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Abstract
Table Question Answering (TQA) enables001
users to query semi-structured tables using nat-002
ural language. However, current methods suf-003
fer from two key challenges: (i) complex lay-004
outs which hinder accurate reasoning and (ii)005
substantial noise that disrupts table-processing006
code generation. To address these challenges,007
we propose CoRef, a collaborative refinement008
framework. First, CoRef employs a Planner009
and multiple Table Curators, working along-010
side a Decision Trace Tree to distribute the011
burdens of decision-making and table curation012
across specialized agents while also enabling013
backtracking when needed. Second, CoRef014
integrates a Code-Refining Memory module,015
which iteratively refines table-processing code016
by learning from compiler feedback. Extensive017
experiments on three popular TQA datasets018
demonstrate that CoRef outperforms existing019
methods (74.2% on WikiTQ, 88.6% on Tab-020
Fact, and 74.7% on HiTab), validating its effec-021
tiveness.022

1 Introduction023

Tables are a common format for organizing struc-024

tured information and are widely used in various025

domains, including Wikipedia (Pasupat and Liang,026

2015) and government reports (Cheng et al., 2021).027

Table question answering (TQA) (Zhang et al.,028

2024b), which focuses on answering user queries029

based on semi-structured tables, serves as a corner-030

stone for information extraction (Wang et al., 2021;031

Ye et al., 2024) and Retrieval-Augmented AI (Zhao032

et al., 2024a; Pan et al., 2022). Thus, the ability to033

effectively query and extract meaningful insights034

from tables is crucial, whether it’s for academic035

research or industry needs.036

Large Language Models (LLMs) (Ouyang et al.,037

2022) have exhibited remarkable capabilities in038

responding to queries by leveraging their strong039

natural language understanding (NLU) and reason-040

ing skills. Building on this, recent studies (Chen,041
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 Q: Which country had the most cyclists finish within the top 10?
 A: Spain and Italy.
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Figure 1: An example of TQA illustrating the character-
istics of hierarchical structure, incomplete information
and redundant content of a Table.

2022; Zhao et al., 2023; Sui et al., 2024a) have 042

utilized In-context Learning (ICL) (Brown et al., 043

2020) for TQA, offering an alternative to tradi- 044

tional pre-training methods (Herzig et al., 2020; 045

Wang et al., 2021). However, despite these ad- 046

vantages, such methods face limitations due to the 047

context length constraints of LLMs, making it diffi- 048

cult to process excessively large tables. Moreover, 049

LLMs often struggle with reasoning over numer- 050

ical data within table cells (Schick et al., 2024). 051

Due to such limitations of LLMs, several stud- 052

ies (Cheng et al., 2022; Cao et al., 2023; Ye et al., 053

2023; Zhang et al., 2023b) have enhanced LLMs 054

by incorporating external tools (Wang et al., 2024b) 055

and environment-observing techniques such as Re- 056

Act (Yao et al., 2022). These LLM-based agent 057

frameworks are thus capable of dynamically mak- 058

ing table-processing decisions based on the cur- 059

rent state of the table, such as querying specific 060

columns using SQL and performing calculations 061

with Python. This paradigm significantly improves 062

the accuracy of TQA by mitigating the inherent 063

limitations of end-to-end (E2E) methods. 064

However, existing agent-based methods still 065

need improvement to address two key chal- 066

lenges in TQA. Firstly, unlike the well-structured, 067

metadata-rich relational database tables found in 068
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Text2SQL (Jin et al., 2022), semi-structured ta-069

bles present greater complexity in both layout070

and content. As illustrated in Fig. 1, tables fre-071

quently contain hierarchical structures, incomplete072

data, and redundant information. Existing agent-073

based methods are ill-equipped to address this com-074

plexity, as they impose the dual burden of rea-075

soning and table curation on a single agent. In076

other words, the single agent has to handle intricate077

decision-making while mastering multiple tools078

(e.g., SQL Executors) within a limited prompt,079

thereby violating Simon’s principle of bounded080

rationality (Mintrom, 2015), which posits that a081

clear division of labor can effectively compensate082

for the limitations in individual information pro-083

cessing capacity. Secondly, tables often contain084

substantial noise. Existing agent-based methods085

typically rely on generating code to query these086

tables. However, such noisy content frequently re-087

sults in generated code that, despite being logically088

sound, contains syntax errors that hinder successful089

execution by external compilers. As illustrated in090

Fig. 1, elements such as varied punctuation marks091

and reserved SQL keywords like “Rank" contribute092

to syntax errors, making it challenging to generate093

executable table-processing code.094

To address these challenges, we propose CoRef,095

a Collaborative Refinement framework. For the096

first challenge, CoRef introduces a collabora-097

tive multi-agent framework, delegating decision-098

making and table curation to distinct agents. Specif-099

ically, CoRef assigns specialized roles: the Planner100

assesses the table’s state at each step and decides101

whether to finalize the answer or delegate table cu-102

ration tasks to the Table Curators. If delegated, the103

Table Curators generate and execute the code, then104

return the refined table to the Planner for further105

reasoning. Additionally, we introduce a Decision106

Trace Tree that allows backtracking to a previous107

state upon an incorrect decision, enhancing rea-108

soning and adaptability. For the second challenge,109

given that we adopt the agent-based paradigm that110

generates code to query tables, we introduce a mod-111

ule named Code-refining Memory (CRM) to ensure112

that CoRef can generate syntactically correct code113

in the presence of noisy data. This module utilizes114

compiler feedback—typically providing informa-115

tion on syntax errors along with explanations—an116

often overlooked resource in existing TQA meth-117

ods. By storing the experience gained from previ-118

ous errors, the module allows the model to refine its119

capabilities and improve code accuracy over time120

iteratively. When encountering challenging TQA 121

cases, CoRef can retrieve similar examples from 122

memory, thereby enhancing the reliability of code 123

generation. 124

Our main contributions include: 125

• We propose CoRef, a collaborative multi- 126

agent framework for TQA that distributes 127

tasks among specialized agents. Combined 128

with a Decision Trace Tree, CoRef effectively 129

handles complex, noisy tables and generates 130

accurate answers. 131

• CoRef introduces Code-refining Memory, 132

which stores previous compiler feedback in 133

memory, allowing the model to evolve by 134

learning from past experiences. This helps the 135

model gradually avoid generating code with 136

syntax errors, thereby improving the overall 137

accuracy of CoRef. 138

• CoRef outperforms SOTA methods in exten- 139

sive experiments on three public TQA datasets 140

(74.2% on WikiTQ, 88.6% on TabFact, and 141

74.7% on HiTab), validating its effectiveness. 142

2 Related Work 143

2.1 Table Question Answering 144

Prior to the advent of LLMs, table-related meth- 145

ods (Dong et al., 2022; Jin et al., 2023; Ye et al., 146

2024) predominantly relied on encoder-only mod- 147

els for downstream tasks. However, these methods 148

required extensive labeled data to achieve optimal 149

performance. With the rise of LLMs and their supe- 150

rior NLU and reasoning, researchers (Zhang et al., 151

2024b) began integrating them into TQA. LLM- 152

based methods are classified into two categories: 153

E2E methods (Chen, 2022; Wu et al., 2024; Singha 154

et al., 2023; Sui et al., 2024b; Zhao et al., 2023) 155

and those augmented with external tools (Cheng 156

et al., 2022; Ye et al., 2023; Wang et al., 2024c; 157

Nahid and Rafiei, 2024; Zhao et al., 2024b; Zhang 158

et al., 2024a; Abhyankar et al., 2024; Liu et al., 159

2023; Ji et al., 2024; Mao et al., 2024; Li et al., 160

2025). E2E methods (Wu et al., 2024; Singha et al., 161

2023; Sui et al., 2024b; Zhao et al., 2023) involve 162

LLMs directly processing tabular data and queries 163

through their inherent textual reasoning abilities. 164

Nevertheless, E2E methods are constrained by the 165

LLM’s inherent weaknesses in numerical compu- 166

tation (Ahn et al., 2024) and the context length 167

constraint, which hampers reasoning over large 168

tables. To overcome E2E limitations, studies (Lu 169
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et al., 2024) use agent-based methods, where LLMs170

