:

1. Add a base kernel to a subexpression: S → S + B;

2. Multiply a subexpression with a base kernel: S → S × B;

3. Replace a base kernel with another base kernel: B → B.

3
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Algorithm 1: Context-Aware Kernel Search (CAKES)
Input: Objective f , observations D, budget T , number of crossovers nc, probability of

mutation pm, population size np

Initialize the population K
for t = 1, . . . , T do

Feed D to the LLM with system prompt (see Fig. 4)
Measure the fitness of each kernel k ∈ K
for c = 1, . . . , nc do

Sample two parent kernels k1, k2 from K
Generate kernel through crossover (see Fig. 5a): kc ∼ crossover(k1, k2)
Add kc to K and measure its fitness

if rand() < pm then
Select the fittest kernel kf from K
Refine kernel through mutation (see Fig. 5b): km ∼ mutation(kf )
Add km to K and measure its fitness

Update population K by selecting the np fittest kernels
Obtain candidate points: xt,k = argmaxx∈X α(x;D, k) for each k ∈ K
Set k∗ = argmaxk∈K wkα(xt,k;D, k) and let xt = xt,k∗

Update observations: D ← D ∪ {(xt, yt)}

3 CONTEXT-AWARE KERNEL SEARCH

We propose Context-Aware Kernel Search (CAKES) to automate GP surrogate modeling in BO with
LLMs. CAKES uses LLMs as genetic operators to adaptively propose kernels based on the observed
data. The main motivation is to refine the kernel choice at each iteration before determining the next
query point. The complete procedure of CAKES is summarized in Algorithm 1 and the designed
prompts are shown in Appendix D.1.

Conditioning the LLM. We begin by randomly sampling n points from the input space X to ini-
tialize the observations D = {(xi, yi)}ni=1. These observations are then used as few-shot samples
to prompt the LLM for analysis. The prompt is designed based on the concept of conditioning on
high performance, as suggested by Zhou et al. (2023). Specifically, we start the prompt with a state-
ment, “You are an expert in machine learning, specializing in Gaussian processes”, to simulate the
reasoning of a human expert in the field. It has also been shown that chain-of-thought reasoning, or
generating intermediate reasoning steps, can improve the performance of LLMs (Wei et al., 2022b;
Kojima et al., 2022). Motivated by this, we instruct the LLM to analyze the provided observations
and identify patterns that can be represented by kernel functions, before proposing the kernels at
each iteration. To enhance the LLM’s understanding, we embed domain-specific knowledge by
including examples of kernel functions along with their characteristics.

Initializing the population. We draw some inspiration from the genetic algorithm (Holland, 1992),
where we maintain a population of candidates (kernels) throughout the optimization process. Our
initial population consists of six base kernels: squared exponential (SE), periodic (PER), linear
(LIN), rational quadratic (RQ), Matérn-3/2 (M3), and Matérn-5/2 (M5). We denote this initial set
as K = {SE,PER,LIN,RQ,M3,M5}. For each kernel k ∈ K, we measure its fitness using the
Bayesian Information Criterion (BIC, Schwarz, 1978), which balances model fit and complexity.
BIC is commonly used for model selection and can be seen as an approximation to the Laplace
approximation (Murphy, 2022). More detailed discussions on BIC and model selection for GPs can
be found in Appendix B.3.

Proposing the kernels. We consider a generalized notion of the kernel grammar, which involves a
set of base kernels {B1, . . . ,Br} and a set of operators {T1, . . . , Tl}, where r, l ∈ N. Each operator
Tj : K × K → K, for j = 1, . . . , l, is a closed operator (e.g., addition and multiplication) on the
space of kernels K. The grammar rules can be summarized in the following way:

1. Apply operator Tj on a subexpression and a base kernel: S → Tj(S,B);
2. Replace a base kernel with another base kernel: B → B.

4
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Based on these grammar rules, we can formally define the kernel grammar space as follows:
Definition 1. Let {k1, . . . , kr}, where r ∈ N, be a set of base kernels, and let {T1, . . . , Tl}, where
l ∈ N, be a set of operators defined by Tj : K ×K → K for j = 1, . . . , l. For i ∈ N, we can define
the kernel grammar space recursively as follows:

K0 := {k1, . . . , kr},
Ki := {Tj(k1, k2) | k1, k2 ∈ Ki−1, j = 1, . . . , l} ∪Ki−1.

When we refer to a kernel k from the kernel grammar space, we actually refer to the associated
kernel family over its hyperparameters {kθ |θ ∈ Θ}. Hence, if we apply an operator T on two
kernels k1 and k2, we obtain another kernel family {T (k1,θ1

, k2,θ2
) |θ1 ∈ Θ1,θ2 ∈ Θ2}. By

leveraging this kernel grammar space, we can use the LLM as genetic operators to propose kernels
through the following steps:

• Crossover: We perform nc crossover operations. For each crossover, we sample two parent
kernels k1, k2 from K with probability proportional to their fitness. We then prompt the
LLM to propose a new kernel kc that has a lower BIC value, by applying an operator on
the parent kernels.

• Mutation: With probability pm, we perform a mutation operation. We select the fittest
kernel kf from K and prompt the LLM to suggest a new kernel km, by replacing one of the
base kernels in kf with another base kernel.

In the prompts, we also ask the LLM to report a brief analysis of its reasoning behind the proposed
kernels. This serves as a sanity check, enabling us to verify and interpret the choices made by the
LLM. The proposed kernels from both steps are added to K, and their fitnesses are measured. Then,
we select the top np fittest kernels to form the next generation of K.

Choosing the next query point. In our experiments, we observed that some kernels may promise
a good fit, but the actual improvement is not as substantial as expected when the proposed query
points are evaluated. For this reason, we do not always rely on the fittest kernel to choose the next
query point. Instead, we adopt the following weighting strategy,

k∗ = argmax
k∈K

wkα(xt,k;D, k), (2)

where wk = exp(−BICk)/
∑

j∈K exp(−BICj) and xt,k denotes the proposed query point for that
kernel. This strategy allows us to balance the kernel’s ability to fit the data (as indicated by wk) with
the expected improvement at the proposed query point (as measured by α). After determining k∗,
we set the next query point at xt = xt,k∗ and update the observations as D ← D ∪ {(xt, yt)}. This
iterative process continues until a predefined budget T is exhausted.

4 THEORETICAL ANALYSIS

To establish the theoretical guarantee of our proposed method, we will use regret as a measure of
convergence and information gain to assess the informativeness of the data samples. The instanta-
neous regret at iteration t is defined as rt = f(x∗)−f(xt), and the corresponding cumulative regret
after T iterations is RT =

∑T
t=1 rt. If we can show that the cumulative regret is sub-linear for a

given algorithm, then the algorithm converges to a value arbitrarily close to the optimal (Berkenkamp
et al., 2019). To measure the reduction in uncertainty about f from observing yA for a set of points
A = {x1, . . . ,xT } ⊂ X , we use information gain, which is defined as the mutual information
between f and yA,

I(yA; f) = H(yA)−H(yA | f), (3)

where H(·) denotes the entropy function. Following Wang & de Freitas (2014), we can define the
maximum information gain after T iterations as,

γT = max
A⊂X :|A|=T

I(yA; f) = max
A⊂X :|A|=T

1

2
log |I+ σ−2

ϵ KA;θ|, (4)

where I is the identity matrix and KA;θ is the kernel matrix evaluated at the observed points. Before
presenting our main result, we first make the following assumption:

5
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Assumption 1 (Theorem 5 of (Ghosal & Roy, 2006)). Let X ⊂ Rd be compact and convex. There
exist constants a, b, L > 0 such that for any f(x) ∼ GP(0, k(x,x′)),

Pr

{
sup
x∈X

∣∣∣∣∂f(x)∂xj

∣∣∣∣ > L

}
≤ ae−(L/b)2 , ∀j = 1, , . . . , d. (5)

The cumulative regret can be bounded according to the following theorem:
Theorem 1. Pick δ ∈ (0, 1). Under Assumption 1, with probability 1 − δ, the cumulative regret of
CAKES over T iterations is bounded by,

RT ≤
√
C1TβT γT +

π2

6
, ∀T ≥ 1,

where C1 = 8/(log 1 + σ−2
ϵ ) and βt = 2 log(t22π2/(3δ)) + 4d log(dtbr

√
log(4da/δ)).

The above theorem demonstrates that, with high probability, the cumulative regret of our method
is bounded in terms of the maximum information gain γT . We can further bound γT using the
following results from Srinivas et al. (2012):
Theorem 2 (Theorem 5 of (Srinivas et al., 2012)). Let X ⊂ Rd be compact and convex, d ∈ N.
Assume the kernel function satisfies k(x,x′) ≤ 1.

1. For the d-dimensional linear kernel: γT = O(d log T ).
2. For the squared exponential kernel: γT = O((log T )d+1).

3. For Matérn kernels with ν > 1: γT = O(T d(d+1)/(2ν+d(d+1))(log T ))

Combining these results with Theorem 1, our main result can be summarized as follows:

Theorem 3. With high probability, the cumulative regret of CAKES is bounded by Õ(√dTγT ),
where Õ suppresses the logarithmic factors. Applying the information gain bounds from Theorem
2, this yields sub-linear regret in T for any dimension d.

