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ABSTRACT

Conveying complex objectives to reinforcement learning (RL) agents often re-
quires meticulous reward engineering. Preference-based RL offers a promising
alternative by learning reward functions from human feedback, but its scalability
is hindered by the large amount of feedback required. Inspired by recent ad-
vances in Video Foundation Models (ViFMs), we present Video-based Optimal
Transport Preference (VOTP), a semi-supervised preference learning framework
that can learn effective reward functions from only a handful of preference labels.
By leveraging optimal transport in the representation space of ViFMs for pseudo-
labeling, VOTP can utilize large amounts of unlabeled data for reward learning,
substantially reducing the need for human supervision. Extensive experiments
across locomotion and manipulation tasks show that VOTP outperforms existing
PbRL methods under limited feedback. We further validate VOTP on real robotic
tasks, demonstrating its ability to learn useful rewards with minimal human input.

1 INTRODUCTION

Reinforcement learning (RL) has been successful in solving various decision-making tasks when a
suitable reward function is available (Mnih et al., 2015; Silver et al., 2017; Haarnoja et al., 2018;
Chen et al., 2022b). Yet in many real-world scenarios, reward design remains challenging. Con-
structing dense and informative rewards often requires extensive instrumentation, such as motion
capture systems (Gupta et al., 2016), proprioceptive sensors (Zhu et al., 2019), or tactile sensors
(Koenig et al., 2022). Even with such resources, reward misspecification can still occur, in which
RL agents discover and exploit unintended shortcuts in the reward function (Skalse et al., 2022). In
these cases, the reward signal may be maximized, but the resulting behaviors are often undesired or
even harmful (Clark & Amodei, 2016; Popov et al., 2017).

Instead of hand-engineering reward functions, many works learn them directly from human data,
such as expert demonstrations (Abbeel & Ng, 2004), natural language (Fu et al., 2019), and human
feedback (Yuan et al., 2024). Recently, preference-based RL (PbRL) has gained considerable inter-
est, as comparative feedback is easy for humans to provide yet informative enough to guide agents
(Kaufmann et al., 2024; Casper et al., 2023). By querying human preferences over pairs of behav-
ior clips, robot agents trained with PbRL have demonstrated the ability to perform novel behaviors
(Christiano et al., 2017) and avoid reward exploitation (Lee et al., 2021a). With these promising
results, PbRL has gained popularity in both online (Lee et al., 2021b; Cheng et al., 2024) and offline
(Shin et al., 2023; Choi et al., 2024) settings. The PbRL framework often consists of two stages:
reward learning from preferences, followed by policy optimization with the learned reward.

While PbRL methods can align agents with human intent, effective reward functions requires ad-
equate coverage of both state and action spaces to achieve strong downstream performance (Ibarz
et al., 2018; Hejna & Sadigh, 2023). Consequently, reward learning in PbRL is costly, often re-
quiring thousands of human queries (Christiano et al., 2017; Shin et al., 2023; Yuan et al., 2024).
To mitigate this challenge, prior work has explored several approaches, including semi-supervised
learning (Park et al., 2022; Marta et al., 2024), meta-learning (Hejna III & Sadigh, 2023), active
learning (Wang et al., 2022a), and preference ranking (Hwang et al., 2023; Choi et al., 2024). Yet
a fundamental aspect remains underexplored—human preferences are shaped by the visual percep-
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tion of agent behaviors, and leveraging these perceptual distinctions offers a promising direction for
improving feedback efficiency. Our key insight is that the expressive and structured representation
space of Video Foundation Models (ViFMs)—pre-trained on large-scale video corpora—can be har-
nessed to infer preferences for new behaviors by comparing them with known preferred examples.

To that end, we introduce Video-based Optimal Transport Preference labeling (VOTP), an algorithm
that uses optimal transport over the ViFM representation space to automatically assign preference
labels to unlabeled segment pairs, given only a small number of labeled preference queries (e.g.,
10 comparisons). Notably, unlabeled segment pairs can be obtained at no additional cost in PbRL
settings, e.g., from offline datasets. These pseudo-labeled segment pairs, together with the labeled
ones, are then used to train the reward function. Specifically, VOTP uses optimal transport to find
optimal alignments between labeled and unlabeled pairs in the ViFM latent space. The pseudo-label
for an unlabeled pair is then inferred by aggregating preferences from all labeled pairs, weighted by
their relative alignments computed from the optimal alignments. We conduct extensive experiments
across three simulated domains—D4RL Gym locomotion (Fu et al., 2020), MetaWorld (Yu et al.,
2020), and Robomimic (Mandlekar et al., 2021)—as well as two real-world robotic tasks. The results
demonstrate that VOTP can learn effective policies from limited preference labels, substantially
increasing feedback efficiency in PbRL. We also perform extensive analyses and ablations to better
understand the sources of VOTP’s performance gains.

2 RELATED WORK

Preference-based RL (PbRL). PbRL enables agents to align with human intent through pair-
wise comparisons of behaviors, removing the need for manual reward engineering (Christiano et al.,
2017). However, its scalability is constrained by the large amount of costly and labor-intensive
human feedback it requires. To improve feedback efficiency, prior work has explored several di-
rections, such as informative query selection (Bıyık et al., 2020; Wang et al., 2022a; Mu et al.,
2025), pre-training of RL agents (Ibarz et al., 2018; Lee et al., 2021a), exploration guided by reward
uncertainty (Liang et al., 2022), and preference rankings (Hwang et al., 2023; Choi et al., 2024).
Other methods leverage pre-collected (sub-optimal) data to pre-train reward functions (Hejna III &
Sadigh, 2023; Muslimani & Taylor, 2025). In contrast, we utilize unlabeled segment pairs from
offline datasets for reward learning. Unlike (Park et al., 2022), which depends on learned reward
models to perform pseudo-labeling, we employ optimal transport within the semantically meaning-
ful latent space of Video Foundation Models (ViFMs) to infer pseudo-labels. This enables VOTP to
learn effective reward functions from only a handful of preference feedbacks.