generate intermediate code based on a table, and171

external executors derive answers by running it.172

However, these methods rely on single-agent sys-173

tems and lack effective utilization of compilation174

tool feedback for iterative self-improvement.175

2.2 LLM-based Agents176

Due to inherent limitations of LLMs like challenges177

with numerical computation and factual hallucina-178

tions (Schick et al., 2024; Wang et al., 2024b), inter-179

est in LLM-powered agents has grown (Wang et al.,180

2024a; Zhang et al., 2023a; Miyake et al., 2024).181

Numerous studies have proposed methods to im-182

prove agent reasoning, such as Tree-of-Thoughts183

(ToT) (Yao et al., 2024), ReAct (Yao et al., 2022),184

Self-refine (Madaan et al., 2024), Reflexion (Shinn185

et al., 2024), and Meta-CoT (Yoran et al., 2023),186

iteratively refining agents via feedback. In par-187

allel, other works have explored the evolution of188

agent capabilities (Sumers et al., 2024; Park et al.,189

2023; Qian et al., 2024, 2023). Additionally, multi-190

agent frameworks (Hong et al., 2023; Wu et al.,191

2023; Chen et al., 2023a) have emerged, intro-192

ducing agents with distinct roles and collabora-193

tive strategies, advancing beyond single-agent sys-194

tems. Techniques such as Debate (Du et al., 2023;195

Xiong et al., 2023; Liang et al., 2023; Chen et al.,196

2023b) enhance collaborative reasoning through197

critical interactions between agents. Despite these198

advancements, no current research applies multi-199

agent frameworks or evolving compiler feedback200

techniques to TQA tasks.201

3 Problem Statement202

In the TQA task, each instance is represented as a203

triplet ⟨t, q, a⟩, where t ∈ T is the semi-structured204

table, q ∈ Q is the question and a ∈ A is the golden205

answer extracted from the associated table t. The206

table t consists of a header H and a data section D.207

The header H contains schema information and is208

designed for visual communication, often featuring209

a hierarchical organization common in web pages210

and business documents, as opposed to database211

sources (see Fig. 1 for an example).212

The question-answering process is defined by a213

mapping function ϕ : Q× T 7→ A. For E2E meth-214

ods, the function ϕ is encapsulated by a dedicated215

model M:216

a′ = M(q, t), (1)217

where a′ denotes the predicted answer. In contrast,218

agent-based methods involve the LLM M gener- 219

ating an intermediate program p, then executed by 220

an external tool T to output the answer a′: 221

p = M(q, t); a′ = T (p, t). (2) 222

Such an agent-based process may iterate several 223

times, refining the program p and improving the 224

accuracy of the final predicted answer. 225

4 Methodology 226

We propose CoRef, a Collaborative Refinement 227

framework for TQA (Fig. 2), where multiple agents 228

collaborate using a Decision Trace Tree and Code- 229

refine Memory to iteratively generate code for ex- 230

tracting answers from tables. The following sec- 231

tions elaborate on the agent roles (§ 4.1), the De- 232

cision Trace Tree (§ 4.2), and the agent-tool in- 233

teraction mechanism (§ 4.3). The pseudocode de- 234

scription of CoRef’s workflow can be found in 235

Appx B.1, Alg. 1. 236

4.1 Role Definition 237

In this framework, specialized agents work together 238

to refine and extract information from tables, man- 239

aging complex user inquiries by assigning specific 240

tasks to each agent. These agents include: 241

Planner: The Planner agent functions as the core 242

component within the framework. It receives the 243

table and question from the user and, through it- 244

erative refinement of the intermediate tables, ul- 245

timately derives the final answer. Each decision- 246

making step involves identifying the necessary type 247

of refinement operation—whether to condense or 248

expand the information—and then designating the 249

appropriate Table Curator to implement the oper- 250

ation. Once the table information is adequately 251

refined, the Planner leverages its text comprehen- 252

sion abilities to deduce the final answer directly. 253

Table Curator: The Table Curator generates code 254

based on the Planner’s decisions, executes it via 255

an external compiler, and returns an intermediate 256

table. If execution fails, it iteratively corrects the 257

code using CRM. If errors persist, it analyzes the is- 258

sue and reports potential causes to the Planner, en- 259

abling backtracking and reconsidering the decision- 260

making strategy based on the error feedback. Table 261

Curators are further divided into the Python Curator 262

and the SQL Curator, each with distinct prompts 263

suited to their respective programming language. 264

The Python Curator focuses on flattening hierar- 265

chical structures and extracting key information 266
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   The compiler returns an error 
message indicating that there 
appears to be no explicit column named 
"country" in this table.

         Decision: Please count the 

occurrences of each country in the top 10 

results. I am waiting for the SQL Curator to 

return the intermediate Table.

Round 2

   The intermediate Table is 
as follows: 

Round 3
         Decision: I will revise my approach 

and first complement the country column. I 

am waiting for the Python Curator to return 

the intermediate table.

Round 4
          Decision: Please count the 

occurrences of each country in the top 10 

results. I am waiting for the SQL Curator to 

return the intermediate table.

  

   The intermediate Table is 
as follows:

Final Round
          The Final Answer: Spain and Italy.

Planner

Agent 
Role  List

Python Curator SQL Curator

The intermediate Table is
as follows:

          Decision: The table has hierarchical 

structure. Please convert the complex 

layout into a simpler one. I am waiting for 

the Python Curator to return the 

intermediate table.

Round 1
  

Country Count

Spain 3

Russian 1

Italy 3
… …

Rank Cyclist Country Team ...time ...Points

1-3 Alej… Spain Cais… 5h 29' 10" 40
… … … … … …

4-6 Paol… Italy Quic… s.t. 20
… … … … … …

Rank Cyclist Team
Performance

about time

Performance about UCI

Protour Points

1-3 Alej… Cais… 5h 29' 10" 40
… … … … …

4-6 Paol… Quic… s.t. 20
… … … … …

Time UCI Protour

Rank: 1-3 NaN NaN NaN

Alejandro Valverde (ESP) Caisse d'Epargne 5h 29' 10" 40

Alexandr Kolobnev (RUS) Team CSC Saxo Bank s.t. 30

Davide Rebellin (ITA) Gerolsteiner s.t. 25

Rank: 4-6 NaN NaN NaN

Paolo Bettini (ITA) Quick Step s.t. 20
… … … …

Cyclist Team
Performance

Q: Which country had the most cyclists finish within the top 10?

1

0

2

 

3

4

Decision 
Trace 
Tree

  

Return code error message.Return code error message.

Code executed successfully.Code executed successfully.

Code executed successfully.Code executed successfully.

Code executed successfully.Code executed successfully.