We provide the detailed proof of our results in Appendix C. We also provide additional empirical
analysis in Section F.

5 RELATED WORK

Kernel design. Traditionally, kernel design relied on visually inspecting patterns in the data and
manually combining elementary kernels, such as squared exponential kernel and periodic kernel
(Rasmussen & Williams, 2006). However, this approach is highly subjective and requires expert
knowledge, making it impractical for complex data patterns. As a result, several methods have
been developed to automate the kernel selection process. One such method involved multiple kernel
learning techniques, which leverage data to identify the optimal kernel configuration by optimizing
a linear or nonlinear combination of elementary kernels (Bach, 2008; Gönen & Alpaydin, 2011).
Yet, these methods impose restrictions on the kernel space and require the hyperparameters to be
specified in advance. Another line of research focused on designing flexible kernel families that
can approximate arbitrary stationary kernels in the frequency domain (Lázaro-Gredilla et al., 2010;
Wilson & Adams, 2013; Yin et al., 2020). While these methods can capture a wide range of kernels,
they are limited by the stationarity assumption. Other works have also attempted to develop more
expressive kernels by integrating GPs with deep neural networks (Damianou & Lawrence, 2013;
Wilson et al., 2016). Unfortunately, these methods often require complex inference techniques that
are computationally more expensive than traditional kernels. In contrast to these approaches, our
method is based on the kernel grammar and in-context learning with pre-trained LLMs, which offers
a flexible yet computationally feasible approach.

Surrogate modeling in BO. When using GPs as the surrogate model in BO, the kernel is typi-
cally selected a priori based on expert knowledge about the problem at hand. Unfortunately, when
there is no prior knowledge available, most BO methods simply use default kernels such as squared
exponential kernel or Matérn-5/2 kernel (Snoek et al., 2012). While this seems reasonable, it has
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Table 1: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function Fixed Adaptive DGP EGP CAKES
SE M5 Random Utility BIC

Ackley-2 0.1773 0.1220 0.1358 0.1062 0.1863 0.2510 0.1878 0.0783
Ackley-5 0.3185 0.2369 0.1722 0.2278 0.3590 0.3110 0.2285 0.1732
Beale 0.3554 0.3522 0.2855 0.4410 0.3571 0.4775 0.3088 0.2565
Branin 0.0183 0.0055 0.0227 0.0372 0.0371 0.4810 0.2045 0.0070
Dropwave 0.5110 0.5411 0.5460 0.5265 0.5461 0.5560 0.6290 0.4690
Eggholder 0.4941 0.3545 0.4015 0.4855 0.5485 0.4535 0.4345 0.1241
Griewank-2 0.1196 0.1282 0.1295 0.1310 0.1272 0.1156 0.0935 0.0267
Griewank-5 0.0204 0.0223 0.0232 0.0178 0.0281 0.0815 0.0478 0.0185
Hartmann 0.0007 0.0019 0.0021 0.0358 0.6800 0.1305 0.1780 0.0001
Levy-2 0.1562 0.0418 0.0835 0.0255 0.1145 0.1965 0.0765 0.0353
Levy-3 0.1141 0.1422 0.1495 0.0880 0.1125 0.2265 0.0805 0.0505
Rastringin-2 0.4325 0.4251 0.5310 0.3455 0.4490 0.5405 0.3869 0.3341
Rastringin-4 0.5765 0.5461 0.4815 0.5905 0.5200 0.5340 0.3270 0.3128
Rosenbrock 0.1025 0.0898 0.1015 0.1405 0.1475 0.5340 0.6040 0.0483
Six-Hump Camel 0.2840 0.1507 0.3455 0.3310 0.3265 0.4940 0.5345 0.1015
Mean regret 0.2454 0.2111 0.2271 0.2355 0.3021 0.3585 0.2881 0.1358
Median regret 0.1773 0.1422 0.1495 0.1400 0.3265 0.4530 0.2285 0.0783

been studied that with poor or overly general choices of the kernel, BO can converge very slowly
(Gardner et al., 2017). For this reason, deep GPs (DGPs) have been proposed as a promising alter-
native to traditional GPs in BO, particularly for capturing non-stationary behaviors (Hebbal et al.,
2021). However, DGPs suffer from high computational complexity, which grows with the number
of layers. Other prior works have explored adaptively changing the kernel during the optimization
process. For example, Ginsbourger et al. (2008) used a discrete mixture of GPs, while Viana et al.
(2013) and Roman et al. (2019) maintained multiple GPs with different kernels in parallel. More re-
cently, Lu et al. (2023) proposed using an ensemble of GPs to adaptively select the surrogate model
by adjusting the weights on the fly. We extend this line of research by using pre-trained LLMs to
automatically generate and refine kernels during the optimization process, enabling a new-fashioned
adaptive kernel design.

LLMs as genetic operators. As the model size and amount of training data increase, LLMs exhibit
several emergent abilities that improve their performance across diverse tasks (Wei et al., 2022a).
One such ability is few-shot learning, where the model can generalize from a few samples without
adjusting its parameters (Brown et al., 2020). This generalization is achieved through in-context
learning, in which the model identifies the patterns in the samples and extrapolates them via next-
token prediction. Inspired by these abilities, recent works have explored the use of LLMs for op-
timization tasks, notably as genetic operators in evolutionary algorithms. For example, Meyerson
et al. (2024) utilized LLMs to propose evolutionary crossovers on tasks such as image and code
generation, while Lehman et al. (2023) trained an LLM on computer programs to act as a mutation
operator for robot simulations. Chen et al. (2024) combined evolutionary search with soft prompt
tuning to evolve neural network architectures using LLMs. To the best of our knowledge, the cur-
rent work is the first to use LLMs as genetic operators for GP kernel design in BO. Compared to the
state-of-the-art, our method can be applied entirely in-context and does not require any fine-tuning.

6 EXPERIMENTS

We evaluate the performance of our proposed method against several baselines across different tasks,
including globally optimizing benchmark functions, tuning hyperparameters of machine learning
models, and designing photonic chips with optimal configurations.
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Figure 2: Average regret (↓) over 5 random seeds for different ML models on all datasets.

Setup. Our experiments are conducted using the software package BoTorch (Balandat et al., 2020),
where we use the expected improvement (EI) as the acquisition function. For the LLM, we use Ope-
nAI’s gpt-4o-mini model, with the hyperparameters temperature=0.7 and top p=0.95.
We give additional insights on the selection of these hyperparameters in Appendix D.1. To facilitate
reproducibility, our code is publicly available at https://github.com/cakes4bo/cakes.

Baselines. We compare our proposed method against the following baselines:

• Fixed: This is the default method in BO, where we fix the kernel throughout the optimiza-
tion process. We consider the two most commonly-used kernels in BO: squared exponential
(SE) and Matérn-5/2 (M5).

• Adaptive: This is the adaptive kernel selection method proposed in (Roman et al., 2019).
We employ the same six base kernels as in CAKES and use three different selection criteria
to adaptively change the kernel: Random, Utility, and BIC.

• Deep GP: This baseline uses a deep GP (DGP) as the surrogate model, implemeted through
a functional composition of stationary GPs (Hebbal et al., 2021).

• Ensemble GP: This baseline uses an ensemble of GPs (EGP) to adaptively select the sur-
rogate model (Lu et al., 2023). The kernel dictionary consists of the same six kernels used
in CAKES.

In the interest of space, we provide more details of the chosen baselines in Appendix D.2.

6.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Setup. Our first set of tasks involve optimizing test functions commonly used as benchmark for
optimization (Surjanovic & Bingham, 2013). The goal is to find the global minimum of each test
function, where the maximum number of function evaluations is limited to 10 times the dimension-
ality of the function domain, i.e., T = 10 × d. We provide more information about the chosen
functions in Appendix E.1.
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Evaluation. To evaluate the performance of each method, we consider the normalized regret
(Arango et al., 2021):

f(xopt)− f(xbest)

f(xopt)− f(xinit)
, (6)

where f(xinit) is the best function value among the initial points, f(xbest) is the best value found
by the method, and f(xopt) is the ground truth optimum. This metric is useful as it provides a
normalized and task-agnostic measure to compare the optimization performance across different
tasks.

Results. Table 1 shows the normalized regret averaged over 20 seeds for different functions and
methods. Our results demonstrate that CAKES outperforms the baselines, achieving roughly a 36%
improvement in the mean regret and a 44% improvement in the median regret compared to the
runner-up method. Notably, CAKES ranks among the top two for all functions and achieves the best
performance in 12 out of 15 functions. Our results also reveal that fixed kernels are not universally
effective, underscoring the need for more adaptive and problem-specific methods. Specifically, the
default kernels in BO like SE and M5, actually underperform on many test functions. Due to space
limitations, we include additional results in Appendix G.1.

6.2 HYPERPARAMETER TUNING TASK

Setup. We consider the hyperparameter tuning tasks available in the HPOBench package
(Eggensperger et al., 2021). We included a total of 60 tasks, comprising 12 OpenML datasets and
5 machine learning (ML) models: logistic regression (LR), support vector machine (SVM), random
forest (RF), XGBoost (XGB), and multi-layer perceptron (MLP). We show more details on these
tasks in Appendix E.2.

