CoRef: A Collaborative Refinement Framework for Table Question
Answering

Anonymous ACL submission

Abstract

Table Question Answering (TQA) enables
users to query semi-structured tables using nat-
ural language. However, current methods suf-
fer from two key challenges: (i) complex lay-
outs which hinder accurate reasoning and (ii)
substantial noise that disrupts table-processing
code generation. To address these challenges,
we propose CoRef, a collaborative refinement
framework. First, CoRef employs a Planner
and multiple Table Curators, working along-
side a Decision Trace Tree to distribute the
burdens of decision-making and table curation
across specialized agents while also enabling
backtracking when needed. Second, CoRef
integrates a Code-Refining Memory module,
which iteratively refines table-processing code
by learning from compiler feedback. Extensive
experiments on three popular TQA datasets
demonstrate that CoRef outperforms existing
methods (74.2% on WikiTQ, 88.6% on Tab-
Fact, and 74.7% on HiTab), validating its effec-
tiveness.

1 Introduction

Tables are a common format for organizing struc-
tured information and are widely used in various
domains, including Wikipedia (Pasupat and Liang,
2015) and government reports (Cheng et al., 2021).
Table question answering (TQA) (Zhang et al.,
2024b), which focuses on answering user queries
based on semi-structured tables, serves as a corner-
stone for information extraction (Wang et al., 2021;
Ye et al., 2024) and Retrieval-Augmented Al (Zhao
et al., 2024a; Pan et al., 2022). Thus, the ability to
effectively query and extract meaningful insights
from tables is crucial, whether it’s for academic
research or industry needs.

Large Language Models (LLMs) (Ouyang et al.,
2022) have exhibited remarkable capabilities in
responding to queries by leveraging their strong
natural language understanding (NLU) and reason-
ing skills. Building on this, recent studies (Chen,

(Missing the explicit
‘Country’ column)

Hierarchical Incomplete cells
rows

Redundant
columns

4 DY

T
1 Performance

T
1
Cyclist i i Time UCl Protour Points
Rank: 1-3
Alejandro Valverde (ESP) 5h29' 10" 40
Alexandr Kolobnev (RUS) s.t. 30
Davide Rebellin (ITA) s.t. 25
Rank: 4-6
Paolo Bettini (ITA) s.t. 20
Q: Which country had the most cyclists finish within the top 10?

A: Spain and ltaly.

Figure 1: An example of TQA illustrating the character-
istics of hierarchical structure, incomplete information
and redundant content of a Table.

2022; Zhao et al., 2023; Sui et al., 2024a) have
utilized In-context Learning (ICL) (Brown et al.,
2020) for TQA, offering an alternative to tradi-
tional pre-training methods (Herzig et al., 2020;
Wang et al., 2021). However, despite these ad-
vantages, such methods face limitations due to the
context length constraints of LL.Ms, making it diffi-
cult to process excessively large tables. Moreover,
LLMs often struggle with reasoning over numer-
ical data within table cells (Schick et al., 2024).
Due to such limitations of LLMs, several stud-
ies (Cheng et al., 2022; Cao et al., 2023; Ye et al.,
2023; Zhang et al., 2023b) have enhanced LLMs
by incorporating external tools (Wang et al., 2024b)
and environment-observing techniques such as Re-
Act (Yao et al., 2022). These LLM-based agent
frameworks are thus capable of dynamically mak-
ing table-processing decisions based on the cur-
rent state of the table, such as querying specific
columns using SQL and performing calculations
with Python. This paradigm significantly improves
the accuracy of TQA by mitigating the inherent
limitations of end-to-end (E2E) methods.
However, existing agent-based methods still
need improvement to address two key chal-
lenges in TQA. Firstly, unlike the well-structured,
metadata-rich relational database tables found in

Text2SQL (Jin et al., 2022), semi-structured ta-
bles present greater complexity in both layout
and content. As illustrated in Fig. 1, tables fre-
quently contain hierarchical structures, incomplete
data, and redundant information. Existing agent-
based methods are ill-equipped to address this com-
plexity, as they impose the dual burden of rea-
soning and table curation on a single agent. In
other words, the single agent has to handle intricate
decision-making while mastering multiple tools
(e.g., SQL Executors) within a limited prompt,
thereby violating Simon’s principle of bounded
rationality (Mintrom, 2015), which posits that a
clear division of labor can effectively compensate
for the limitations in individual information pro-
cessing capacity. Secondly, tables often contain
substantial noise. Existing agent-based methods
typically rely on generating code to query these
tables. However, such noisy content frequently re-
sults in generated code that, despite being logically
sound, contains syntax errors that hinder successful
execution by external compilers. As illustrated in
Fig. 1, elements such as varied punctuation marks
and reserved SQL keywords like “Rank" contribute
to syntax errors, making it challenging to generate
executable table-processing code.

To address these challenges, we propose CoRef,
a Collaborative Refinement framework. For the
first challenge, CoRef introduces a collabora-
tive multi-agent framework, delegating decision-
making and table curation to distinct agents. Specif-
ically, CoRef assigns specialized roles: the Planner
assesses the table’s state at each step and decides
whether to finalize the answer or delegate table cu-
ration tasks to the Table Curators. If delegated, the
Table Curators generate and execute the code, then
return the refined table to the Planner for further
reasoning. Additionally, we introduce a Decision
Trace Tree that allows backtracking to a previous
state upon an incorrect decision, enhancing rea-
soning and adaptability. For the second challenge,
given that we adopt the agent-based paradigm that
generates code to query tables, we introduce a mod-
ule named Code-refining Memory (CRM) to ensure
that CoRef can generate syntactically correct code
in the presence of noisy data. This module utilizes
compiler feedback—typically providing informa-
tion on syntax errors along with explanations—an
often overlooked resource in existing TQA meth-
ods. By storing the experience gained from previ-
ous errors, the module allows the model to refine its
capabilities and improve code accuracy over time

iteratively. When encountering challenging TQA
cases, CoRef can retrieve similar examples from
memory, thereby enhancing the reliability of code
generation.

Our main contributions include:

* We propose CoRef, a collaborative multi-
agent framework for TQA that distributes
tasks among specialized agents. Combined
with a Decision Trace Tree, CoRef effectively
handles complex, noisy tables and generates
accurate answers.

* CoRef introduces Code-refining Memory,
which stores previous compiler feedback in
memory, allowing the model to evolve by
learning from past experiences. This helps the
model gradually avoid generating code with
syntax errors, thereby improving the overall
accuracy of CoRef.

* CoRef outperforms SOTA methods in exten-
sive experiments on three public TQA datasets
(74.2% on WikiTQ, 88.6% on TabFact, and
74.7% on HiTab), validating its effectiveness.

2 Related Work

2.1 Table Question Answering

Prior to the advent of LLMs, table-related meth-
ods (Dong et al., 2022; Jin et al., 2023; Ye et al.,
2024) predominantly relied on encoder-only mod-
els for downstream tasks. However, these methods
required extensive labeled data to achieve optimal
performance. With the rise of LLMs and their supe-
rior NLU and reasoning, researchers (Zhang et al.,
2024b) began integrating them into TQA. LLM-
based methods are classified into two categories:
E2E methods (Chen, 2022; Wu et al., 2024; Singha
et al., 2023; Sui et al., 2024b; Zhao et al., 2023)
and those augmented with external tools (Cheng
et al., 2022; Ye et al., 2023; Wang et al., 2024c;
Nahid and Rafiei, 2024; Zhao et al., 2024b; Zhang
et al., 2024a; Abhyankar et al., 2024; Liu et al.,
2023; Ji et al., 2024; Mao et al., 2024; Li et al.,
2025). E2E methods (Wu et al., 2024; Singha et al.,
2023; Sui et al., 2024b; Zhao et al., 2023) involve
LLMs directly processing tabular data and queries
through their inherent textual reasoning abilities.
Nevertheless, E2E methods are constrained by the
LLM’s inherent weaknesses in numerical compu-
tation (Ahn et al., 2024) and the context length
constraint, which hampers reasoning over large
tables. To overcome E2E limitations, studies (Lu

etal., 2024) use agent-based methods, where LLMs
generate intermediate code based on a table, and
external executors derive answers by running it.
However, these methods rely on single-agent sys-
tems and lack effective utilization of compilation
tool feedback for iterative self-improvement.

