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Abstract

It is well-known that deep neural networks can both memorize randomly labeled training
data and generalize to unseen inputs. However, despite several prior efforts, the mechanism
and dynamics of how and where memorization takes place in the network are still unclear,
with contradictory findings in the literature. To address this, we aim to study the functional
similarity between the layers of the memorized model to the model that generalizes. Specifi-
cally, we leverage model stitching as a tool to enable layer-wise comparison of a memorized
(noisy) model, trained on a partially noisy-labeled dataset, to that of the generalized (clean)
model, trained on a clean, noise-free dataset. Our simple but effective approach guides the
design of experiments that help shed light on the learning dynamics of different layers in
deep neural networks and why models with harmful memorization still generalize well. Our
results show that early layers are as important as deeper ones for generalization. We find
that “cleaning” the early layers of the noisy model improves the functional similarity of its
deeper layers to that of the corresponding layers in the clean model. Moreover, cleaning the
noise in the early layers of the noisy model can drastically reduce memorization and improve
generalization. Furthermore, noise fixation up to a certain depth results in generalization
similar to that of a noise-free model. However, interestingly, the reverse may not be true.
That is, if early layers are noisy but deeper layers are noise-free, then perfect memorization
cannot be achieved, emphasizing the dominant role of deeper layers in memorization. Our
extensive experiments on four different architectures - customized CNN model, ResNet-18,
ResNet-34, and ResNet-50, and three datasets - SVHN, CIFAR-10, and CIFAR-100, with
varying levels of noise, consistently corroborate our findings.

1 Introduction

Deep Neural Nets (DNNs) are widely used across many domains because of their impressive generalization
capabilities on unseen inputs. Yet, these models are also prone to memorization, and can fit to randomly labeled
dataset perfectly [Zhang et al.| (2021)). A memorized input is known to be inexplicable using generalizable
features |Wei et al.| (2025), and usually represents atypical inputs in long-tailed distributions Feldman &
Zhang] (2020)); [Feldman| (2020)), or the underlying noise/outliers in the training dataset |Zhang et al.| (2021)).
Although memorization may occasionally improve downstream performance in imbalanced or long-tailed
distributions [Maennel et al.| (2020); |/Anagnostidis et al.l it raises significant concerns, including privacy leakage
and vulnerability to membership inference attacks |Leino & Fredrikson| (2020); |(Carlini et al.| (2022)). Therefore,
understanding when and how memorization occurs is critical for building more robust and interpretable
models.

The understanding of the mechanisms and dynamics of memorization in DNNs has intrigued researchers since
the seminal work of Zhang et al. |Zhang et al.|(2021). Numerous diverse approaches have been leveraged to
study and find answers to foundational questions, such as how a model can simultaneously memorize noise and
generalize to unseen data [Krueger et al.| (2017)); |Arpit et al. (2017)), whether all layers in a network converge
similarly in the presence of label noise , or whether certain layers are more susceptible to memorization
than others |Stephenson et al., [Wongso et al.| (2023)); [Maini et al.| (2023), and so on. These studies not
only helped in understanding how memorization manifests in deep neural networks, but they also laid the
foundational work for approaches designed to mitigate memorization. However, despite significant progress,
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these efforts have sometimes resulted in divergent conclusions, especially regarding the susceptibility and role
of the individual layer in memorization. For instance, [Stephenson et al.| showed confinement of memorization
to deeper layers of the model, while Wongso et al.| (2023) showed that early layers are also involved in
memorization despite their relatively faster convergence than deeper layers. Furthermore, Maini et al.| (2023)
localized memorization to a small subset of neurons spread across all layers in the network. All these findings
capture different facets of memorization, highlighting the complexity of disentangling memorization from
generalization.

In this work, we build on these insights and ask a fundamental question: What is the functional similarity
between the layers of a model that memorize and those that generalize? Specifically, our goal is to assess the
impact of memorization on the functionality of individual layers, which we define in terms of their ability
to align with the behavior of their clean counterparts. To answer this, we compare a memorized model,
trained on randomly labeled inputs, to a generalized model trained on the clean, noise-free dataset. We
leverage the recently proposed stitching layer [Csiszarik et al.| (2021)), a linear trainable layer that "stitches"
two models by aligning their latent representations, as a tool to enable the comparison of layer-wise functional
similarity between models. We stitch the memorized model to the generalized one at varied depths and vice
versa, and evaluate all stitched models on two downstream tasks - (i) generalization to unseen test data, and
(ii) memorization accuracy on randomly labeled training inputs to quantify similarity /divergence between
their generalizing and memorizing functional behavior. Our methodology provides insights into the following
fundamental questions:

o How does fixing (replacing) certain layers affect memorization and generalization?
o How does memorization propagate through the network?
e Are all layers equally responsible for memorization, or do some play a more critical role?

e How do the inherent bias of the architecture, underlying noise level, and task complexity influence
the impact of memorization at different layers?

Our results uncover consistent and surprising patterns across architectures and datasets, offering new insights
into how memorization emerges, evolves, and influences the functional behavior of individual layers. Our
contributions and key findings can be summarized as:

e We propose a novel framework for evaluating the impact of memorization on each layer of the DNN
model using model stitching, enabling a direct layer-wise functional comparison between models
trained with and without noise. To the best of our knowledge, our work is the first of its kind,
enabling direct one-on-one functional comparison between memorized and generalized models.

e We experimentally analyze four architectures - CNN, ResNet-18, ResNet-34, and ResNet-50 on three
datasets - SVHN, CIFAR-10, and CIFAR-100, with varying extent of noise memorization. Our results
consistently demonstrate the following:

1. We observe that noise memorization impacts each and every layer of the model, and replacing
early layers with clean counterparts improves the test-time performance of the model.

2. If a sufficient number of bottom layers are replaced by their clean counterparts in the noisy
model, then often the memorized accuracy of the model drops to a random guess. That is,
despite the presence of noisy deep layers, fixing the early layers mitigates memorization. We
hypothesize that this is attributed to the feedforward nature of DNNs that compounds noise
present in early layers during the forward pass. If the noise in early layers is fixed, noise cascading
is also minimized, rendering noise in deeper layers benign.

3. Deeper layers are necessary for perfect memorization. Though it is possible to fix early layers
and reduce memorization to a random chance, 100% memorization is only achieved when deeper
layers are involved. This corroborates the initial findings of training/fixing deeper layers to
reduce memorization.
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4. We observe the influence of the inherent bias of model architecture and task complexity on
the extent of memorization in each layer. Specifically, the number of early layers that, if fixed
(replaced with clean layers), can mitigate memorization is jointly decided by the task complexity
and model architecture.

o We also perform preliminary experiments to more complex and deeper architectures, such as Vision
Transformer and ResNet-101 to probe layer-wise memorization and its impact on model’s end-to-end
behavior. Our experiments show promising directions that could be explored at length in future
works to enhance the understanding on memorization.