Vision Foundation Models in Reward Learning. With the rapid progress of foundation models,
recent studies have explored their potential in constructing reward functions. One line of work
leverages pre-trained vision-language models (VLMs) to directly reward RL agents by measuring
alignments between trajectories and task descriptions (Cui et al., 2022; Rocamonde et al., 2024;
Sontakke et al., 2024). However, these reward signals are often noisy and inconsistent (Wang et al.,
2024). Another line of research utilizes the reasoning ability of VLMs to provide feedback (Wang
et al., 2024; Luu et al., 2025a; Venkataraman et al., 2025; Luu et al., 2025b). Yet such approaches
rely on carefully crafted prompt templates to be effective. In this work, we instead leverage ViFMs
to generate pseudo-preference labels, aiming to enhance the feedback efficiency of PbRL.

Optimal Transport in Reinforcement Learning. Optimal Transport (OT) (Cuturi, 2013; Peyré
et al., 2019) has been widely studied in domain adaptation (Courty et al., 2016), graph matching
(Titouan et al., 2019; Ratnayaka et al., 2025), and semi-supervised learning (Tai et al., 2021; Tan
et al., 2024). In the context of RL, prior works have applied OT to imitation learning (Fickinger
et al., 2022; Luo et al., 2023; Fu et al., 2024; Huey et al., 2025) by minimizing the Wasserstein
distance between the learner’s trajectories and expert demonstrations. PEARL (Liu et al., 2024)
extended this idea to transfer preferences across domains, but its applicability is restricted to tasks
with identical state and action spaces, and cross-domain transfer often introduces high uncertainty
for the target task. In contrast, VOTP performs pseudo-labeling directly within the same domain and
scales naturally to high-dimensional visual inputs, enabling more stable and reliable reward learning
in scenarios where PEARL is not applicable.
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3 PRELIMINARIES

Reinforcement Learning. In reinforcement learning (RL), an agent interacts with an environment
modeled as a Markov decision process (MDP). MDP is defined by the tuple ⟨S,A, T , r, γ⟩. At each
time step t, the agent receives a state st ∈ S and selects an action at ∈ A based on its policy π. The
environment responds by emitting a reward rt and transitioning to the next state st+1 according to
the transition probability T (s′|s,a). In our setting, we also consider the observation ot ∈ O, which
is an image rendered from the underlying state st. The return, Gt =

∑∞
k=0 γ

kr(st+k,at+k), is
defined as the discounted cumulative sum of rewards, with discount factor γ ∈ [0, 1). The objective
of RL algorithms is to learn a policy that maximizes the expected return.

Preference-based RL. In offline preference learning, we assume that the true reward function is
unknown and instead learn a reward function r̂ψ from human preferences (Christiano et al., 2017;
Ibarz et al., 2018). A trajectory segment of length H is represented as a sequence of states and
actions {(s1,a1), . . . , (sH ,aH)}. Given a pair of segments (σ0, σ1), a teacher provides a preference
label ỹ ∈ {0, 1, 0.5}, where ỹ = 0 indicates σ0 ≻ σ1, ỹ = 1 indicates σ1 ≻ σ0, and ỹ = 0.5
indicates equal preference. Here, σi ≻ σj denotes that segment i is preferred over segment j.
Each feedback is stored in a preference dataset D as a triple (σ0, σ1, ỹ). The preference predictor is
modeled using the reward function r̂ψ following the Bradley-Terry model (Bradley & Terry, 1952):

P [σ0 ≻ σ1;ψ] =
exp (

∑
t r̂ψ(s

0
t ,a

0
t ))

exp (
∑
t r̂ψ(s

0
t ,a

0
t )) + exp (

∑
t r̂ψ(s

1
t ,a

1
t ))

. (1)

Given the preference dataset, the estimated reward function r̂ψ is updated by minimizing the cross-
entropy loss between predicted preferences and annotated labels:

L(ψ) = − E
(σ0,σ1,ỹ)∼D

[
(1− ỹ) logP [σ0 ≻ σ1;ψ] + ỹ logP [σ1 ≻ σ0;ψ]

]
. (2)

In practice, a preference query is typically presented to teachers as a pair of short video clips ren-
dered from trajectory segments. While intuitive, learning an effective reward model often demands
hundreds to thousands of annotated comparisons (Kim et al., 2023; Hejna & Sadigh, 2023; Hejna
et al., 2024; Choi et al., 2024), which creates an unsustainable annotation burden. To mitigate this
challenge, we adopt the semi-supervised preference learning paradigm (Park et al., 2022), which
leverages both labeled and unlabeled segment pairs for reward learning.

Discrete Optimal Transport. Optimal Transport (OT) (Cuturi, 2013; Peyré et al., 2019) is an
optimization problem that finds a coupling between two probability measures with minimal cost.
Let ∆n = {p ∈ Rn+|

∑n
i=1 pi = 1} denote the probability simplex of dimension n. Consider two

probability measures µx =
∑n
i=1 piδxi

and µy =
∑m
j=1 qjδyj , supported on {xi}ni=1 and {yj}mj=1,

respectively. Here, the weight vector p = (p1, . . . , pn) and q = (q1, . . . , qm) belong to ∆n and
∆m, respectively, and δx denotes the Dirac measure at x. The discrete OT problem between µx and
µy can then be expressed via the Wasserstein distance as:

W2
2 (µx, µy) = min

µ∈M

n∑
i=1

m∑
j=1

c(xi, yj)µij , (3)

where M = {µ ∈ Rn×m+ : µ1m = µx, µ
⊤1n = µy} is the set of feasible transport plans, 1n

denotes the all-ones vector of dimension n, and c(x, y) is the cost function. The matrix µ specifies
a transport plan, where µij indicates the mass moved from xi to yj . In this work, we leverage
OT to compute correspondences between unlabeled and labeled segment pairs, thereby enabling the
inference of pseudo-preference labels.