2.2 LLM-based Agents

Due to inherent limitations of LLMs like challenges
with numerical computation and factual hallucina-
tions (Schick et al., 2024; Wang et al., 2024b), inter-
est in LLM-powered agents has grown (Wang et al.,
2024a; Zhang et al., 2023a; Miyake et al., 2024).
Numerous studies have proposed methods to im-
prove agent reasoning, such as Tree-of-Thoughts
(ToT) (Yao et al., 2024), ReAct (Yao et al., 2022),
Self-refine (Madaan et al., 2024), Reflexion (Shinn
et al., 2024), and Meta-CoT (Yoran et al., 2023),
iteratively refining agents via feedback. In par-
allel, other works have explored the evolution of
agent capabilities (Sumers et al., 2024; Park et al.,
2023; Qian et al., 2024, 2023). Additionally, multi-
agent frameworks (Hong et al., 2023; Wu et al.,
2023; Chen et al., 2023a) have emerged, intro-
ducing agents with distinct roles and collabora-
tive strategies, advancing beyond single-agent sys-
tems. Techniques such as Debate (Du et al., 2023;
Xiong et al., 2023; Liang et al., 2023; Chen et al.,
2023b) enhance collaborative reasoning through
critical interactions between agents. Despite these
advancements, no current research applies multi-
agent frameworks or evolving compiler feedback
techniques to TQA tasks.

3 Problem Statement

In the TQA task, each instance is represented as a
triplet (¢, g, a), where ¢t € T is the semi-structured
table, ¢ € Q is the question and a € A is the golden
answer extracted from the associated table ¢. The
table ¢ consists of a header H and a data section D.
The header H contains schema information and is
designed for visual communication, often featuring
a hierarchical organization common in web pages
and business documents, as opposed to database
sources (see Fig. 1 for an example).

The question-answering process is defined by a
mapping function ¢ : Q x T — A. For E2E meth-
ods, the function ¢ is encapsulated by a dedicated
model M:

a’ = M(q,1), (1)

where a’ denotes the predicted answer. In contrast,

agent-based methods involve the LLM M gener-
ating an intermediate program p, then executed by
an external tool 7 to output the answer a’:

p=Ml(qt); d=T(pt). (2)

Such an agent-based process may iterate several
times, refining the program p and improving the
accuracy of the final predicted answer.

4 Methodology

We propose CoRef, a Collaborative Refinement
framework for TQA (Fig. 2), where multiple agents
collaborate using a Decision Trace Tree and Code-
refine Memory to iteratively generate code for ex-
tracting answers from tables. The following sec-
tions elaborate on the agent roles (§ 4.1), the De-
cision Trace Tree (§ 4.2), and the agent-tool in-
teraction mechanism (§ 4.3). The pseudocode de-
scription of CoRef’s workflow can be found in
Appx B.1, Alg. 1.

4.1 Role Definition

In this framework, specialized agents work together
to refine and extract information from tables, man-
aging complex user inquiries by assigning specific
tasks to each agent. These agents include:
Planner: The Planner agent functions as the core
component within the framework. It receives the
table and question from the user and, through it-
erative refinement of the intermediate tables, ul-
timately derives the final answer. Each decision-
making step involves identifying the necessary type
of refinement operation—whether to condense or
expand the information—and then designating the
appropriate Table Curator to implement the oper-
ation. Once the table information is adequately
refined, the Planner leverages its text comprehen-
sion abilities to deduce the final answer directly.
Table Curator: The Table Curator generates code
based on the Planner’s decisions, executes it via
an external compiler, and returns an intermediate
table. If execution fails, it iteratively corrects the
code using CRM. If errors persist, it analyzes the is-
sue and reports potential causes to the Planner, en-
abling backtracking and reconsidering the decision-
making strategy based on the error feedback. Table
Curators are further divided into the Python Curator
and the SQL Curator, each with distinct prompts
suited to their respective programming language.
The Python Curator focuses on flattening hierar-
chical structures and extracting key information

D
Decision: Please count the

A=) .
occurrences of each country in the top 10
i results. | am waiting for the SQL Curator to

Round 2 Return code error message‘o m
=R

AR

The compiler returns an error 00!
message indicating that there |
appears to be no explicit column named

return the intermediate Table.

A ezzge
i and first complement the country column. | as follows:

Decision Python Curator SQL Curator
Trace Agent G
Tree Role List
(o}
Cyclist Team Performance
1 J Time UCl Protour
Rank: 1-3 NaN NaN NaN
Alejandro Valverde (ESP) Caisse d'Epargne 5h29' 10" 40
2 3 /[Alexandr Kolobnev (RUS) TeamCSCSaxoBank s.t. 30
Davide Rebellin (ITA) Gerolsteiner s.t. 25
4 Rank: 4-6 NaN NaN NaN
Paolo Bettini (ITA) Quick Step s.t. 20
Final ste o2 ste are
Answer Q: Which country had the most cyclists finish within the top 10?
Round 1 code executed su:cessfully.c
; < Decision: The table has hierarchical The intermediate Table is
structure. Please convert the complex as follows:
layout into a simpler one. | am waiting for Rank Cycist Team "crormance Performance sbout U

+3__ Alej... Cais.. 5h29'10" 40

| the Python Curator to return the
| intermediate table.

46__Paol... Quic.. st 20

| results. | am waiting for the SQL Curator to
return the intermediate table.

"country" in this table.

Round 3 code executed successfully. ()
Decision: | will revise my approach

The intermediate Table is

Rank _ Cyclist _ Country Team .ime
+3 _ Alej.. Spain _Cais... 5h29'10"

am waiting for the Python Curator to return
the intermediate table.

46 Paol.. Italy Quic.. st 20

Round 4 Code executed suc:essfullyAO
q
&

D

Decision: Please count the
a
occurrences of each country in the top 10

The intermediate Table is

as follows: | country Count
Spain 3
Russian 1

Italy 3

Final Round
—,, The Final Answer: Spain and Italy.

Figure 2: Overview of CoRef. The framework consists of three roles: one Planner and two Table Curators, each
with distinct responsibilities. Each agent follows a unique prompt defining its role and providing demonstrations.
The Planner analyzes the table and assigns tasks, while the Table Curators generate and execute the code using
external tools, returning an intermediate table. On the left, the Decision Trace Tree illustrates the Planner’s reasoning
process, with node numbers corresponding to dialogue rounds. The red dashed arrow represents backtracking from
node 2 to node 1 due to an execution error reported from the SQL Curator.

with regex, while the SQL Curator excels at retriev-
ing columns and performing aggregations, such as
identifying maximum values.

4.2 Decision Trace Tree

LLMs make reasoning errors in complex TQA
tasks. The root cause lies in the autoregressive
probability paradigm (Zhao et al., 2024¢), which
inherently lacks the ability to revise previously gen-
erated content (Hao et al., 2023) and real-world
feedback (Yao et al., 2022). Recent methods that
extend inference time (Zhao et al., 2024c), such
as ToT (Yao et al., 2024) and SC (Wang et al.,
2022), have proven effective in enhancing reason-
ing. Building on this paradigm, we introduce the
Decision Trace Tree, which records the model’s
reasoning path and enables it to backtrack when
receiving error feedback, granting autoregressive
LLMs the ability to correct mistakes. As shown in
Fig. 2, each node n represents a different table state
tn, where node O corresponds to the initial table
state tg. CoRef engages in four dialogue rounds,
followed by the final round, where the Planner
provides the final answer. Consequently, the tree
consists of five nodes and an additional node as the
final answer. The transition from node n to node
n + 1 in CoRef is formulated as follows:

dy, = MP(Q) tn)» Pn = MC(dna tn)a 3)
) tay1, if executed successfully
Telpn) = {en, otherwise - @

The Planner M p makes a decision d,, based on
the current table state t,, at node n, and the Cura-
tor M generates the program p,, according to the
decision d,,, which is then executed by an external
tool executor 7T.. If execution succeeds, the up-
dated table state ¢, at node n + 1 is obtained. If
execution fails, an error message e, is returned. In
this case, CoRef backtracks to node n and utilizes
the error message e,, from node n + 1 to attempt a
new transition to node n + 2 by generating a new
decision dj41:

dn+1 = MP(Q, tn, en) (5

As illustrated in Fig 2, after backtracking from node
2 to node 1, CoRef then transitions to node 3.