Evaluation. Our goal for each task is to maximize the accuracy of the ML model on the unseen test
data. The performance of each method is measured by the simple regret, f(x∗)−max1≤i≤t f(xi).
We executed T = 25 trials using five different random seeds, where we ensure that all models share
the same initialization for each seed.

Results. Figure 2 shows the regret for all tasks averaged over 5 random seeds. The results demon-
strate that CAKES consistently achieves the lowest regret, and therefore the best tuning performance,
compared to the other methods across all tasks. It is also worth noting that CAKES excels in the
earlier stages of the optimization process, when fewer observations are available. This suggests that
CAKES is able to effectively leverage fewer data samples to quickly converge to high-performing
configurations. Table 8 further highlights the superior performance of CAKES, which achieves the
best average rank at the end of each tuning task. Our results also reveal significant variations in
performance for the fixed and adaptive kernel approaches. For instance, the SE kernel performs
reasonably well in tuning XGB and MLP models, but struggles with tuning SVM and RF. In con-
trast, CAKES demonstrates more consistent performance across all tasks, exhibiting less sensitivity
to the specific model being optimized. To provide a more comprehensive comparison, we report
the individual task results for each ML model and dataset in Appendix G.2. We have also included
two additional experiments that involve tuning a controller for the robot pushing task and the lunar
lander problem in Appendix G.4 and G.5 respectively.

6.3 PHOTONIC CHIP DESIGN

Motivation. To further evaluate our method in real-world optimization tasks, we consider optimiz-
ing the design parameters of photonic chips. This task has become a challenging problem in physics
and engineering (Li et al., 2023; Zhang et al., 2024), as it is infeasible to try all the combinations
(or even a few) of the parameters due to the high cost of the fabrication process. As a result, one
has to rely on extensive computer simulations to assess the chip’s performance without knowing any
gradient information or explicit form of the objective function. This task can be formulated as an
inverse design problem, where the goal is to optimize the chip to meet specific performance criteria.

Setup. In this problem, we consider five key indicators for assessing the chip’s performance: Q-
factor (f1), wavelength (f2), lasing area (f3), power (f4), and divergence angle (f5). Based on these
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Figure 3: Score (↑) and hypervolume (↑) of the designed chip over 250 trials.

performance indicators, we can calculate the overall score for a given set of parameters:
αf1 + βf2 + γf3 + δf4 + ϵf5, (7)

where we set α = β = 1, γ = δ = 100, and ϵ = 20 to unify the dimensions between different
objectives. We provide more details about the objectives and problem setup in Appendix E.3.

Baselines. For the baselines, we consider two widely-used BO-based methods in the literature. The
first is the Single-Task GP, which serves as the default method, where a single Gaussian Process (GP)
is employed to model each objective independently, typically utilizing the M5 kernel. The second
method is the Additive GP, which models the overall objective as a sum of independent GPs, with
each GP utilizing a squared exponential (SE) kernel. We provide more comparisons with additional
baselines from the literature in Appendix G.3. For all methods, we set T = 250 with 6 different
random initializations and use the expected hypervolume improvement (EHVI) as the acquisition
function to identify the Pareto optimal solution (Couckuyt et al., 2014; Yang et al., 2019). We
refer the reader to Appendix B.4 for more detailed definitions of the Pareto optimal solution and
hypervolume.

Results. Figure 3 shows the score and hypervolume of the designed chip obtained by CAKES
against competing baselines. Compared to the baselines, CAKES achieved the highest score and
hypervolume, resulting in the best overall chip performance. The superiority of CAKES likely stems
from its ability to utilize different kernels tailored to specific objectives, unlike competing methods
that rely on a single kernel to model all objectives. Moreover, we can observe that the score of the
chip was significantly improved by CAKES in less than 30 trials, which is equivalent to a tenfold
speedup in the design cycle compared to the baselines. This could lead to significant reductions
in both time and cost needed to design the chips, thus accelerating the research and development
(R&D) process. We showcase the individual results on each objective in Appendix G.3.

7 CONCLUSION

We introduced CAKES, a novel kernel design method that integrates LLMs to automate surrogate
modeling in BO. By leveraging LLMs as crossover and mutation operators, CAKES adaptively
proposes kernels based on the observed data, bridging the gap between kernel selection and domain
expertise. Our theoretical analysis demonstrates that CAKES achieves sub-linear regret relative to
the budget for any input dimension. Experimental results strongly support our theoretical findings.
In benchmark function optimization, CAKES consistently ranked among the top two for all test
functions, achieving the best performance in 12 out of 15 cases. In hyperparameter tuning tasks,
CAKES obtained the lowest regret across all models, particularly excelling in the early stage of
optimization with fewer observations. In the photonic chip design problem, CAKES significantly
enhanced chip performance in fewer than 30 trials, resulting in a tenfold speedup of the design
cycle compared to baseline methods. We believe this work represents a solid step towards a fully
automated BO system that can be used by non-experts on arbitrary objectives.

10
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A ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. In this work, we follow the recommendations from Azure OpenAI service when using GPT
models, where we ensure via the agreement that sensitive data is not sent for human review or stored,
thereby respecting the guidelines given by the dataset providers.

Reproducibility. Experimental results are shown in Section 6 with further details of the imple-
mentations, baselines, and benchmarks, included in Appendix D and Appendix E. Additional re-
sults are also given in Appendix G. We provide the code to reproduce our results at https:
//github.com/cakes4bo/cakes.

B MATHEMATICAL DETAILS

B.1 BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES

A Gaussian process (GP) describes a collection of random variables, any finite number of which
have a joint Gaussian distribution (Rasmussen & Williams, 2006). Mathematically, a GP can be
expressed as, GP (m(x), kθ(x,x

′;θ)), where m(x) is the mean function and kθ(x,x
′;θ) is the

covariance (kernel) function parameterized by some hyperparameters θ. Given any finite collection
of inputs X = x1:t, the outputs are jointly Gaussian,

f(X) ∼ N (mX,K(X,X;θ)) , (8)
where mX = m(X) ∈ Rt is the mean function vector evaluated at X, often assumed to be 0 in prac-
tice, and K(X,X;θ) ∈ Rt×t is the covariance matrix with entries [K(X,X;θ)]i,j = kθ(xi,xj).
We assume that the evaluations of f at any point xt are corrupted by a σ-sub-Gaussian noise,

yt = f(xt) + ϵt, (9)

where ϵt ∼ N (0, σ2
ϵ ). Given the observed data Dt = {X,y}, where y = y1:t, the joint Gaussian

distribution of the observed data and an arbitrary query point x is:[
y

f(x)

]
∼ N

(
0,

[
Kt;θ + σ2

ϵ I kt;θ(x)
k⊤
t;θ(x) kθ(x,x)

])
, (10)

where Kt;θ = K(X,X;θ) and kt;θ(x) = kθ(X,x). It follows that, the posterior distribution of
any query point x is marginally Gaussian,

f(x)|Dt;θ ∼ N (µt(x;θ), σ
2
t (x;θ)), (11)

where
µt(x;θ) = E[f(x)|Dt] = k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1y, (12a)

σ2
t (x;θ) = E[f(x)f(x)|Dt] = kθ(x,x)− k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1kt,θ(x). (12b)

Based on the posterior distribution, the acquisition function must use its statistics to trade-off ex-
ploitation (where µt(x;θ) is high) and exploration (where σ2

t (x;θ) is high) effectively. Among the
various acquisition functions proposed, expected improvement (EI) remains the default choice in
many BO applications (Snoek et al., 2012). Let us define µ+

θ = maxx∈X µt(x;θ) as the best mean
value. The EI acquisition function can then be expressed in closed form as:

α(x;Dt) = E[max{0, f(x)− µ+
θ }] = σt(x;θ)[uΦ(u) + ϕ(u)], (13)

where u = (µt(x;θ)− µ+
θ )/σt(x;θ), and ϕ(·) and Φ(·) are the standard normal density and cumu-

lative distribution functions, respectively.

B.2 SUB-GAUSSIAN NOISE

We say ϵ is σ-sub-Gaussian if there exists σ ≥ 0 such that,

E[exp(ρϵ)] ≤ exp

(
ρ2σ2

2

)
, ∀ρ ∈ R. (14)

It is easy to show that if ϵ is σ-sub-Gaussian, then E[ϵ] = 0 and Var[ϵ] ≤ σ2. Examples of
sub-Gaussian variables include, zero-mean Gaussian random variables with variance σ2, symmetric
Bernoulli random variables, and symmetric uniform distributions (Bach, 2024).
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B.3 MODEL SELECTION

We conduct model selection over a discrete, infinite space of kernels K = {k1, k2, . . .}. As each
kernel comes with its own hyperparameters, we are actually dealing with a space of kernel families.
Thus, when referring to a kernel k, we actually associate it with its whole family over hyperparam-
eters {kθ |θ ∈ Θ}. Given some model selection criteria h : K → R, our goal is to identify the
optimal kernel,

k∗ = argmax
k∈K

h(k | D). (15)

A commonly-used criterion for probabilistic models, such as GPs, is the marginal log-likelihood
(Murphy, 2022),

h(k | D) = log p(y |X, k) = log

∫
p(y |X,θ, k)p(θ)dθ. (16)

Unfortunately, the above likelihood is generally intractable for GPs (Rasmussen & Williams, 2006),
so we resort to the Laplace approximation,

log p(y |X, k) ≈ log p(y |X, θ̂, k) + log p(θ̂)− 1

2
log detΣ−1 +

dθ
2

log 2π (17)

where θ̂ denotes the maximum a posteriori (MAP) estimate of the hyperparameters with dθ being
its dimension. The term Σ−1 = −∇2 log p(θ | D, k)|θ=θ̂ represents the Hessian matrix evaluated
at the MAP estimate. Note that Eq. (17) can be interpreted as rewarding model fit while penalizing
model complexity. In our experiments, we use the BIC (Schwarz, 1978), which was also employed
by Duvenaud et al. (2013) and can be viewed as an approximation of the Laplace approximation.