4 METHOD

Our goal is to improve feedback efficiency in offline preference learning by leveraging unlabeled
data. To this end, we introduce Video-based Optimal Transport Preference (VOTP), a semi-
supervised framework that infers pseudo-preference labels using optimal transport (OT). The frame-
work consists of two key components: (i) trajectory representation with Video Foundation Models,
and (ii) pseudo-preference label generation through the optimal transport plan. An overview is pro-
vided in Figure 1.
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(b) Computation performed by VOTP

Figure 1: Overview of our framework. (a) VOTP embeds visual segments into a latent space using an
off-the-shelf video foundation model and uses the optimal transport plan to propagate preferences
with relative alignment strengths. Green dots indicate preferred segments over orange ones. (b)
Example computation in VOTP with four labeled segments (σi) and two unlabeled segments (σ̄i′ ).
Preference relations among labeled segments are represented by the preference matrix R. Each
entry of the optimal transport plan µ∗ specifies the probability that a labeled segment matches an
unlabeled segment, and the unnormalized preference score is computed using Eq. (6).

4.1 TRAJECTORY REPRESENTATION

Representing trajectory segments in a form that enables reliable comparison is central to preference
learning (Tian et al., 2024; Mu et al., 2025). We model each segment as a short video clip, σ =
{o1, . . . ,oH}, and embed it into a latent space using a trajectory encoder fϕ:

z = fϕ(o1:H). (4)

An effective encoder must capture both spatial details within frames and temporal dynamics across
the segment, as these jointly determine the behavioral differences reflected in human preferences.
To meet these requirements, we adopt off-the-shelf video foundation models (ViFMs) (Madan et al.,
2024), which are pre-trained on massive collections of human activity videos covering diverse ac-
tors, viewpoints, lighting conditions, and backgrounds. This large-scale, heterogeneous pre-training
produces actor-agnostic, semantically rich embeddings that are robust to nuisance variation and gen-
eralize to unseen robotic environments.

4.2 PSEUDO-PREFERENCE LABEL GENERATION

VOTP first identifies correspondences between labeled and unlabeled segment representations, and
then assigns preferences via an OT plan. We denote the labeled dataset as Dl = {(σ0, σ1, ỹ)(i)}Nl

i=1

and the unlabeled dataset as Du = {(σ̄0, σ̄1)(i)}Nu
i=1. Our objective is to infer pseudo labels for Du

and use both datasets to learn the reward function r̂ψ .

We define the labeled set as L = {σi}Ni=1, where N = 2Nl denotes the total number of segments in
Dl. Preference relations among segments are encoded in a preference matrix R ∈ {−1, 0, 1}N×N :

Rij =


−1 if σi ≻ σj ,

1 if σj ≻ σi,

0 for i = j, ties, or no preference is available.

By construction, R is skew-symmetric, i.e., R⊤ = −R. In parallel, we define the unlabeled set
U = {σ̄i′}Mi′=1, consisting of M segments sampled from Du, for which pseudo-preference labels
are inferred. Let µL =

∑N
i=1 piδσi and µU =

∑M
i′=1 qi′δσ̄i′ denote the empirical measures on these

sets. For simplicity, we adopt the uniform weights, i.e., pi = 1
N and qi′ = 1

M . The OT plan for
aligning labeled and unlabeled segments is then obtained as

µ∗ = argmin
µ∈M

N∑
i=1

M∑
i′=1

c(σi, σ̄i′)µii′ , (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where M = {µ ∈ RN×M
+ : µ1M = 1

N 1N , µ
⊤1N = 1

M 1M}. The cost function is defined as
c(σi, σ̄i′) = d(fϕ(σi), fϕ(σ̄i′)), the distance between encoded visual segments in the latent video
space, where d can be chosen as either the Euclidean distance or the cosine distance.

The OT plan µ∗ obtained in Eq. (5) provides the correspondences between segments in sets L and
U . Concretely, each entry µii′ represents the probability that the unlabeled segment σ̄i′ matches
the labeled segment σi. Combining these probabilities with the preference matrix R, we can infer
preferences between segments in the unlabeled set U . For brevity, we denote the OT plan as µ.
We then define the preference score used to determine the preference between the unlabeled pair
(σ̄i′ , σ̄j′) as follows:

S(σ̄i′ , σ̄j′) =

N∑
i=1

N∑
j=1

Rij(µii′µjj′ − µij′µji′) (6)

Interpretation. Consider a labeled pair (i, j) with a non-zero preference (i.e., Rij ̸= 0). Suppose
Rij = 1 (i.e., σj ≻ σi). The term µii′µjj′ measures alignment between (σi, σj) and (σ̄i′ , σ̄j′),
while µij′µji′ measures the alignment with the reversed pair (σ̄j′ , σ̄i′). If the difference (µii′µjj′ −
µij′µji′) is positive, then (σ̄i′ , σ̄j′) likely shares the preference of (σi, σj), implying σ̄j′ ≻ σ̄i′ .
Conversely, if the difference is negative, the preference is flipped, i.e., σ̄i′ ≻ σ̄j′ . The preference
score for (σ̄i′ , σ̄j′) is then obtained by aggregating alignment comparisons across all labeled pairs.
SinceR is skew-symmetric, the inferred preference for (σ̄i′ , σ̄j′) is consistent under swapping (i, j).
An example of this computation is shown in Figure 1 (b). Overall, VOTP leverages the transport
plan to propagate preferences from labeled to unlabeled pairs through relative alignment strengths.