4.3 Code-refining Memory

The low accuracy of previous agent-based meth-
ods (Zhang et al., 2023b; Wang et al., 2024c) is
partly attributed to their tendency to generate code
with minor syntactic errors when handling noisy
tables. While logically correct, such errors hinder
compilation. To mitigate this, CoRef introduces the
Code-Refining Memory (CRM) module, activated
when a Table Curator encounters a coding error.
LLMs inherently exhibit randomness during the
generation process, as illustrated below:

T

pm(ylz) = Hp(yt|x, Y<t),
t=1

(6)

where x represents the input and y denotes the gen-
erated tokens. As a result, LLM-based methods
often adopt SC by allowing LL.Ms to generate di-
verse reasoning paths (Chen et al., 2023c) in order
to improve accuracy. Observations show that when
faced with complex samples, LLMs can success-
fully generate compilable code approximately 1
or 2 times out of 10 attempts. This indicates that
the correct code to solve the TQA samples exists
within the model’s search space. Therefore, we can
increase the likelihood of generating the correct
solution by prefixing the appropriate context ¢ (Liu
etal., 2021):

T
pLm(yle, z) = Hp(yt!c,a:, y<t)- (D

t=1
Compared to Self-Refine (Madaan et al., 2024;
Shinn et al., 2024), where LLMs self-correct based
on their own feedback, external tools like compil-
ers provide more precise insights, offering specific
explanations for code errors. Consequently, CoRef
leverages the feedback from the compiler to help
the model correct its generated code. Furthermore,
some works (Sumers et al., 2024; Park et al., 2023)
have introduced the concept of evolving, where
agents accumulate experience in memory, allow-
ing them to enhance their capabilities and adapt to
complex challenges over time. In line with this, the
CRM maintains a memory that stores difficult cases
encountered during CoRef’s operation, facilitating

continuous improvement.

Memory
(complex code
examples) @

Embedding-based
Seurlcher
demonstrations

syntactically
correct code

) Table Curator

X G

execution signal

Code Executor

Figure 3: The overview of Code-refining Memory. The
Table Curator retrieves demos from the memory when
handling challenging cases. Successfully compiled code
is stored for future reference.

The overview of this module is shown in Fig. 3

while it is also detailed in pseudocode in Appx. B.2.

The workflow consists of four steps: 1) When a new

instance arrives, the module first retrieves similar
examples from the memory using an embedding-
based searcher. These examples are challenging
cases the model has previously encountered. This
step can be formalized as Equation 8:

¢ = R(x), ®)
T

pLLM(y‘Clﬂx) = Hp<yt‘clkuy<t)7 (9)
t=1

where R is a function that retrieves examples from
the memory that are similar to the current input
(line 4 of Alg. 2). Here, ¢’ represents these retrieved
examples, including complex cases, corresponding
code, and compilation information. 2) The Table
Curator uses these demonstrations as references to
generate code, as described in Equation 9, which
is then submitted to the code execution tool 7. 3)
The code execution tool 7. compiles the code and
returns a signal indicating the presence of syntax er-
rors. 4) If the model encounters a compilation error,
it iteratively performs self-correction until the code
either compiles successfully or exceeds a prede-
fined iteration threshold. Upon success, the syntac-
tically correct code and corresponding sample are
stored in memory for future reference. However, if
the retry count surpasses the threshold, it suggests
an incorrect table manipulation decision—such as
attempting to extract country information from a
table that lacks a “country” column. In such cases,
the Table Curator forwards the error message to the
Planner, aiding in more informed decision-making.

5 Experiments

In this section, we design targeted experiments to
address key research questions: RQ1: How does
the performance of CoRef compare to that of lead-
ing single-agent models in terms of the effective-
ness and accuracy across various datasets? RQ2:
How does each proposed sub-module contribute to
the overall performance of CoRef? RQ3: What er-
rors are associated with methods based on different
paradigms? RQ4: How does CoRef compare to
other baselines regarding time efficiency?

5.1 Datasets & Baselines

We employ three widely studied TQA datasets,
with their statistics presented in Table 1. We com-
pare CoRef with the baselines in Table 2, where
MixSC (Liu et al., 2023) represents the current
SOTA. See Appx. A for details about baselines.

Table Infc
Datasets able Tnfo

Test Tables / QA Pairs Main Domains Feature

2108 /4344 General
1695 /12779 General
538/ 1584

WikiTQ (Pasupat and Liang, 2015)
TabFact (Chen et al., 2020)
HiTab (Cheng et al., 2021)

Multi-hop Questions
Binary Answers
Crime, Health Hierarchical Layouts

Table 1: Statistics of TQA Datasets.
5.2 Metrics

Due to the inherent randomness of LLMs in gener-
ative architectures, achieving an exact match with
gold-standard answers can be challenging. For ex-
ample, given the query "What is the difference in
years between constituency 1 and 2?" with the gold
answer "4", an LLM-generated response like "4
years" would be marked incorrect under an exact
match evaluation. To address this, following prior
studies (Cheng et al., 2022; Ye et al., 2023; Liu
et al., 2023), we use Semantic Exact Match Ac-
curacy (Cheng et al., 2022) as the evaluation met-
ric across all datasets, comparing predictions with
ground truth labels from a semantic perspective.

5.3 Implementation Details

Some methods employ SC and Majority Voting,
while others do not. We adhere to their original
configurations and distinguish them using ‘w/ SC’
and ‘w/o SC’ in Table 2.

For the underlying LLM of CoRef, we use
ChatGPT-3.5-turbo-0613 (GPT-3.5), ChatGPT-40-
mini (40-mini), and LLaMA-3.1-8B (LLaMA) (Mi-
naee et al., 2024) as the base models. The test set
from each dataset is used as the evaluation data,
and the prompts are sourced from the training set.
We employ AutoGen (Wu et al., 2023) as the multi-
agent framework. We refactor the functions that
select the next speaker and call external tools in the
framework to better align with the current scenario,
which is discussed further in Appx. C.2.

5.4 Overall Performance (RQ1)

The comparison results based on GPT-3.5 across
three datasets are presented in Table 2. !

From Table 2, We can draw the following conclu-
sions: First, CoRef consistently outperformed all
baselines, demonstrating clear superiority across
all datasets. Notably, for HiTab featuring hierar-
chical tables, methods relying solely on SQL (e.g.,
Dater) as an external tool underperformed com-
pared to E2E methods, whereas those integrating
Python (e.g., HiTab) showed improved outcomes.
CoRef stands out in this context by leveraging the

"Results based on 40-mini are similar to GPT-3.5, as shown
in Appx. D.1. However, the situation differs for LLaMA with
weaker coding abilities, as discussed in Appx. D.3.

0]
Method Acc (%)

(GPT-3.5 based)

WIKITQ TABFACT HITAB

LLMs w/o external tools
E2E w CoT 51.8 70.5 63.5
E2E w ReAct 66.4 72.8 68.4

LLMs w/ external tools

TabSQLify (Nahid and Rafiei, 2024) 64.7 79.5 58.4
Dater (Ye et al., 2023) 65.0 83.5 54.6
ReAcTable (Zhang et al., 2023b) 65.8 83.1 62.4
8 Chain-Of-Table (Wang et al., 2024c) 67.3 86.6 58.5
§ H-STAR (Abhyankar et al., 2024) 68.7 83.7 66.2
PoTable (Mao et al., 2024) 62.7 85.9 -
ALTER (Zhang et al., 2024a) 67.4 84.3 52.5
MixSC (Liu et al., 2023) 64.2 - 68.6
" Binder (Chengetal,2022) 551 851 546
API-Assited (Cao et al., 2023) 42.8 - 70.0
o Dater (Ye et al., 2023) 69.0 85.4 57.1
f ReAcTable (Zhang et al., 2023b) 68.0 86.1 67.6
= ALTER (Zhang et al., 2024a) 70.4 87.2 54.0
GrahOTTER (Li et al., 2025) - - 70.8
MixSC (Liu et al., 2023) 73.7 88.5 72.6
© CoRef 7 742 886 747

Table 2: Main Results. The evaluation results of CoRef
and the baselines on three datasets are grouped by their
use of external tools and self-consistency.

Python Table Curator to flatten hierarchical tables,
following the step-by-step instructions generated
by the Planner. This approach gives a clear advan-
tage over other methods on HiTab. Second, the
comparison of different paradigms highlights that
the inference with planning (e.g., Chain-of-Table)
and external tools (e.g., MixSC) can substantially
enhance LLM capabilities——an aspect that CoRef
particularly emphasizes. Third, SC is undeniably
a straightforward yet highly effective method for
improving model performance, as evidenced by
the comparison between the w/ SC and w/o SC
methods in the table. While CoRef does not ex-
plicitly employ SC, it inherently integrates SC-like
patterns through SRM and DTT. Finally, the results
from H-STAR and MixSC indicate that combining
textual and symbolic reasoning significantly boosts
LLM accuracy in table reasoning tasks. CoRef can
similarly be categorized in this type, enabling dif-
ferent models to specialize in distinct capabilities,
thereby achieving a more effective combination of
strengths.