B.4 MULTI-OBJECTIVE OPTIMIZATION

Setup. In our photonic chip inverse design problem, the solutions need to satisfy multiple, poten-
tially competing objectives simultaneously. Multi-objective optimization aims to find the Pareto
optimal solution, where no objective can be improved without degrading another (Lin et al., 2022).
A simplistic approach to jointly optimize the given objectives {fi(·)}Mi=1 is to consider an aggregate
objective, such as the weighted sum of all individual objectives:

x∗ = argmax
x∈X

∑
i

wifi(x) (18)

where wi is the weight of the i-th objective, considered as a hyperparameter. However, determining
appropriate weights for each objective function is a nontrivial task.

Pareto optimal solution. A more rigorous approach to multi-objective optimization involves intro-
ducing partial order and considering solutions from the Pareto frontier (Yang et al., 2019). In this
context, partial order is defined by comparing all objectives {fi(·)}Mi=1 for the given solutions. We
say a solution x′ surpasses x if every objective evaluated on x′ is greater than or equal to the same
objective evaluated on x (assuming maximization of objectives):

x′ ⪰ x⇔ ∀i, fi(x′) ≥ fi(x) (19)

For a given set of solutions S = {xj}mj=1, the Pareto frontier P (S) is defined as the set of non-
dominated solutions. For every solution x ∈ P (S), there is no other solution in S surpassing x:

P (S) = {x ∈ S : {x′ ∈ S : x′ ⪰ x,x′ ̸= x} = ∅} (20)

Hypervolume. Assuming bounded objectives, two Pareto frontiers can be compared by evaluating
their hypervolume (Couckuyt et al., 2014):

Volume(P (S)) = Volume

 ⋃
x∈P (S)

H(x)

 (21)

where H(x) is the hyperrectangle associated with the objectives evaluated on solution x, and
Volume(·) computes the Euclidean volume of the input set. In our experiments, we use EHVI as
the acquisition function and adopt the implementation outlined in (Daulton et al., 2020) for efficient
computation of EHVI.
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C PROOF OF RESULTS

C.1 PROOF OF THEOREM 1

Key lemmas. In this section, we provide the detailed proof of Theorem 1. We first observe that we
have confidence on all the decisions chosen according to the following lemma:

Lemma 1 (Lemma 5.5 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ), where∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β
1/2
t σt−1(xt), ∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. Fix t ≥ 1 and x ∈ X . Conditioned on yt−1 = [y1, y2, . . . , yt−1]
⊤, x1, . . . ,xt−1 are

deterministic and f(x) ∼ N (µt−1(x), σ
2
t−1(x)). If r ∼ N (0, 1), then

Pr{r > c} = e−c2/2(2π)−1/2

∫
e−(r−c)2/2−c(r−c) ≤ e−c2/2 Pr{r > 0} = 1

2
e−c2/2.

Let r = (f(x) − µt−1(x))/σt−1(x), then Pr{|f(x) − µt−1(x)| > β
1/2
t σt−1(x)} ≤ e−βt/2. By

using e−βt/2 = δ/πt and applying the union bound for t ∈ N, the statement holds.

For the sake of analysis, we consider a set of discretizations Xt ⊂ X , where Xt will be used at
iteration t in the analysis. The following lemma provides a confidence bound for these subsets.

Lemma 2 (Lemma 5.6 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(|Xt|πt/δ),
where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β
1/2
t σt−1(xt), ∀x ∈ Xt,∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. The proof is similar to that of Lemma 1, except now we use Xt at each iteration.

Now, by Assumption 1 and the union bound, we have

Pr

{∣∣∣∣ ∂f∂xj

∣∣∣∣ < L

}
≥ 1− dae−L2/b2 , ∀x ∈ X ,∀j, (22)

which implies that, with probability greater than 1− dae−L2/b2 ,

|f(x)− f(x′)| ≤ L∥x− x′∥1, ∀x ∈ X . (23)

This allows us to obtain confidence on x∗ as follows. Let us choose a discretization Xt of size (τt)
d

such that for all x ∈ Xt,

∥x− [x]t∥1 ≤ rd/τt, (24)

where [x]t is the closest point in Xt to x.

Lemma 3 (Lemma 5.7 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(2πt/βt) +

4d log(dtbr
√

log(2da/δ)), where
∑

t≥1 π
−1
t = 1, πt > 0. Let τt = dt2br

√
log(2da/δ), then

|f(x∗)− µt−1([x
∗]t)| ≤ β

1/2
t σt−1([x

∗]t) +
1

t2
, ∀t ≥ 1,

holds with probability ≥ 1− δ.

Proof. Using Eq. (23), we have,

|f(x)− f(x′)| ≤ b
√

log(2da/δ)∥x− x′∥1, ∀x ∈ X .
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with probability greater than 1− δ/2. It follows that,

|f(x)− f([x]t)| ≤ rdb
√
log(2da/δ)/τt, ∀x ∈ X .

By choosing τt = dt2br
√
log(2da/δ), we have

|f(x)− f([x]t)| ≤
1

t2
,

which implies that |Xt| = (dt2br
√

log(2da/δ))d. Using δ/2 in Lemma 2, we can apply the confi-
dence bound to [x∗]t to obtain the result.

Next, we would like to bound the regret using the following lemma:
Lemma 4 (Lemma 5.8 of (Srinivas et al., 2012)). Pick δ ∈ (0, 1) and set βt = 2 log(4πt/βt) +

4d log(dtbr
√
log(4da/δ)), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

rt ≤ 2β
1/2
t σt−1(xt) +

1

t2
, ∀t ∈ N,

holds with probability ≥ 1− δ.

Proof. We use δ/2 in Lemma 1 and Lemma 2 such that the events hold with probability greater than
1− δ. By using the definition of xt,

µt−1(xt) + β
1/2
t σt−1(xt) ≥ µt−1([x

∗]t) + β
1/2
t σt−1([x

∗]t).

By Lemma 3, we further have µt−1([x
∗]t) + β

1/2
t σt−1([x

∗]t) +
1
t2 ≥ f(x∗), which implies

µt−1(xt) + β
1/2
t σt−1(xt) ≥ f(x∗)− 1

t2
.

Therefore,

rt = f(x∗)− f(xt) ≤ µt−1(xt) + β
1/2
t σt−1(xt) +

1

t2
− f(xt) ≤ 2β

1/2
t σt−1(xt) +

1

t2
.

Proof of Theorem 1. Now, we are ready to complete the proof of Theorem 1. Since βt is non-
decreasing,

4βtσ
2
t−1(xt) ≤ 4βTσ

2
ϵ (σ

−2
ϵ σ2

t−1(xt)) ≤ 4βTσ
2
ϵC2 log(1 + σ−2

ϵ σ2
t−1(xt)),

with C2 = σ2
ϵ / log(1 + σ−2

ϵ ) ≥ 1, since s2 ≤ C2 log(1 + s2) for s ∈ [0, σ−2
ϵ ] and σ−2

ϵ σ2
t−1(xt) ≤

σ−2
ϵ k(xt,xt) ≤ σ−2

ϵ . By Lemma 5.3 of (Srinivas et al., 2012), for a finite set of observed points
A = {x1, . . . ,xT } ⊂ X , the information gain can be expressed as,

I(yA; f) =
1

2

T∑
t=1

log
(
1 + σ−2σ2

t−1(xt)
)
. (25)

Thus, by substituting the above expression and setting C1 = 8σ2
ϵC2, we can obtain

T∑
t=1

4βtσ
2
t−1(xt) ≤ C1βTI(yA; f) ≤ C1βT γT , ∀T ≥ 1, (26)

with probability greater than 1− δ. By Cauchy-Schwarz,
T∑

t=1

2β
1/2
t σt−1(xt) ≤

√
C1TβT γT , ∀T ≥ 1. (27)

Finally, by choosing πt = π2t2/6 in Lemma 4, we have

RT =

T∑
t=1

rt ≤
T∑

t=1

2β
1/2
t σt−1(xt) +

T∑
t=1

1

t2
≤
√

C1TβT γT +
π2

6
, ∀T ≥ 1.