In practice, the entries of the OT plan µ are small because
∑
µij = 1, which leads to relatively

small preference scores. Therefore, we normalize the preference score by

Smax =

N∑
i=1

N∑
j=1

1

N2
1(Rij ̸= 0). (7)

Here, Smax denotes the absolute maximum attainable score under uniform masses (i.e., pi = 1
N ),

assuming the OT plan maximizes the contribution of all non-zero Rij terms. This guarantees that
preference scores lie within [−1, 1] across varying numbers of labeled pairs. Finally, to obtain the
preference label for the pair (σ̄i′ , σ̄j′), we apply a preference threshold τP to determine the label1:

ỹ =

{
1
2 (1 + sign(Snorm(σ̄i′ , σ̄j′))) if |Snorm| ≥ τP ,

0 otherwise.
(8)

where sign(x) = −1 if x < 0, 1 if x > 0, and 0 if x = 0; and Snorm = S(σ̄i′ , σ̄j′)/Smax.

4.3 IMPLEMENTATION DETAILS

Obtaining the optimal coupling matrix µ∗ in Eq. (5) requires solving a linear program, which is
computationally expensive with standard solvers. In practice, we solve the entropy-regularized OT
problem using Sinkhorn’s algorithm (Cuturi, 2013), which provides both efficiency and numerical
stability. Our implementation uses the Sinkhorn solver from the POT toolbox (Flamary et al., 2021).
After VOTP annotates the unlabeled dataset with pseudo-preferences, we train the reward function
r̂ψ using Eq. (2). To mitigate the impact of inaccurate pseudo-labels, we retain only those with
scores above the threshold τP . During RL training, all state-action pairs in the offline dataset are
relabeled using the trained r̂ψ . The overall procedure is summarized in Algorithm 1 in the Appendix.

5 EXPERIMENTS

In this section, we conduct experiments across diverse domains to answer the following questions:

1. Can VOTP improve feedback efficiency in limited-data settings?
2. What is the contribution of each component within VOTP?
3. How does VOTP perform under varying numbers of labeled queries?
4. How do key parameters influence the performance of VOTP?
5. Can VOTP be directly applied to real robots?

1One could optionally apply an additional threshold to treat pairs with scores near zero as equally preferable.
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Table 1: Average scores on D4RL locomotion and success rates on MetaWorld and Robomimic
manipulation tasks. We run five seeds and report the final performance at the end of training like
Kostrikov et al. (2022). Bold values indicate results within 95% of the best-performing method
(excluding IQL). Learning curves and IQM normalized returns are provided in the Appendix.

Dataset
IQL with Learning with Preference

task reward IPL P-IQL SURF VOTP
hopper-medium-replay-v2 87.5 ± 7.4 22.1 ± 4.9 36.5 ± 15.4 9.3 ± 0.6 91.1 ± 4.7

hopper-medium-expert-v2 104.5 ± 4.5 62.6 ± 18.4 89.1 ± 18.4 65.5 ± 17.0 105.7 ± 6.0

walker2d-medium-replay-v2 72.6 ± 4.9 8.6 ± 5.4 32.4 ± 27.1 64.9 ± 9.4 66.3 ± 5.6

walker2d-medium-expert-v2 109.9 ± 0.5 92.4 ± 10.2 103.4 ± 7.0 109.7 ± 1.1 108.1 ± 2.2

locomotion average 93.6 46.4 65.3 59.5 92.8
door-open 79.2 ± 5.9 48.8 ± 11.7 36.8 ± 13.2 74.4 ± 10.3 84.0 ± 8.4

drawer-open 83.2 ± 4.7 51.2 ± 13.5 36.0 ± 13.6 57.6 ± 15.7 71.2 ± 11.7

plate-slide 56.0 ± 11.9 28.0 ± 9.1 15.2 ± 5.9 23.2 ± 5.9 57.6 ± 5.4

sweep-into 65.6 ± 5.4 41.6 ± 3.2 36.0 ± 8.0 40.8 ± 4.7 57.6 ± 7.4

metaworld average 71.0 42.4 31.0 49.0 67.6
can-mh 65.0 ± 9.5 31.2 ± 8.2 41.0 ± 10.2 28.0 ± 8.1 70.0 ± 8.4

can-ph 67.5 ± 7.5 50.0 ± 8.7 43.0 ± 18.3 34.0 ± 13.9 66.0 ± 5.8

lift-mh 84.0 ± 4.9 51.2 ± 16.3 40.0 ± 20.2 68.0 ± 16.3 71.0 ± 22.7

lift-ph 97.0 ± 4.0 95.0 ± 3.5 86.0 ± 9.7 84.0 ± 13.6 97.0 ± 4.0

robomimic average 78.4 56.9 52.5 53.5 76.0

5.1 SETUPS

Dataset. In simulated environments, we evaluate VOTP on complex robotic locomotion and ma-
nipulation tasks in the offline preference-based RL (PbRL) setting (Shin et al., 2023; Kim et al.,
2023; Hejna & Sadigh, 2023; An et al., 2023). Concretely, we consider three domains: D4RL Gym
locomotion (Fu et al., 2020), MetaWorld (Yu et al., 2020), and Robomimic (Mandlekar et al., 2021),
using offline PbRL datasets from Kim et al. (2023) and Hejna et al. (2024). For the initial labeled
dataset, we use only a few labels (5 or 10, depending on the dataset) by randomly selecting queries
(pairs of trajectory segments) and utilizing scripted labels2 derived from ground-truth rewards, a
common practice in PbRL evaluation (Lee et al., 2021b; Shin et al., 2023; Choi et al., 2024). For
pseudo-labeling, we sample additional pairs uniformly at random from the offline datasets. Specifi-
cally, we use a total of 10k queries for D4RL Gym locomotion and Robomimic, and 50k queries for
MetaWorld. Since VOTP performs labeling on image-based observations, we render visual obser-
vations corresponding to the states in the preference datasets.