5.5 Ablation Studies (RQ2)

We perform ablation studies on all datasets to as-
sess the contributions of key modules to CoRef’s
overall performance improvement: w/o Collab
(without collaboration, i.e., planning and coding
handled by a single agent), w/o DTT (without the
DTT for backtracking), and w/o CRM (without the

Acc (%)

Methods
WIKITQ TABFACT HITAB
CoRef 74.2 88.6 74.7
w/o Collab 71.1 (| 3.1) 86.8 () 1.8) 69.9 (] 4.8)
w/o DTT 71.8(24) 87.0(1.6) 71.8(]29)
w/o CRM 71.9(] 2.3) 86.5(2.1) 73.1(] 1.6)

Table 3: Ablation results. It presents the contribution of
each module in CoRef, including Collaboration, Deci-
sion Trace Tree, and Code-Refining Memory. Values in
parentheses represent the drop in accuracy.

Code-refining Memory for iterative correction).

The results are shown in Table 3. First, Collab-
orative agents have a significant impact on HiTab
(4.8%) and WikiTQ (3.1%), validating its efficacy
in orchestrating strategic decision-making for sim-
plifying intricate table layout or content. Second,
facing WikiTQ requires multi-hop reasoning and
HiTab demands complex numerical computations,
DTT achieves remarkable improvements (2.4% and
2.9% respectively), evidencing its enhanced reason-
ing capacity for diverse analytical challenges. Fi-
nally, CRM effectively mitigates data noise issues
prevalent in WikiTQ (2.3%) and TabFact (2.1%),
proving critical for generating syntactically robust
and semantically precise code interpretations.

5.6 Error Studies (RQ3)

We conduct a comprehensive error analysis of
CoRef alongside two representative methods from
different paradigms, E2E /w ReAct and MixSC,
supplemented by a case study.

5.6.1 Statistical Error Analysis

We sampled 100 cases from HiTab where E2E w/
ReAct failed, while also recording the responses of
MixSC and CoRef for these instances. Each erro-
neous case was manually evaluated to determine
the type of error, which we categorized into five
types. Misinterpretation occurs when the LLM
misunderstands the semantics of the question or
table, such as failing to recognize hierarchical rela-
tionships or misinterpreting the entity referenced
in the question. Coding Errors involve incorrect
code generation, including syntax errors or code
that does not accurately reflect decision-making se-
mantics, preventing the retrieval of the correct inter-
mediate table. Misalignment Issues arise when the
generated output is conceptually correct but does
not conform to the required format specified in the
instructions. Reasoning Inconsistency refers to

=1 Misinterpretation == Reasoning
=1 Coding Errors Inconsistency

100 =1 Misalignment Issues [EEE Others

80

13

o
i<}

33 25

Number of Errors
N
o

49

16 19
20 1
13 11
0
E2E MixSC CoRef

Figure 4: Analysis of error types in 100 samples from
HiTab where E2E w/ ReAct fails.

cases where the LLM’s reasoning path is inconsis-
tent, such as deciding to sum all numbers in step
two but then providing incorrect values in step three
due to its limited numerical calculation capabilities.
Others include dataset annotation issues, network
error or instances where the model exceeds its pre-
scribed iteration limit.

Since the selected samples are those where the
E2E method itself makes errors, this indicates that
these questions are relatively challenging. As illus-
trated in Fig. 4, CoRef significantly improves table
comprehension by allowing the Planner and Cu-
rators to collaborate in systematically simplifying
the table layout. For the E2E method, the error type
with the highest proportion is Reasoning Inconsis-
tency, which is due to LLMs’ weakness in numer-
ical computation (Imani et al., 2023; Chen et al.,
2024). Although the LLM correctly plans the rea-
soning path, it fails to provide the final numerically-
related answer. From the Fig. 4, both MixSC and
CoRef exhibit a substantial reduction in the Rea-
soning Inconsistency, suggesting that their reliance
on external tools effectively mitigates weaknesses
in numerical computation. Unfortunately, intro-
ducing external tools also increases the possibility
of coding errors. CoRef effectively reduces this
type of error after introducing CRM. Additionally,
CoRef shows a minor increase in Misalignment Is-
sues, which might be due to the context size raising
while decreasing the model’s ability to adhere to
the output format. Appx. C.1 discusses this further.

5.6.2 Case Study

To highlight the differences between CoRef and
existing methods in handling complex table lay-
outs, we conducted a case study comparing E2E w/
ReAct, MixSC, and CoRef. Using a HiTab sample

. E2E e Final Answer: total

screen time 0.128 0.0002 w/ ReAct o el ATseEe]
sedentary time * Final Answer: total, weekend

total 0124 [0.0016 .
Ipa

total 0.096 0.0001

ki 0.067 0.003 MixSC

weekend 0.103 .0003 (Python Reasoning Path)

mvpa

Q: which Tpa has the Targest beta coefficients?

Final Answer: weekend

Final Answer: Ipa-total, [pa-weekend

Thought: To find which "Ipa" has the largest beta coefficients, | will need to filter the
dataframe for rows where the behaviour is "Ipa" and then check for the beta value.
However, in the provided data, "Ipa" has no beta coefficients (indicated by a dash "-"). |
will verify if there is any other relevant information regarding "Ipa” in the dataframe.

Action: python_repl_ast

Action Input: df[df['behaviour'] == 'Ipa']

Observatio

Thought: The observa rms that there are no beta coefficients associated with
"Ipa" since the value is a dash ("-"). Thus, | cannot determine which "Ipa" has the largest
beta coefficients as there are none present.

Final Answer: None

A: weekend. Table_QA_planner (to chat_manager): Table_QA_planner (to chat_manager): Table_QA_planner (to chat_manager):
Decision: It is a hierarchical table, we should flatten Decision: Extract only the rows corresponding to Decision: Identify which row has the maximum beta value among the
it by some python functions. | am waiting for the "Ipa" to identify which one has the largest beta extracted "Ipa" coefficients. | am waiting for the Python coder to return
Python coder to return the intermediate table. coefficient. | am waiting for the SQL coder to return the intermediate table.
Python_coder (to chat_manager): the intermediate table. Python_coder (to chat_manager):
Arguments: {"code": "import pandas as pd..."} SQL_coder (to chat_manager): Arguments:
>>>>> EXECUTING FUNCTION execute_python... Arguments: {"code":"...max_beta_row =
(A FEW ROUNDS LATER...) {"code":"SELECT “period’, 'beta’ FROM DF WHERE DF_lpa.loc[DF_lpa['beta'].idxmax()]","code_type":"python","reflection":"|
Intermediate table: [. “type_of_time'='Ipa’;","code_type":"sql","reflection" dentifying the row with the maximum beta coefficient for Ipa."}
oftime Period :"Extracting the beta coefficients for Ipa."} >>>>>>>> EXECUTING FUNCTION execute_python...
lpa_| total |0.09].. >>>>>>>> EXECUTING FUNCTION execute_sql... Intermediate table:
CoRef laRliveekday/lo0E7IE Intermediate table: [T N [HEADERY]: occasion | beta
Ipa |weekend|0.103 .. [ROW] 1: weekend|0.103

[weekend [0.103 |

Table_QA_planner (to chat_manager): The Final Answer: *“"weekend ™.

Figure 5: Showcasing the results of E2E, MixSC, and CoRef on the same instance from the HiTab dataset. This
instance is challenging due to the hierarchical relationships present in the ‘behaviour’ column.

with hierarchical data in the first column, we ana-
lyze the reasoning processes of these three methods.
As shown in Fig. 5, CoRef demonstrates superior
reasoning capabilities when handling this complex
table. For E2E w/ ReAct, despite receiving explicit
prompts for iterative question formulation under
the SC setting, the model provided final answers
in all five attempts—none of which were correct.
For MixSC, we focus on the outcome of its Python
Reasoning Path (as the results from its Textual Rea-
soning Path closely mirror those of E2E w/ ReAct
and are therefore omitted). It is evident that MixSC
failed to accurately grasp the hierarchical structure
of the table when generating Python code, leading
to incorrect results. In contrast, CoRef success-
fully refined the table through iterative curation,
ultimately delivering the correct answer by relying
on a highly streamlined intermediate table.

5.7 Efficiency Analysis (RQ4)

We evaluate efficiency by analyzing the total num-
ber of LLM call rounds on the WikiTQ dataset, as
this metric is less affected by network instability
than total runtime. Table 4 compares CoRef with
baselines, detailing the number of rounds per op-
eration and total LLM calls. Notably, for methods
using SC (marked with &), sampling is fixed at 5
(consistent with the original setting), leading to a
five-fold increase in total rounds. Despite its multi-
agent framework, CoRef maintains a total LLM call
count comparable to the current SOTA approach,
MixSC. For locally deployed model runtime com-
parisons, see Appx. D, where results indicate that
CoRef and SOTA methods exhibit nearly identical
time efficiency.