This completes the proof of Theorem 1.
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C.2 PROOF OF THEOREM 3

In this section, we provide the proof of our main result, which is summarized in Theorem 3. From
Theorem 1, we have that with probability at least 1− δ,

RT ≤
√

C1TβT γT +
π2

6
,

where C1 = 8/(log(1 + σ−2
ϵ )) and

βT = 2 log

(
T 22π2

3δ

)
+ 4d log

(
dtbr

√
log

(
4da

δ

))
.

Since βT involves logarithmic terms and constants, we can express it using the Õ notation as βT =
Õ(d). Similarly, C1 is a constant that can be absorbed into the Õ notation. Therefore, the cumulative
regret bound simplifies to

RT ≤ Õ
(√

TdγT

)
.

We now combine this result with the bounds on γT from Theorem 2 for different kernels used in this
work:

1. Linear Kernel: Substituting γT = O(d log T ) into the regret bound:

RT ≤ Õ
(√

Td · d log T
)
= Õ

(
d
√
T log T

)
.

2. Squared Exponential Kernel: Substituting γT = O((log T )d+1) into the regret bound:

RT ≤ Õ
(√

Td(log T )d+1

)
= Õ

(√
T (log T )d+1

)
.

3. Matérn Kernel with ν > 1: Substituting γT = O
(
T

d(d+1)
2ν+d(d+1) log T

)
into the regret

bound:

RT ≤ Õ
(√

Td · T
d(d+1)

2ν+d(d+1) log T

)
= Õ

(
T

1
2+

d(d+1)
4ν+2d(d+1)

√
log T

)
.

In all cases, the cumulative regret RT grows sub-linearly with T , ensuring that the regret per iteration
diminishes as T increases. This completes the proof for Theorem 3.

D IMPLEMENTATION DETAILS

In this section, we outline the implementation details of our method and considered baselines.

D.1 CAKES SETUP

Choice of LLM. We chose the gpt-4o-mini model as it offers an excellent balance of afford-
ability, fast inference, and intelligence for our implementation. We access the model through the
OpenAI API, which provides two key hyperparameters that allow us to control the randomness and
diversity of the generated output: temperature and top p. Concretely, temperature adjusts
the “sharpness” of the probability distribution used to select the next token. Lower values result in
more deterministic outputs, while higher values yield more random results. Conversely, top p (or
nucleus sampling) filters the probability distribution to consider only the most likely tokens that cu-
mulatively reach a specified threshold, typically between 0 and 1. In our experiments, we found that
setting temperature=0.7 and top p=0.95 strikes a good balance between generating relevant
outputs and introducing diversity. For further details, we refer the interested reader to the official
documentation: https://platform.openai.com/docs/overview. In our experiments,
we set the number of crossovers nc = 5, probability of mutation pm = 0.7, and population size
np = 10.

Prompt design. We show the designed system prompt in Figure 4 as well as the sample prompts
for the mutation and crossover steps in Figures 5b and 5a, respectively. Note that in all figures, {}
is used to indicate placeholders.
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System Prompt

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

Figure 4: The designed system prompt for the LLM.

Crossover Prompt

You are given two parent kernels and their
Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower
BIC value. You can either combine the parent
kernels with + or ∗ operator. Your output
should follow the following format:

Kernel: <your proposed kernel here, only use
the kernel abbreviations and operators>
Analysis: <your analysis here, explaining
your reason behind the proposed kernel>

(a) Crossover prompt.

Mutation Prompt

You are given a kernel and its Bayesian
Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower
BIC value. You can only replace one of
the base kernels in the kernel with another
base kernel. Your output should follow the
following format:

Kernel: <your proposed kernel here, only use
the kernel abbreviations and operators>
Analysis: <your analysis here, explaining
your reason behind the proposed kernel>

(b) Mutation prompt.

Figure 5: Sample prompts for proposing the kernels.

D.2 BASELINES

To test our proposed method, we consider four categories of baselines: fixed kernel, adaptive kernel,
deep GP, and ensemble GP.

Fixed. For the fixed kernel baseline, we consider the following widely-used kernels in BO:

1. Squared exponential (SE):

k(x,x′) = exp

(
−1

2
(x− x′)⊤Θ−2(x− x′)

)
, (28)

where Θ is the lengthscale parameter.
2. Periodic (PER):

k(x,x′) = exp

(
−2
∑
i

sin2 (π(xi − x′
i)/p)

λ

)
, (29)

where p is the period length parameter and λ is the lengthscale parameter.
3. Linear (LIN):

k(x,x′) = vx⊤x′, (30)

where v is the variance parameter.
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4. Rational quadratic (RQ):

k(x,x′) =

(
1 +

1

2α
(x− x′)⊤Θ−2(x− x′)

)−α

, (31)

where Θ is the lengthscale parameter and α is the relative weighting parameter.
5. Matérn:

k(x,x′) =
21−ν

Γ(ν)

(√
2νD

)ν
Kν

(√
2νD

)
, (32)

where

D = (x− x′)⊤Θ−2(x− x′) (33)

is the distance between x and x′ scaled by the lengthscale parameter and Kν is the mod-
ified Bessel function. In our experiments, the smoothness parameter ν is set to 1/2, 3/2,
or 5/2, corresponding to Matérn-1/2 (M1), Matérn-3/2 (M3), or Matérn-5/2 (M5) kernels
respectively.

Adaptive. For the adaptive kernel baseline, we adopt the implementation from Roman et al. (2019)
and apply the following selection criteria:

1. Random: This criterion selects a kernel randomly from the set of available kernels.
2. Utility: Based on the proposed query points from each kernel, this criterion selects the

kernel with the highest utility (acquisition) value:

k∗ = argmax
k∈K

α(xt,k;D, k). (34)

3. BIC: This criterion selects the kernel with the lowest BIC value:

k∗ = argmin
k∈K

BIC(k;D). (35)

Deep GP. For the deep GP baseline, we use the DeepGP implementation from GPyTorch, where
training and inference are conducted using the doubly stochastic variational inference method (Sal-
imbeni & Deisenroth, 2017).

Ensemble GP. For the ensemble GP baseline, we follow the implementation suggested by Lu et al.
(2023), using the six base kernels used in CAKES to form the kernel dictionary.

E EXPERIMENTAL DETAILS

In this section, we provide additional details on the benchmarks employed in our experiments.

E.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Test functions. We provide additional details on test functions, including the function domain and
dimensionality, in Table 2. The analytic expression as well as the global optimum of these functions
can be found at https://www.sfu.ca/˜ssurjano/optimization.html. We visualize
the optimization landscapes of the two-dimensional test functions in Figure 6. From the figure, one
can see the challenging nature of these functions, which is characterized by many local minima,
multi-modality, and steep ridges.

E.2 HYPERPARAMETER TUNING TASK

Datasets. We include 12 OpenML datasets available in the HPOBench package (Eggensperger et al.,
2021). The details of the selected datasets are given in Table 3.

Search space. We follow the search space designated in HPOBench, where we discretize the
search space to facilitate efficient tabular lookup operations for various configurations (Eggensperger
et al., 2013). The search space for each ML model is summarized below, i.e., {type: [space,
lower bound, upper bound]}:
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(a) Ackley-2 (b) Beale (c) Branin (d) Dropwave

(e) Eggholder (f) Griewank-2 (g) Levy-2 (h) Rosenbrock

(i) Rastrigin-2 (j) Six-Hump Camel

Figure 6: Visualization of the optimization landscapes of two-dimensional test functions.

Table 2: Details of the test functions used in the experiments.

Function Domain d

Ackley-d [−5, 5]d 2, 5
Beale [−1, 1]2 2
Branin [−5, 10]2 2
Dropwave [−5.12, 5.12]2 2
Eggholder [−512, 512]2 2
Griewank-d [−600, 600]d 2, 5
Hartmann [0, 1]3 3
Levy [−10, 10]d 2, 3
Rastringin-d [−5.12, 5.12]d 2, 4
Rosenbrock [−5, 10]2 2
Six-Hump Camel [−3, 3]× [−2, 2] 2

• Logistic Regression (d = 2): {alpha: [log, 0.001, 1.0], eta0: [log, 0.001, 1.0]}
• Support Vector Machine (d = 2): {C: [log, 0.01, 10.0], gamma: [log, 0.001, 1.0]}
• Random Forest (d = 4): {max depth: [log, 1, 50], max features: [linear, 0.0, 1.0],
min samples leaf: [linear, 1, 2], min samples split: [log, 2, 128]}

• XGBoost (d = 4): {colsample bytree: [linear, 0.1, 1.0], eta: [log, 0.001, 1.0],
max depth: [log, 1, 50], reg lambda: [log, 0.1, 10.0]}

• Multi-Layer Perceptron (d = 5): {alpha: [log, 0.001, 1.0], batch size: [log, 16,
128], depth: [linear, 1, 3], learning rate init: [log, 0.001, 1.0]}, width: [log,
16, 128]}
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Table 3: Details of the OpenML datasets used in the experiments. More information can be found
at https://www.openml.org.

Dataset Task ID Number of Instances Number of Features

credit g 31 1000 21
vehicle 53 846 19
kc1 2109 2109 22
phoneme 9952 5404 6
blood transfusion 10101 748 5
australian 146818 690 15
car 146821 1728 7
segment 146822 2310 20
heart h 50 294 14
tic tac toe 145804 958 10
kr vs kp 3 3196 37
qsar 9957 1055 42

Figure 7: Illustration of a photonic chip and its design parameters. The inverse design problem
focuses on optimizing these parameters to satisfy certain performance indicators.