Training Details. For computing the optimal coupling, we use the Sinkhorn solver from POT
(Flamary et al., 2021), a library for optimal transport that provides efficient computation of the
Sinkhorn algorithm with accelerator support. We use Euclidean function as the cost function. As
the trajectory encoder, we adopt S3D (Xie et al., 2018), a ViFM pre-trained on HowTo100M (Miech
et al., 2019), which consists of large-scale third-person clips of everyday human activities. For
reward learning, we use both labeled and pseudo-labeled pairs, retaining pseudo-labels above the
threshold τP (Eq. 8). After training the reward model, we replace the original rewards in the offline
dataset with the learned rewards and then train the policy using an offline RL algorithm. VOTP can
be applied to any offline RL algorithm, but as in prior work, we use IQL (Kostrikov et al., 2022).
Across PbRL baselines, both the policy and reward models are trained from states and share the same
policy-learning hyperparameters. Thus, the only difference lies in the reward learning process. We
also apply temporal data augmentation (Park et al., 2022; Hejna & Sadigh, 2023) across baselines.
Further implementation details can be found in the Appendix.

Evaluation. We evaluate performance using normalized scores on D4RL and success rates on
MetaWorld and Robomimic. For all experiments, we report the mean and standard deviation across

2For hopper-medium-replay-v2, we use human labels from Kim et al. (2023), since scripted labels remain
ineffective across baselines even when provided in large quantities.
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Figure 2: Ablation with various trajectory encoders in D4RL and MetaWorld. For hopper and
walker2d, we use medium-replay datasets. Results are averaged over five runs.
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Figure 3: The effectiveness of using optimal transport to infer pseudo-labels. Results are averaged
over five runs with standard deviation (shaded area).

five runs, with each run evaluated with 25 episodes per evaluation step. Full learning curves and
interquartile mean (IQM) (Agarwal et al., 2021) results are provided in the Appendix.

5.2 EVALUATION ON THE OFFLINE PBRL BENCHMARK

We compare VOTP with the following baselines. IQL learns policies using task rewards. Prefer-
ence IQL (P-IQL) learns a reward model from the labeled dataset, then trains a policy with IQL to
maximize the learned reward. SURF (Park et al., 2022) is similar to P-IQL, but trains the reward
model using both labeled data and pseudo-labels generated from confidence estimates of the pref-
erence predictor. Finally, Inverse Preference Learning (IPL) (Hejna & Sadigh, 2023) is a method
that learns policies directly from preferences without a reward model and has been shown to be
effective in data-limited settings. For a fair comparison, semi-supervised PbRL methods are trained
using same labeled and unlabeled datasets across all tasks, while standard PbRL methods are trained
using the same labeled datasets.

Table 1 summarizes the performance of all methods across three domains. As shown, VOTP con-
sistently outperforms all preference-based baselines in terms of average performance. Furthermore,
it achieves task-reward performance on 8 of 12 datasets, demonstrating its effectiveness for reward
learning with limited labeled data. Among standard PbRL methods, IPL generally performs bet-
ter than P-IQL in MetaWorld and Robomimic, consistent with prior work (Hejna & Sadigh, 2023),
yet both remain far below IQL with task rewards. While SURF improves P-IQL on some datasets,
its performance is inconsistent and can sometimes degrade, likely due to overconfidence of prefer-
ence models during pseudo-labeling under limited supervision (Chen et al., 2022a; Tan et al., 2024),
resulting in inaccurate pseudo-labels. In contrast, by leveraging the expressive and structured repre-
sentation space of pre-trained ViFMs, VOTP employs the OT plan to acquire more reliable pairwise
comparisons, leading to higher-quality pseudo-labels for reward learning and, consequently, stronger
RL agent performance.

5.3 ABLATION STUDIES

Effect of Video Foundation Models. We assess the role of the video encoder in VOTP by com-
paring image foundation models (IFMs) and video foundation models (ViFMs) in encoding visual
segments. For IFMs, we adopt R3M (Nair et al., 2022) and CLIP (Radford et al., 2021), which are
widely used for feature extraction and reward computation (Adeniji et al., 2023; Zhang et al., 2023;
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Figure 4: Average performance of each method as the number of preference feedbacks varies.
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Figure 5: Performance of VOTP under different values of the preference threshold τP .

Rocamonde et al., 2024). For ViFMs, we adopt S3D (Xie et al., 2018), VideoCLIP (Xu et al., 2021),
and InternVideo (Wang et al., 2022b).

The results, shown in Figure 2, indicate that ViFMs generally perform better than IFMs, particularly
in walker2d and door-open. This highlights their advantage in providing richer segment representa-
tions by capturing temporal dynamics and subtle motion cues, which are crucial for distinguishing
behavioral differences when determining preferences. In our framework, we opt for S3D, as it
achieves robust performance across tasks while requiring far fewer parameters (31M) than Video-
CLIP (208M) and InternVideo (478M). This balance of effectiveness and efficiency makes S3D
appealing when operating under limited compute or memory budgets.