2 Related Work

Memorization DNNs are infamously known to perfectly memorize randomly labeled training inputs when
heavily over-parameterized, exhibiting universal finite-sample expressivity |Zhang et al.| (2017). In the presence
of label noise, model training starts with learning simple, generalizable patterns, followed by memorizing
specific, randomly labeled training inputs in the later stage [Krueger et al (2017); |Arpit et al|(2017). This
observation has inspired early-stopping approaches to curb memorization while preserving generalization
et al.| (2020); [Frankle et al.. Moreover, multiple factors such as the inductive bias from the model architecture
Zhang et al., explicit regularization, or training protocols |Arpit et al.| (2017) play a significant role in how
quickly and how much a model can memorize.

Beyond mitigating memorization, considerable work has been done in understanding where and how mem-
orization manifests within a model. A variety of approaches have been proposed to probe memorization,
such as prediction depth via replica-based mean-field geometry [Stephenson et al| of each input, manifold
analysis techniques [Chung et al| (2018)), sliced mutual information [Wongso et al| (2023), gradient accounting,
and layer retraining [Maini et al| (2023)). Interestingly, each of these methods has captured different facets
of memorization, sometimes resulting in divergent conclusions. For instance, |Stephenson et al.| analysed
the geometric properties of class manifolds throughout training and found that memorization is largely
confined to deeper layers. They further showed that rolling back the weights of the final convolution layer
to an early epoch can reverse memorization to a great extent. However, |Wongso et al. (2023) followed a
different approach and used Sliced Mutual Information (SMI) between latent features and labels as a tool to
study memorization. Their findings show that all layers of the model memorize and early layers stabilize
earlier than deeper layers. A recent work [Maini et al| (2023) combined techniques like gradient accounting,
layer rewinding, and selective retaining to localize memorization within the model. They discovered that
memorization is not limited to any single layer; instead, it is confined to a subset of neurons spread across
various layers. This suggests that memorization affects all layers of the model (although through a relatively
small subset of neurons in each layer), supporting the findings of [Wongso et al.| (2023).

Model Stitching Model stitching is introduced by [Lenc & Vedaldi| (2015]) to study the equivalence of
representations. The stitching layer is a learnable linear transformation that connects two models by
aligning their intermediate representations. Model stitching has become a popular approach for building new
architectures adhering to specific resource and performance requirements by combining components from
existing models of varying complexity [Yang et al.| (2022)); Teerapittayanon et al.| (2023); [Pan et al.| (2023}
[2024); [He et al| (2024); Xu et al.|(2024). Additionally, researchers use stitching to probe functional similarity
between models’ hidden representations, assessing how well cross-wired components perform on the same
task Bansal et al.| (2021); Csiszarik et al.|(2021). Empirical evidence shows that even when two networks’
representations score low on metrics like CKA, they can still exhibit high functional similarity, demonstrating
that representational and functional similarity capture complementary aspects of how representations relate
[Csiszarik et al| (2021). For instance, stitching has revealed strong functional correspondence between
adversarially robust and standard (non-robust) models [Balogh & Jelasity| (2023), despite these networks
showing low CKA-based similarity |Cianfarani et al| (2022). Accordingly, we employ the stitching layer as a
tool to measure functional similarity between a generalized (clean) model and a memorized (noisy) model.
Importantly, our setup is more challenging than Balogh & Jelasity| (2023) owing to the noisy model trained
on partially randomly corrupted labels, and thus, receiving conflicting supervisory signals compared to the
clean model, which is trained exclusively on correctly labeled data.
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3 Methodology

Our goal is to investigate how memorization manifests across different layers of the model and how it affects
generalization. We adopt the experimental setup of [Maini et al.| (2023), introducing randomly labeled
inputs into the training dataset to induce memorization. Next, we train a separate model on clean data
without label noise so that none of its training inputs have to be specifically memorized, and use it as a
baseline for generalization. The core idea is that the clean model, owing to zero-noise exposure, exhibits
ideal generalization behavior and thus, a direct one-on-one comparison of internal representations with the
memorized model can uncover the layer-wise functional differences that emerge due to noise memorization.

We follow the definition of functional similarity as
defined by |Csiszarik et al.|(2021)), and leverage model Clean model Noisy model

stitching as a tool to maximally align internal rep- laveriax 1 2 | 3 4 1 2 28 4
resentations between generalized (clean) and mem- :
orized (noisy) models with identical architecture. A
stitched model is constructed by joining two mod-
els fr, and f,,, trained with different noise level r;
and ro respectively, at some intermediate layer [. A
trainable linear stitching layer S is inserted to align

the output of layer [ of f,, as the input to layer T

ol . ‘e . . Stitching layer
I+ 1 of f,,. The stitching layer S is trained by min- Clean to noisy model Noisy fo clean model
imizing the loss function of the stitched model (with stitching stitching

weights of f,, and f,., frozen), and thus maximizing

the alignment between latent representations of the Figure 1: Stitching clean and noisy model at layer idx
two models. This results in a model of the form: 2. Clean to noisy model stitching consists of clean base,
hij(S (grfll)), where grﬁll and hr>2 ! denote the base and stitching layer and a noisy head while noisy to clean
head parts of the stitched model, respectively. Here, stitched model has

we represent the base or early part of the stitched

model by g, and the head or latter part of the stitched model by h. We annotate g with subscript r; and
superscript <[ to show that part of f., up to layer [ forms the base of the stitched model. Similarly, h;) !
shows that part of the model f,, from layer (I + 1) onwards forms the head of the stitched model. From here
on, for brevity, “stitching at layer " refers to inserting a trainable stitching layer between the output of layer
! in the base model and the input to layer (I + 1) in the head model.

We experiment with two stitching directions:

« Clean-to-noisy h>!(S (gogl)), where the clean model fy up to layer [ forms the base, and the latter
part of the noisy model f,. (starting from layer (I + 1)) forms the head of the stitched model.

+ Noisy-to-clean h3'(S(g=")), where the noisy base (f. up to layer 1) is stitched to clean head (fo
from layer [ 4+ 1 onwards).

The stitching process is visualized in Figure The accuracy of the stitched model reflects how well the
intermediate representations of the two models can be linearly transformed and aligned. As a result, the
performance gap between the stitched model and its original constituent models serves as a proxy for functional
divergence caused by memorization. For example, the performance gap between hy l(S (g=")) and f, arises
from replacing the early layers (up to layer [) with the corresponding layers of the noisy model f,. This
performance gap w.r.t fy serves as a measure of the collective functional similarity between the early layers
(1 to 1) of the clean fy and noisy f, model. Similarly, performance comparison of h.!(S (gogl)) to f, evaluates
the functional similarity between the stitched part of the clean model and the unstitched part of the noisy
model (i.e., f* and fl'!). However, the key component is the dataset used to train the stitching layer S, on
which intermediate representations are maximally aligned between models. In our setup, we train stitching
layers S on the correctly-labeled validation dataset DY, unseen by both fy and f,.. We choose the validation
set DU instead of the training set of either the fy or f. model so that the training of the stitching layer does
not interfere with divergent representations of memorized inputs learned by the two models. Furthermore,
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training a stitching layer on D®, which is disjoint from training data, ensures alignment of generalizable
representations rather than memorized patterns, limiting memorization to only the stitched part of the noisy
model.