Method Detailed Operations Total Rounds

E2E w/ ReAct® Query: 1-3 5-15

Binder® Neural SQL: 10 50
Decompose Table: 8

DATER* Generate Cloze & SQL: 8 100
Query: 4
Dynamic Plan < 5

Chain-of-Table ~Generate Args < 19 <25
Query: 1

ReAcTable* Plan&Action: ~3 ~15

. Table Decompose: 1

TabSQLify Query: 1 2

H-STAR Row / Column Retrieval: 4-8 6-10
Query: 2

ALTER® Table / Query Augmenting: 5 30
Query: 1
Normalization: 1

MixSC* Direct Reasoning: 1 <35
Python Reasoning: < 5
Planner: < 10

CoRef Table Curator (SQL): < 10 <30

Table Curator (Python): < 10

Table 4: Generated sample counts for different methods.
SC-based methods (#) include the total rounds from
five model runs.

6 Conclusion

In this paper, we introduce CoRef, a novel multi-
agent framework designed to tackle the challenges
of TQA. CoRef is built upon three key modules:
Collaborative Agents, Decision Trace Tree, and
Code-Refining Memory. These components ef-
fectively address the limitations of existing LLM-
based methods, particularly in handling complex
and noisy web tables. Experimental results on three
widely studied public TQA datasets demonstrate
that CoRef surpasses SOTA methods, underscoring
its potential to advance TQA systems.

For future work, we aim to explore more
modality-specific tables and test-time scaling in
TQA, further enhancing its scalability and applica-
bility.

Limitations

While our approach enhances LLM performance
on TQA by incorporating three additional modules,
several limitations remain.

Inference Efficiency: Although extending rea-
soning time is an emerging trend, it inevitably im-
pacts efficiency. Compared to directly prompting
the LLM for an answer, our model incurs higher
computational costs and longer inference time.

Tree-Based Reasoning Constraints: We employ
a tree structure to assist in reasoning, yet its effi-
ciency and performance remain inferior to Monte
Carlo Tree Search (MCTS), highlighting a promis-
ing direction for future research.

Dependence on LLM Capabilities: Our method
relies heavily on the LLM’s inherent logical rea-
soning and code generation abilities. Consequently,
its effectiveness may be limited when applied to
weaker LLMs, yielding only marginal improve-
ments.

References

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-
dan K Reddy. 2024. H-star: LIm-driven hybrid sql-
text adaptive reasoning on tables. arXiv preprint
arXiv:2407.05952.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 225-237, St. Julian’s, Malta. Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and
Daniel Fried. 2023. Api-assisted code generation for
question answering on varied table structures. ArXiv,
abs/2310.14687.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F. Karlsson, Jie Fu, and Yemin
Shi. 2023a. Autoagents: A framework for automatic
agent generation. ArXiv, abs/2309.17288.

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit
Bansal. 2023b. Reconcile: Round-table conference
improves reasoning via consensus among diverse
lIms. arXiv preprint arXiv:2309.13007.

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit
Bansal. 2023c. Reconcile: Round-table conference
improves reasoning via consensus among diverse
Ilms. arXiv preprint arXiv:2309.13007.

Wenhu Chen. 2022. Large language models are few(1)-
shot table reasoners. ArXiv, abs/2210.06710.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Zui Chen, Yezeng Chen, Jiaqi Han, Zhijie Huang, Ji Qi,
and Yi Zhou. 2024. An empirical study of data ability
boundary in llms’ math reasoning. arXiv preprint
arXiv:2403.00799.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2021. Hitab: A hierarchical table

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:264426319
https://api.semanticscholar.org/CorpusID:263310605
https://api.semanticscholar.org/CorpusID:263310605
https://api.semanticscholar.org/CorpusID:263310605
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:252872943
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377

dataset for question answering and natural language
generation. ArXiv, abs/2108.06712.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, R.K. Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir R. Radev, Marilyn Ostendorf, Luke Zettle-
moyer, Noah A. Smith, and Tao Yu. 2022. Bind-
ing language models in symbolic languages. ArXiv,
abs/2210.02875.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. arXiv preprint arXiv:2201.09745.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154-8173.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. ArXiv, abs/2004.02349.

Sirui Hong, Xiawu Zheng, Jonathan P. Chen, Yuheng
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zi Hen Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:
Meta programming for multi-agent collaborative
framework. ArXiv, abs/2308.00352.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao
Lu, Jieping Ye, and Feng Zhao. 2024. Tree-of-
table: Unleashing the power of 1lms for enhanced
large-scale table understanding. arXiv preprint
arXiv:2411.08516.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qing-
cai Chen. 2022. A survey on table question answer-
ing: recent advances. In China Conference on Knowl-
edge Graph and Semantic Computing, pages 174—
186. Springer.

Rihui Jin, Jianan Wang, Wei Tan, Yongrui Chen, Guilin
Qi, and Wang Hao. 2023. Tabprompt: Graph-based
pre-training and prompting for few-shot table under-
standing. In Conference on Empirical Methods in
Natural Language Processing.

Qianlong Li, Chen Huang, Shuai Li, Yuanxin Xiang,
Deng Xiong, and Wengiang Lei. 2025. GraphOT-
TER: Evolving LLM-based graph reasoning for com-
plex table question answering. In Proceedings of

10

the 31st International Conference on Computational
Linguistics, pages 54865506, Abu Dhabi, UAE. As-
sociation for Computational Linguistics.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. arXiv preprint arXiv:2312.16702.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo
Chen. 2024. Large language model for table process-
ing: A survey. arXiv preprint arXiv:2402.05121.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Qingyang Mao, Qi Liu, Zhi Li, Mingyue Cheng, Zheng
Zhang, and Rui Li. 2024. Potable: Programming
standardly on table-based reasoning like a human
analyst. arXiv preprint arXiv:2412.04272.

Shervin Minaee, Toma Mikolov, Narjes Nikzad,
Meysam Asgari Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. 2024. Large language
models: A survey. ArXiv, abs/2402.06196.

Michael Mintrom. 2015. 12Herbert A. Simon, Admin-
istrative Behavior: A Study of Decision-Making Pro-
cesses in Administrative Organization. In The Oxford
Handbook of Classics in Public Policy and Adminis-
tration. Oxford University Press.

Kentaro Miyake, Hiroyoshi Ito, Christos Faloutsos, Hi-
rotomo Matsumoto, and Atsuyuki Morishima. 2024.
Netevolve: Social network forecasting using multi-
agent reinforcement learning with interpretable fea-
tures. Proceedings of the ACM on Web Conference
2024.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024.
Tabsqlify: Enhancing reasoning capabilities of
Ilms through table decomposition. arXiv preprint
arXiv:2404.10150.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:237091377
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://api.semanticscholar.org/CorpusID:266176930
https://aclanthology.org/2025.coling-main.368/
https://aclanthology.org/2025.coling-main.368/
https://aclanthology.org/2025.coling-main.368/
https://aclanthology.org/2025.coling-main.368/
https://aclanthology.org/2025.coling-main.368/
https://api.semanticscholar.org/CorpusID:267617032
https://api.semanticscholar.org/CorpusID:267617032
https://api.semanticscholar.org/CorpusID:267617032
https://doi.org/10.1093/oxfordhb/9780199646135.013.22
https://doi.org/10.1093/oxfordhb/9780199646135.013.22
https://doi.org/10.1093/oxfordhb/9780199646135.013.22
https://doi.org/10.1093/oxfordhb/9780199646135.013.22
https://doi.org/10.1093/oxfordhb/9780199646135.013.22
https://api.semanticscholar.org/CorpusID:269677821
https://api.semanticscholar.org/CorpusID:269677821
https://api.semanticscholar.org/CorpusID:269677821
https://api.semanticscholar.org/CorpusID:269677821
https://api.semanticscholar.org/CorpusID:269677821

Feifei Pan, Mustafa Canim, Michael Glass, Alfio
Gliozzo, and James Hendler. 2022. End-to-end table
question answering via retrieval-augmented genera-
tion. arXiv preprint arXiv:2203.16714.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, UIST °23, New York, NY, USA.
Association for Computing Machinery.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Annual Meeting of the Association for Computational
Linguistics.

Cheng Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize
Chen, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2023. Experiential co-learning of software-
developing agents. In Annual Meeting of the As-
sociation for Computational Linguistics.