E.3 PHOTONIC CHIP DESIGN

Objective. The design parameters and indicators for optimizing the photonic chip are detailed in
Figure 7. We established target values based on our experiments and a review of the literature to
identify optimal standards for high-quality chip lasing (Li et al., 2023). For instance, a wavelength
of 1310 nm is crucial for telecommunications and satellite applications, while high output power
is essential for fields such as autonomous driving and medicine. Additionally, a small divergence
angle is vital for ensuring high beam quality and effective long-distance light propagation. Based on
these performance indicators, we can define the objectives as follows,

f1 = 1− Q∗ −Q

Q∗ , (36)

f2 = 1− |λ
∗ − λ|
λ∗ , (37)

f3 = 1− A∗ −A

A∗ , (38)

f4 = 1− P ∗ − P

P ∗ , (39)

f5 = 1 +
ω∗ − ω

ω∗ . (40)

Q-factor (f1) is related to the loss and threshold of the laser, wavelength (f2) is the operation wave-
length of the laser, lasing area (f3) is the area of the laser beam at the laser’s top surface, power
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Figure 8: Comparison of the fitness distributions between an initial population of kernels before and
after applying crossover and mutation operations.

(f4) is the lasing power of the laser in watts, and divergence angle (f5) is the angle between outer
boundary and centerline of the laser beam.

F EMPIRICAL ANALYSIS

In this section, we provide additional empirical analysis on our proposed method in Section 3.

F.1 CROSSOVER AND MUTATION WITH LLMS

To demonstrate the benefits of using LLMs for kernel generation, we conduct an experiment to
analyze the fitness distributions of an initial population of kernels before and after applying crossover
and mutation operations. Specifically, we consider the hyper-parameter tuning tasks in Section 6.2
and evaluate the fitness values of the initial population. We then use the LLM to perform crossover
and mutation on this population, and re-evaluate the fitness values. Figure 8 shows the comparison
of fitness distributions across these three different stages. From the figure, we can observe that
the initial population exhibits a wide distribution, with a noticeable peak at lower fitness values.
After performing crossover, the distribution shifts slightly toward higher fitness values, indicating
that the LLM can effectively combine the kernels and enhance the overall fitness of the population.
Furthermore, we can see that applying mutation shifts the distribution toward even higher fitness
values, suggesting that further refining the kernels can yield higher fitness values. Overall, these
findings demonstrate that LLM can act as a good crossover and mutation operators.

F.2 CASE STUDY

We conduct a case study to analyze the output from the LLM and test whether or not the LLM can
give helpful responses. Specifically, we show sample responses from the LLM for the crossover
and mutation steps, which are depicted in Figure 9. In Figure 9a, given the parent kernels LIN and
SE along with their BIC values, the LLM suggests combining them using the addition operator (+)
to minimize the BIC. The analysis explains the rationale behind this combination: the LIN kernel
captures linear trends, while the SE kernel models smoothness. By combining these properties, the
LIN + SE kernel effectively represents both linearity and smoothness in the data. In Figure 9b,
given the LIN + SE kernel and its BIC, the LLM recommends replacing the SE kernel with the RQ
kernel to achieve a lower BIC value. The analysis indicates that while the SE kernel assumes fixed
smoothness, the RQ kernel introduces varying smoothness, allowing the model to adapt better to
data with fluctuating noise levels. These examples illustrate that the LLM is familiar with kernel
properties and their applications. Its responses demonstrate a strong understanding of the relation-
ships between different kernels and their capacity to address specific data characteristics, enabling
it to make informed suggestions for the kernel selection.
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Crossover Response

Prompt:
You are given two parent kernels and their Bayesian Information Criterion (BIC) values: LIN (BIC:
93.42),
SE (BIC: 118.59).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Response:
Kernel: LIN + SE
Analysis: The LIN kernel captures linear trends in the data, which may be present given the varying
function values across different inputs. The SE kernel, on the other hand, is effective in modeling
smooth variations in the data, which could account for the fluctuations observed in the function values
despite the overall linear trend. By combining these two kernels with the addition operator (+), we
can leverage the linear trend from the LIN kernel while also allowing for smooth deviations from this
trend through the SE kernel.

(a) Sample response for the crossover step.

Mutation Response

Prompt:
You are given a kernel and its Bayesian Information Criterion (BIC) value:
LIN + SE (BIC: 79.83).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Response:
Kernel: LIN + RQ
Analysis: The LIN + SE kernel captures a linear trend with smooth variations. However, the SE
kernel assumes a constant level of smoothness, which may not be appropriate for all data patterns. By
replacing the SE kernel with the RQ kernel, we can introduce varying smoothness, allowing the model
to adapt to different levels of noise in the data.

(b) Sample response for the mutation step.

Figure 9: Sample responses from the LLM for the kernel generation process.

F.3 ABLATION STUDY

Our prompts are designed based on the following components:

• Domain information: This include the role assignment as well as description of kernel
functions and their properties.

• Problem context: This includes the optimization history, which consists of the observa-
tions as well as the fitness values.

• Task instruction: This includes the guidelines on how to generate the kernels based on the
kernel grammar.
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Figure 10: Ablation of prompt designs on HPOBench averaged over 20 different random seeds.

To evaluate the influence of each component on the performance, we conduct an ablation study with
the following configurations:

• CAKES: This is the vanilla CAKES setup employed in our experiments, incorporating all
three components.

• CAKES-NoInfo: This variant assesses the impact of domain-specific information on per-
formance. Specifically, it omits the role assignment and kernel descriptions while keeping
the other components (see Figure 15).

• CAKES-NoContext: This variant evaluates the importance of problem context by remov-
ing the optimization history (i.e., the observations and fitness values), while keeping the
other components (see Figure 16).

• CAKES-NoInstruct: This variant excludes task instructions and omits the explicit kernel
generation guidelines, while keeping the other components (see Figure 17).

We evaluate the performance of our ablation setups on HPOBench, as outlined in Section 6.2. The
results, shown in Figure 10, reveal that the standard CAKES setup outperforms the other variants,
highlighting the significance of each prompt component in enhancing overall performance. No-
tably, the CAKES-NoInfo variant demonstrated similar optimization performance to CAKES de-
spite lacking domain-specific information. This suggests that the LLM may already possess valuable
prior knowledge, even without role assignments and kernel descriptions in the prompt. In contrast,
CAKES-NoContext exhibited worse performance than CAKES, indicating that optimization history
is crucial and that the LLM effectively leverages this information. Furthermore, the results show that
CAKES-NoInstruct performed poorly compared to the other variants. To investigate this, we exam-
ined the percentage of valid kernels, defined as the proportion of kernels that satisfy the necessary
properties. We found that CAKES-NoInstruct generated valid kernels only 68.72%(±0.45%) of the
time, while the other variants consistently produced valid kernels. This limitation can be attributed
to the absence of generation guidelines from the kernel grammar. These findings underscore the
importance of kernel grammar in the kernel generation process.

F.4 CHOICE OF LLM

In this section, we analyze the impact of the LLM choice on the performance of our
method. Specifically, we consider the following models: Meta’s llama-3.1-8b, Google’s
gemini-1.5-flash, Anthrophic’s claude-3.5-haiku, and OpenAI’s gpt-4o-mini. We
evaluate these models on the benchmark functions considered in Section 6.1. Based on the results
presented in Table 4, we can observe that gpt-4o-mini outperforms the other models in 8 of
15 test functions. Claude-3.5-haiku also demonstrates competitive performance, securing the best
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Table 4: Average normalized regret (↓) over 20 random seeds for different LLMs. The best value is
highlighted in bold and the second best value is underlined.

Function llama-3.1-8b gemini-1.5-flash claude-3.5-haiku gpt-4o-mini

Ackley-2 0.1019 0.0916 0.0812 0.0783
Ackley-5 0.2106 0.1907 0.1621 0.1732
Beale 0.2621 0.2595 0.2640 0.2565
Branin 0.0131 0.0199 0.0091 0.0070
Dropwave 0.4941 0.4640 0.4878 0.4690
Eggholder 0.1323 0.1309 0.1156 0.1241
Griewank-2 0.0337 0.0360 0.0289 0.0267
Griewank-5 0.0301 0.0247 0.0158 0.0185
Hartmann 0.0012 0.0005 0.0001 0.0001
Levy-2 0.0459 0.0426 0.0368 0.0353
Levy-3 0.0710 0.0667 0.0480 0.0505
Rastringin-2 0.3595 0.3611 0.3322 0.3341
Rastringin-4 0.3301 0.3147 0.3253 0.3128
Rosenbrock 0.0623 0.0501 0.0507 0.0483
Six-Hump Camel 0.1103 0.1002 0.1073 0.1015

results in 6 out of 15 test functions. Moreover, as of November 2024, gpt-4o-mini is priced
at $0.15 per million input tokens and $0.60 per million output tokens, making it significantly more
affordable than claude-3.5-haiku, which costs $1 per million input tokens and $5 per mil-
lion output tokens. In terms of speed, gpt-4o-mini delivers an output speed of approximately
104.5 tokens per second, outperforming claude-3.5-haiku’s 64.3 tokens per second. Consid-
ering the above metrics, we choose gpt-4o-mini as the default model in CAKES as it offers an
excellent balance of cost, speed, and intelligence for our implementation.