Final 
Answer

Figure 2: Overview of CoRef. The framework consists of three roles: one Planner and two Table Curators, each
with distinct responsibilities. Each agent follows a unique prompt defining its role and providing demonstrations.
The Planner analyzes the table and assigns tasks, while the Table Curators generate and execute the code using
external tools, returning an intermediate table. On the left, the Decision Trace Tree illustrates the Planner’s reasoning
process, with node numbers corresponding to dialogue rounds. The red dashed arrow represents backtracking from
node 2 to node 1 due to an execution error reported from the SQL Curator.

with regex, while the SQL Curator excels at retriev-267

ing columns and performing aggregations, such as268

identifying maximum values.269

4.2 Decision Trace Tree270

LLMs make reasoning errors in complex TQA271

tasks. The root cause lies in the autoregressive272

probability paradigm (Zhao et al., 2024c), which273

inherently lacks the ability to revise previously gen-274

erated content (Hao et al., 2023) and real-world275

feedback (Yao et al., 2022). Recent methods that276

extend inference time (Zhao et al., 2024c), such277

as ToT (Yao et al., 2024) and SC (Wang et al.,278

2022), have proven effective in enhancing reason-279

ing. Building on this paradigm, we introduce the280

Decision Trace Tree, which records the model’s281

reasoning path and enables it to backtrack when282

receiving error feedback, granting autoregressive283

LLMs the ability to correct mistakes. As shown in284

Fig. 2, each node n represents a different table state285

tn, where node 0 corresponds to the initial table286

state t0. CoRef engages in four dialogue rounds,287

followed by the final round, where the Planner288

provides the final answer. Consequently, the tree289

consists of five nodes and an additional node as the290

final answer. The transition from node n to node291

n+ 1 in CoRef is formulated as follows:292

dn = MP (q, tn), pn = MC(dn, tn), (3)293

Tc(pn) =
{
tn+1, if executed successfully
en, otherwise

. (4)294

The Planner MP makes a decision dn based on 295

the current table state tn at node n, and the Cura- 296

tor MC generates the program pn according to the 297

decision dn, which is then executed by an external 298

tool executor Tc. If execution succeeds, the up- 299

dated table state tn+1 at node n+ 1 is obtained. If 300

execution fails, an error message en is returned. In 301

this case, CoRef backtracks to node n and utilizes 302

the error message en from node n+ 1 to attempt a 303

new transition to node n+ 2 by generating a new 304

decision dn+1: 305

dn+1 = MP (q, tn, en) (5) 306

As illustrated in Fig 2, after backtracking from node 307

2 to node 1, CoRef then transitions to node 3. 308

4.3 Code-refining Memory 309

The low accuracy of previous agent-based meth- 310

ods (Zhang et al., 2023b; Wang et al., 2024c) is 311

partly attributed to their tendency to generate code 312

with minor syntactic errors when handling noisy 313

tables. While logically correct, such errors hinder 314

compilation. To mitigate this, CoRef introduces the 315

Code-Refining Memory (CRM) module, activated 316

when a Table Curator encounters a coding error. 317

LLMs inherently exhibit randomness during the 318

generation process, as illustrated below: 319

pLLM(y|x) =
T∏
t=1

p(yt|x, y<t), (6) 320
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where x represents the input and y denotes the gen-321

erated tokens. As a result, LLM-based methods322

often adopt SC by allowing LLMs to generate di-323

verse reasoning paths (Chen et al., 2023c) in order324

to improve accuracy. Observations show that when325

faced with complex samples, LLMs can success-326

fully generate compilable code approximately 1327

or 2 times out of 10 attempts. This indicates that328

the correct code to solve the TQA samples exists329

within the model’s search space. Therefore, we can330

increase the likelihood of generating the correct331

solution by prefixing the appropriate context c (Liu332

et al., 2021):333

pLLM(y|c, x) =
T∏
t=1

p(yt|c, x, y<t). (7)334

Compared to Self-Refine (Madaan et al., 2024;335

Shinn et al., 2024), where LLMs self-correct based336

on their own feedback, external tools like compil-337

ers provide more precise insights, offering specific338

explanations for code errors. Consequently, CoRef339

leverages the feedback from the compiler to help340

the model correct its generated code. Furthermore,341

some works (Sumers et al., 2024; Park et al., 2023)342

have introduced the concept of evolving, where343

agents accumulate experience in memory, allow-344

ing them to enhance their capabilities and adapt to345

complex challenges over time. In line with this, the346

CRM maintains a memory that stores difficult cases347

encountered during CoRef’s operation, facilitating348

continuous improvement.349

Code ExecutorCode Executor

refined code

Memory
(complex code 

examples)

Memory
(complex code 

examples)

Table CuratorTable Curator

syntactically
correct code

Embedding-based 
Searcher
demonstrations

①

②

④

execution signal
③

Figure 3: The overview of Code-refining Memory. The
Table Curator retrieves demos from the memory when
handling challenging cases. Successfully compiled code
is stored for future reference.

The overview of this module is shown in Fig. 3350

while it is also detailed in pseudocode in Appx. B.2.351

The workflow consists of four steps: 1) When a new352

instance arrives, the module first retrieves similar 353

examples from the memory using an embedding- 354

based searcher. These examples are challenging 355

cases the model has previously encountered. This 356

step can be formalized as Equation 8: 357

c′ = R(x), (8) 358

pLLM(y|c′, x) =
T∏
t=1

p(yt|c′, x, y<t), (9) 359

where R is a function that retrieves examples from 360

the memory that are similar to the current input 361

(line 4 of Alg. 2). Here, c′ represents these retrieved 362

examples, including complex cases, corresponding 363

code, and compilation information. 2) The Table 364

Curator uses these demonstrations as references to 365

generate code, as described in Equation 9, which 366

is then submitted to the code execution tool Tc. 3) 367

The code execution tool Tc compiles the code and 368

returns a signal indicating the presence of syntax er- 369

rors. 4) If the model encounters a compilation error, 370

it iteratively performs self-correction until the code 371

either compiles successfully or exceeds a prede- 372

fined iteration threshold. Upon success, the syntac- 373

tically correct code and corresponding sample are 374

stored in memory for future reference. However, if 375

the retry count surpasses the threshold, it suggests 376

an incorrect table manipulation decision—such as 377

attempting to extract country information from a 378

table that lacks a “country” column. In such cases, 379

the Table Curator forwards the error message to the 380

Planner, aiding in more informed decision-making. 381

5 Experiments 382

In this section, we design targeted experiments to 383

address key research questions: RQ1: How does 384

the performance of CoRef compare to that of lead- 385

ing single-agent models in terms of the effective- 386

ness and accuracy across various datasets? RQ2: 387

How does each proposed sub-module contribute to 388

the overall performance of CoRef? RQ3: What er- 389

rors are associated with methods based on different 390

paradigms? RQ4: How does CoRef compare to 391

other baselines regarding time efficiency? 392

5.1 Datasets & Baselines 393

We employ three widely studied TQA datasets, 394

with their statistics presented in Table 1. We com- 395

pare CoRef with the baselines in Table 2, where 396

MixSC (Liu et al., 2023) represents the current 397

SOTA. See Appx. A for details about baselines. 398
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Datasets
Table Info

# Test Tables / QA Pairs Main Domains Feature

WikiTQ (Pasupat and Liang, 2015) 2108 / 4344 General Multi-hop Questions
TabFact (Chen et al., 2020) 1695 / 12779 General Binary Answers
HiTab (Cheng et al., 2021) 538 / 1584 Crime, Health Hierarchical Layouts

Table 1: Statistics of TQA Datasets.