Cheng Qian, Jiahao Li, Yufan Dang, Wei Liu, Yifei
Wang, Zihao Xie, Weize Chen, Cheng Yang, Yingli
Zhang, Zhiyuan Liu, and Maosong Sun. 2024. Iter-
ative experience refinement of software-developing
agents. ArXiv, abs/2405.04219.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Ananya Singha, José Cambronero, Sumit Gulwani,
Vu Le, and Chris Parnin. 2023. Tabular repre-
sentation, noisy operators, and impacts on table
structure understanding tasks in llms. Preprint,
arXiv:2310.10358.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024a. Table meets 1lm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645-654.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024b. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645-654.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L. Griffiths. 2024. Cognitive
architectures for language agents. Preprint,
arXiv:2309.02427.

11

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binx-
uan Huang, Xin Dong, and Meng Jiang. 2021. Tcn:
Table convolutional network for web table interpreta-
tion. Proceedings of the Web Conference 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zheng Wang, Bingzheng Gan, and Wei Shi. 2024a. Mul-
timodal query suggestion with multi-agent reinforce-
ment learning from human feedback. Proceedings of
the ACM on Web Conference 2024.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,
and Graham Neubig. 2024b. What are tools anyway?
a survey from the language model perspective. arXiv
preprint arXiv:2403.15452.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024c. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang,
Jiaheng Liu, Xinrun Du, Di Liang, Daixin
Shu, Xianfu Cheng, Tianzhen Sun, et al. 2024.
Tablebench: A comprehensive and complex bench-
mark for table question answering. arXiv preprint
arXiv:2408.09174.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing
Qin. 2023. Examining inter-consistency of large lan-
guage models collaboration: An in-depth analysis via
debate. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 7572-7590.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models.

https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:266573087
https://api.semanticscholar.org/CorpusID:266573087
https://api.semanticscholar.org/CorpusID:266573087
https://api.semanticscholar.org/CorpusID:269613978
https://api.semanticscholar.org/CorpusID:269613978
https://api.semanticscholar.org/CorpusID:269613978
https://api.semanticscholar.org/CorpusID:269613978
https://api.semanticscholar.org/CorpusID:269613978
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://api.semanticscholar.org/CorpusID:231951353
https://api.semanticscholar.org/CorpusID:231951353
https://api.semanticscholar.org/CorpusID:231951353
https://api.semanticscholar.org/CorpusID:231951353
https://api.semanticscholar.org/CorpusID:231951353
https://api.semanticscholar.org/CorpusID:267523469
https://api.semanticscholar.org/CorpusID:267523469
https://api.semanticscholar.org/CorpusID:267523469
https://api.semanticscholar.org/CorpusID:267523469
https://api.semanticscholar.org/CorpusID:267523469

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu,
Gang Chen, and Junbo Zhao. 2024. Towards cross-
table masked pretraining for web data mining. In
Proceedings of the ACM on Web Conference 2024,
pages 4449-4459.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174—184.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought. arXiv preprint arXiv:2304.13007.

Han Zhang, Yuheng Ma, and Hanfang Yang. 2024a.
Alter: Augmentation for large-table-based reasoning.
arXiv preprint arXiv:2407.03061.

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun,
Julian McAuley, Wayne Xin Zhao, Leyu Lin, and
Ji rong Wen. 2023a. Agentcf: Collaborative learning
with autonomous language agents for recommender
systems. Proceedings of the ACM on Web Confer-
ence 2024.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2024b. A survey of
table reasoning with large language models. arXiv
preprint arXiv:2402.08259.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023b.
Reactable: Enhancing react for table question answer-
ing. ArXiv, abs/2310.00815.

Bowen Zhao, Changkai Ji, Yuejie Zhang, Wen He, Ying-
wen Wang, Qing Wang, Rui Feng, and Xiaobo Zhang.
2023. Large language models are complex table
parsers. arXiv preprint arXiv:2312.11521.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren
Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, and Bin Cui. 2024a. Retrieval-
augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473.

Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen
Zhao. 2024b. TaPERA: Enhancing faithfulness and
interpretability in long-form table QA by content
planning and execution-based reasoning. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 12824—12840, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024c. Marco-ol: Towards open
reasoning models for open-ended solutions. arXiv
preprint arXiv:2411.14405.

12

A Baselines

We compare the proposed method with the follow-
ing baselines:

e E2E w/ CoT (Chen, 2022) equips LLMs with
ICL(Brown et al., 2020), utilizing CoT (Wei et al.,
2022) reasoning to enable final answer generation.

e E2E w/ ReAct (Yao et al., 2022) enables
LLMs to iteratively generate outputs based on the
current state of the environment, facilitating dy-
namic decision-making.

¢ Binder (Cheng et al., 2022) pioneers to em-
ploy the agent into WebTQA, which introduces the
NeuralSQL to handle irregular Web tables.

e API-Assited (Cao et al., 2023) enhances com-
prehension of hierarchical structures by incorporat-
ing a tree-structured table representation.

e Dater (Ye et al., 2023) allows the model to pro-
gressively decompose complex tables into smaller
components during the decision-making process,
ultimately deriving the final answer.

e TabSQLify (Nahid and Rafiei, 2024) builds
on Dater by leveraging SQL queries to manipulate
and refine table data.

e Chain-Of-Table (Wang et al., 2024c) extends
the CoT method to tabular data by transforming
input tables and guiding the LLM through interme-
diate table states to improve reasoning accuracy.

e ReAcTable (Zhang et al., 2023b) adopts the
ReAct framework (Yao et al., 2022), combining
step-by-step reasoning with code execution, gener-
ating intermediate tables, and employing a majority
voting mechanism.

e H-STAR (Abhyankar et al., 2024) introduces
a two-step approach that combines table extrac-
tion with adaptive reasoning, effectively integrating
symbolic (SQL) and semantic (text) methods.

e PoTable (Mao et al., 2024) is a novel table-
based reasoning method that integrates an LLM-
driven operation planner with a Python interpreter,
enabling human-like logical stage splits and open-
world operations for enhanced accuracy and ex-
plainability in structured table analysis.

¢ ALTER (Zhang et al., 2024a) seeks to unlock
the latent potential of NL queries (via a query en-
hancer) and tables (via a table enhancer).

e MixSC (Liu et al., 2023) aggregates multiple
reasoning pathways (textual and symbolic reason-
ing) and currently represents the SOTA.

https://api.semanticscholar.org/CorpusID:264128019
https://api.semanticscholar.org/CorpusID:264128019
https://api.semanticscholar.org/CorpusID:264128019
https://api.semanticscholar.org/CorpusID:264128019
https://api.semanticscholar.org/CorpusID:264128019
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692

B Algorithms

B.1 Pseudocode of Multiagent Workflow
See Alg. 1.

B.2 Pseudocode of Code-refining Memory
See Alg. 2.

C Discussion

This section discusses some interesting phenomena
we encountered, which are worth further explored
in the future.

C.1 About the Misalignment Issues.

In Section 5.6, we classify certain types of model
errors as “Misalignment Issues”. For example, in
response to the question in Fig. 1, the model might
produce the misaligned output, "Spain and Italy had
the most cyclists finish within the top 10," despite
the prompt explicitly instructing the use of the sim-
plest language possible. We believe that addressing
the model’s performance from this perspective may
constitute the most efficient approach to improving
its overall accuracy, as these errors do not stem
from limitations in the model’s reasoning capa-
bilities. We further analyzed the reasoning path
lengths associated with incorrect answers across
the three methods illustrated in Fig. 5. Our findings
indicate that samples exhibiting “Misalignment Is-
sues” tend to have longer reasoning paths than the
average. This observation suggests that extended
contexts may lead the model to lose track of the
initial formatting instructions. As shown in Fig. 5,
such errors are more prevalent in our method, likely
due to the fact that each agent must reference the
conversation history when generating responses,
which typically results in longer contextual inputs
compared to other methods.

C.2 About the Table Curator Selection.

For the Table Curator selection strategy, rather
than using the ‘AUTO’ mode employed by most
multi-agent frameworks—which relies on an addi-
tional LLM-based agent to choose the Table Cu-
rator based on conversation history—we adopt a
rule-based approach. This mode significantly in-
creases the number of LLM calls and exhibits lower
accuracy compared to rule-based methods, espe-
cially in less complex task scenarios like TQA. In
our framework, the Planner explicitly designates
which Table Curator (Python Curator or SQL Cura-
tor) should execute the current decision, with string

13

matching incorporated as part of the rule-based
method. Additionally, if the number of LLM calls
exceeds a predefined round limit r, the answer will
be directly returned.

While rigid and limited rules may be inadequate
for intricate scenarios, they are largely effective
in simpler contexts, such as TQA. In these cases,
pre-defined rules can adequately cover the major-
ity of situations, leading to a 5% improvement in
accuracy on the WikiTQ dataset compared to the
auto mode. Furthermore, the rule-based approach
requires the Planner to explicitly designate the 7a-
ble Curator, such as the SQL Table Curator, which
may also prompt the Planner to evaluate the feasi-
bility of the current decision.