Effect of Optimal Transport. To assess the benefits of OT in pseudo-label inference, we com-
pare against baselines that perform naive comparisons. Specifically, we divide the labeled set into
preferred and non-preferred groups. The first baseline, SIM-individual, assigns the label of the most
similar labeled pair to an unlabeled pair. The second baseline, SIM-mean, instead compares with
the aggregated representation of each group, obtained by averaging feature vectors. In contrast,
VOTP aggregates all preference labels from labeled pairs, weighting their contributions by the rela-
tive alignment strengths computed from the OT plan, thereby producing more reliable pseudo-labels.
The results in Figure 3 demonstrate a clear advantage of our method. We also observe that SIM-mean
performs worse than SIM-individual, likely because averaging group features discards fine-grained
distinctions between pairs, which are crucial for assigning pseudo-preferences.

Varying the number of queries. We evaluate how the number of queries affects PbRL perfor-
mance in two domains: D4RL and MetaWorld. Concretely, we measure the average performance
of each method while varying the labeled dataset size, ranging from 5 to 1000 preference labels de-
pending on the domain. We note that most previous work on D4RL uses up to 500 preferences (Kim
et al., 2023; An et al., 2023), while MetaWorld typically uses up to 10k (Hejna & Sadigh, 2023;
Hejna et al., 2024). Results are shown in Figure 4. In D4RL, without pseudo-labels, P-IQL requires
roughly 50-100 labels to match task-reward performance, whereas in MetaWorld it requires around
1k. Incorporating pseudo-labels improves performance in both domains. Importantly, we find that,
except walker-medium-replay, VOTP requires fewer labels than baselines to reach task-reward per-
formance. Notably, in door-open, VOTP with only 10 labels outperforms the policy trained with
ground-truth rewards. Overall, these results demonstrate the high feedback efficiency of VOTP,
confirming its effectiveness in limited-data regimes.

Impact of the preference threshold. We examine how the preference threshold τP affects the per-
formance of VOTP. Concretely, we vary τP and measure the corresponding performance of VOTP.
Results are shown in Figure 5. We observe that performance generally improves as the threshold
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Figure 6: Lift Banana: Examples of successful and failed trajectories at each time step (left) with
the corresponding reward outputs over timesteps from VOTP and P-IQL (right).

increases, but slightly drops with a large value, as seen in hopper-medium-replay and can-mh. This
effect arises because our unlabeled dataset size is fixed due to the rendering cost of visual segments,
and only pseudo-labels above τP are retained for training. Thus, increasing τP enhances label qual-
ity but reduces their quantity, which can harm performance. In practice, we tune this parameter to
balance the quality-quantity trade-off of pseudo-labels by selecting values within the observed range
of normalized preference scores.

5.4 REAL ROBOT EVALUATION

Table 2: Success rates over 10 episodes on
the 2 real-world manipulation tasks.

Method Lift Banana Drawer Open
BC 20.0 40.0
P-IQL 50.0 50.0
VOTP 80.0 70.0

We further evaluate VOTP in a real-world robotic
manipulation setting using a 7-DoF Rethink Sawyer
robotic arm. We compare our method against two
baselines: Behavior Cloning (BC) and P-IQL. The
experiments are conducted with two vision-based
manipulation tasks: Lift Banana and Drawer Open.
In our setting, the policy input consists of proprio-
ceptive states and image observations captured from
a camera. For each task, we collect 50 demonstra-
tions via keyboard teleoperation with a 50% success rate. To collect preferences, we present pairs
of video clips to a human teacher. We use 5 and 10 preference labels for Lift Banana and Drawer
Open, respectively. The number of unlabeled pairs is 2000 and 3000, respectively. The policy is
trained using IQL (Kostrikov et al., 2022), with the reward model optimized according to Eq. (2).
P-IQL and VOTP are trained in the same way as in the simulated experiments, i.e., P-IQL is trained
with a small number of labeled preferences, while VOTP is additionally trained with pseudo-labels.
Table 2 reports the comparison with baselines, showing that by leveraging unlabeled data, VOTP en-
ables the agent to achieve higher performance. To highlight the benefit of unlabeled data, Figure 6
shows reward outputs from VOTP and P-IQL on a successful and a failed trajectory. Both methods
yield reasonable rewards for the successful trajectory, but P-IQL mistakenly assigns high rewards
to failed behavior (timesteps 11-20). In contrast, VOTP well-separated rewards between successful
and failed trajectories. Additional results are provided in the Appendix.

6 DISCUSSION

In this work, we introduce Video-based Optimal Transport Preference (VOTP), a novel semi-
supervised preference learning that employs optimal transport over embedding space of video foun-
dation models (ViFMs) to automatically infer preferences for unlabeled pairs. This enables VOTP
to learn effective reward functions from only a handful of preference labels, substantially reducing
the need for human supervision. Extensive experiments across locomotion, manipulation, and real-
world robotic manipulation tasks validate the effectiveness of our approach, highlighting VOTP as
a scalable and practical solution for preference-based reinforcement learning.

Limitations. Since VOTP relies on pre-trained ViFMs to generate pseudo-labels, any inherent
biases in these models may be reflected in the learned reward function and, consequently, in the re-
sulting policy. While this does not diminish the effectiveness of our approach, it suggests that careful
evaluation of learned policies remains important before deployment in safety-critical applications.
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APPENDIX

A DECLARATION OF LARGE LANGUAGE MODEL USAGE

We only used LLMs for minor editing tasks, including grammar correction and word polishing.
They were not involved in research conception, experimentation, analysis, or substantive writing.