5.2 Metrics399

Due to the inherent randomness of LLMs in gener-400

ative architectures, achieving an exact match with401

gold-standard answers can be challenging. For ex-402

ample, given the query "What is the difference in403

years between constituency 1 and 2?" with the gold404

answer "4", an LLM-generated response like "4405

years" would be marked incorrect under an exact406

match evaluation. To address this, following prior407

studies (Cheng et al., 2022; Ye et al., 2023; Liu408

et al., 2023), we use Semantic Exact Match Ac-409

curacy (Cheng et al., 2022) as the evaluation met-410

ric across all datasets, comparing predictions with411

ground truth labels from a semantic perspective.412

5.3 Implementation Details413

Some methods employ SC and Majority Voting,414

while others do not. We adhere to their original415

configurations and distinguish them using ‘w/ SC’416

and ‘w/o SC’ in Table 2.417

For the underlying LLM of CoRef, we use418

ChatGPT-3.5-turbo-0613 (GPT-3.5), ChatGPT-4o-419

mini (4o-mini), and LLaMA-3.1-8B (LLaMA) (Mi-420

naee et al., 2024) as the base models. The test set421

from each dataset is used as the evaluation data,422

and the prompts are sourced from the training set.423

We employ AutoGen (Wu et al., 2023) as the multi-424

agent framework. We refactor the functions that425

select the next speaker and call external tools in the426

framework to better align with the current scenario,427

which is discussed further in Appx. C.2.428

5.4 Overall Performance (RQ1)429

The comparison results based on GPT-3.5 across430

three datasets are presented in Table 2. 1431

From Table 2, We can draw the following conclu-432

sions: First, CoRef consistently outperformed all433

baselines, demonstrating clear superiority across434

all datasets. Notably, for HiTab featuring hierar-435

chical tables, methods relying solely on SQL (e.g.,436

Dater) as an external tool underperformed com-437

pared to E2E methods, whereas those integrating438

Python (e.g., HiTab) showed improved outcomes.439

CoRef stands out in this context by leveraging the440

1Results based on 4o-mini are similar to GPT-3.5, as shown
in Appx. D.1. However, the situation differs for LLaMA with
weaker coding abilities, as discussed in Appx. D.3.

Method
Acc (%)

(GPT-3.5 based) WIKITQ TABFACT HITAB

LLMs w/o external tools
E2E w CoT 51.8 70.5 63.5
E2E w ReAct 66.4 72.8 68.4

LLMs w/ external tools

w
/o

SC

TabSQLify (Nahid and Rafiei, 2024) 64.7 79.5 58.4
Dater (Ye et al., 2023) 65.0 83.5 54.6
ReAcTable (Zhang et al., 2023b) 65.8 83.1 62.4
Chain-Of-Table (Wang et al., 2024c) 67.3 86.6 58.5
H-STAR (Abhyankar et al., 2024) 68.7 83.7 66.2
PoTable (Mao et al., 2024) 62.7 85.9 -
ALTER (Zhang et al., 2024a) 67.4 84.3 52.5
MixSC (Liu et al., 2023) 64.2 - 68.6

w
/S

C

Binder (Cheng et al., 2022) 55.1 85.1 54.6
API-Assited (Cao et al., 2023) 42.8 - 70.0
Dater (Ye et al., 2023) 69.0 85.4 57.1
ReAcTable (Zhang et al., 2023b) 68.0 86.1 67.6
ALTER (Zhang et al., 2024a) 70.4 87.2 54.0
GrahOTTER (Li et al., 2025) - - 70.8
MixSC (Liu et al., 2023) 73.7 88.5 72.6

CoRef 74.2 88.6 74.7

Table 2: Main Results. The evaluation results of CoRef
and the baselines on three datasets are grouped by their
use of external tools and self-consistency.

Python Table Curator to flatten hierarchical tables, 441

following the step-by-step instructions generated 442

by the Planner. This approach gives a clear advan- 443

tage over other methods on HiTab. Second, the 444

comparison of different paradigms highlights that 445

the inference with planning (e.g., Chain-of-Table) 446

and external tools (e.g., MixSC) can substantially 447

enhance LLM capabilities—–an aspect that CoRef 448

particularly emphasizes. Third, SC is undeniably 449

a straightforward yet highly effective method for 450

improving model performance, as evidenced by 451

the comparison between the w/ SC and w/o SC 452

methods in the table. While CoRef does not ex- 453

plicitly employ SC, it inherently integrates SC-like 454

patterns through SRM and DTT. Finally, the results 455

from H-STAR and MixSC indicate that combining 456

textual and symbolic reasoning significantly boosts 457

LLM accuracy in table reasoning tasks. CoRef can 458

similarly be categorized in this type, enabling dif- 459

ferent models to specialize in distinct capabilities, 460

thereby achieving a more effective combination of 461

strengths. 462

5.5 Ablation Studies (RQ2) 463

We perform ablation studies on all datasets to as- 464

sess the contributions of key modules to CoRef’s 465

overall performance improvement: w/o Collab 466

(without collaboration, i.e., planning and coding 467

handled by a single agent), w/o DTT (without the 468

DTT for backtracking), and w/o CRM (without the 469
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Methods
Acc (%)

WIKITQ TABFACT HITAB

CoRef 74.2 88.6 74.7
w/o Collab 71.1 (↓ 3.1) 86.8 (↓ 1.8) 69.9 (↓ 4.8)
w/o DTT 71.8 (↓ 2.4) 87.0 (↓ 1.6) 71.8 (↓ 2.9)
w/o CRM 71.9 (↓ 2.3) 86.5 (↓ 2.1) 73.1 (↓ 1.6)

Table 3: Ablation results. It presents the contribution of
each module in CoRef, including Collaboration, Deci-
sion Trace Tree, and Code-Refining Memory. Values in
parentheses represent the drop in accuracy.

Code-refining Memory for iterative correction).470

The results are shown in Table 3. First, Collab-471

orative agents have a significant impact on HiTab472

(4.8%) and WikiTQ (3.1%), validating its efficacy473

in orchestrating strategic decision-making for sim-474

plifying intricate table layout or content. Second,475

facing WikiTQ requires multi-hop reasoning and476

HiTab demands complex numerical computations,477

DTT achieves remarkable improvements (2.4% and478

2.9% respectively), evidencing its enhanced reason-479

ing capacity for diverse analytical challenges. Fi-480

nally, CRM effectively mitigates data noise issues481

prevalent in WikiTQ (2.3%) and TabFact (2.1%),482

proving critical for generating syntactically robust483

and semantically precise code interpretations.484

5.6 Error Studies (RQ3)485

We conduct a comprehensive error analysis of486

CoRef alongside two representative methods from487

different paradigms, E2E /w ReAct and MixSC,488

supplemented by a case study.489

5.6.1 Statistical Error Analysis490

We sampled 100 cases from HiTab where E2E w/491

ReAct failed, while also recording the responses of492

MixSC and CoRef for these instances. Each erro-493

neous case was manually evaluated to determine494

the type of error, which we categorized into five495

types. Misinterpretation occurs when the LLM496

misunderstands the semantics of the question or497

table, such as failing to recognize hierarchical rela-498

tionships or misinterpreting the entity referenced499

in the question. Coding Errors involve incorrect500

code generation, including syntax errors or code501

that does not accurately reflect decision-making se-502

mantics, preventing the retrieval of the correct inter-503

mediate table. Misalignment Issues arise when the504

generated output is conceptually correct but does505

not conform to the required format specified in the506

instructions. Reasoning Inconsistency refers to507

Figure 4: Analysis of error types in 100 samples from
HiTab where E2E w/ ReAct fails.

