
Under review as a conference paper at ICLR 2022

PLAN YOUR TARGET AND LEARN YOUR SKILLS:
STATE-ONLY IMITATION LEARNING VIA DECOUPLED
POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-only imitation learning (SOIL) enables agents to learn from massive demon-
strations without explicit action or reward information. However, previous methods
attempt to learn the implicit state-to-action mapping policy directly from state-only
data, which results in ambiguity and inefficiency. In this paper, we overcome this
issue by introducing hyper-policy as sets of policies that share the same state tran-
sition to characterize the optimality in SOIL. Accordingly, we propose Decoupled
Policy Optimization (DPO) via explicitly decoupling the state-to-action mapping
policy as a state transition predictor and an inverse dynamics model. Intuitively,
we teach the agent to plan the target to go and then learn its own skills to reach.
In-depth analyzed experiments on simulated environment and a real-world driving
dataset demonstrate the effectiveness of DPO and its potential of bridging the gap
between reality and simulations of reinforcement learning.

1 INTRODUCTION

Imitation learning offers a way to train an intelligent agent from demonstrations by mimicking the
expert’s behaviors without constructing hand-crafted reward functions (Hussein et al., 2017; Liu et al.,
2021). The corresponding methods normally require the expert demonstrations include information
of both states and actions. Unfortunately, the action information is not always accessible from many
real-world demonstration resources, e.g., online video recordings of car driving or sports. Thus
a natural desire to take advantage of these massive and valuable resources motivates the study of
state-only imitation learning (SOIL), also known as learning from observations (LfO) (Torabi et al.,
2019b). Analogy to human beings, SOIL is a more intuitive way to approach imitation by only
matching the expert’s state sequences without having explicit knowledge of the exact actions.

A wide range of algorithms have been proposed to solve SOIL by matching the state sequence of the
expert (Torabi et al., 2018; 2019a). However, the action agnostic setting in SOIL makes it challenging
to determine the optimal action because of the partial observability of the expert demonstrations
that multiple policies could be chosen to match the same expert state sequence. Thus learning a
state-to-action policy is implicit, leading to a less efficient modeling of the explicit information from
demonstrations, and in result could cause suboptimality.

To this end, in this paper, we introduce the concept of hyper-policy denoting a family of policies
that share the same state-state visitation. Based on that, instead of recovering the expert policy, we
characterize the optimality in SOIL by finding the expert hyper-policy. The proposed method is
called decoupled policy optimization (DPO), which separates the policy into two modules: an expert
state transition predictor that finds the optimal hyper-policy, followed by an inverse dynamics model
that builds the executable policy to deliver actions. Intuitively, the expert state transition predictor
predicts the target, while the inverse dynamics model enables the agent to learn its own skills to reach
the target. DPO takes the advantage of such a decoupled structure by explicitly modeling two kinds
of data: (1) the expert state transition that is directly accessible in the demonstration; (2) the action to
be performed which should be obtained by interacting with the environment.

To ensure the benefit of DPO, these two modules should work coherently to provide accurate foresight
for targets and corresponding skills. To achieve this, we regularize the state transition predictor to
prevent the model from predicting non-neighboring states via multi-step and cycle training style.

1

Under review as a conference paper at ICLR 2022

Further, to improve the learning efficiency by encouraging the agent to reach the expert states, we
augment reward and apply policy gradient to DPO with additional generative adversarial objective.

In experiments, we conduct in-depth analysis for our method to show the advantage of the decoupled
structure and the higher efficiency. We also evaluate DPO on a real-world driving dataset with
state-only demonstrations, and the result shows that DPO can learn driving behaviors closer to human
drivers when compared with baseline methods.

2 PRELIMINARIES

Markov Decision Process. Consider a γ-discounted infinite horizon Markov decision process
(MDP)M = 〈S,A, T , ρ0, r, γ〉, where S is the set of states,A is the action space, T : S×A×S →
[0, 1] is environment dynamics distribution, ρ0 : S → [0, 1] is the initial state distribution, and
γ ∈ [0, 1] is the discount factor. The agent makes decisions through a policy π(a|s) : S ×A → [0, 1]
and receives rewards r : S ×A → R. For analyzing the effect of action ambiguity, we assume the
dynamics T (s′|s, a) has redundant actions, i.e., its transition probabilities can be written as linear
combination of other actions’. Formally, this refers to the existence of a state sm ∈ S , an action an ∈
A and a distribution p defined on A \ {an} such that

∫
A\{an} p(a)T (s′|sm, a) da = T (s′|sm, an).

Occupancy Measure. The concept of occupancy measure (OM) (Ho & Ermon, 2016) is proposed
to characterize the statistical properties of a certain policy interacting with an MDP. Specifically, the
state OM is defined as the time-discounted cumulative stationary density over the states under a given
policy π: ρπ(s) =

∑∞
t=0 γ

tP (st = s|π). Following such a definition we can define different OM:

a) State-action OM: ρπ(s, a) = π(a|s)ρπ(s)

b) State transition OM: ρπ(s, s′) =
∫
A ρπ(s, a)T (s′|s, a) da

c) Joint OM: ρπ(s, a, s′) = ρπ(s, a)T (s′|s, a)

Imitation Learning from State-Only Demonstrations. Imitation learning (IL) (Hussein et al.,
2017) studies the task of learning from demonstrations (LfD), which aims to learn a policy from expert
demonstrations without getting access to the reward signals. The expert demonstrations typically
consist of expert state-action pairs. General IL objective minimizes the state-action OM discrepancy:

π∗ = arg min
π

Es∼ρsπ [` (πE(·|s), π(·|s))]⇒ arg min
π

` (ρπE (s, a), ρπ(s, a)) , (1)

where ` denotes some distance metric. For example, GAIL (Ho & Ermon, 2016) chooses to minimize
the JS divergence DJS(ρπE (s, a)‖ρπ(s, a)), and AIRL (Fu et al., 2018) utilizes the KL divergence
DKL(ρπE (s, a)‖ρπ(s, a)) instead, which corresponds to a maximum entropy solution with the recov-
ered reward (Liu et al., 2021). However, for the scenario studied in this paper, the action information
is absent in state-only demonstrations. Such challenges prevent applying typical IL solutions. An
popular solution (Torabi et al., 2019a) for this problem is to instead optimize the discrepancy of the
state transition OM with the state-to-action policy π(a|s):