4 Experiment Setup

We understand memorization dynamics in Deep Neural Networks (DNNs) using four different architectures -
a customized CNN comprising three convolutions and four fully connected layers, ResNet-18, ResNet-34, and
ResNet-50 He et al.|(2016]). Our experiment spans three datasets - SVHN |Netzer et al.| (2011), CIFAR-10,
and CIFAR-100 Krizhevsky et al| (2009). We train a customized CNN on the SVHN dataset, ResNet-18,
and ResNet-34 on CIFAR-10 dataset, and ResNet-34 and ResNet-50 on CIFAR-100 dataset, resulting in a
total of 5 distinct models. We also perform preliminary experiments on ViT-Small and ResNet-101 trained
on CIFAR-100 dataset and mention experimental findings in section and section in Appendix,
respectively. To study memorization, we introduce label noise into the training data by assigning random
labels to a fraction of training images. We consider noise levels r = {5%, 10%, 15%, 20%, 25%, 37.5%, 50%} and
train each model on a noisy dataset D, until its training accuracy exceeds 99% to ensure noise memorization.
Note that each noise-injected training dataset D" comprises both correctly labeled inputs D7 and randomly
labeled inputs D”. We also train a model on the clean dataset D° (i.e., r = 0), where all training images are
correctly labeled to serve as a generalization baseline.

A model trained on DY has been exposed to zero random noise during training and does not memorize
any noisy-labeled training input. We refer to this model as the noise-free or clean model and use it as a
generalized model for comparison. Contrary to this, all models trained on noisy datasets must memorize
randomly assigned labels during training and thus are referred to as noisy models. Notably, while the same
images may appear in D" and D, their labels differ, inducing divergent learned representations, particularly
for D] . These divergent representations may not be alignable using the stitching layer and will play a crucial
role in understanding the manifestation of memorization and the generalization drop in noisy models.

In our experiments, we have performed stitching for the CNN model after every convolution and fully
connected layer, and for ResNet models, it is performed after every residual block. To get stitched models
with the clean base and noisy head h>!(S (gogl)), we start with a noisy model f, and incrementally replace its
initial layers/blocks with those from a clean model. The process begins with stitching the first layer/block of
the clean model onto the remaining layers/blocks of the noisy model. Next, we repeat it by incrementally
increasing the number of layers/blocks of the clean model to be stitched onto the corresponding remaining
layers/blocks of the noisy model. So, in the first round, only the first layer/block is stitched. In the second
round, we stitch up to the first two layers/blocks, and so on, each time replacing a longer prefix of the noisy
model with the corresponding clean layers/blocks. This process continues until all layers/blocks, except
for the last one, of the noisy model are replaced by their counterparts from the clean model. Similarly, we
start with a clean model fy and incrementally replace its initial layers/blocks with those from a noisy model,
resulting in a series of stitched models with the noisy base and clean head hg l(S (g=")), each corresponding to
a different stitching depth [. The training convergence plots of all stitching layers are presented in section
in Appendix.

5 Results and Findings

We organize the results into two main parts: the memorization behavior and the generalization performance
of stitched models, aiding in the collective understanding of the functional behavior of the clean and noisy
models.

5.1 Memorization

The stitching layer is trained to maximize the representation alignment between the two models on the
correctly labeled validation dataset. As a result, the stitching layer cannot align the divergent representations
learned by the clean and noisy model on D;, dataset, limiting noise memorization in the stitched model



Under review as submission to TMLR

=
o
=3

- (%) 3 g (%)
X —e— 5 = = —e— 5.0
> —e— 10 2 80 > 04 —e— 10.0
© —e— 15 © © —e— 15.0
5 —e— 20 S 5 —e— 200
g —e— 25 o 60 o 60 —e— 25.0
< —e— 50 g _<c —e— 375
k] 50.0
9] 8 a0 Y 40
8 5 5
[*]
£ g 20 g 20 1
[
2 = = | —
pr—1..
. s & £ = s & € s _ . = & € & s = € & _
< < S < < < @ A A A A A A A A © o A A A A A A A A m
> A A A A A A 5 s © =2 o < o = o - o s © =+ o =< o =4 o =
S g Q 4 d o ] 9 Sod d o o @ g f F Y sod d o o @ g § FY
- S - L 0g g ¢ ¢ ¢ g g g 3 L0¢ ¢ ¢ ¢ ¢ g g g 3
I S 53 5 o o o L} § & © ® & ® ©T @® T g § & © ® © ® ©® & T &
t i i i 2 ® v v v v oW v v w @ % v v v v v v v W @
7 o o o o o o o o o o o o o o o o o o o o
Stitching depth / Stitching depth / Stitching depth /
(a) CNN model on SVHN (b) ResNet-18 on CIFAR-10 (c¢) ResNet-34 on CIFAR-10

=
o
S

= (%)

—e— 5.0
—e— 10.0
—e— 15.0
—e— 20.0

& —eo— 25.0
_'\\ ....... gl b
] & 50.0

- @
S S

Memorized Accuracy (%)
B
s

.

Memorized Accuracy (%)

o

clean

noisy
0>h
1>h
2>h
0>h
1>h
2>h
3>h
0>h
1>h
2>h
3>h
4>h
5>h
0>h
1>h
2>h
ean

g <layerl.0>h
g =layerl.1>h
g =layer2.0>h
g<layer2.1>h
g <layer3.0>h
g<layer3.1>h
g <layer4.0>h
Jd=layer4.1>h
end=
= noi

g
gs=
g=
gs=
<]
g

epth /

o 9=

Stitching depth / Stitching

(d) ResNet-34 on CIFAR-100 (e) ResNet-50 on CIFAR-100

Figure 2: Clean-to-Noisy Stitching h>!(S (g§l)): Accuracy of stitched models on randomly labeled training
inputs D, of the constituent noisy model. Each xtick corresponds to a stitched model comprising clean base
up to the layer [, stitching layer, and the noisy head starting from layer [ + 1 to the last layer. The black
vertical line shows the minimum depth of clean base [} required to mitigate memorization in noisy models.

to the constituent part of the noisy model. This raises the following key question: 1) Do stitched models
comprising a partial clean model still exhibit memorization when evaluated on D57 2) If yes, then to what
extent? 3) Does the stitching depth impact the extent of memorization in the stitched model? We address
these questions by evaluating the accuracy of stitched models on the noisy subset of the training dataset, i.e.,
D7, and use it as a measure to quantify and compare memorization. In all figures, the accuracy of memorized
inputs is plotted on the Y-axis as a function of stitch depth [ on the X-axis for all stitched models, and each
line plot corresponds to a specific value of noise r. Note that zero memorization means the stitched model
does not recall those specific random label assignments, resulting in a random accuracy (100/N, N being the
number of classes) on memorized inputs.