cases where the LLM’s reasoning path is inconsis- 508

tent, such as deciding to sum all numbers in step 509

two but then providing incorrect values in step three 510

due to its limited numerical calculation capabilities. 511

Others include dataset annotation issues, network 512

error or instances where the model exceeds its pre- 513

scribed iteration limit. 514

Since the selected samples are those where the 515

E2E method itself makes errors, this indicates that 516

these questions are relatively challenging. As illus- 517

trated in Fig. 4, CoRef significantly improves table 518

comprehension by allowing the Planner and Cu- 519

rators to collaborate in systematically simplifying 520

the table layout. For the E2E method, the error type 521

with the highest proportion is Reasoning Inconsis- 522

tency, which is due to LLMs’ weakness in numer- 523

ical computation (Imani et al., 2023; Chen et al., 524

2024). Although the LLM correctly plans the rea- 525

soning path, it fails to provide the final numerically- 526

related answer. From the Fig. 4, both MixSC and 527

CoRef exhibit a substantial reduction in the Rea- 528

soning Inconsistency, suggesting that their reliance 529

on external tools effectively mitigates weaknesses 530

in numerical computation. Unfortunately, intro- 531

ducing external tools also increases the possibility 532

of coding errors. CoRef effectively reduces this 533

type of error after introducing CRM. Additionally, 534

CoRef shows a minor increase in Misalignment Is- 535

sues, which might be due to the context size raising 536

while decreasing the model’s ability to adhere to 537

the output format. Appx. C.1 discusses this further. 538

5.6.2 Case Study 539

To highlight the differences between CoRef and 540

existing methods in handling complex table lay- 541

outs, we conducted a case study comparing E2E w/ 542

ReAct, MixSC, and CoRef. Using a HiTab sample 543
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E2E
w/ ReAct

MixSC
(Python Reasoning Path)

CoRef

Table_QA_planner (to chat_manager):
Decision: Identify which row has the maximum beta value among the 
extracted "lpa" coefficients. I am waiting for the Python coder to return 
the intermediate table.
Python_coder (to chat_manager):
Arguments: 
{"code":"…max_beta_row = 
DF_lpa.loc[DF_lpa['beta'].idxmax()]","code_type":"python","reflection":"I
dentifying the row with the maximum beta coefficient for lpa."}
>>>>>>>> EXECUTING FUNCTION execute_python...
Intermediate table: 
   [HEADER]: occasion|beta
   [ROW] 1: weekend|0.103
Table_QA_planner (to chat_manager): The Final Answer: ```weekend```.

Table_QA_planner (to chat_manager):
Decision: Extract only the rows corresponding to 
"lpa" to identify which one has the largest beta 
coefficient. I am waiting for the SQL coder to return 
the intermediate table.
SQL_coder (to chat_manager):
Arguments: 
{"code":"SELECT `period`, `beta` FROM DF WHERE 
`type_of_time`='lpa';","code_type":"sql","reflection"
:"Extracting the beta coefficients for lpa."}
>>>>>>>> EXECUTING FUNCTION execute_sql…
Intermediate table:

Thought: To find which "lpa" has the largest beta coefficients, I will need to filter the 
dataframe for rows where the behaviour is "lpa" and then check for the beta value. 
However, in the provided data, "lpa" has no beta coefficients (indicated by a dash "-"). I 
will verify if there is any other relevant information regarding "lpa" in the dataframe.
Action: python_repl_ast
Action Input: df[df['behaviour'] == 'lpa']
Observation: 

Thought: The observation confirms that there are no beta coefficients associated with 
"lpa" since the value is a dash ("-"). Thus, I cannot determine which "lpa" has the largest 
beta coefficients as there are none present.
Final Answer: None

• Final Answer: weekend
• Final Answer: total
• Final Answer: total
• Final Answer: total, weekend
• Final Answer: lpa-total, lpa-weekend

behaviour beta p-value

lpa - -

period beta

total 0.096

weekday 0.067

weekend 0.103

behaviour beta p-value

screen time 0.128 0.0002

sedentary time

total 0.124 0.0016

… … …

lpa

total 0.096 0.0001

weekday 0.067 0.003

weekend 0.103 0.0003

mvpa

… … …
Q: which lpa has the largest beta coefficients?

A: weekend. Table_QA_planner (to chat_manager):
Decision: It is a hierarchical table, we  should flatten 
it by some python functions. I am waiting for the 
Python coder to return the intermediate table.
Python_coder (to chat_manager):
Arguments: {"code": "import pandas as pd..."}
>>>>> EXECUTING FUNCTION execute_python…

(A FEW ROUNDS LATER...)
Intermediate table: type

of time
period beta …

lpa total 0.096 …

lpa weekday 0.067 …

lpa weekend 0.103 …

… … … …

Figure 5: Showcasing the results of E2E, MixSC, and CoRef on the same instance from the HiTab dataset. This
instance is challenging due to the hierarchical relationships present in the ‘behaviour’ column.

with hierarchical data in the first column, we ana-544

lyze the reasoning processes of these three methods.545

As shown in Fig. 5, CoRef demonstrates superior546

reasoning capabilities when handling this complex547

table. For E2E w/ ReAct, despite receiving explicit548

prompts for iterative question formulation under549

the SC setting, the model provided final answers550

in all five attempts—none of which were correct.551

For MixSC, we focus on the outcome of its Python552

Reasoning Path (as the results from its Textual Rea-553

soning Path closely mirror those of E2E w/ ReAct554

and are therefore omitted). It is evident that MixSC555

failed to accurately grasp the hierarchical structure556

of the table when generating Python code, leading557

to incorrect results. In contrast, CoRef success-558

fully refined the table through iterative curation,559

ultimately delivering the correct answer by relying560

on a highly streamlined intermediate table.561

5.7 Efficiency Analysis (RQ4)562

We evaluate efficiency by analyzing the total num-563

ber of LLM call rounds on the WikiTQ dataset, as564

this metric is less affected by network instability565

than total runtime. Table 4 compares CoRef with566

baselines, detailing the number of rounds per op-567

eration and total LLM calls. Notably, for methods568

using SC (marked with ♠), sampling is fixed at 5569

(consistent with the original setting), leading to a570

five-fold increase in total rounds. Despite its multi-571

agent framework, CoRef maintains a total LLM call572

count comparable to the current SOTA approach,573

MixSC. For locally deployed model runtime com-574

parisons, see Appx. D, where results indicate that575

CoRef and SOTA methods exhibit nearly identical576

time efficiency.577

Method Detailed Operations Total Rounds

E2E w/ ReAct♠ Query: 1-3 5-15

Binder♠ Neural SQL: 10 50

DATER♠
Decompose Table: 8

100Generate Cloze & SQL: 8
Query: 4

Chain-of-Table
Dynamic Plan ≤ 5

≤ 25Generate Args ≤ 19
Query: 1

ReAcTable♠ Plan&Action: ≈3 ≈15

TabSQLify Table Decompose: 1 2Query: 1

H-STAR Row / Column Retrieval: 4-8 6-10Query: 2

ALTER♠ Table / Query Augmenting: 5 30Query: 1

MixSC♠
Normalization: 1

≤35Direct Reasoning: 1
Python Reasoning: ≤ 5

CoRef
Planner: ≤ 10

≤ 30Table Curator (SQL): ≤ 10
Table Curator (Python): ≤ 10

Table 4: Generated sample counts for different methods.
SC-based methods (♠) include the total rounds from
five model runs.