π∗ = arg min
π

[` (ρπE (s, s′), ρπ(s, s′))] . (2)

3 METHODOLOGY

3.1 RETHINKING THE OPTIMALITY IN SOIL

In standard IL tasks, when the expert actions are accessible in demonstrations, perfectly imitating the
expert policy corresponds to matching the state-action OM due to the one-to-one correspondence
between π and ρπ(s, a) (Ho & Ermon, 2016; Syed et al., 2008). However, such correspondence is
not applicable for the state transition OM matching in SOIL.
Proposition 1. Suppose Π is the policy space and P is a valid set of state transition OMs
such that P = {ρ : ρ ≥ 0 and ∃π ∈ Π, s.t. ρ(s, s′) = ρ0(s)

∫
a
π(a|s)T (s′|s, a) da +∫

s′′,a
π(a|s)T (s′|s, a)ρ(s′′, s) ds′′ da}, then a policy π ∈ Π corresponds to one state transition

OM ρπ ∈ P . However, under the action-redundant assumption about the dynamics T , a state
transition OM ρ ∈ P can correspond to more than one policy in Π.

2

Under review as a conference paper at ICLR 2022

The proof can be found in Appendix B. As a result, if we choose to optimize a state-to-action mapping
policy, then the optimal solution to Eq. (2) is ambiguous. The ambiguity also comes from the fact
that Eq. (2) does not correspond to a maximum policy entropy solution as in normal IL tasks (see
Appendix C for details). Therefore, a state-to-action mapping function may be too implicit for
matching the state sequence, which could cause training instability and lead to sub-optimal policies.
In that case, we must find a one-to-one corresponding solution to solve SOIL explicitly and efficiently.
Before continuing, we introduce the definition of hyper-policy.
Definition 1. A hyper-policy Ω ∈ Λ is a maximal set of policies sharing the same state transition
occupancy such that for any π1, π2 ∈ Ω, we have ρπ1(s, s′) = ρπ2(s, s′).

Then by definition, there is a one-to-one correspondence between Ω and ρΩ(s, s′). Similar to the
normal state-to-action mapping policy, a hyper-policy Ω can be regarded as a state-to-state mapping
function hΩ(s′|s) which predicts the state transition such that for any π ∈ Ω:

hΩ(s′|s) =
ρΩ(s, s′)∫
s̃
ρΩ(s, s̃) ds̃

=

∫
a

π(a|s)T (s′|s, a) da . (3)

Proposition 2. Suppose the state transition predictor hΩ is defined as in Eq. (3) and Γ = {hΩ : Ω ∈
Λ} is a valid set of the state transition predictor, P is a valid set of the state-transition OM defined as
in Proposition 1, then a state transition predictor hΩ ∈ Γ corresponds to one state transition OM,
where π ∈ Ω; and a state transition OM ρ ∈ P only corresponds to one hyper-policy state transition
predictor such that hρ = ρ(s, s′)/

∫
s̃
ρ(s, s̃) ds̃.

The proof can follow the Theorem 2 of Syed et al. (Syed et al., 2008), and for completness, we contain
the proof in Appendix B. Therefore, we find a one-to-one correspondence between the optimization
term ρ(s, s′) and a practical target hΩ(s′|s), which indicates that under state-only demonstrations we
only need to recover the state transition prediction of the hyper-policy ΩE :

arg min
Ω

[` (ρΩE (s, s′), ρΩ(s, s′))]⇒ arg min
hΩ

Es∼Ω[` (hΩE (s′|s), hΩ(s′|s))] . (4)

However, SOIL still requires to learn a policy to interact with the MDP environment to match the
state transition OM of the expert. This is achievable since we do not have to recover the expert policy
πE exactly but can learn any policy π ∈ ΩE according to Eq. (4).

3.2 POLICY DECOUPLING

To construct an unambiguous objective for SOIL, we define hyper-policy and solve the problem by
finding the state transition predictor of the expert hyper-policy. Intuitively, this tells the agent the
target that the expert will reach without informing any feasible skill that require the agent to learn
itself. Therefore, to recover a π ∈ ΩE , we can construct an inverse dynamics such that

π = T −1
π︸︷︷︸

Inverse dynamics

(T (πE)︸ ︷︷ ︸
Expert state transition predictor

) . (5)

Formally, the expert policy can be decoupled as

πE(a|s) =
∫
s′
T (s′|s, a)πE(a|s) ds′ =

∫
s′

ρπE (s, s
′)IπE (a|s, s

′)

ρπE (s)
ds′ =

∫
s′
hπE (s

′|s)IπE (a|s, s
′) ds′ .

(6)

Notice that both the state transition predictor h and the inverse dynamics model I is policy dependent.
Nevertheless, recall that the optimality in SOIL only requires us to recover π ∈ ΩE , we do not have
to learn about IπE but just one feasible skill I(a|s, s′). Then a policy can be recovered by

π = Es′ ∼ hΩE (s′|s)︸ ︷︷ ︸
target

[
I(a|s, s′)︸ ︷︷ ︸

skill

]
.

(7)

Here the inverse dynamics model I offers an arbitrary skill to reach the expected target
state provided by the state transition predictor h. In fact, it does not depend on the hyper-
policy ΩE but a sampling policy πB to construct I = IπB . We only need a mild re-
quirement for πB that it covers the support of ρΩE (s, s′) so that the learned I can pro-
vide a possible action to achieve the target state. In both experiments and theoretical
analysis we show that this requirement alleviates the dependence on the inverse dynamics.

3

Under review as a conference paper at ICLR 2022

Expert
State

Transition
Predictor

Inverse
Dynamics

Model

Expert Demonstrations

Inference Data Flow

Training Data Flow

Environment
Decoupled Policy

Figure 1: The architecture of Decoupled Policy Opti-
mization (DPO), which consists of an expert state tran-
sition predictor (to plan where to go) followed by an
inverse dynamics model (to decide how to reach).

Furthermore, if the environment and the expert
policy are both deterministic (which is usually
the case in lots of real-world scenarios such as
robotics), the state transition is a single-point dis-
tribution (or known as the Dirac delta function),
and we can simply model h as a deterministic
function. By decoupling the policy, which is a
state-to-action mapping function, as a state-to-
state mapping function (the transition predictor)
and a state-pair-to-action mapping function (the
inverse dynamics model), we can mimic the ex-
pert policy from state-only demonstrations by
optimizing these two modules. The whole archi-
tecture is illustrated in Fig. 1.