5.1.1 Clean-to-Noisy Stitching 1>'(S(g5"))

The accuracy of all noisy models, stitched models h>!(S(gs')), and the clean model on D! is plotted

in Figure Each subplot corresponds to a specific architecture and dataset. The key observations are
summarized below.

M.1 On simple tasks, fixing the very first layer/block substantially reduces memorization.
For smaller datasets such as SVHN and CIFAR-10, stitching in just one or two clean layers/blocks
dramatically suppresses memorization (quantified as accuracy on randomly labeled training inputs
D7), regardless of noise ratio r. For example, at r = 50%, the memorized accuracy drops below 50%
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M.2

M.3

5.1.2

for both datasets by replacing only the first noisy layer/block by its clean counterpart. In contrast,
for a more challenging dataset like CIFAR-100, achieving a similar drop at r = 50% requires stitching
clean layers up to at least the middle block.

Stitching up to the minimum clean prefix [" reduces memorization to random. Across
architectures and datasets, memorization consistently decreases as more clean bottom layers are
stitched in, eventually collapsing to near-random accuracy once the clean base reaches a critical
depth [*. This I7" represents the minimum clean depth needed to “forget" memorization. Notably,
the stitch depth [ never lies among the final layers, indicating that noisy upper layers alone cannot
sustain memorized behavior once early noisy layers are replaced by their clean counterparts.

Architecture and task complexity strongly influence ['. The required stitch depth [} is
shaped by both architectural inductive biases and dataset difficulty. CNNs exhibit a steep drop
in memorization after introducing the first clean layer, while ResNets on CIFAR-10 show a slower
decline—likely due to residual connections. On CIFAR-100, memorization initially decreases very
gradually, followed by a sharp drop only after a sufficiently large clean prefix is stitched in. Even within
the same architecture (e.g., ResNet-34), the pattern of memorization decay differs notably between
CIFAR-10 and CIFAR-100. Also, higher noise ratios produce a larger set of memorized examples,
making the corresponding model more sensitive to layer replacement. Consequently, stitching clean
bottom layers induces a sharper decline in memorization for larger values of . Nevertheless, for a
given architecture and model, the decreasing trend of memorization exhibits a similar pattern across
all noise ratios.

Noisy-to-Clean Stitching h>!(S(g5"))

The memorization accuracy (i.e., accuracy on randomly labeled training inputs) of stitched models h>!(S (gogl))
along with the clean and noisy baselines is shown in Figure |3} The key observations are:

M.4

Early noisy layers do not immediately induce memorization. While stitching in early clean
layers in the noisy model significantly reduces memorization (as seen in clean-to-noisy stitching
Figure , the converse does not hold. Adding a few noisy early layers to a clean model does not
immediately increase memorization. Instead, memorized accuracy remains close to random for shallow
stitching depths and begins to rise slowly only when the number of noisy bottom layers exceeds the
number of remaining clean upper layers.

Memorization emerges only after surpassing the minimum noisy prefix [, but never
reaches 100%. Once the stitching depth exceeds a certain depth {7, the stitched model begins
to show nontrivial memorization - even though its head remains noise-free. This depth is referred
to as minimum noisy suffiz needed for the emergence of memorization. However, noisy-to-clean
stitched models never show full memorization, even if all layers except the output layer are noisy. For
example, when only the output layer is clean, the CNN model trained on SVHN achieves only 20-30%
accuracy on random labels, ResNet-34 achieves at most 55% on CIFAR-10 and 30% on CIFAR-100,
and ResNet-50 reaches =~ 60% on CIFAR-100. This demonstrates the dominant role of the clean

head in limiting the model’s ability to memorize arbitrary labels.

5.2 Generalization

We assess the generalization of stitched models to address the following key questions: 1) Does the noisy
model’s generalization improve as a deeper clean base is stitched in? 2) Does the clean model’s generalization
degrade as more noisy layers are stitched in? 3) Can full generalization be maintained even when a part
of the model remains noisy? We evaluate and compare the accuracy of stitched models against both the
clean and noisy models on the unseen test dataset (D'***). Note that when the test accuracy of the stitched
model matches that of the clean model, it indicates zero adverse impact of the training noise on its functional
behavior, and thus, can be referred to as full generalization.
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Figure 3: Noisy-to-Clean Stitching hg'(S(g=!)): Accuracy of stitched models on randomly labeled training
inputs D] . Each xtick corresponds to a stitched model comprising noisy base up to the layer [, stitching layer
and the clean head starting from layer [ + 1 to the last layer. The black vertical line shows the minimum
depth of the noisy base I]* required for the emergence of memorization in the clean model.

5.2.1

Clean-to-Noisy Stitching h>'(S(g5"))

We stitch the early clean layers (gogl) to the latter noisy layers (h>!) at varied depths, producing a sequence
of stitched models. Figure @ reports their test accuracy (y-axis) as a function of the stitch depth I (x-axis)
across architectures and noise levels. The main observations are summarized below.

G.1

G.2

Replacing even the first noisy layer/block significantly improves generalization. Across all
architectures, stitching in just the first layer/block yields a notable boost in test accuracy, especially
for high noise percentages. For instance, at r = 50%, stitching in the first clean convolution layer in
the CNN model or the first clean residual block in ResNet-18 boosted test performance by roughly
8-10%. This indicates that the early layers of the noisy model have also learned some non-generalizable
features, and swapping them out has an outsized positive effect.

Stitching beyond the sufficient clean prefix [¢ yields negligible gains. The test performance
of the stitched models lies between that of the constituent noisy f, and clean fy model. The test
accuracy consistently improves with an increase in stitching depth [ (more clean layers in the base),
eventually matching the performance of the clean model once the clean base reaches a critical depth
9. This 19 represents the minimum clean depth needed to restore full generalization. Interestingly, 19
never corresponds to the final layer, showing that despite the noise influence present in the head h>'
layers of the model, replacing an appropriate subset of early layers is enough to achieve generalization.
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Figure 4: Clean-to-Noisy Stitching h.7!(S (goél)): Accuracy of stitched models on unseen test dataset. Each
xtick corresponds to a stitched model comprising clean base up to the layer [, stitching layer, and the noisy
head starting from layer [ + 1 to the last layer. The black vertical line shows the minimum depth of the clean
base [¢ required for restoring (almost) full generalization in the noisy model.