D Supplementary Experiments

D.1 Supplementary Experiment One

To validate the robustness of our method, Table
5 presents a comparison of different approaches
using ChatGPT-40-mini (40-mini). The baselines
for comparison include the top two methods that
achieved the best performance on each dataset
based on GPT-3.5, as well as E2E with ReAct. We
can draw the following conclusions: First, CoRef
still performs the best. Second, As can be seen
from the table, methods based on 40-mini gener-
ally outperform those based on GPT-3.5, indicating
that the base model’s capabilities have a significant
impact on the performance of the method. Third,
Methods utilizing the model’s code generation ca-
pabilities still outperform those that rely directly
on the model’s text understanding abilities.

D.2 Supplementary Experiment Two

Table 6 presents the results, which compares the
performance of three representative methods from
different paradigms on the open-source LLaMA-
3.1-8B model, whose capabilities are not as pow-
erful as the closed-source ChatGPT-40-mini and
ChatGPT-3.5, especially in terms of programming
abilities. Since the experiment is conducted locally,
we can measure a stable runtime as a reference for
efficiency. For evaluation, we select the first 200
samples from each dataset. Both E2E and MixSC
are set to self-consistency runs = 5.

The detailed differences in model configurations
across the three methods are as follows: E2E w/
ReAct: Since it does not involve code generation,
we directly use LLaMA-3.1-8B-Instruct as the base
model for testing. MixSC: Utilizing LLaMA-3.1-

Algorithm 1 Multiagent Workflow

Input: Table ¢, Question g, Round limit r, Planner agent M p, Table Curator agent M ¢, Code execution tool 7., Decision

Trace Tree Dt
Output: Predicted answer a’

1: curRound <— —1
2: parentNode < —1
3: tracedNode < 0
4: tracebackNeeded < True
5: while curRound < r do
6: curRound <— curRound + 1
7: Dr.1inkAToB(curRound, parentNode) # The parent node of curRound is numbered parentNode
8: if tracebackNeeded is True then # Initiating traceback
9: # Retrieve the previous node state from the Decision Trace Tree
10: # lastOutput contains the compiler’s feedback from the previous round
11: t, feedback <— Dr.getNodeState(tracedNode)
12: de + M p.makeDecision(g,t, feedback)
13: else
14: de + M p.makeDecision(g,t)
15: end if
16: tracebackNeeded < False
17: if requiresToolCall(de) is True then # Invoke an external tool if needed
18: program < Mc.generateProgram(de, t)
19: isCorrect, feedback, t < T..execute(program)
20: if isCorrect is False then
21: program < refineCode(de, (t, q), Mc) # Attempt to correct the code using CRM
22: isCorrect, feedback, t < 7T..execute(program)
23: if isCorrect is False then # Fuiled to correct the code, initiating traceback
24: tracebackNeeded < True
25: parentNode +— Dr.getParentNode(curRound)
26: Dr.store(feedback, parentNode) # Store execMsg for future reference
27: tracedNode < parentNode
28: continue
29: end if
30: end if
31: Dr.storeNodeState(curRound, t)
32: parentNode < curRound
33: else
34: return de # de’ is the final answer
35: end if

36: end while
37: return de

Method WikiTQ TabFact HiTab
ChatGPT-4o0-mini
E2E w ReAct 67.1 76.6 69.1
ALTER 70.7 88.9 -
GraphOTTER - - 74.5
MixSC 75.8 89.5 73.9
CoRef 76.3 90.0 76.8

Table 5: Experimental results of the best-performing
methods from each of the three paradigms based on
LLaMA-3.1-8B.

8B-Instruct for textual reasoning and LLaMA-3.1-
8B-Code for symbolic reasoning. The final answer
is determined by aggregating the results from both
reasoning paths. CoRef: The Planner agent is
based on LLaMA-3.1-8B-Instruct, while all Cura-
tors use LLaMA-3.1-8B-Code.

14

Method WikiTQ TabFact HiTab Avg. Time/Sample
LLaMA-3.1-8B
E2E w ReAct 34.7 53.2 48.0 25s
MixSC 31.6 54.7 44.6 10.0's
CoRef 33.1 55.2 47.1 9.2s

Table 6: Experimental results of the best-performing
methods from each of the three paradigms based on
LLaMA-3.1-8B.

Observation: In time efficiency, CoRef exhibits
a minor advantage compared to the current SOTA
MixSC. Regarding accuracy, on the more chal-
lenging WikiTQ and HiTab datasets, both exist-
ing SOTA methods and CoRef underperform com-
pared to the end-to-end approach. In contrast,
TabFact, with its more straightforward table struc-
ture, enables the 8B model to achieve higher code
accuracy. Analysis: 8B models struggle to gen-
erate compilable code when dealing with com-

Method WikiTQ TabFact HiTab

MixSCw/SC 72.7+035 88.6+021 72.6+0.57
CoRef 734+0.64 89.1+0.36 73.4+0.61

Table 7: The mean and standard deviation of five test
runs on 200 samples from the HiTab dataset based on
GPT-3.5.

plex tables or questions. This explains why high-
performing table question-answering methods pre-
dominantly rely on GPT-3.5 or even better ones, as
symbolic paradigm approaches heavily depend on
the model’s strong coding capabilities.

D.3 Supplementary Experiment Three

Supplementary experiment two compares MixSC
(SOTA) and CoRef by selecting the first 200 sam-
ples from each dataset and repeating the tests five
times using GPT-3.5. Despite some variations,
CoRef consistently outperformed MixSC, shown
in Table 7.

E More Case Studies

More case studies of CoRef are shown in Fig. 6,
Fig. 7 and Fig. 8 .

15

Deliver_Proxy (to chat_manager):
Table 'DF"
[Caption]: World War Il casualties of Poland

[HEADERY]: description_losses|c_1939_40|c_1940_41|c_1941_42|c_1942_43|c_1943_44|c_1944_45|total

[ROW] 1: Direct War Losses|360000.0[NULL|NULL|NULL|NULL|183000.0]543000.0
[ROW] 2: Murdered|75000.0]100000.0|116000.0|133000.0|82000.0|NULL|506000.0

[ROW] 3: Deaths In Prisons & Camps|69000.0[210000.0[220000.0[266000.0[381000.0[NULL|1146000.0
[ROW] 4: Deaths Outside of Prisons & Camps|NULL|42000.0|71000.0]142000.0218000.0|NULL|473000.0

[ROW] 5: Murdered in Eastern Regions|NULL|NULL|NULL|NULL|NULL|100000.0{100000.0
[ROW] 6: Deaths other countriesINULL|NULL|NULL|NULL|NULL|NULL|2000.0
[ROW] 7: Total|504000.0|352000.0]407000.0|541000.0|681000.0|270000.0|2770000.0

Query: how many people were murdered in 1940/417?

Next speaker: Table_QA_Planner
Table_QA_planner (to chat_manager):

Decision: | will extract the relevant data for the
year 1940/41, focusing on the rows that indicate how
many people were murdered. | am waiting for the
SQL coder to return the intermediate table with
columns “description_losses” and ‘c_1940_41".

Next speaker: SQL_coder
SQL_coder (to chat_manager):

**ex* Suggested tool call
(call_SO6hqCtm2APXJdSEVx6mwbho):
execute_sql *****

Arguments:

{"code":"SELECT "description_losses’, ‘c_1940_41"
FROM DF WHERE "description_losses’ LIKE
'%Murdered%";","code_type":"sql","reflection":"Extra
cting the number of people murdered in the year
1940/41 from the relevant row."}

>>>>>>>> EXECUTING FUNCTION execute_sql...

***** Response from calling tool
(call_SO6hqCtm2APXJASEVXx6mwbho) *****

{"Intermediate table:\n": "[HEADER]:
description_losses|c_1940_41\n---\n[ROW] 1:
Murdered|100000.0\n[ROW] 2: Murdered in Eastern
Regions|NULL"}

Next speaker: Table_QA_Planner
Table_QA_Planner (to chat_manager):

Decision: Now that | have the data showing 100,000
people were murdered in the year 1940/41, | will move
forward to deliver The Final Answer based on this
information.

Next speaker: deliver_proxy
deliver_proxy (to chat_manager):

The Final Answer: 100000.

Gold label: 100,000

Figure 6: A demo from WikiTQ. In this example, Planner (referred to as Table_QA_Planner in the figure) can
derive the answer from the returned intermediate table with the assistance of the SQL Table Curator (referred to as
SQL_coder in the figure) in just one iteration.