State Transition Predictor. In practice, we construct a parameterized expert state transition predic-
tor hψ which predicts the subsequent state of the expert taking the input as a current state ŝ′ = hψ(s).

The state transition predictor models the explicit information of the expert, and it can be learned from
the demonstration data only. Thence, we implement Eq. (4) as a KL divergence minimization:

min
ψ

E(s,s′)∼ΩE [DKL(hΩE (s′|s)‖hψ(s′|s))] , (8)

which can be optimized in a supervised manner. Specifically, we sample state transitions (s, s′) from
the expert demonstrations D and optimize the L2 loss:

Lhψ = E(s,s′)∼D
[
‖s′ − hψ(s)‖2

]
. (9)

Inverse Dynamics Model. Knowing where to go is not enough since the agent has to interact with
the environment to reach the target. This can be achieved via an inverse dynamics model, which
predicts the action given two consecutive states. Formally, let the φ-parameterized inverse dynamics
model Iφ take input the state pair and predict the feasible action to achieve the state transition:
â = Iφ(s, s′). Intuitively, we want the inverse dynamics to learn from possible transitions sampled by
the agent. Recall that we only need the support of learned I(a|s, s′) covers the support of the expert
state transition OM, from which we can infer at least one possible action. Hence, we can optimize
the KL divergence between the inverse dynamics of a sampling policy πB and Iφ:

min
φ

E(s,s′)∼πB [DKL(IπB(a|s, s′)‖Iφ(a|s, s′))] , (10)

and we can choose to optimize L2 loss in a supervised manner by sampling from the replay buffer B:

LIφ = E(s,a,s′)∼B
[
‖a− Iφ(s, s′)‖2

]
. (11)

In our implementation, both the state predictor and the inverse dynamics can be constructed as
Gaussian distributions similar to a normal stochastic policy, thus encouraging exploration.

3.3 TACKLING COMPOUNDING ERROR CHALLENGES

In our formulation, we have decoupled the state-to-action mapping policy as a state-to-state mapping
function and a state-pair-to-action mapping function. Unfortunately, the compounding error problem
exists such that the agent cannot reach where it plans due to the fitting errors of these two parts.
Theorem 1 (Error Bound of DPO). Consider a deterministic environment whose dynamics transition
function T (s, a) is deterministic and L-Lipschitz. Assume the ground-truth state transition hΩE (s)
is deterministic, and for each policy π ∈ Π, its inverse dynamics Iπ is also deterministic and
C-Lipschitz. Then for any state s, the distance between the desired state s′E and reaching state s′
sampled by the decoupled policy is bounded by

‖s′ − s′E‖ ≤ LC‖hΩE (s)− hψ(s)‖+ L‖IπB(s, ŝ′)− Iφ(s, ŝ′)‖ , (12)

where πB is a sampling policy that covers the state transition support of the expert hyper-policy and
ŝ′ = hψ(s) is the predicted next state.

4

Under review as a conference paper at ICLR 2022

......

......

MSE Loss MSE Loss

Figure 2: Multi-step optimization. Given an ex-
pert state sE , hψ predicts the next possible state
ŝ′1, which is further fed to a target network hψ′
to predict the following sequence. The total loss
computes the MSE loss along the state sequence.

The proof can be found in Appendix B, where we
also induce a similar error bound for rollout with a
state-to-action policy as BCO (Torabi et al., 2018) to
show the advantage of the decoupled structure. From
Theorem 1 we know that the compounding error can
be enlarged due to each part’s fitting error, where the
first term corresponds to the error of predicted states
and the second term indicates whether the agent can
reach where it plans to. To alleviate the error, we further propose regularization on these two modules.

3.3.1 REGULARIZATION ON TARGET PLANNING

One major problem is that the state transition predictor may suggest non-neighboring states instead of
predicting one-step reachable states. To overcome this, we draw inspiration from Asadi et al. (Asadi
et al., 2019) and Edwards et al. (Edwards et al., 2020), and regularize state transition predictor to
prevent the model from predicting non-neighboring states via multi-step and cycle training style.

Multi-Step Optimization. We first explain the details of the multi-step optimization objective.
This idea is motivated by Asadi et al. (Asadi et al., 2019), which optimizes a multi-step outcome by
executing a sequence of actions in the dynamics model. Here we optimize the state sequence instead.
As shown in Fig. 2, given an expert state sE , hψ predicts the next possible state ŝ′ that the expert will
reach; the predicted state is then fed into the predictor to output the predicted two-step state ŝ′′. As
such, the multi-step training loss is the L2 loss computed along the k-step outcome sequence:

Lh,ms
ψ = E

(s,{s′iE}ki=1)∼D

[
‖s′1E − hψ(s)‖2 +

k∑
i=2

‖s′iE − hψ′(s′i−1)‖2
]
. (13)

MSE Loss

Figure 3: Cycle training style. Given an ex-
pert state sE , Iφ(s, s′) takes input the pre-
dicted state ŝ′ and sE to get the execution
action a, then an additional forward dynam-
ics model Mω is used to simulated one step
rollout using (sE , a) and get a forward next
state s̃′. The total loss computes the MSE
loss between the two predicted states.

Intuitively, such a regularization makes the state prediction
ŝ′ close to the expert state distribution in order to make
accurate long step predictions. It is worth noting that the
gradient of the cascading state transition predictors should
be dropped since we already have the true labels in the
dataset, and therefore we should not require the cascade
parts to be optimized using the predicted input. We use a
target network hψ′ in practice.

Cycle Training Style. Another way to regularize the
transition predictor’s output to a neighboring state is to
keep an additional function to ensure the cycle consistency,
which is also an important technique in (Edwards et al.,
2020). In particular, as illustrated in Fig. 3, given an expert
state sE , we take the predicted state ŝ′ and sE into the inverse dynamics and get the action a, then
we train an additional forward dynamics model Mω to simulate one step rollout that takes the input
(sE , a) and gets a forward next state s̃′:

LMω = E(s,a,s′)∼B
[
‖s′ −Mω(s, a)‖2

]
Lh,cycle
ψ = E(s,s′)∼D

[
‖s′ − hψ(s)‖2 + ‖h(s)−Mω(s, Iφ(s, s′))‖2

]
.