G ADDITIONAL OPTIMIZATION RESULTS

In this section, we show additional experimental results on the optimization tasks considered in
Section 6.

G.1 OPTIMIZATION OF BENCHMARK FUNCTIONS

Additional comparisons. We provide more comprehensive comparisons between our proposed
method and fixed kernel approaches in Table 5. Specifically, we include three additional kernels:
rational quadratic (RQ), Matérn-1/2 (M1), and Matérn-3/2 (M3). Overall, CAKES outperforms all
fixed kernel approaches in terms of the mean and median regret. Our results indicate that fixed
kernels do not perform uniformly well across all tasks, which is consistent with our findings in
Section 6.1.

Additional baselines. We compare our proposed method against the following baselines:

• Bag-of-models (BOM): This is a method proposed by Kandasamy et al. (2015) which
maintains a collection of kernels, each capturing different structures, that best explains the
observed data.

• Markov chain Monte Carlo (MCMC): This is a method proposed by Gardner et al.
(2017) which uses a Metropolis-Hastings algorithm to randomly sample kernels from the
grammar based on a proposal distribution.

• Automated BO (ABO)1: This is a method proposed by Malkomes & Garnett (2018), which
uses BO to dynamically select kernels that best explains the observed data.

For the above three baselines, we follow the setup suggested by the authors. We limited the number
of models to 50 and use the L-BFGS algorithm to optimize each model’s hyperparameters. As in

1We use the code provided by the authors in https://github.com/gustavomalkomes/abo.
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Table 5: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function Fixed CAKES
SE RQ M1 M3 M5

Ackley-2 0.1773 0.1605 0.1309 0.0878 0.1220 0.0783
Ackley-5 0.3185 0.2732 0.4949 0.2197 0.2369 0.1732
Beale 0.3554 0.2881 0.2455 0.2945 0.3522 0.2565
Branin 0.0183 0.0055 0.0323 0.0455 0.0117 0.0070
Dropwave 0.5110 0.5185 0.6669 0.5848 0.5411 0.4690
Eggholder 0.4941 0.5111 0.4195 0.4297 0.3545 0.1241
Griewank-2 0.1196 0.1365 0.0687 0.1362 0.1282 0.0267
Griewank-5 0.0204 0.0210 0.0419 0.0200 0.0223 0.0185
Hartmann 0.0007 0.0003 0.0915 0.0131 0.0019 0.0001
Levy-2 0.1562 0.0758 0.1190 0.0595 0.0418 0.0353
Levy-3 0.1141 0.1630 0.0873 0.1226 0.1422 0.0505
Rastringin-2 0.4325 0.4417 0.3573 0.4624 0.4251 0.3341
Rastringin-4 0.5765 0.5752 0.4009 0.4290 0.5461 0.3128
Rosenbrock 0.1030 0.1054 0.3375 0.2460 0.0898 0.0483
Six-Hump Camel 0.2840 0.3105 0.4410 0.1431 0.1507 0.1015
Mean regret 0.2454 0.2391 0.2623 0.2196 0.2111 0.1358
Median regret 0.1773 0.1630 0.2455 0.1431 0.1422 0.0783

Table 6: Average normalized regret (↓) over 20 random seeds for different test functions and meth-
ods. The best value is highlighted in bold and the second best value is underlined.

Function BOM MCMC ABO CAKES

Ackley-2 0.1016 0.1012 0.1020 0.0783
Ackley-5 0.5907 0.1312 0.1910 0.1732
Beale 0.3559 0.4040 0.3118 0.2565
Branin 0.0499 0.0301 0.0101 0.0070
Dropwave 0.5040 0.5788 0.5529 0.4690
Eggholder 0.4709 0.4536 0.4210 0.1241
Griewank-2 0.0460 0.0589 0.0357 0.0267
Griewank-5 0.2437 0.0258 0.0320 0.0185
Hartmann 0.0299 0.0001 0.0001 0.0001
Levy-2 0.0626 0.0668 0.0519 0.0353
Levy-3 0.0867 0.0580 0.0290 0.0505
Rastringin-2 0.3618 0.3722 0.3420 0.3341
Rastringin-4 0.3177 0.3285 0.3179 0.3128
Rosenbrock 0.0901 0.0907 0.0901 0.0483
Six-Hump Camel 0.1102 0.1071 0.1002 0.1015

Mean regret 0.2281 0.1871 0.1725 0.1358
Median regret 0.1102 0.1012 0.1002 0.0783

Section 6.1, we set T = 10 × d and repeat each experiment using 20 different random seeds. The
results in 6 shows that CAKES is superior compared to all the baselines in terms of the mean and
median regret. Notably, CAKES ranked first in 12 out of 15 instances and ranked a top-two ranking
in all instances.

Additional test functions. To further evaluate our method in higher-dimensional settings, we con-
ducted additional experiments using the Ackley and Levy functions across various input dimensions
d. Specifically, we tested with d ∈ {10, 20, 30}. As illustrated in Figure 6, both of these functions
are highly non-convex and possess numerous local minima, making them particularly challenging
to optimize. We set T = 10 × d and repeat each experiment using 20 different random seeds. The
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Table 7: Average normalized regret (↓) over 20 random seeds for Ackley and Levy functions with
varying dimensions. The best value is highlighted in bold and the second best value is underlined.

Function Fixed Adaptive DGP EGP CAKES
SE M5 Random Utility BIC

Ackley-2 0.1773 0.1220 0.1358 0.1062 0.1863 0.2510 0.1878 0.0783
Ackley-5 0.3185 0.2369 0.1722 0.2278 0.3590 0.3110 0.2285 0.1732
Ackley-10 0.3645 0.3225 0.2725 0.4122 0.3157 0.4557 0.3108 0.2356
Ackley-20 0.4523 0.4152 0.5103 0.5509 0.5021 0.5043 0.4237 0.3281
Ackley-30 0.5331 0.5114 0.6460 0.5966 0.5664 0.6056 0.6210 0.4596
Levy-2 0.1562 0.0418 0.0835 0.0255 0.1145 0.1965 0.0765 0.0353
Levy-3 0.1141 0.1422 0.1495 0.0880 0.1125 0.2265 0.0805 0.0505
Levy-10 0.3215 0.2514 0.2310 0.1545 0.1940 0.2845 0.1069 0.0941
Levy-20 0.3657 0.4061 0.3815 0.1905 0.2762 0.3450 0.1703 0.1208
Levy-30 0.4205 0.4598 0.4515 0.2405 0.3147 0.4534 0.2040 0.1483

Table 8: Average rank (↓) ± standard deviation achieved by different methods over 5 random seeds.

Model LR SVM RF XGB MLP

Fixed SE 3.33 ± 2.09 4.58 ± 2.02 4.00 ± 2.35 3.42 ± 1.98 3.42 ± 1.93
M5 4.25 ± 1.30 4.50 ± 2.63 4.08 ± 1.93 4.92 ± 1.98 5.58 ± 1.75

Adaptive
Random 5.17 ± 1.40 4.42 ± 1.71 5.08 ± 2.36 5.83 ± 1.57 6.08 ± 1.66
Utility 6.17 ± 1.77 4.08 ± 2.14 3.92 ± 1.85 5.00 ± 2.38 4.42 ± 2.50
BIC 7.33 ± 1.18 5.67 ± 2.01 5.25 ± 2.05 3.83 ± 2.03 4.83 ± 2.70

DGP 3.33 ± 2.36 5.92 ± 2.06 5.08 ± 2.63 5.17 ± 2.51 4.08 ± 2.18
EGP 4.17 ± 1.40 4.33 ± 2.32 5.17 ± 2.73 5.00 ± 2.12 4.92 ± 1.80

CAKES 2.25 ± 1.64 2.50 ± 1.50 3.42 ± 1.26 2.83 ± 1.95 2.67 ± 1.49

results, presented in Table 7, demonstrate that CAKES consistently outperforms the other methods,
even as d increases. This suggests that our method can scale effectively in more complex search
spaces. In addition, the results reveal that fixed kernel methods (SE and M5) perform poorly com-
pared to the adaptive and multiple kernel approaches.

G.2 HYPERPARAMETER TUNING TASK

Individual task results. We present the individual task results from HPOBench for CAKES and
other methods in Figures 18-27. Our findings reveal that there are significant variations in perfor-
mance for fixed and adaptive kernel baselines, which align with the results presented in Section 6.2.
Table 8 further highlights the superior performance of CAKES, which achieves the best average
rank at the end of each tuning task.

Tuning accuracy. Figure 11 depicts the average accuracy in tuning different ML models over five
random seeds. We further show the accuracy achieved by different methods on individual tasks in
Figures 23-27 Overall, CAKES consistently achieves the highest accuracy in tuning all machine
learning models compared to the other methods.