G.3 Architecture and task complexity influence the depth of /9. The location of I9 depends on
both architectural inductive biases and dataset difficulty. For example, in the CNN model trained on
SVHN, [. = fc2 lies near the end of the architecture, whereas in ResNet-18 trained on CIFAR-10,
19 = layer4.0 occurs much earlier relative to the model’s depth. Even within the same architecture,
such as ResNet-34, the depth of 19 differs across datasets. On CIFAR-10, [, = layer4.0, the second
last residual block (similar to ResNet-18 trained on CIFAR-10), but for the more complex CIFAR-100
dataset, performance continues improving up to the last residual block layer4. 1, analogous to ResNet-
50 where [, = layer4.2. Strikingly, for any given architecture-dataset pair, all stitched models
converge to similar test accuracy at l¢, regardless of the noise r, and exhibit similar improvement
trajectories.

5.2.2 Noisy-to-Clean Stitching 1! (S(g="))

We now consider the reverse direction: beginning with a clean model, we gradually stitch in the noisy models’
early layers (g=!). Here, we anticipate that injecting noisy (memorization-prone) layers at the bottom should
degrade the stitched model’s generalization. Figure [5] presents the test accuracy of noisy-to-clean stitched
models (y-axis) as a function of stitch depth [ (x-axis). The key observations are summarized below.

G.4 Stitching a few early noisy layers causes minimal degradation. After stitching in a few
early noisy layers, the test performance of the stitched model remains close to that of the clean
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Figure 5: Noisy-to-Clean Stitching hg'(S(g=")): Accuracy of stitched models on unseen test dataset. Each
xtick corresponds to a stitched model comprising noisy base up to the layer [, stitching layer and the clean
head starting from layer [ + 1 to the last layer. The black vertical line shows the minimum depth of the noisy
base {9 beyond which the generalization drops steadily in the clean model.

model. This indicates that a limited number of noisy bottom layers does not immediately harm
generalization, likely because the majority of the upper clean layers can compensate or override the
noisy representations introduced at shallow depths.

G.5 Stitching beyond the minimum noisy prefix /9 degrades performance As stitching depth
increases, test performance initially changes little, but then exhibits a sharp drop once the stitched
noisy prefix exceeds a critical depth (9. This [, referred to as the minimum noisy depth that affects
generalization, marks the point at which noisy early representations overwhelm the corrective influence
of the clean upper layers. Beyond 19, test accuracy steadily declines and approaches that of the fully
noisy model. Moreover, across all architectures and noise levels r, I consistently appears in the first
half of the model. This suggests that only a small number of noisy bottom layers can be tolerated
before generalization deteriorates. However, even when all layers except the final classifier are noisy,
the stitched model generalizes noticeably better than the noisy model, with improvements as large as
15-20% at r = 50%. This highlights the dominant role of even a single-layer clean head that can
significantly boost generalization, even when the entire base is noisy.

5.3 Interpretations and Inferences

We summarize the key observations from stitching clean layers to noisy model and vice verse in Table
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Table 1: Summary of generalization and memorization behavior under clean-to-noisy and noisy-to-clean
stitching.

Stitching Direction Generalization Memorization
(Test Accuracy) (Random-Label Accuracy)
Clean — Noisy - Early clean layers give large gains. - Early clean layers drops accuracy.
RZY(S(g5h) - Improves with a deeper clean base. - Forgets memorization after stitching
- Matches clean model after stitching depth I7*.
depth 9. - Clean base suppresses noisy head.
Noisy — Clean - Shallow noisy base has little effect. - Negligible for small noisy prefix.
h3'(S(g=h) - Sharp decline beyond stitching depth - Emerges only after stitching depth [};".
3. - Never reaches 100% due to clean head.
- Always better than the fully noisy
model.

5.3.1 Fixing noise in early layers improves generalization and reduces memorization in noisy models

Our experiments demonstrate that fixing early layers of the noisy model, starting from the very first layer /block
(see observation , improves its generalization. The test accuracy of the noisy model increases steadily as
more clean layers are stitched in (obs. and saturates once the clean base reaches a critical depth 19. A
similar behavior is observed for memorization, where memorized accuracy decreases as clean early layers are
introduced (obs. [M.1JM.2)) and reduces to near-random behavior once layers up to I* are fixed (obs. [M.3]).
Collectively, these observations show that—even when noise exists only in the upper layers—the stitched
model behaves similarly to the clean model on both unseen and memorized inputs once early noisy layers up
to a certain depth are replaced.

We attribute this to the hierarchical structure of DNNs, where the deeper layers depend directly on the
representations produced by earlier ones. Any abnormality or noise-induced distortion in the early layers
propagates and amplifies with depth. Consequently, replacing noisy early layers with clean ones effectively
removes the source of distortion, improving generalization while suppressing memorization.

5.3.2 Stitching in noisy early layers to the clean model results in memorization with reduced
generalization

Replacing the first few clean layers with noisy ones up to a depth 19 does not degrade generalization (obs.
, maintaining test accuracy close to the clean model and keeping memorization near random. This
is mainly due to the presence of a larger number of clean upper layers that can compensate for the noisy base.
However, once the depth of the noisy base exceeds ¢, memorization emerges and test accuracy decreases,
approaching the performance of the fully noisy model. This shows that although the model can tolerate a
small noisy base, excessive corruption in early layers imposes a substantial burden on remaining clean layers,

causing generalization to drop.

However, stitched models with the noisy base and clean head never achieves perfect memorization (100%
accuracy on randomly labeled training inputs), even when all layers except the last layer are noisy. Instead,
depending on architecture and dataset complexity, memorized accuracy ranges from as low as 20% to at most
90%. This highlights the critical role of the head layers in enabling complete memorization. This observation
is consistent with existing memorization mitigation techniques, many of which modify or regularize the final
layers. At the same time, the fact that noisy-to-clean stitched models still exhibit some memorization shows
that every layer participates in memorization. While early layers contribute, perfect memorization appears to
require noise across all layers—including the head.

11
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5.3.3 Implicit bias of architecture and task complexity on critical stitching depths

We study the impact of architecture and task complexity on layer-wise memorization and minimum stitching
depth needed to restore generalization or suppress memorization. We experiment with two different architec-
tures on the same dataset - ResNet-18 and ResNet-34 models trained on the same noisy variants of CIFAR-10,
and study the behavior of stitched models. In this case, task complexity is fixed, and the model capacity
varies. We observe that although the positions of critical depths (19, I, I,,, and ") are broadly similar, the
rate at which accuracy changes with stitching depth differs. For instance, while both architectures exhibit
the same minimum noisy depth ] for memorization to emerge, the increase in memorized accuracy varies

(see Figure |3).

Conversely, when studying the same architecture (ResNet-34) across datasets of different complexity (CIFAR-
10 vs. CIFAR-100), we find that the change in performance with stitching depth follows a similar trajectory,
but the location of critical stitching depths shifts. For instance, in ResNet-34, a noisy base up to layer4.0
marks the emergence of non-trivial memorization on CIFAR-10, while it is pushed deeper to the last residual
block layer4.2 for CIFAR-100 (consistent with observations in ResNet-50 architecture for CIFAR-100). These
patterns demonstrate that both architectural capacity and task difficulty jointly shape the positioning of
critical depths and the rate of change of memorization and generalization performance.