6 Conclusion 578

In this paper, we introduce CoRef, a novel multi- 579

agent framework designed to tackle the challenges 580

of TQA. CoRef is built upon three key modules: 581

Collaborative Agents, Decision Trace Tree, and 582

Code-Refining Memory. These components ef- 583

fectively address the limitations of existing LLM- 584

based methods, particularly in handling complex 585

and noisy web tables. Experimental results on three 586

widely studied public TQA datasets demonstrate 587

that CoRef surpasses SOTA methods, underscoring 588

its potential to advance TQA systems. 589

For future work, we aim to explore more 590

modality-specific tables and test-time scaling in 591

TQA, further enhancing its scalability and applica- 592

bility. 593
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Limitations594

While our approach enhances LLM performance595

on TQA by incorporating three additional modules,596

several limitations remain.597

Inference Efficiency: Although extending rea-598

soning time is an emerging trend, it inevitably im-599

pacts efficiency. Compared to directly prompting600

the LLM for an answer, our model incurs higher601

computational costs and longer inference time.602

Tree-Based Reasoning Constraints: We employ603

a tree structure to assist in reasoning, yet its effi-604

ciency and performance remain inferior to Monte605

Carlo Tree Search (MCTS), highlighting a promis-606

ing direction for future research.607

Dependence on LLM Capabilities: Our method608

relies heavily on the LLM’s inherent logical rea-609

soning and code generation abilities. Consequently,610

its effectiveness may be limited when applied to611

weaker LLMs, yielding only marginal improve-612

ments.613
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• E2E w/ CoT (Chen, 2022) equips LLMs with 946

ICL(Brown et al., 2020), utilizing CoT (Wei et al., 947

2022) reasoning to enable final answer generation. 948

• E2E w/ ReAct (Yao et al., 2022) enables 949

LLMs to iteratively generate outputs based on the 950

current state of the environment, facilitating dy- 951

namic decision-making. 952

• Binder (Cheng et al., 2022) pioneers to em- 953

ploy the agent into WebTQA, which introduces the 954

NeuralSQL to handle irregular Web tables. 955

• API-Assited (Cao et al., 2023) enhances com- 956

prehension of hierarchical structures by incorporat- 957

ing a tree-structured table representation. 958

• Dater (Ye et al., 2023) allows the model to pro- 959

gressively decompose complex tables into smaller 960

components during the decision-making process, 961

ultimately deriving the final answer. 962

• TabSQLify (Nahid and Rafiei, 2024) builds 963

on Dater by leveraging SQL queries to manipulate 964

and refine table data. 965

• Chain-Of-Table (Wang et al., 2024c) extends 966

the CoT method to tabular data by transforming 967

input tables and guiding the LLM through interme- 968

diate table states to improve reasoning accuracy. 969

• ReAcTable (Zhang et al., 2023b) adopts the 970

ReAct framework (Yao et al., 2022), combining 971

step-by-step reasoning with code execution, gener- 972

ating intermediate tables, and employing a majority 973

voting mechanism. 974

• H-STAR (Abhyankar et al., 2024) introduces 975

a two-step approach that combines table extrac- 976

tion with adaptive reasoning, effectively integrating 977

symbolic (SQL) and semantic (text) methods. 978

• PoTable (Mao et al., 2024) is a novel table- 979

based reasoning method that integrates an LLM- 980

driven operation planner with a Python interpreter, 981

enabling human-like logical stage splits and open- 982

world operations for enhanced accuracy and ex- 983

plainability in structured table analysis. 984

• ALTER (Zhang et al., 2024a) seeks to unlock 985

the latent potential of NL queries (via a query en- 986

hancer) and tables (via a table enhancer). 987

• MixSC (Liu et al., 2023) aggregates multiple 988

reasoning pathways (textual and symbolic reason- 989

ing) and currently represents the SOTA. 990
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B Algorithms991

B.1 Pseudocode of Multiagent Workflow992

See Alg. 1.993

B.2 Pseudocode of Code-refining Memory994

See Alg. 2.995

C Discussion996

This section discusses some interesting phenomena997

we encountered, which are worth further explored998

in the future.999

C.1 About the Misalignment Issues.1000

In Section 5.6, we classify certain types of model1001

errors as “Misalignment Issues”. For example, in1002

response to the question in Fig. 1, the model might1003

produce the misaligned output, "Spain and Italy had1004

the most cyclists finish within the top 10," despite1005

the prompt explicitly instructing the use of the sim-1006

plest language possible. We believe that addressing1007

the model’s performance from this perspective may1008

constitute the most efficient approach to improving1009

its overall accuracy, as these errors do not stem1010

from limitations in the model’s reasoning capa-1011

bilities. We further analyzed the reasoning path1012

lengths associated with incorrect answers across1013

the three methods illustrated in Fig. 5. Our findings1014

indicate that samples exhibiting “Misalignment Is-1015

sues” tend to have longer reasoning paths than the1016

average. This observation suggests that extended1017

contexts may lead the model to lose track of the1018

initial formatting instructions. As shown in Fig. 5,1019

such errors are more prevalent in our method, likely1020

due to the fact that each agent must reference the1021

conversation history when generating responses,1022

which typically results in longer contextual inputs1023

compared to other methods.1024

C.2 About the Table Curator Selection.1025

For the Table Curator selection strategy, rather1026

than using the ‘AUTO’ mode employed by most1027

multi-agent frameworks—which relies on an addi-1028

tional LLM-based agent to choose the Table Cu-1029

rator based on conversation history—we adopt a1030

rule-based approach. This mode significantly in-1031

creases the number of LLM calls and exhibits lower1032

accuracy compared to rule-based methods, espe-1033

cially in less complex task scenarios like TQA. In1034

our framework, the Planner explicitly designates1035

which Table Curator (Python Curator or SQL Cura-1036

tor) should execute the current decision, with string1037

matching incorporated as part of the rule-based 1038

method. Additionally, if the number of LLM calls 1039

exceeds a predefined round limit r, the answer will 1040

be directly returned. 1041

While rigid and limited rules may be inadequate 1042

for intricate scenarios, they are largely effective 1043

in simpler contexts, such as TQA. In these cases, 1044

pre-defined rules can adequately cover the major- 1045

ity of situations, leading to a 5% improvement in 1046

accuracy on the WikiTQ dataset compared to the 1047

auto mode. Furthermore, the rule-based approach 1048

requires the Planner to explicitly designate the Ta- 1049

ble Curator, such as the SQL Table Curator, which 1050

may also prompt the Planner to evaluate the feasi- 1051

bility of the current decision. 1052

D Supplementary Experiments 1053

D.1 Supplementary Experiment One 1054

To validate the robustness of our method, Table 1055

5 presents a comparison of different approaches 1056

using ChatGPT-4o-mini (4o-mini). The baselines 1057

for comparison include the top two methods that 1058

achieved the best performance on each dataset 1059

based on GPT-3.5, as well as E2E with ReAct. We 1060

can draw the following conclusions: First, CoRef 1061

still performs the best. Second, As can be seen 1062

from the table, methods based on 4o-mini gener- 1063

ally outperform those based on GPT-3.5, indicating 1064

that the base model’s capabilities have a significant 1065

impact on the performance of the method. Third, 1066

Methods utilizing the model’s code generation ca- 1067

pabilities still outperform those that rely directly 1068

on the model’s text understanding abilities. 1069

D.2 Supplementary Experiment Two 1070

Table 6 presents the results, which compares the 1071

performance of three representative methods from 1072

different paradigms on the open-source LLaMA- 1073

3.1-8B model, whose capabilities are not as pow- 1074

erful as the closed-source ChatGPT-4o-mini and 1075

ChatGPT-3.5, especially in terms of programming 1076

abilities. Since the experiment is conducted locally, 1077

we can measure a stable runtime as a reference for 1078

efficiency. For evaluation, we select the first 200 1079

samples from each dataset. Both E2E and MixSC 1080

are set to self-consistency runs = 5. 1081

The detailed differences in model configurations 1082

across the three methods are as follows: E2E w/ 1083

ReAct: Since it does not involve code generation, 1084

we directly use LLaMA-3.1-8B-Instruct as the base 1085

model for testing. MixSC: Utilizing LLaMA-3.1- 1086
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Algorithm 1 Multiagent Workflow
Input: Table t, Question q, Round limit r, Planner agentMP , Table Curator agentMC , Code execution tool Tc, Decision