G.3 PHOTONIC CHIP DESIGN

Individual objective results. We plot the individual performance on each objective in Figure 12.
The results show that the CAKES algorithm outperforms the other baseline approaches across multi-
ple performance indicators. Particularly for objectives f3 and f4, CAKES achieves higher objective
values more quickly compared to the baselines. This is particularly desirable as the third and fourth
objectives are much more important than the other ones, especially from an practical engineering
(e.g., autonomous driving or military laser weapon) point of view. This is because we want the
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Figure 11: Average accuracy (↑) over 5 random seeds for different ML models on all datasets.
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Figure 12: Comparison of individual objective results for photonic chip design across 250 trials.

photonic chip to have large lasing area (f3) to produce a large light field coverage and have higher
power (f4) to transmit signal/beam faster and farther. Besides, CAKES also maintains a competitive
performance for the other objectives throughout the trials. These results demonstrate that CAKES
is not only effective in the early stages of the optimization process, but also capable of achieving
long-term performance improvements.

Additional baselines. To further validate our results, we compare the optimized performance in-
dicators obtained by our method with some additional baselines in the literature. In Table 9, we
compare the five objectives (f1 through f5) against three state-of-the-art photonic chips of the same
category from existing literature. Notably, our work is the only one to report power (f4), which are
crucial for LiDAR and military applications. In addition, we achieved the highest Q-factor, indicat-
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Table 9: Comparison of optimized performance indicators obtained by our method and various
baselines from the literature. NA denotes unreported values.

Method Q-factor Wavelength Lasing area Power Divergence

Ohnishi et al. (2004) NA 959.4 2.8× 10−9 NA 1.1
Hsu et al. (2017) 5.0× 103 1299 1.8× 10−8 NA 2.0
Chen et al. (2021) 2.9× 103 948 6.2× 10−9 NA 0.75
Ours 2.5× 107 1309.3 1.3× 10−13 0.99 1.2
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Figure 13: Reward (↑) and regret (↓) for the robot pushing problem.

ing high efficiency and a low threshold. Our lasing area is smaller than the literature benchmarks
due to our chip size of 4 square microns, which is several orders of magnitude smaller. This minia-
turization is essential for integration into circuits and for enabling high-performance AI computing
chips. It is worth mentioning that we could easily increase the lasing area by scaling up the chip
size. Overall, these results demonstrate that the chip designed by CAKES remains competitive or
even superior to these additional baselines.

G.4 ROBOT PUSHING

The robot pushing problem was initially considered by Wang et al. (2018). The objective is to de-
velop a controller for two robotic hands tasked with pushing two objects to specified target positions.
The robot controller is defined by d = 14 parameters that determine the position and orientation of
the hands, the pushing speed, the direction of movement, and the duration of the push. The reward
function is given by:

f(x) = −
2∑

i=1

|xgi − xsi| − |xgi − xfi| (41)

where xsi represents the initial positions of the objects, xfi denotes their final positions, and xgi

indicates the goal . The objective is to minimize the total distance from the initial and final positions
of the objects to their respective goal positions, thus maximizing the reward. We run each method
for a total of T = 100 iterations using 10 different random seeds. To evaluate the performance
of each method, we conduct a series of simulations, running each method for a total of T = 100
iterations, using 10 different initial positions. The results, illustrated in Figure 13, show that the
CAKES method outperformed the other approaches in terms of achieving the highest reward and
minimizing the regret.
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Figure 14: Reward (↑) and regret (↓) for the lunar lander problem.

G.5 LUNAR LANDER

We consider tuning a controller for a lunar lander implemented in OpenAI Gym2. The state space
of the lunar lander consists of its position, angle, time derivatives, and indicators of whether either
leg is in contact with the ground. This results in an 8-dimensional state vector, which is passed
to a handcrafted parameterized controller that determines the appropriate action to take. There
are four possible actions for each frame: firing the main engine, fire the left orientation engine,
fire the right orientation engine, or doing nothing. The handcrafted control policy is defined by
d = 12 parameters, which parameterize linear score functions based on the state vector and establish
thresholds that dictate which action to prioritize. The reward system is defined as follows:

• Successful landing yields +100 points, while crashing incurs a penalty of −100 points.
• Each leg in contact with the ground yields +10 points.
• Firing the main engine incurs a penalty of −0.3 points per frame, and firing side engines

incurs a penalty of −0.03 points per frame.

The benchmark for winning the game is 200 points, so we use it as the target objective. We run
the simulation for T = 250 iterations and average the results over 50 randomly generated terrains,
initial positions, and velocities. The results, illustrated in Figure 13, demonstrate that the controller
optimized by CAKES significantly outperforms other methods, achieving both the highest rewards
and the lowest regret. Specifically, CAKES consistently reached or exceeded the target objective of
200 points across various terrains, while the other methods struggled to maintain high scores and
often incurred greater penalties due to crashes or inefficient landings. In our simulations, we also
found that CAKES not only optimized the landing strategies but also minimized unnecessary engine
usage, resulting in lower penalties over time.

H LIMITATIONS AND FUTURE WORK

Computational cost. While CAKES can be applied entirely in-context and does not require any
fine-tuning, using LLMs for inference may result in a larger computational footprint compared to
traditional BO methods. Despite this, our findings indicate that CAKES trades this off with improved
sample efficiency, which is a particularly desirable property for black-box optimization tasks. This
suggests the potential for integrating CAKES with more computationally efficient approaches, such
as deploying it in the earlier stage of the optimization process.

Choice of LLM. We have demonstrated the potential of integrating LLMs to enhance kernel design
in BO using the gpt-4o-mini model. We chose gpt-4o-mini as it offers an excellent balance

2https://www.gymlibrary.dev/environments/box2d/lunar_lander/
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of affordability, fast inference, and intelligence for our implementation. While we acknowledge
that the choice of the LLM may influence the results, the overall methodology and key insights
presented in this work are generally applicable, and extend beyond the specifics of any particular
LLM. A promising direction for future research would be to benchmark various LLMs to better
understand their strengths and limitations across different BO problem settings.

Generalized kernel grammar. While we focus on addition and multiplication as initial proof-
of-concept operators, these operators are in fact good enough to form a rich and expressive space
of kernels. For example, by only using these operations, we can construct polynomial kernels to
capture non-linear patterns as well as multi-dimensional kernels to model interactions among input
features (Duvenaud et al., 2013). However, we would like that to note that the kernel grammar
can be extended using other operators that preserve the closure properties of kernel functions, such
as convolution, composition, and affine transformations (Smola & Schölkopf, 1998). We aim to
explore these possibilities further in future work.
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CAKES-NoInfo

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 15: The complete prompt for CAKES-NoInfo. Strikethrough indicate the parts that are
removed.
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CAKES-NoContext

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 16: The complete prompt for CAKES-NoContext. Strikethrough indicate the parts that are
removed.
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CAKES-NoInstruct

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}

Please analyze these observations to identify patterns in the data that can be captured by a kernel
function. You can use squared exponential (SE) kernel to capture smoothness, periodic (PER) kernel
to capture periodicity, linear (LIN) kernel to capture linear trends, and rational quadratic (RQ) kernel
to capture varying data patterns. You can also combine these kernels using the + and ∗ operators to
capture more complex patterns. For example, LIN + PER can capture a linear trend with periodic
fluctuations and LIN ∗ PER can capture a periodic pattern with linearly increasing amplitude.

You are given two parent kernels and their Bayesian Information Criterion (BIC) values:
{parent kernel1} (BIC: {bic1}),
{parent kernel2} (BIC: {bic2}).

Please recommend a kernel that has a lower BIC value. You can either combine the parent kernels
with + or ∗ operator. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

You are given a kernel and its Bayesian Information Criterion (BIC) value:
{kernel} (BIC: {bic}).

Please recommend a kernel that has a lower BIC value. You can only replace one of the base kernels
in the kernel with another base kernel. Your output should follow the following format:

Kernel: <your proposed kernel here, only use the kernel abbreviations and operators>
Analysis: <your analysis here, explaining your reason behind the proposed kernel>

Figure 17: The complete prompt for CAKES-NoInstruct. Strikethrough indicate the parts that are
removed.
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Figure 18: Average regret (↓) over 5 random seeds for the LR model tuned with different methods
on individual tasks.
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Figure 19: Average regret (↓) over 5 random seeds for the SVM model tuned with different methods
on individual tasks.
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Figure 20: Average regret (↓) over 5 random seeds for the RF model tuned with different methods
on individual tasks.
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Figure 21: Average regret (↓) over 5 random seeds for the XGB model tuned with different methods
on individual tasks.
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Figure 22: Average regret (↓) over 5 random seeds for the MLP model tuned with different methods
on individual tasks.
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Figure 23: Average accuracy (↑) over 5 random seeds for the LR model tuned with different methods
on individual tasks.
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Figure 24: Average accuracy (↑) over 5 random seeds for the SVM model tuned with different
methods on individual tasks.
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Figure 25: Average accuracy (↑) over 5 random seeds for the RF model tuned with different methods
on individual tasks.
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Figure 26: Average accuracy (↑) over 5 random seeds for the XGB model tuned with different
methods on individual tasks.
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Figure 27: Average accuracy (↑) over 5 random seeds for the MLP model tuned with different
methods on individual tasks.
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