5.3.4 Functional similarity between layers of the noisy and clean model

As the stitching depth in clean-to-noisy stitching increases, the test performance of the stitched model
improves relative to the noisy model. This shows that clean layers exhibit better generalization. Conversely,
in noisy-to-clean stitching, the test performance of the stitched model drops relative to the clean model after
stitching beyond ¢, and the degradation becomes more prominent as stitching depth increases. This suggests
that memorization-induced degradation compounds in depth. In essence, the collective functional similarity
between layers of the clean and noisy models (as measured by the performance gap of the stitched model
relative to the head model) decreases with depth. This further supports the idea that the generalization
capability of the early layers in the noisy model is weaker than that of the clean model, highlighting how the
negative impact of noise propagates through the network. Furthermore, these findings align with observations
made by in-place fixing/reducing memorization in individual layers. All these experiments clearly mark the
noise influence in early layers and how fixing it can reduce memorization and improve test accuracy.

6 Discussion and Future Work

Using model stitching, we have analyzed the learning dynamics of each layer of DNN trained with random-label
noise. Our empirical analysis both corroborates earlier findings in the literature as well as provides new
insights. In particular, our experiments show that early layers are infected by training noise, and this is
cascaded further in the DNN model owing to its feedforward nature. Furthermore, across datasets and models,
we consistently observe that fixing early noisy layers can improve the model’s performance on unseen data
and reduce the accuracy on memorized inputs, even when noisy deeper layers remain untouched. To further
verify and corroborate our findings, we perform another experiment (see section in Appendix A.1) where
we fix noise in each layer of the model independently and then evaluate the performance of the model on test
and memorized inputs. We also experiment with insertion of clean middle layers/blocks in noisy model via
two stitching layer to study sole influence of middle layers on the model’s functional behavior in section [A7]]
in Appendix. We once again observe that training and fixing noise in early layers do result in substantial
improvement in generalization and suppresses memorization, corroborating that noise memorization starts
early in the model. Furthermore, we show the dominant role of deeper layers for perfect memorization, and
the influence of architecture bias and dataset complexity on the extent of memorization across layers.

So far, we have limited our study to vision models of varying sizes trained on a classification task. Next,
we plan to extend it to transformer-based VLMs to uncover memorization dynamics between transformer
layers. However, owing to the same dimensionality of all layers in VLMSs, the stitching layer can be replaced
by simple, non-learnable, and more interpretable methods like a logit lens to track the propagation of tokens
responsible for memorization.
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A Appendix

A.1 Retraining each layer of the model

So far, we assumed access to a noise-free clean model and compared the functional similarity of its layers to
those of the noisy model. However, in a practical setting, it is more feasible to correct layers/blocks of the
model by retraining than to replace them with those of the noise-free clean model. So, we raise a key question:
“What would be the impact of in-place fixing/reducing noise in each layer/block of the noisy model on its
performance, and whether observed findings would be similar to those of stitching noise-free layers” However,
answering this question needs a method to fix layer-wise noise in the model, which itself is challenging and
beyond the scope of our work. As a result, we adopt the popular approach of fine-tuning each layer on a
dataset Dy, and evaluate the test and memorized accuracy of the end model.

We use the validation dataset D,q; as the fine-tuning dataset Dy, for each layer, resulting in weight updates to
learn more generalizable features. This way, we can assume reduced noise in the fine-tuned layer when trained
on Dyq. So, after fine-tuning each layer independently (while freezing others), the model’s performance is
evaluated on the unseen test dataset Di.s; and memorized inputs D). We experiment on ResNet-18 model
trained on multiple noisy variants of CIFAR-10 with noise ratio r and report our findings in Figure [f]

The observations can be summarized as

e Retraining the very first block on D, improves test accuracy and starts predicting correct labels to
memorized inputs, and the increase in accuracy is proportional to the noise ratio . This corroborates
that noise impacts early layers, and its influence is directly proportional to the underlying noise ratio
r.

e As the depth of the retrained layer increases, more memorized inputs are correctly predicted. However,
we do not observe more than 80% accuracy on memorized inputs, showing limitations of fine-tuning
in mitigating underlying noise and limited corrective power of each layer.

Next, we repeat the above experiment using memorized inputs but with their true labels as the fine-tuning
dataset, i.e., Dy; = D;'. The fine-tuning will directly interfere with the learned noise, providing the right
update direction for weights to forget random labels and correctly predict ground truth labels on the
memorized inputs, resulting in reduced noise. We again train ResNet-18 model on varied noisy variants of
the CIFAR-10 dataset and report their training and test accuracy in Figure [f] The experiment reveals that:

e The fine-tuning of the first block can map at least 70% of previously randomly labeled inputs to
correct labels, despite no change in the rest of the model. Moreover, the accuracy with respect to
true labels increases with the depth of the fine-tuned layer.

o Fine-tuning layer3.0 or any layer after it achieves 100% accuracy on memorized inputs. Notably,
layer3.0 is also the minimum clean suffix needed to mitigate memorization completely (see Figure .

e Fine-tuning with correct labels of memorized input shows degradation in test accuracy for all noise
ratios r < 8000. However, for large noise, the test accuracy improves drastically after fine-tuning the
first layer and increases with an increase in depth of the fine-tuned layer, except for the last residual
block.

We hypothesize that when a layer is fine-tuned with 75:1, the gradient updates weights to forget memorized
inputs and learn their true class label, messing up with existing generalized features. Moreover, during
training on D;’, the quality of learned generalized features is better if the noise ratio is small. That’s why,
for small noise ratios, fine-tuning early layers can learn generalized features that can negatively impact
previously learned generalized features, while for large noise ratios, the quality of generalized features was
already poor, and fine-tuning can partially improve them. This explains the drop in test accuracy for small r
and continuous improvement for large r.
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Figure 6: ResNet-18 on CIFAR-10: The first row shows the performance of the model whose layers
are independently trained on the validation dataset, and the second row corresponds to model layers being
finetuned on the correctly labeled memorized inputs. In each subplot, all the residual blocks to be finetuned
independently are listed on x-axis while the model’s accuracy (with exactly one finetuned block) is plotted on

the y-axis. The first column shows the performance of model with finetuned layers on the unseen test

dataset

and the second column corresponds to model’s performance on D;' with respect to their true class labels.