(14)

In other words, the cycle training scheme provides a regularization on hψ to make predictions
consistent with the forward dynamics model.

3.3.2 EFFICIENT SKILLS LEARNING VIA DECOUPLED POLICY GRADIENT

In previous sections, we have mentioned that learning to reach a specific place requires the data-
collecting policy to cover the support of the expert hyper-policy. This is easy to achieve on simple
low-dimensional tasks, but may not be satisfied in high-dimensional continuous environments. To this
end, we encourage the agent to approach those state transitions from the expert’s hyper-policy ΩE by
minimizing the JS divergence of the state transition occupancy DJS (ρπE (s, s′), ρπ(s, s′)). This can

5

Under review as a conference paper at ICLR 2022

be done by producing informative rewards via GAN-like methods (Ho & Ermon, 2016; Torabi et al.,
2019a), and updating the decoupled policy with policy gradients (PG).

In detail, we construct a parameterized discriminator Dω(s, s′) to compute the reward r(s, a) ,
r(s, s′) as logDω(s, s′) and the decoupled policy served as the generator. In addition, since we
decouple the policy as two parameterized modules, i.e., a state transition predictor and an inverse
dynamics model, then by chain rule, the PG for the decoupled policy can be accomplished by

∇Lπφ,ψ = Eπ [Q(s, a)∇φ,ψ log πφ,ψ(a|s)]

= Eπ
[
Q(s, a)

∫
s′

(
∇ψ log hψ(s′|s) +∇φ log Iφ(a|s, s′)

)
ds′
]
,

(15)

where Q is the state-action value function estimated using the normal Bellman equation and proposed
surrogate reward function; the first term is the gradient for updating the state transition predictor;
and the second term is for the inverse dynamics model. Thus, the optimization for both the state
transition predictor and the inverse dynamics can augment the supervised learning objectives with any
PG-based learning algorithms (e.g., TRPO, PPO, SAC). In practice, the integration can be resolved
via reparameterization tricks, and it will be easier for deterministic state transition that can be directly
optimized end-to-end. As the training proceeds, we expect the agent sample more transition data
around ΩE , and thus the support of the sampling policy progressively covers the support of ρΩE (s, s′).
In experiments we will show that this benefit much for the performance when the task is complex.

3.4 OVERALL ALGORITHM

By combining the idea of generative adversarial training, we obtain our final algorithm, composed
with three essential parts: the state transition predictor h used for predicting the possible future
states sampled by the expert; the inverse dynamics model I used for inferring the possible actions
conditioned on two adjacent states; and the discriminator D used for offering intermediate reward
signals for training the decoupled policy π = I(h). The overall objective of DPO is

Lπ,h,Iφ,ψ = λGLπφ,ψ + λhLhψ + λILIφ , (16)

where λG, λh and λI are hyperparameters for trading off the training among each loss. In practice,
we try a small set of variants for these parameters as shown in Appendix D.1.3, and we directly
optimize Lπφ,ψ instead of iterative training the two modules independently. The detailed algorithm
is summarized in Appendix A. Besides, it is worth noting that both the inverse dynamics model
and the state transition predictor can be pre-trained, where we optimize Lhψ using the state-only
demonstration and optimize LIφ using samples collected by a randomized agent.

4 RELATED WORK
Table 1: Comparison between different methods.

Method Inverse State Decoupled TaskDynamics Predictor Policy

BCO (Torabi et al., 2018) 3 7 7 SOIL
GAIfO (Torabi et al., 2019a) 7 7 7 SOIL

IDDM (Yang et al., 2019) 7 7 7 SOIL
OPOLO (Zhu et al., 2020) 3 7 7 SOIL

PID-GAIL (Huang et al., 2020) 7 7 3 IL
QSS (Edwards et al., 2020) 3 3 3 RL

SAIL (Liu et al., 2020) 3 3 7 IL

DPO (Ours) 3 3 3 SOIL

SOIL endows the agent with the ability to learn from
expert states. Although lacking the expert decision
information, most of the previous works still optimize
a state-to-action mapping policy to match the expert
state transition distribution. For example, Torabi et al.
(2018) trained an inverse model to label the action information and applying behavioral cloning,
while Torabi et al. (2019a) generalized GAIL to match the state transition distribution. Yang et al.
(2019) analyzed the inverse dynamics mismatch in SOIL and introduced a mutual information term
to narrow it, however, in our paper, we show that the mismatch is not the key to imitate the expert
state sequence. Huang et al. (2020) applied SOIL on autonomous driving tasks by decoupling the
policy into a neural decision module and a non-differentiable execution module in a hierarchical way.

Our work decouples the state-to-action policy into two modules. However, both the inverse dynamics
model and the state transition predictor have been widely used by many previous works on RL and
IL tasks. For instance, Torabi et al. (2018) and Guo et al. (2019) trained an inverse dynamics model
to label the state-only demonstrations with inferred actions. Nair et al. (2017) proposed to match a
human-specified image sequence of ropes manipulating with an inverse dynamics model. Pathak et al.
(2018) also focused on image-based imitation and utilized a multi-step inverse dynamics model which

6

Under review as a conference paper at ICLR 2022

Table 2: Eventual performance against different methods on 6 easy-to-hard continuous control benchmarks. The
means and the standard deviations are evaluated over more than 10 random seeds.

InvertedPendulum InvertedDoublePendulum Hopper Walker2d HalfCheetah Ant

Random 25.28 ± 5.53 78.28 ± 10.73 13.09 ± 0.10 7.07 ± 0.13 74.48 ± 12.39 713.59 ± 203.92
BCO 1000.0 ± 0.00 416.92 ± 141.56 1516.91 ± 524.86 270.45 ± 33.22 6.56 ± 151.49 456.45 ± 179.76

GAIfO 1000.0 ± 0.00 8589.46 ± 1391.82 3068.10 ± 24.90 3864.03 ± 326.64 8918.66 ± 1031.41 4879.13 ± 897.46
GAIfO-DP 947.27 ± 110.24 8674.24 ± 1318.04 3030.70 ± 139.85 4008.14 ± 200.79 8710.29 ± 853.13 5502.25 ± 214.34