Algorithm 2 Code-Refining Memory (CRM)

Input: Problematic intermediate program p, Table ¢, Question ¢, Round limit r, Table Curator agent M, Memory module

M., Code execution tool 7.

Output: Refined program p,.w, the feedback from executor feedback

1:
2:

3
4
5:
6:
7.
8

9:
10:
11:

Numbers in comments correspond to those in Fig. 3
curRound < 0

. while curRound < r do

¢ + M..search(p, (t,q)) #® Retrieve relevant cases from memory
Prew < Mc.makeDecision(c, (t,q)) # @ Generate a refined program
isCorrect, feedback + Tc.execute(pnew) # @ Execute the refined program

if isCorrect is True then

M. .store(prew, (t,q), feedback) # @ Store successful refinement in memory

break
end if
end while

12: # The feedback includes execution details of the corrected code, accounting for cases where execution still fails after

13:

maximum refinement attempts.
return pne.,, feedback

16

Deliver_Proxy (to chat_manager):
Table 'DF":

[Caption]: tony lema

[HEADER]: tournament|wins|top_5|top_10|top_25|events|cuts_made

[ROW] 1: masters tournament|0|1|2|4|4|4
[ROW] 2: us open|0|2|3|4|6|5

[ROW] 3: the open championship|1|2|2|2|3|3
[ROW] 4: pga championship|0[0|1|2|5|4
[ROW] 5: totals|1|5|8|12|18|16

Statement: tony lema be in the top 5 for the master tournament , the us open , and the open championship.

Next speaker: Table_QA_Planner
Table_QA_Planner (to chat_manager):

Decision: | will extract the relevant rows for the
Master Tournament, US Open, and Open
Championship along with their top_5 results to check
if Tony Lema was in the top 5 for these tournaments.
| am waiting for the SQL coder to return the
intermediate table.

Next speaker: SQL_coder
SQL_coder (to chat_manager):

***** Suggested tool call
(call_HNmrwnLCP96PbhywVaTI1Npn): execute_sql

r—

Arguments:

{"code":"SELECT “tournament’, ‘top_5" FROM DF
WHERE “tournament” IN (‘masters tournament', 'us
open', 'the open
championship');","code_type":"sql","reflection":"Extrac
ting top_5 results for relevant tournaments to check
Tony Lema's standings."}

>>>>>>>> EXECUTING FUNCTION execute_sq|...

***** Response from calling tool
(call_HNmrwnLCP96PbhywVaTI|1Npn) *****

{"Intermediate table:\n": "[HEADER]:
tournament|top_5\n---\n[ROW] 1: masters
tournament|1\n[ROW] 2: us open|2\n[ROW] 3: the
open championship|2"}

Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

Decision: Now that | have the top_5 results for the
relevant tournaments, | will check if the top_5 values for
all three tournaments are greater than 0. | am waiting
for the Python coder to return the result indicating if all
values meet this condition.

Next speaker: Python_coder
Python_coder (to chat_manager):

***** Suggested tool call
(call_e0TjDOivzfQ5v5sSlyDHrJWY): execute_python

r—

Arguments:

{"code":"top_5_results = {'masters tournament": 1, 'us
open': 2, 'the open championship": 2J\nall_in_top_5 =
all(value > 0 for value in
top_5_results.values())\nall_in_top_5","code_type":"pyt
hon","reflection":"Checking if Tony Lema was in the top
5 for all specified tournaments."}

>>>>>>>> EXECUTING FUNCTION execute_python...

***** Response from calling tool
(call_e0TjDOivzfQ5v5sSlyDHrJWY) *****

{"Intermediate table:\n": "True"}

Next speaker: Table_QA_Planner
Table_QA_Planner (to chat_manager):

The Final Answer: """Yes™™"

Next speaker: Deliver_Proxy
Deliver_Proxy (to chat_manager):

The Final Answer: Yes.

Gold label: 1

Figure 7: A demo from TabFact. In this example, Planner (referred to as Table_QA_Planner in the figure) assigned
both the SQL Table Curator (referred to as SQL_coder in the figure) and Python Table Curator (referred to as
Python_coder in the figure) to generate code, and obtained the final answer after the two round of code generation.

17

Deliver_Proxy (to chat_manager):

Table 'DF":

[Caption]: agri-food industry sub-groups for workers aged 15 years and over, two agricultural regions of ontario, 2011
sub-groups of the agri-food industry | eastern ontario | eastern ontario northern ontario | northern ontario

sub-groups of the agri-food industry | french-language workers other workers | french-language workers other workers
sub-groups of the agri-food industry | percent | percent | percent | percent

input and service supply|2.9|2.1|2.9|1.3

food, beverage, and tobacco processing| 9.7|6.0/3.0|3.3

food retail and wholesale|35.3| 31.3| 39.1|37.3

food service|52.1/60.6/55.0] 58.1

Query: in eastern ontario, what percent of french-language workers have worked in the restaurant and food services
sector?
Next speaker: Table_QA_Planner

Table_QA_Planner (to chat_manager):

Decision: There is Hierachical Information within the table. Please help me flatten it. | am waiting for the Python
coder to return the intermediate table.

Python_coder (to chat_manager):

Header_Row_Flattened_1: {'percent of french-lang workers in eastern ontario'}{'percent of other workers in eastern
ontario'}

Header_Row_Flattened_2: {'percent of french-lang workers in northern ontario'}{'percent of other workers in
northern ontario'}

Deliver_proxy (to chat_manager):

Table 'DF":

[Caption]: agri-food industry sub-groups for workers aged 15 years and over, two agricultural regions of ontario, 2011

[HEADER]:sub_groups_of_the_agri_food_industry|percent_of_french_lang_workers_in_eastern_ontario|percent_of other_workers_
in_eastern_ontario|percent_of_french_lang_workers_in_northern_ontario|percent_of _other_workers_in_northern_ontario

[ROW] 1: input and service supply|2.9]2.1|2.9]1.3

[ROW] 2: food, beverage, and tobacco processing|9.7|6.0|3.0|3.3
[ROW] 3: food retail and wholesale|35.3|31.3]39.1|37.3

[ROW] 4: food service|52.1/60.6|55.058.1

Query: in eastern ontario, what percent of french-language workers have worked in the restaurant and food services

sector?

Next speaker: Table_QA_Planner >>>>>>>> EXECUTING FUNCTION execute_sq|l...
Table_QA_Planner (to chat_manager): . .

Decision: Please extract only the row for the "food Response from calling tool oo

service" sub-group and keep the relevant columns for (call_hinK88NqchNIL5fimGir9JEQ)

the percent of French-language workers in Eastern
Ontario. | am waiting for the SQL coder to return the
intermediate table.

{"Intermediate table 'DF'":\n": "[HEADER]:
percent_of_french_lang_workers_in_eastern_ontario\n---
\n[ROW] 1: 52.1"}

Next speaker: SQL_coder

SQL_coder (to chat_manager): Next speaker: Table_QA_Planner

*x0+ Suggested tool call Table_QA_Planner (to chat_manager):

(call_hInK88NqchNIL5fImGir9JEQ): execute_sql ***** ## The Final Answer: ""52.1%""".
Arguments:

{"code":"SELECT Next speaker: deliver_proxy
‘percent_of_french_lang_workers_in_eastern_ontario’

FROM DF WHERE deliver_proxy (to chat_manager):
‘sub_groups_of_the_agri_food_industry’='food . o) e
service';","code_type":"sql","reflection":"Extracting the The Final Answer: '52.1%""".

percent of French-language workers in Eastern Ontario
for the food service sub-group."}

gold label: 52.1

Next speaker: code_executor
Figure 8: A demo from HiTab. In this example, Planner (referred to as Table_QA_Planner in the figure) first

instructs the Python Table Curator (referred to as Python_coder in the figure) to flatten the hierarchical structure of
the table and then relies on SQL Table Curator (referred to as SQL_coder in the figure) to obtain the final answer.

18

	Introduction
	Related Work
	Table Question Answering
	LLM-based Agents

	Problem Statement
	Methodology
	Role Definition
	Decision Trace Tree
	Code-refining Memory

	Experiments
	Datasets & Baselines
	Metrics
	Implementation Details
	Overall Performance (RQ1)
	Ablation Studies (RQ2)
	Error Studies (RQ3)
	Statistical Error Analysis
	Case Study

	Efficiency Analysis (RQ4)

	Conclusion
	Baselines
	Algorithms
	Pseudocode of Multiagent Workflow
	Pseudocode of Code-refining Memory

	Discussion
	About the Misalignment Issues.
	About the Table Curator Selection.

	Supplementary Experiments
	Supplementary Experiment One
	Supplementary Experiment Two
	Supplementary Experiment Three

	More Case Studies