A.2 Layer-wise study of memorization in Transformer model

In this paper, our analysis is intentionally scoped to convolutional and residual architectures, where the notion
of locality and hierarchical feature reuse allows a controlled investigation of memorization mechanisms. To
investigate whether the observations also generalize to other architectures, we conduct preliminary experiments
on Vision Transformers (ViT). Specifically, we train a ViT-Small architecture on CIFAR-100 dataset with

and without random noise. We then stitch clean model (r = 0) to noisy model (r € {25%, 50%}) aft
transformer block, considering both clean-to-noisy and noisy-to-clean directions. The stitching layer is
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Figure 7: Vision Transformer (ViT-s) trained on CIFAR-100 dataset. The dotted lines in first column show
the memorized accuracy of noisy models. The dotted lines in second column shows the test accuracy of noisy
models. The black dashed line shows the memorized and test accuracy of clean model.

on validation dataset and evaluation of stitched models on unseen test dataset and memorized randomly
labeled inputs is plotted in Figure[7] The key observations are:

e Clean-to-Noisy Stitching: Stitching clean base to noisy model reduces memorization at all stitching
depths except blocks.3 where sudden, small spike in memorized accuracy is observed. This behavior
is broadly consistent with our earlier findings Furthermore, stitching sufficient number of initial
clean transformer blocks to noisy model improves its test performance. In this case, stitching layers
of clean model at least up to blocks.2 improves the test accuracy of the noisy model for both
noise ratios (r = 25% and r = 50%). Also, once clean model is stitched upto blocks.6, the test
performance of the stitched model matches that of the clean model irrespective of noisy head layers
and noise percentage 7. This is consistent with observed findings and

e Noisy-to-Clean Stitching: As early noisy layers are stitched in to the latter clean layers, the test
accuracy starts decreasing. For smaller noise ratio (r = 25%), the drop in test performance is gradual
while a sharp decrease is observed for larger noise r = 50%. However, irrespective of the stitching
depth (i.e., the number of noisy blocks stitched in to the clean model), the test accuracy of the
stitched model is always significantly better than that of its noisy counterpart. This aligns with

17



Under review as submission to TMLR

~ 1001 | (%) —
S ! 75 1 !
= | —e— 10.0 'S ]
| ~ ° — o _¢ |
> g0 ! —e— 25.0 3 / ]
@) 1 o 704 ]
@ ! —e— 50.0 <z o !
2 60 ! Tesd . — !
| @ [ i
) I = |
< | BRRRRRE R SR L 3 60 H
T 40 ! v s !
O I ]
N ! < 55 t
= : 2 r(%)
g 20 : 2 504 —e— 10.0
—e— 25.0
g | — —e— 50.0
0ot L DN . — a5 g .
= < < = < < = = < <
z A A A A A 5 @ A A A A A 5
5 S S S o ~ o 5 S S S S N o
< o N 0 ¥ ¥ © < o N b T ¥ 0
I [} @ a 9] 9] I I a [} [} [ a I
+ > > > > > ° hed > > > > > =]
5 © © © = © S © © © © © o S
w Vi i i Vi i @ i v i i i
o o o o o o o o o o
Stitching depth / Stitching depth /
(a) Clean-to-Noisy Stitching: Memorized accuracy (b) Clean-to-Noisy Stitching: Test accuracy
= 1001 1o —_——
2 —e— 10.0 751 \o °
~ . —_— '@, ——,
> 80{ —e— 25.0 9 ’%./ *
@) o 704
© —e— 50.0 = ! —
5 3 6 ' >
O 604 ]
< £ I
3 60 1 —
T 404 v} |
N < 554 !
N 2 (%) :
g 204 @ 50 —e- 100
o == 25.0
=

=0 451 —e— 50.0

o
L
o

clean 4

1

= = = = = = = = = =
A A A A A @ 5 A A A A A z
e Q e Q N o <@ e Q Q e N o
g N 7 ¥ i = o 7 g a i ¥ =
I 9] o o 9] 9] I I o T 9] 9] o I
b= > > > > > o b=t > > > > > el
5 = o © = o s 5 © @ = = T 5
% Vi Vi Vi Vi Vi o 7 Vi Vi i Vi Vi o

o o o o o o o o o o

Stitching depth / Stitching depth /

(c) Noisy-to-Clean Stitching: Memorized accuracy (d) Noisy-to-Clean Stitching: Test accuracy

Figure 8: ResNet-101 trained on CIFAR-100 dataset.

the well-known fact of fixing last few layers of the noisy model to improve its test performance.
Interestingly, the memorization emerges only when significant number of initial noisy blocks are
stitched in to the clean model and perfect memorization is never witnessed even when all the layers
except the last output layer are noisy, consistently aligning with our main findings [M.4] and [M.5]

Despite these qualitative similarities, ViT stitching also exhibits deviations from observed patterns in CNN
and ResNets. For instance, the sudden increase in memorized and test accuracy when clean model is
stitched to noisy model at blocks.2 (subplots (a) and (b) in Figure[7). Similarly, the test accuracy of the
noisy-to-stitched model for large noise ratio r = 50% drops sharpely with stitching in early noisy blocks and
then fluctuates as more noisy blocks are stitched in. These irregularities warrant further investigation to
determine whether they stem from architectural differences or from limitations of the stitching mechanism
itself as, unlike convolutional models, stitching in ViTs applies token-wise linear transformation. Overall, our
preliminary experiments suggest qualitatively similar trends with minor deviations, but a full analysis would
require additional methodological development and is beyond the scope of the present work.

A.3 Layer-wise study of memorization in very deep networks

We apply stitching to ResNet-101 to study the layer-wise memorization and generalization in very deep
networks. ResNet-101 comprises of 33 residual blocks organized into four stages - {layerl, layer2, layer3,
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ResNet-18 trained on CIFAR-10: Inserting middle clean layer in the noisy model
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Figure 9: Inserting clean middle blocks in the noisy model. First row corresponds to insertion of single clean
middle blocks and second row corresponds to insertion of multiple clean middle blocks in the noisy model

layer4d} with layer3 consisting of 23 residual blocks.To probe layer-wise effects at different depths, we
perform stitching at representative locations: the first residual block of each stage (layer1.0, layer2.0,
layer3.0, layer4.0) and the final residual block (layer4.2). The results of stitching are shown in Figure
Despite {1layel, layer2} forming a small fraction of the total network depth, stitching clean prefix up to
layer3.0 eliminates more than 50% memorization for large noise ratios. Infact, the rate of reduction in
memorized accuracy slows down as we stitch beyond layer3.0. Conversely, the emergence of memorization
in noisy-to-clean stitched models is delayed until we stitch noisy prefix up to last few residual blocks. In fact,
the coarse stitching behavior, both clean-to-noisy and noisy-to-clean, of ResNet-101 model seems to resemble
that of ResNet-34 and ResNet-50 model trained on CIFAR-100 dataset. The observed functional behavior of
stitched models (evaluated as memorized and test accuracy) is consistent with all our findings. .