DPO (w/o PG) 1000.00 ± 0.00 3933.33 ± 3414.51 713.17 ± 369.05 310.53 ± 68.27 -442.55 ± 120.23 -383.12 ± 198.18
DPO (w PG) 1000.00 ± 0.00 8587.96 ± 1394.29 3163.74 ± 64.46 4395.21 ± 216.96 10522.08 ± 394.44 5413.03 ± 161.97
Expert (SAC) 1000.00 ± 0.00 9358.87 ± 0.10 3402.94 ± 446.48 5639.32 ± 29.97 13711.64 ± 111.47 5404.55 ± 1520.49

is regularized by cycle consistency. However, their method can be classified as supervised learning
and requires a pre-collected exploration dataset rather than only small numbers of demonstrations
considered in our paper. Kimura et al. (2018) utilized a state transition predictor to fit the state
transition probability in the expert data, which is further used to compute a predefined reward
function. Liu et al. (2020) constructed a policy prior using the inverse dynamics and the state
transition predictor, but the policy prior was only used for regularizing the policy network. However,
as shown in this paper, the policy can be exactly decoupled as these two parts, which can be uniformly
optimized through policy gradient without keeping an extra policy. Edwards et al. (2020) estimated
Q(s, s′) for RL tasks which employs a similar policy form as Eq. (6) and updates the state transition
predictor through a deterministic policy gradient similar to DDPG (Lillicrap et al., 2016). To sort out
the difference between these methods and ours, we summarize the key factors in Tab. 1.

5 EXPERIMENTS

We conduct four sets of experiments to investigate the following research questions:

RQ1 Is decoupled learning structure superior than state-to-action structure on SOIL tasks?
RQ2 Does DPO achieve higher efficiency or better performance than baselines on SOIL tasks?
RQ3 Can agent reach where it plans with less compounding error?
RQ4 How can DPO be applied on real-world data?

Expert DPO

BCO GAIfO

(a) Rollout density.

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

5
JS Divergence
Policy / SP Loss
ID Loss
DPO
BCO

(b) Loss curves.

Figure 4: Toy example.

To answer RQ1, we conduct toy experiments with a simple 2D grid world
environment and compare both qualitative and quantitative imitation
results. Regarding RQ2, we empirically evaluate DPO on easy-to-hard
continuous control benchmarking tasks. And for RQ3, we evaluate the
difference between the predicted states that the agent plans to reach
and the actually reached consecutive states in the environment for the
proposed regularization. Finally, we explain a case on imitating real-world
traffic surveillance recordings in a simulated environment to investigate
RQ4, which shows the potential of using real-world data for human
behavior simulation. Due to the space limit, we leave experiment details,
additional results and ablation studies in Appendix D.

5.1 UNDERSTANDING THE DECOUPLED STRUCTURE

In this paper we design decoupled policy optimization (DPO) to perform
SOIL tasks, and in previous sections we propose that the key technical
contribution of DPO is the decoupled structure of policy that models the
explicit state transition information and the latent action information from
demonstrations, which solves the ambiguity and enhances the learning
efficiency. Therefore, in this set of experiments, we aim to demonstrate
how DPO is superior than state-to-action policy methods (RQ1). We first
generate expert demonstrations in a 2D 6×6 grid world environment, in which the agent starts at
the upper left corner and aims to reach the upper right corner. In each grid the agent has k × 4
actions, which means that the agent has k possible actions to reach the neighboring block and in our
experiment we choose k = 5 to enlarge the action space.

The density of the expert trajectories and the trajectories sampled by different methods are shown in
Fig. 4(a). We show that both BCO and GAIfO have troubles in directly learning the implicit action
from state-only behaviors. Notably, GAIfO only imitates the major trajectory and omit the other
choice and BCO also stucks in the middle right. By contrast, DPO recovers the expert demonstrations

7

Under review as a conference paper at ICLR 2022

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6e6
steps

0

200

400

600

800

1000

Av
er

ag
ed

 re
tu

rn

InvertedPendulum-v2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.82.0e6
steps

0

2000

4000

6000

8000

Av
er

ag
ed

 re
tu

rn

InvertedDoublePendulum-v2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6e7
steps

0

1000

2000

3000

Av
er

ag
ed

 re
tu

rn

Hopper-v2

0 0.4 0.8 1.2 1.6 2.0 2.6e7
steps

0

1000

2000

3000

4000

Av
er

ag
ed

 re
tu

rn

Walker-v2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.73.0e7
steps

0

2000

4000

6000

8000

10000

Av
er

ag
ed

 re
tu

rn

HalfCheetah-v2

DPO (w PG) DPO (w/o PG) GAIfO GAIfO-DP BCO

0 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6e7
steps

0

1000

2000

3000

4000

5000

Av
er

ag
ed

 re
tu

rn

Ant-v2

Figure 5: Learning curves on 6 easy-to-hard continuous control benchmarks, where the solid line and the shade
represent the mean and the standard deviation of the averaged return over more than 5 random seeds. We
pre-train BCO and DPO for 50k steps and show it in figures.

much better, benefiting from the decoupled structure that first determining the target and then taking
the action to achieve it. To further illustrate the learning efficiency advantage of DPO, we illustrate the
JS divergence curves of DPO and BCO during training in Fig. 4(b). Besides, we show the policy loss
for BCO, the state predictor (SP) loss for DPO, and the inverse dynamics (ID) loss for both methods.
Except that the JS divergence of DPO decreases more quickly than BCO, it is also observable that
DPO relies less on the inverse dynamics than BCO, since the inverse dynamics loss of DPO converges
to a higher level. We further provide a in-depth theoretic and experimental analysis of the dependence
on inverse dynamics with BCO and DPO in Appendix B and Appendix D.

5.2 COMPARATIVE EVALUATIONS

We compare the qualitative results of DPO against other baseline methods on easy-to-hard continuous
control benchmarking environments (RQ2), including InvertedPendulum, InvertedDoublePendulum,
Hopper, Walker2d, HalfCheetah and Ant. In each environment, besides GAIfO and BCO, we also
evaluate GAIfO with decoupled policy (denoted as GAIfO-DP). For DPO we compare the reward
augmented version of DPO (denoted as DPO w PG)1 with the supervised learning version of DPO,
i.e., λG = 0 (denoted as DPO w/o PG). For fairness, we re-implement all the algorithms and adopt
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) as the RL learning algorithm for GAIfO and DPO.
For all environments, we first train an SAC agent to collect 4 state-only expert trajectories and then
train agents with such data. All algorithms are evaluated by a deterministic policy. The eventual
results are summarized in Tab. 2, and the learning curves are shown in Fig. 5. It is worth noting
that for DPO, we choose the best performance among the experiments that use multi-step or cycle
regularization, and we put the full experiment results in Appendix D.