B DETAILS ON TASKS AND DATASETS

(a) Hopper (b) Walker2d (c) Can (d) Lift

(e) Door open (f) Drawer open (g) Plate slide (h) Sweep into

Figure 7: Overview of environments used in our experiments: Gym Locomotion (a–b), Robosuite
Manipulation (c–d), and MetaWorld Manipulation (e–h).

B.1 TASK DETAILS

The locomotion tasks from D4RL (Fu et al., 2020) and the manipulation tasks from MetaWorld (Yu
et al., 2020) and Robosuite (Zhu et al., 2020) used in our experiments are shown in Figure 7.

D4RL Gym Locomotion. In D4RL Gym locomotion tasks, the goal is to control simulated robots
to move forward efficiently while minimizing energy costs for safe behavior. We use two tasks:
Hopper and Walker2d, as in previous works (Kim et al., 2023; Hejna & Sadigh, 2023).

MetaWorld Manipulation. In this domain, the agent produces low-level continuous actions to
control a simulated 7-DoF Rethinking Sawyer robotic arm, enabling interaction with tabletop objects
to perform diverse manipulation tasks. Initial arm position is randomized. We evaluate four tasks:

• Door Open: Open the door of a safe.
• Drawer Open: Pull open a drawer.
• Plate Slide: Slide a black plate into the designated goal region.
• Sweep Into: Sweep a green puck into the squared hole.

Robosuite Manipulation. In this domain, similar to MetaWorld, the agent produces low-level
continuous actions to control a simulated 7-DoF Franka Emika Panda robot. We evaluate two tasks:

• Lift: Lift a cube object.
• Can: Pick up a coke can from a table and place it into the target bin.

B.2 DATASET DETAILS

In offline preference-based RL, two types of data are provided: (i) an offline dataset collected from
an unknown policy and (ii) a preference dataset consisting of pairs of trajectory segments sampled
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Algorithm 1 Pseudo-code for Video-based Optimal Transport Preference (VOTP)
1: Input: Offline dataset B, labeled dataset Dl, number of unlabeled segments M , threshold τP .
2: Initialize: pseudo-labeled dataset Du ← ∅.
3: for each iteration do
4: Sample M

2
segment pairs from B

5: Compute preference scores for segment pairs using Eq. (6)
6: Assign pseudo-labels using Eq. (8) and append to Du
7: end for
8: Construct preference dataset D ← Dl ∪ Du
9: Train reward model r̂ψ using Eq. (2)

10: Relabel rewards for state-action pairs in B using trained r̂ψ
11: Train policy πθ using an offline RL algorithm

from the offline dataset. For D4RL Gym locomotion, we use medium-expert-v2—which mixes equal
portions of expert and partially trained demonstrations—and medium-replay-v2, which corresponds
to the replay buffer of a partially trained policy. For MetaWorld, we use the pre-collected dataset
from Hejna et al. (2024). For Robosuite, we use the Robomimic dataset provided by Mandlekar et al.
(2021). For the preference dataset, we use pair indices from the publicly available datasets of Kim
et al. (2023) and Hejna et al. (2024). For preference labels, we use scripted labels obtained from the
ground-truth reward functions, except for hopper-medium-replay-v2, where we use human labels. In
Robomimic, we regenerate dense rewards by replaying the offline dataset in the simulator. Since the
preference dataset from Kim et al. (2023) contains at most 500 preferences, we additionally generate
pair indices for unlabeled data using the code from Kim et al. (2023).

B.3 IMPLEMENTATION DETAILS

The hyperparameters used in our main experiments are shown in Table 3, 4, and 5.

Table 3: Hyperparameters of IQL.
Hyperparameter Locomotion MetaWorld Robomimic
Optimizer Adam Adam Adam
Learning rate 3e-4 3e-4 3e-4
Batch size 256 512 256
Hidden layer dim 256 256 256
Hidden layers 2 2 2
Activation ReLU ReLU ReLU
Discount factor 0.99 0.99 0.99
β 3.0 10.0 10.0
τ 0.7 0.9 0.9
Training steps 1e6 4e5 1.5e6 (can-ph), 1e6 (others)

Table 4: Hyperparameters of the reward model.
Hyperparameter Locomotion MetaWorld Robomimic
Optimizer Adam Adam Adam
Learning rate 3e-4 3e-4 3e-4
Batch size 8 32 8
Hidden layer dim 256 128 256
Hidden layers 2 2 2
Activation ReLU LeakyReLU ReLU
Output activation Identity Tanh Identity
Segment length 100 64 50 (ph), 100 (mh)
Subsample length 64 42 32 (ph), 64 (mh)
Training steps 2e4 2e4 2e4
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Table 5: Hyperparameters of VOTP
Hyperparameter Locomotion MetaWorld Robomimic
Total #labeled pairs 10 10 5 (ph), 10 (mh)
Total #unlabeled pairs 10k 50k 10k
M (in Alg. 1) 2 2 2
Distance metric in Eq. 6 Euclidean Euclidean Euclidean
Preference threshold τP 0.15 (hopper-*) 0.45 (door, sweep) 0.15

0.2 (walker2d-*) 0.35 (drawer) 0.2 (lift-mh)
0.4 (plate) 0.15 (others)

B.4 REAL ROBOT EXPERIMENT SETUPS

Figure 8: Environment setup
in our real robot.

We evaluate our method on two vision-based manipulation tasks us-
ing a 7-DoF Rethink Sawyer robotic arm in a tabletop environment.
The tasks probe both reaching and object interaction and are defined
as follows:

• Lift banana: grasp a banana from a plate and lift it.
• Drawer open: pull open a drawer beyond a fixed distance.