A.4 Insertion of middle clean layers in the noisy model

Model stitching stitches a clean prefix to the noisy model, fixing noise in all the layers of the prefix. As
a result, understanding noise impact of each layer independently or a subset of layers other than prefix is
unaddressed. So to delve further into noise memorization by each layer, we replace middle blocks of the
noisy model by their clean counterparts. This is achieved by inserting two stitching layers, i.e., first perform
noisy-to-clean stitching at layer I; followed by stitching of stitched model to noisy model at layer (I5), resulting
in swapping out of noisy layers ({l; + 1,...,l2}) by their clean counterparts. We carry out experiment on
ResNet-18 model trained on CIFAR-10 dataset for all noise ratio r by a) inserting one midlle clean block
in the noisy model and b) inserting consecutive subset of clean middle blocks in noisy model. ResNet-18
consists of eight residual blocks, with seven blocks that can be considered “middle” blocks, leading to many
possible subsets. To keep the study tractable, we focus on insertion of two consecutive subsets of clean middle
blocks - {layer1l.1, layer2.0, layer2.1} (implemented by inserting stitching layers at layer1.0 and
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layer2.1) and {layer3.0, layer3.1, layer4.1l, layer 4.2} (implemented by inserting stitching layers
at layer2.1 and layer4.2). The functional behavior of noisy model after insertion is shown in Figure @
We observe that inserting clean middle blocks leads to a more pronounced reduction in memorized accuracy
compared to replacing only early layers, consistently across all noise ratios r. Moreover, inserting larger
consecutive subsets of middle blocks (three or four blocks) further mitigates memorization However, a key
distinction between stitching clean middle blocks vs clean-prefix stitching lies in generalization. Contrary to
clean-prefix stitching, none of the explored insertions has resulted in the test accuracy similar to that of the
clean model for any noise ratio. While this suggests that fixing middle layers alone may be insufficient to
fully recover generalization, we refrain from drawing strong conclusions, as a comprehensive evaluation would
require exploring a large number of possible block combinations. We leave such an exhaustive combinatorial
analysis to future work.

A.5 Training plots of stitching layers

The stitching layer S is trained by minimizing the cross-entropy loss of the stitched model on the held
out validation dataset. The training proceeds until loss converges, at which the representations of the two
models are maximally aligned in order to achieve the best-possible performance of the stitched model on its
training (i.e., validation) dataset. The training convergence of stitching layers, both for clean-to-noisy and

noisy-to-clean stitching, is shown in Figure [I0] [[1} [12} [3] [[4] and [15}
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ConvNet trained on SVHN dataset: Training convergence of clean-to-noisy stitched models h>/(S(g5'))
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Figure 10: Training convergence of stitching layers in clean-to-noisy stitched models
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ResNet-34 trained on CIFAR-10 dataset: Training convergence of clean-to-noisy stitched models h;>/(S(gg*'))
Stitching at layerl.0 Stitching at layerl.1 Stitching at layer2.0

2.00 — 2000 2.25 — 2000 2.00 — 2000
Los —— 4000 2.00 — 4000 1.75 =400
. —— 6000 175 —— 6000 —— 6000
1.50 —— 8000 . —— 8000 1.50 —— 8000
» —— 10000 | w» 1.50 —— 10000 | w755 —— 10000
g 125 — 15000 | 8 15 — 15000 ' — 15000
] - -
1.00 —— 20000 1.00 ~—— 20000 1.00 ~—— 20000
0731 075 o7 w
0.501 = 0.501 \2= 030 \g_z;__:;_mw
0.25
0 20 40 60 80 100 0 25 50 75 100 125 150 175 0 50 100 150 200
Epochs Epochs Epochs
Stitching at layer2.1 Stitching at layer3.0 Stitching at layer3.1
2.00 —— 2000 2000 14
—— 4000 4000 :
1.75 —— 6000 6000 12
1.50 — 8000 8000
215 — 10000 10000 [ 10
i —— 15000 15000 | G o8
1.00 ~—— 20000 20000
0.6
0.75
050 } 0.4
0.25 0.2
0 25 50 75 100 125 150 175 0 50 100 150 200 250 0 50 100 150 200 250 300
Epochs Epochs Epochs
Stitching at layer4.0 Stitching at layer4.1
0.30 0.24
0.25 0.22
" «» 0.20
%3 v
So0.20 Soas
0.16
0.15
0.14
0.10 0.12
0 50 100 150 200 0 25 50 75 100 125 150 175
Epochs Epochs
(a) ResNet-34 trained on CIFAR-10 dataset
ResNet-34 trained on CIFAR-100 dataset: Training convergence of clean-to-noisy stitched models h>/(S(g5"))
Stitching at layerl.0 Stitching at layerl.1 Stitching at layer2.0
3.00 — 2000 | 30 N — 2000 | 2.75 — 2000 |
2.75 — 4000 | - —— 4000 — 4000
250 — 6000 | \ — 6000 2.50 — 6000 |
S0 — 8000 25 — 8000 | 2254\ — 8000 |
» 2.25 —— 10000 | © S . — 10000 | —— 10000
§ 2001\ — 15000 | § \\‘ —— 15000 § 2.00 —— 15000 |
175 —— 20000 2.0 —— 20000 | 1,754 D —— 20000 |
150 1 N 15 k\_~ 1.50
1254 N = 1251
1.00
0 20 40 60 80 100 120 140 0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Epochs Epochs Epochs
Stitching at layer2.1 Stitching at layer3.0 Stitching at layer3.1
2750 N — 2000 | 2,501 1 — 2000 | 2:30 ‘\ — 2000 |
: —— 4000 225 \ —— 4000 | 2.25 —— 4000 |
o e B — o | s\ ]
2254\ - 1 : = i ' —
@ — 10000 | 45 \\-5_ — 10000 | @175 \— —— 10000 |
&8 2.00 —— 15000 | ) \\ — 15000 | © - e —— 15000
- —— 20000 | — 1.50 —— 20000 | — 1.50 —— 20000 |
1.75 8
1.25 S 1.25 N
150 o] =T S
125 o R .l T
N T
1.00 0.75 0.75
0 25 50 75 100 125 150 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
Epochs Epochs Epochs
Stitching at layer4.0 Stitching at layer4.1
1.4 — 2000 | 14 — 2000 |
—— 4000 ——— 4000
. 1.2 ]
12 — 6000 — 6000
1.0 — 8000 | 1.0 — 8000 |
oy \ — 10000 « —
3 08 — 15000 | & 08 —
0.64— N —— 20000 | 0.6 —
0.4 0.4
- \ \ 0.2
0.0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epochs Epochs

(b) ResNet-34 trained on CIFAR-100 dataset

Figure 11: Training convergence of stitching layers in clean-to-noisy stitched models
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ResNet-50 trained on CIFAR-100 dataset: Training convergence of clean-to-noisy stitched models h> (S(gg")
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Figure 12: ResNet-50 trained on CIFAR-100 dataset: Training convergence of stitching layers in clean-to-noisy
stitched models
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(b) ResNet-18 trained on CIFAR-10 dataset

Figure 13: Training convergence of stitching layers in noisy-to-clean stitched models
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Figure 14: Training convergence of stitching layers in noisy-to-clean stitched models
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Figure 15: ResNet-50 trained on CIFAR-100 dataset: Training convergence of stitching layers in noisy-to-clean
stitched models
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