One can easily observe that on simple environments, BCO is able to achieve a good performance,
and GAIfO also does well on harder tasks. Even so, DPO can still gain the best or comparable
performance against its counterparts. Particularly, without augmented reward, DPO is able to beat
BCO with the higher sample efficiency on simple tasks like Pendulums. By contrast, on higher-
dimensional tasks such as Walker2d, HalfCheetah and Ant, it is difficult to construct accurate inverse
dynamics that covers the support of the expert hyper-policy from scratch. However, thanks to the
decoupled structure, DPO combines generative adversarial policy gradients with the supervision,
and finally recovers a good policy from the expert hyper-policy. This is particularly evident on
HalfCheetah where DPO behaves poorly at the beginning but improves fast as the training proceeds.
Besides, as illustrated in Fig. 5, DPO owns better sample efficiency in most of the environments,
but the improvements are limited on the hardest tasks. We think that this may be due to larger state
spaces (111 dimensions for Ant) that makes it difficult to recover the state predictor or an inverse
dynamics model. In all experiments, GAIfO-DP achieves similar results as GAIfO, indicating that
the network structure does not count much for the performance.

1Without ambiguity we simply denote DPO for this version of algorithm in the following sections.

8

Under review as a conference paper at ICLR 2022

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

10

20

30

40

50

60

Pr
ed

 R
ea

l M
SE

Hopper-v2

0 0.4 0.8 1.2 1.6 2.0 2.4 2.6e7
steps

0

20

40

60

80

100

120

140

160

Pr
ed

 R
ea

l M
SE

Walker-v2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0e7
steps

0

200

400

600

800

1000

Pr
ed

 R
ea

l M
SE

Half-v2

GAIfO-DP DPO w/o Reg DPO w M.S-2 Reg DPO w M.S-3 Reg DPO w Cycle Reg DPO w Cycle-M.S-2 Reg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

20

40

60

80

100

120

140

Pr
ed

 R
ea

l M
SE

Ant-v2

Figure 6: Compounding error of the predicted consecutive states and the real states the agent reaches when
rollout in the environments.

5.3 COMPOUNDING ERROR REDUCTION

In this section, we aim to study whether the agent can reach the target as it plans (RQ3) and see if the
supervision signal is meaningful. Therefore, we analyze the distance of the reaching states and the
predicted consecutive states, and draw the mean square error (MSE) along the training procedure
in Fig. 6. We compare our regularization including multi-step optimization (denoted as M.S.-k,
where k is the number of rollout steps) and cycle training style (denoted as Cycle). Note that DPO
needs at least 1-step rollout for training the state transition predictor. From the figure, we see the
supervision does regularize the state prediction to be meaningful compared with GAIfO-DP, although
the agent still has gaps to get to where it plans to. Combining regularization can always achieve lower
compounding error, and the cycle training is effective in most of the environments. In Appendix D.6,
we further illustrate the correlation between the final performance and the distance.

5.4 LEARN TO DRIVE FROM REAL-WORLD TRAFFIC DATA

The rapid development of autonomous driving has brought a lot of demand for simulating and
training an RL agent in the simulator, which requires realistic interactions with various social vehicles
(Zhou et al., 2020). However, driver’s detailed actions are not easily to obtain yet we adopt SOIL
from a traffic surveillance recording dataset (NGSIM I-80 (Halkias & Colyar, 2006)) that contains
kinds of recorded human driving trajectories. We wish to further examine the potential of DPO for
decreasing the gap between the real world and simulation (RQ4). We utilize the simulator provided
by Henaff et al. (Henaff et al., 2019) as our simulation platform and learn to imitate real-world driving
behaviors. We compare DPO against GAIfO and BCO, and choose Success Rate, Mean Distance
and KL Divergence as evaluation metrics. Specifically, Success Rate is the percentage of driving
across the entire area without crashing into other vehicles or driving off the road, Mean Distance is
the distance traveled before the episode ends, and KL Divergence measures the position distribution
distance between the expert and the agent.

Table 3: Performance on NGSIM I-80 driv-
ing task over 5 random seeds.

Method Success Mean KL
Rate (%) Distance (m) Divergence

BCO 27.4 ± 1.1 129.8 ± 2.0 24.4 ± 2.2
GAIfO 77.5 ± 0.8 188.3 ± 1.1 11.5 ± 3.9
DPO 80.3 ± 0.5 192.7 ± 0.6 9.5 ± 1.8

Expert 100 210.0 0

As shown in Tab. 3, DPO outperforms baseline methods
in all three metrics with higher stability. The decoupled
policy allows the state predictor to focus on matching the
distribution of expert trajectories, thus achieving smaller
deviations from the expert position distribution. Further-
more, since the policy gradient can be computed with
non-differentiable inverse dynamics, we can generate sta-
ble action sequences (Huang et al., 2017; 2020) by replacing the inverse dynamics model with
classical controllers, which can be generalized to realistic applications.

6 CONCLUSION

In this paper, we revisit the optimality the ambiguity problem in state-only imitation learning, and
accordingly propose Decoupled Policy Optimization (DPO), which splits the state-to-action mapping
policy into a state-to-state mapping state transition predictor and a state-pair-to-action mapping
inverse dynamics model. Furthermore, we employ regularization and generative adversarial methods
to mitigate the compounding error caused by the decoupled modules. The flexibility of the decoupled
architecture allows a wide range of interesting future works, such as involving high-dimensional
visual inputs, learning specific skills with shared state transition and multi-task target learning with
shared pre-trained skills.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), 2004.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the compounding-
error problem with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.

Ashley D. Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet,
Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q(s,s’) with deep deterministic
dynamics gradients. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 2020.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International Conference on Machine Learning, pp. 49–58, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In 6th International Conference on Learning Representations, ICLR 2018,
2018.

Xiaoxiao Guo, Shiyu Chang, Mo Yu, Gerald Tesauro, and Murray Campbell. Hybrid reinforcement
learning with expert state sequences. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, pp. 3739–3746, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, pp. 1856–1865, 2018.

John Halkias and James Colyar. Next generation simulation fact sheet. US Department of Trans-
portation: Federal Highway Administration, 2006.