The robot is controlled with end-effector (EE) delta actions that
command Cartesian displacements of the gripper. The EE orien-
tation is constrained to yaw only, and control runs at 10Hz. For
each task, the initial poses of a banana or a drawer handle are ran-
domized within the workspace and observed by an Intel RealSense
D435i RGB camera, which can be found in Figure 8). We collect
40 episodes for lift banana and 50 episodes for drawer open via
keyboard teleoperation. Policies use both low-dimensional states and visual observations. The vi-
sual observation is an RGB image at 480 × 480 resolution, resized to 224 × 224. We use ViFM
to produce a 512-dimensional visual feature. The low-dimensional state is a 9-dimensional vector
comprising the EE Cartesian position (3 dimensions), linear velocity (3 dimensions), yaw orienta-
tion (1 dimension), and the gripper status encoded as one-hot (open or closed, 2 dimensions). We
concatenate the visual feature and the low-dimensional states to form a 521-dimensional input to
the policy. All hyperparameter settings for the real-robot experiments can be found at table 6. For
evaluation, we measure over 10 episodes per task: behavior cloning, P-IQL and VOTP.

B.5 EXTENDED RESULTS
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Figure 9: We further evaluate the ability of VOTP to enhance IPL (Hejna & Sadigh, 2023) on Meta-
World by training policies directly from preferences (both labeled and pseudo-labeled). Results
show mean over 5 runs with standard deviation (shaded). Results show that VOTP substantially im-
proves IPL, demonstrating its potential to generate effective pseudo-preference labels even without
explicit reward models. Results averaged over 5 runs.
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Table 6: Hyperparameters of real robot experiments.

Hyperparameter Value

IQL

Optimizer Adam
Learning Rate 3e-4
Batch Size 256
Hidden layer dim 256
Hidden layers 2
Activation ReLU
Discount γ 0.99
β 3.0
Expectile τ 0.7
Training Steps 1e5

Reward Model

Optimizer Adam
Learning rate 3e-4
Batch size 8
Hidden layer dim 128
Hidden layers 2
Activation LeakyReLU
Output activation Tanh
Segment length 16
Training steps 2000

VOTP
Total #labeled pairs 5 (Lift Banana), 10 (Drawer Open)
Total #unlabeled pairs 2000 (Lift Banana), 3000 (Drawer Open)
Preference threshold τP 0.6

Table 7: Accuracy of generated pseudo-labels: We calculate accuracy by comparing against ground-
truth scripted preference labels (excluding equally preferred pairs). Overall, VOTP generates high-
quality pseudo-labels with only a handful of labeled preference queries.

Domain Task Accuracy (%)

D4RL Gym Locomotion
hopper-medium-expert-v2 90.3
walker2d-medium-replay-v2 98.8
walker2d-medium-expert-v2 93.6

MetaWorld Manipulation

door-open 93.1
drawer-open 97.4
plate-slide 95.2
sweep-into 67.0

Robomimic Manipulation

can-mh 72.0
can-ph 88.6
lift-mh 87.1
lift-ph 82.6
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Figure 10: Full learning curves for the D4RL Gym locomotion tasks (Table 1). Results are means
of 5 runs with standard deviation (shaded area). We smooth the learning curves using a moving
average with a window size of 3.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4
Training Steps (×106)

0

20

40

60

80
Su

cc
es

s R
at

e 
(%

)

door-open-v2

0.0 0.1 0.2 0.3 0.4
Training Steps (×106)

0

20

40

60

80

drawer-open-v2

0.0 0.1 0.2 0.3 0.4
Training Steps (×106)

0

20

40

60

plate-slide-v2

0.0 0.1 0.2 0.3 0.4
Training Steps (×106)

0

20

40

60

sweep-into-v2

IQL IPL P-IQL SURF VOTP

Figure 11: Full learning curves for the MetaWorld manipulation tasks (Table 1). Results are means
of 5 runs with standard deviation (shaded area). We smooth the learning curves using a moving
average with a window size of 3.
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Figure 12: Full learning curves for the Robomimic manipulation tasks (Table 1). Results are means
of 5 runs with standard deviation (shaded area).
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Figure 13: Aggregate metrics on D4RL Gym locomotion tasks with 95% confidence intervals (CIs)
across five runs. Higher mean, median and IQM scores and lower optimality gap are better. The CIs
are estimated using the percentile bootstrap with stratified sampling.
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Figure 14: Aggregate metrics on MetaWorld manipulation tasks with 95% confidence intervals (CIs)
across five runs. Higher mean, median and IQM scores and lower optimality gap are better. The CIs
are estimated using the percentile bootstrap with stratified sampling.
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Figure 15: Aggregate metrics on Robomimic manipulation tasks with 95% confidence intervals
(CIs) across five runs. Higher mean, median and IQM scores and lower optimality gap are better.
The CIs are estimated using the percentile bootstrap with stratified sampling.
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Behavior 
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Task: Lift Banana
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Figure 16: Snapshot of rollouts on Lift Banana task from BC, P-IQL and VOTP. Video of rollouts
are provided in the Supplementary. The behavior cloning agent fails to descend to the banana and
cannot grasp it. The P-IQL agent grasps the banana but does not lift and just release it. VOTP agent
successfully reaches the banana, grasps it, and lifts it to a specified height.
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T
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Figure 17: Snapshot of rollouts on Drawer Open task from BC, P-IQL and VOTP. Video of rollouts
are provided in the Supplementary. In both behavior cloning and P-IQL, the agent barely reaches the
handle after wandering and fails to pull the drawer open. VOTP agent, however, reaches the handle
directly and pull it open successfully.
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Figure 18: Drawer Open: Examples of successful and failed trajectories at each time step (top) with
the corresponding reward outputs over timesteps from VOTP and P-IQL (bottom).
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