Trace Tree DT

Output: Predicted answer a′

1: curRound← −1
2: parentNode← −1
3: tracedNode← 0
4: tracebackNeeded← True
5: while curRound < r do
6: curRound← curRound+ 1
7: DT .linkAToB(curRound, parentNode) # The parent node of curRound is numbered parentNode
8: if tracebackNeeded is True then # Initiating traceback
9: # Retrieve the previous node state from the Decision Trace Tree

10: # lastOutput contains the compiler’s feedback from the previous round
11: t, feedback← DT .getNodeState(tracedNode)
12: de←MP .makeDecision(q, t, feedback)
13: else
14: de←MP .makeDecision(q, t)
15: end if
16: tracebackNeeded← False
17: if requiresToolCall(de) is True then # Invoke an external tool if needed
18: program←MC .generateProgram(de, t)
19: isCorrect, feedback, t← Tc.execute(program)
20: if isCorrect is False then
21: program← refineCode(de, (t, q),MC) # Attempt to correct the code using CRM
22: isCorrect, feedback, t← Tc.execute(program)
23: if isCorrect is False then # Failed to correct the code, initiating traceback
24: tracebackNeeded← True
25: parentNode← DT .getParentNode(curRound)
26: DT .store(feedback, parentNode) # Store execMsg for future reference
27: tracedNode← parentNode
28: continue
29: end if
30: end if
31: DT .storeNodeState(curRound, t)
32: parentNode← curRound
33: else
34: return de # de′ is the final answer
35: end if
36: end while
37: return de

Method WikiTQ TabFact HiTab

ChatGPT-4o-mini
E2E w ReAct 67.1 76.6 69.1

ALTER 70.7 88.9 -
GraphOTTER - - 74.5

MixSC 75.8 89.5 73.9
CoRef 76.3 90.0 76.8

Table 5: Experimental results of the best-performing
methods from each of the three paradigms based on
LLaMA-3.1-8B.

8B-Instruct for textual reasoning and LLaMA-3.1-1087

8B-Code for symbolic reasoning. The final answer1088

is determined by aggregating the results from both1089

reasoning paths. CoRef: The Planner agent is1090

based on LLaMA-3.1-8B-Instruct, while all Cura-1091

tors use LLaMA-3.1-8B-Code.1092

Method WikiTQ TabFact HiTab Avg. Time/Sample

LLaMA-3.1-8B
E2E w ReAct 34.7 53.2 48.0 2.5 s

MixSC 31.6 54.7 44.6 10.0 s
CoRef 33.1 55.2 47.7 9.2 s

Table 6: Experimental results of the best-performing
methods from each of the three paradigms based on
LLaMA-3.1-8B.

Observation: In time efficiency, CoRef exhibits 1093

a minor advantage compared to the current SOTA 1094

MixSC. Regarding accuracy, on the more chal- 1095

lenging WikiTQ and HiTab datasets, both exist- 1096

ing SOTA methods and CoRef underperform com- 1097

pared to the end-to-end approach. In contrast, 1098

TabFact, with its more straightforward table struc- 1099

ture, enables the 8B model to achieve higher code 1100

accuracy. Analysis: 8B models struggle to gen- 1101

erate compilable code when dealing with com- 1102
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Method WikiTQ TabFact HiTab

MixSC w/ SC 72.7 ± 0.35 88.6 ± 0.21 72.6 ± 0.57
CoRef 73.4 ± 0.64 89.1 ± 0.36 73.4 ± 0.61

Table 7: The mean and standard deviation of five test
runs on 200 samples from the HiTab dataset based on
GPT-3.5.

plex tables or questions. This explains why high-1103

performing table question-answering methods pre-1104

dominantly rely on GPT-3.5 or even better ones, as1105

symbolic paradigm approaches heavily depend on1106

the model’s strong coding capabilities.1107

D.3 Supplementary Experiment Three1108

Supplementary experiment two compares MixSC1109

(SOTA) and CoRef by selecting the first 200 sam-1110

ples from each dataset and repeating the tests five1111

times using GPT-3.5. Despite some variations,1112

CoRef consistently outperformed MixSC, shown1113

in Table 7.1114

E More Case Studies1115

More case studies of CoRef are shown in Fig. 6,1116

Fig. 7 and Fig. 8 .1117
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Deliver_Proxy (to chat_manager):

# Table 'DF':

[Caption]: World War II casualties of Poland

[HEADER]: description_losses|c_1939_40|c_1940_41|c_1941_42|c_1942_43|c_1943_44|c_1944_45|total

---

[ROW] 1: Direct War Losses|360000.0|NULL|NULL|NULL|NULL|183000.0|543000.0

[ROW] 2: Murdered|75000.0|100000.0|116000.0|133000.0|82000.0|NULL|506000.0

[ROW] 3: Deaths In Prisons & Camps|69000.0|210000.0|220000.0|266000.0|381000.0|NULL|1146000.0

[ROW] 4: Deaths Outside of Prisons & Camps|NULL|42000.0|71000.0|142000.0|218000.0|NULL|473000.0

[ROW] 5: Murdered in Eastern Regions|NULL|NULL|NULL|NULL|NULL|100000.0|100000.0

[ROW] 6: Deaths other countries|NULL|NULL|NULL|NULL|NULL|NULL|2000.0

[ROW] 7: Total|504000.0|352000.0|407000.0|541000.0|681000.0|270000.0|2770000.0

# Query: how many people were murdered in 1940/41?

***** Response from calling tool 
(call_SO6hqCtm2APXJdSEVx6mwbho) *****

{"Intermediate table:\n": "[HEADER]: 
description_losses|c_1940_41\n---\n[ROW] 1: 
Murdered|100000.0\n[ROW] 2: Murdered in Eastern 
Regions|NULL"}

----------------------------------------------------------------------

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## Decision: Now that I have the data showing 100,000 
people were murdered in the year 1940/41, I will move 
forward to deliver The Final Answer based on this 
information.

-------------------------------------------------------------------------
Next speaker: deliver_proxy

deliver_proxy (to chat_manager):

The Final Answer: 100000.

--------------------------------------------------------------------------
Gold label:  100,000

Next speaker: Table_QA_Planner

Table_QA_planner (to chat_manager):

## Decision: I will extract the relevant data for the 
year 1940/41, focusing on the rows that indicate how 
many people were murdered. I am waiting for the 
SQL coder to return the intermediate table with 
columns `description_losses` and `c_1940_41`.

----------------------------------------------------------------------

Next speaker: SQL_coder

SQL_coder (to chat_manager):

***** Suggested tool call 
(call_SO6hqCtm2APXJdSEVx6mwbho): 
execute_sql *****

Arguments: 

{"code":"SELECT `description_losses`, ̀ c_1940_41` 
FROM DF WHERE `description_losses` LIKE 
'%Murdered%';","code_type":"sql","reflection":"Extra
cting the number of people murdered in the year 
1940/41 from the relevant row."}

>>>>>>>> EXECUTING FUNCTION execute_sql...

Figure 6: A demo from WikiTQ. In this example, Planner (referred to as Table_QA_Planner in the figure) can
derive the answer from the returned intermediate table with the assistance of the SQL Table Curator (referred to as
SQL_coder in the figure) in just one iteration.