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with uncer-
tainty regularization for driving in dense traffic. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems 29, pp. 4565–4573, 2016.

Junning Huang, Sirui Xie, Jiankai Sun, Qiurui Ma, Chunxiao Liu, Dahua Lin, and Bolei Zhou. Learn-
ing a decision module by imitating driver’s control behaviors. In Proceedings of the Conference on
Robot Learning (CoRL) 2020, 2020.

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. In 5th International Conference on Learning Representations,
ICLR 2017, 2017.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Daiki Kimura, Subhajit Chaudhury, Ryuki Tachibana, and Sakyasingha Dasgupta. Internal model
from observations for reward shaping. arXiv preprint arXiv:1806.01267, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016,, 2016.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning. In
8th International Conference on Learning Representations, ICLR 2020, 2020.

Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning. In 20th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2021, 2021.

Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for
dimension reduction. CoRR, abs/1802.03426, 2018. URL http://arxiv.org/abs/1802.
03426.

10

http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426

Under review as a conference paper at ICLR 2022

Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey
Levine. Combining self-supervised learning and imitation for vision-based rope manipulation. In
2017 IEEE International Conference on Robotics and Automation, ICRA 2017, pp. 2146–2153,
2017.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In
Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.
2050–2053, 2018.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, pp. 832–837, 1956.

Umar Syed, Michael H. Bowling, and Robert E. Schapire. Apprenticeship learning using linear
programming. In Machine Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), pp. 1032–1039, 2008.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pp.
4950–4957, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial imitation learning from state-only
demonstrations. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’19, pp. 2229–2231, 2019a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from observa-
tion. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, pp. 6325–6331, 2019b.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. In
Advances in Neural Information Processing Systems 32, pp. 239–249, 2019.

Ming Zhou, Jun Luo, Julian Villela, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang, et al.
Smarts: Scalable multi-agent reinforcement learning training school for autonomous driving. In
Conference on Robot Learning, 2020.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observations.
In Advances in Neural Information Processing Systems 33, 2020.

11

Under review as a conference paper at ICLR 2022

Appendices
A ALGORITHM

Algorithm 1 Decoupled Policy Optimization

1: Input: State-only expert demonstration data D = {(si)}Ni=1, empty replay buffer B, randomly
initialized discriminator model Dφ, state transition predictor hψ and parameterized inverse
dynamics model Iφ;

2: for k = 0, 1, 2, · · · do . Pre-training stage
3: Collect trajectories {(s, a, s′, r, done)} using a random initialized policy π = Iφ(hψ) and

store in B
4: Sample (s, a, s′) ∼ B and update φ by Lφ(I)
5: Sample (s, s′) ∼ D and update ψ by Lhψ
6: end for
7: for k = 0, 1, 2, · · · do . Online training stage
8: Collect trajectories {(s, a, s′, r, done)} using current policy π = Iφ(hψ) and store in B
9: Sample (s, a, s′) ∼ B, (s, s′) ∼ D

10: Update the discriminator Dω with the loss:

LDω =− E(s,s′)∼B[logDω(s, s′)]− E(s,s′)∼D[log (1−Dω(s, s′))] , (17)

11: Update φ, ψ by Lh,Iφ,ψ
12: end for

B PROOFS

In our proofs we will work in finite state and action spaces S and A to avoid technical machinery out
of the scope of this paper.

Proposition 1. Suppose Π is the policy space and P is a valid set of state transition OMs
such that P = {ρ : ρ ≥ 0 and ∃π ∈ Π, s.t. ρ(s, s′) = ρ0(s)

∫
a
π(a|s)T (s′|s, a) da +∫

s′′,a
π(a|s)T (s′|s, a)ρ(s′′, s) ds′′ da}, then a policy π ∈ Π corresponds to one state transition

OM ρπ ∈ P . However, under the action-redundant assumption about the dynamics T , a state
transition OM ρ ∈ P can correspond to more than one policy in Π.

Proof. We first provide the proof for the one-to-one correspondence between marginal distribution∑
a π(a|s)T (s′|s, a) and state transition OM ρ(s, s′) ∈ P .

For a given policy π, by definition of state transition OM, we have

ρπ(s, s′) =
∑
a

T (s′|s, a)ρπ(s, a)

=
∑
a

π(a|s)T (s′|s, a)

∞∑
t=0

γtP (st = s|π) .

(18)

For all t greater than or equal to 1, we have

P (st = s|π) =
∑
s′′

P (st−1 = s′′, st = s|π) . (19)

12

Under review as a conference paper at ICLR 2022

Take Eq. (19) into Eq. (18), we have

ρπ(s, s′) = P (s0 = s, s1 = s′) +
∑
a

π(a|s)T (s′|s, a)

∞∑
t=1

γt
∑
s′′

P (st−1 = s′′, st = s|π)

= P (s0 = s, s1 = s′) + γ
∑
a

π(a|s)T (s′|s, a)
∑
s′′

∞∑
t=0

γtP (st = s′′, st+1 = s|π)

= P (s0 = s, s1 = s′) + γ
∑
a

π(a|s)T (s′|s, a)
∑
s′′

ρπ(s′′, s)

= ρ0(s)
∑
a

π(a|s)T (s′|s, a) + γ
∑
s′′,a

π(a|s)T (s′|s, a)ρπ(s′′, s)

(20)

Consider the following equation of variable ρ:

ρ(s, s′) = ρ0(s)
∑
a

π(a|s)T (s′|s, a) + γ
∑
s′′,a

π(a|s)T (s′|s, a)ρ(s′′, s) . (21)

According to Eq. (20), ρπ is a solution of Eq. (21). Now we proceed to prove ρπ as the unique
solution of Eq. (21).

Define the matrix

A(ss′,s′′s) ,

{
1− γ

∑
a π(a|s)T (s′|s, a) if (s, s′) = (s′′, s)

−γ
∑
a π(a|s)T (s′|s, a) otherwise .

Note that A is a two-dimensional matrix indexed by state transition pairs. Also define the vector

bs,s′ , ρ0(s)
∑
a

π(a|s)T (s′|s, a) .