Algorithm 2 Code-Refining Memory (CRM)
Input: Problematic intermediate program p, Table t, Question q, Round limit r, Table Curator agentMC , Memory module
Me, Code execution tool Tc

Output: Refined program pnew, the feedback from executor feedback
1: # Numbers in comments correspond to those in Fig. 3
2: curRound← 0
3: while curRound < r do
4: c′ ←Me.search(p, (t, q)) # ① Retrieve relevant cases from memory
5: pnew ←MC .makeDecision(c

′, (t, q)) # ② Generate a refined program
6: isCorrect, feedback← Tc.execute(pnew) # ③ Execute the refined program
7: if isCorrect is True then
8: Me.store(pnew, (t, q), feedback) # ④ Store successful refinement in memory
9: break

10: end if
11: end while
12: # The feedback includes execution details of the corrected code, accounting for cases where execution still fails after

maximum refinement attempts.
13: return pnew, feedback
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## Decision: Now that I have the top_5 results for the 

relevant tournaments, I will check if the top_5 values for 

all three tournaments are greater than 0. I am waiting 

for the Python coder to return the result indicating if all 

values meet this condition.

------------------------------------------------------------------------

Next speaker: Python_coder

Python_coder (to chat_manager):

***** Suggested tool call 

(call_e0TjDOivzfQ5v5sSIyDHrJWY): execute_python 

*****

Arguments: 

{"code":"top_5_results = {'masters tournament': 1, 'us 

open': 2, 'the open championship': 2}\nall_in_top_5 = 

all(value > 0 for value in 

top_5_results.values())\nall_in_top_5","code_type":"pyt

hon","reflection":"Checking if Tony Lema was in the top 

5 for all specified tournaments."}

------------------------------------------------------------------------

>>>>>>>> EXECUTING FUNCTION execute_python...

***** Response from calling tool 

(call_e0TjDOivzfQ5v5sSIyDHrJWY) *****

{"Intermediate table:\n": "True"}

------------------------------------------------------------------------

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## The Final Answer: ```Yes```

------------------------------------------------------------------------

Next speaker: Deliver_Proxy 

Deliver_Proxy (to chat_manager):

The Final Answer: Yes.

------------------------------------------------------------------------

Gold label: 1

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## Decision: I will extract the relevant rows for the 

Master Tournament, US Open, and Open 

Championship along with their top_5 results to check 

if Tony Lema was in the top 5 for these tournaments. 

I am waiting for the SQL coder to return the 

intermediate table.

-----------------------------------------------------------------------

Next speaker: SQL_coder

SQL_coder (to chat_manager):

***** Suggested tool call 

(call_HNmrwnLCP96PbhywVaTI1Npn): execute_sql 

*****

Arguments: 

{"code":"SELECT `tournament`, `top_5` FROM DF 

WHERE `tournament` IN ('masters tournament', 'us 

open', 'the open 

championship');","code_type":"sql","reflection":"Extrac

ting top_5 results for relevant tournaments to check 

Tony Lema's standings."}

-----------------------------------------------------------------------

>>>>>>>> EXECUTING FUNCTION execute_sql...

***** Response from calling tool 

(call_HNmrwnLCP96PbhywVaTI1Npn) *****

{"Intermediate table:\n": "[HEADER]: 

tournament|top_5\n---\n[ROW] 1: masters 

tournament|1\n[ROW] 2: us open|2\n[ROW] 3: the 

open championship|2"}

-----------------------------------------------------------------------

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

Deliver_Proxy (to chat_manager):

# Table 'DF':

[Caption]: tony lema

[HEADER]: tournament|wins|top_5|top_10|top_25|events|cuts_made

---

[ROW] 1: masters tournament|0|1|2|4|4|4

[ROW] 2: us open|0|2|3|4|6|5

[ROW] 3: the open championship|1|2|2|2|3|3

[ROW] 4: pga championship|0|0|1|2|5|4

[ROW] 5: totals|1|5|8|12|18|16

# Statement: tony lema be in the top 5 for the master tournament , the us open , and the open championship.

Figure 7: A demo from TabFact. In this example, Planner (referred to as Table_QA_Planner in the figure) assigned
both the SQL Table Curator (referred to as SQL_coder in the figure) and Python Table Curator (referred to as
Python_coder in the figure) to generate code, and obtained the final answer after the two round of code generation.
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>>>>>>>> EXECUTING FUNCTION execute_sql...

***** Response from calling tool 

(call_hInK88NqchNlL5fImGir9JEQ) *****

{"Intermediate table 'DF':\n": "[HEADER]: 

percent_of_french_lang_workers_in_eastern_ontario\n---

\n[ROW] 1: 52.1"}

-----------------------------------------------------------------------------

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## The Final Answer: ```52.1%```.

-----------------------------------------------------------------------------

Next speaker: deliver_proxy

deliver_proxy (to chat_manager):

The Final Answer: ```52.1%```.

-----------------------------------------------------------------------------

gold label: 52.1

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## Decision: Please extract only the row for the "food 

service" sub-group and keep the relevant columns for 

the percent of French-language workers in Eastern 

Ontario. I am waiting for the SQL coder to return the 

intermediate table.

-----------------------------------------------------------------------

Next speaker: SQL_coder

SQL_coder (to chat_manager):

***** Suggested tool call 

(call_hInK88NqchNlL5fImGir9JEQ): execute_sql *****

Arguments: 

{"code":"SELECT 

`percent_of_french_lang_workers_in_eastern_ontario` 

FROM DF WHERE 

`sub_groups_of_the_agri_food_industry`='food 

service';","code_type":"sql","reflection":"Extracting the 

percent of French-language workers in Eastern Ontario 

for the food service sub-group."}

-----------------------------------------------------------------------

Next speaker: code_executor

Deliver_Proxy (to chat_manager):

# Table 'DF':

[Caption]: agri-food industry sub-groups for workers aged 15 years and over, two agricultural regions of ontario, 2011

sub-groups of the agri-food industry | eastern ontario | eastern ontario northern ontario | northern ontario

sub-groups of the agri-food industry | french-language workers other workers | french-language workers other workers

sub-groups of the agri-food industry | percent | percent | percent | percent

input and service supply|2.9|2.1|2.9|1.3

food, beverage, and tobacco processing| 9.7|6.0|3.0|3.3

food retail and wholesale|35.3| 31.3| 39.1|37.3

food service|52.1|60.6|55.0| 58.1

# Query: in eastern ontario, what percent of french-language workers have worked in the restaurant and food services 

sector?

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

## Decision: There is Hierachical Information within the table. Please help me flatten it. I am waiting for the Python 

coder to return the intermediate table.

Python_coder (to chat_manager):

## Header_Row_Flattened_1: {'percent of french-lang workers in eastern ontario'}{'percent of other workers in eastern 

ontario'}

## Header_Row_Flattened_2: {'percent of french-lang workers in northern ontario'}{'percent of other workers in 

northern ontario'}

Deliver_proxy (to chat_manager):

# Table 'DF':

[Caption]: agri-food industry sub-groups for workers aged 15 years and over, two agricultural regions of ontario, 2011

[HEADER]:sub_groups_of_the_agri_food_industry|percent_of_french_lang_workers_in_eastern_ontario|percent_of_other_workers_

in_eastern_ontario|percent_of_french_lang_workers_in_northern_ontario|percent_of_other_workers_in_northern_ontario

---

[ROW] 1: input and service supply|2.9|2.1|2.9|1.3

[ROW] 2: food, beverage, and tobacco processing|9.7|6.0|3.0|3.3

[ROW] 3: food retail and wholesale|35.3|31.3|39.1|37.3

[ROW] 4: food service|52.1|60.6|55.0|58.1

# Query: in eastern ontario, what percent of french-language workers have worked in the restaurant and food services 

sector?

Figure 8: A demo from HiTab. In this example, Planner (referred to as Table_QA_Planner in the figure) first
instructs the Python Table Curator (referred to as Python_coder in the figure) to flatten the hierarchical structure of
the table and then relies on SQL Table Curator (referred to as SQL_coder in the figure) to obtain the final answer.
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