We can rewrite Eq. (21) equivalently as

Aρ = b . (22)

Since
∑
s′,a π(a|s)T (s′|s, a) = 1 and γ < 1, for all (s′′, s), we have

∑
s,s′

γ
∑
a

π(a|s)T (s′|s, a) = γ < 1

⇒ 1− γ
∑
a

π(a|s′′)T (s|s′′, a) >
∑

(s,s′)6=(s′′,s)

γ
∑
a

π(a|s)T (s′|s, a)

⇒
∣∣A(s′′s,s′′s)

∣∣ ≥ ∑
(s,s′)6=(s′′,s)

∣∣A(ss′,s′′s)

∣∣ .
Therefore, we have proven A as column-wise strictly diagonally dominant, which implies that A is
non-singular, so Eq. (21) has at most one solution. Since for all ρ in P , it must satisfy the constraint
Eq. (21), which means that for any marginal distribution

∑
a π(a|s)T (s′|s, a), there is only one

corresponding ρ in P .

Now, we proceed to prove that for every ρ in P , there is only one corresponding marginal distribution∑
a π(a|s)T (s′|s, a) such that ρπ = ρ. By definition of P , ρ is the solution of Eq. (21) for some

policy π. By rewriting Eq. (21), the marginal distribution can be written in the form of a function
expression of ρ as

∑
a

π(a|s)T (s′|s, a) =
ρ(s, s′)

ρ0(s) + γ
∑
s′′ ρ(s′′, s)

. (23)

13

Under review as a conference paper at ICLR 2022

This means every ρ ∈ P only corresponds to one marginal distribution
∑
a π(a|s)T (s′|s, a). As we

discussed before, ρ is the state transition OM of π, i.e., ρ = ρπ .

By establishing the one-to-one correspondence between the marginal distribution∑
a π(a|s)T (s′|s, a) and state transition OM ρ ∈ P , we can alternatively study the corre-

spondence between the marginal distribution and policy. Obviously, one policy can only corresponds
to one marginal distribution. We now prove that if the dynamics T has redundant actions, one
marginal distribution can correspond to more than one policy in π.

We prove the statement by counterexample construction. If the dynamics T has redundant
actions, there exist sm ∈ S, an ∈ A and distribution p defined on A \ {an} such that∑
a∈A\{an} p(a)T (s′|sm, a) = T (s′|sm, an). Consider two policy π0 and π1 such that

π0(a|s) = π1(a|s) if s 6= sm

π0(an|sm) = 1

π0(a|sm) = 0 if a 6= an

π1(an|sm) = 0

π1(a|sm) = p(a) if a 6= an .

(24)

From Eq. (24), we know that π0 and π1 are two different policies. However, they share the same
marginal distribution

∑
a π(a|s)T (s′|s, a). To justify this, we first consider the case when s equals

to sm, where we have

∑
a

π0(a|sm)T (s′|si, a) = π0(an|sm)T (s′|sm, an) +
∑

a∈A\{an}

π0(a|sm)T (s′|sm, a)

= T (s′|sm, an)

=
∑

a∈A\{an}

π1(a|sm)T (s′|sm, a)

=
∑

a∈A\{an}

π1(a|sm)T (s′|sm, a) + π1(an|sm)T (s′|sm, an)

=
∑
a

π1(a|sm)T (s′|sm, a) .

(25)

When s does not equal to sm, the equality holds trivially, since the action selection probability of π0

and π1 defined on these states are exactly the same. Thus, one marginal distribution can correspond
to more than one policy in π when there are redundant actions.

Proposition 2. Suppose the state transition predictor hΩ is defined as in Eq. (3) and Γ = {hΩ : Ω ∈
Λ} is a valid set of the state transition predictors, P is a valid set of the state-transition OMs defined
as in Proposition 1, then a state transition predictor hΩ ∈ Γ corresponds to one state transition OM
ρΩ ∈ P; and a state transition OM ρ ∈ P only corresponds to one hyper-policy state transition
predictor such that hρ = ρ(s, s′)/

∫
s′
ρ(s, s′) ds′.

Proof. During the proof of Proposition 1, we have an intermediate result that there is one-to-one
correspondence between the marginal distribution

∑
a π(a|s)T (s′|s, a) and state transition OM

ρ ∈ P . Since the definition of state transition predictor is exactly hΩ(s′|s) =
∑
a π(a|s)T (s′|s, a)

(∀π ∈ Ω), the one-to-one correspondence naturally holds between state transition predictor h(s′|s)
and state transition OM ρ ∈ P .

Theorem 1 (Error Bound of DPO). Consider a deterministic environment whose transition function
T (s, a) is deterministic and L-Lipschitz. Assume the ground-truth state transition hΩE (s) is deter-
ministic, and for each policy π ∈ Π, its inverse dynamics Iπ is also deterministic and C-Lipschitz.

14

Under review as a conference paper at ICLR 2022

Then for any state s, the distance between the desired state s′E and reaching state s′ sampled by the
decoupled policy is bounded by:

‖s′ − s′E‖ ≤ LC‖hΩE (s)− hψ(s)‖+ L‖Iπ̃(s, ŝ′)− Iφ(s, ŝ′)‖ , (26)

where π̃ is a sampling policy that covers the state transition support of the expert hyper-policy and
ŝ′ = hψ(s) is the predicted consecutive state.

Proof. Given a state s, the expert takes a step in a deterministic environment and get s′. We assume
that the expert ΩE can use any feasible policy π̃ that covers the support of ΩE to reach s:

s′E = T (s, Iπ̃(s, hΩ(s))) (27)

Similarly, using decoupled policy, the agent predict ŝ′ = hψ(s) and infer an executing action by an
inverse dynamics model a = Iφ(s, s′), which is learned from the sampling policy π̃. Denote the
reaching state of the agent as s′:

s′ = T (s, Iφ(s, hψ(s))) (28)

Therefore, the distance between s′ and s′E is:

‖s′ − s′E‖ = ‖T (s, Iπ̃(s, hΩ(s)))− T (s, Iφ(s, hψ(s)))‖

Lets consider the deterministic transition on s is a function of a such that s′ = T s(a), then we
continue the deviation:

‖s′ − s′E‖ ≤ ‖T s(Iπ̃(s, hΩ(s)))− T s(Iφ(s, hψ(s)))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iφ(s, hψ(s))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iφ(s, hψ(s))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iπ̃(s, hψ(s))) + Iπ̃(s, hψ(s)))− Iφ(s, hψ(s))‖

Similarly we also take the inverse transition on s is a function of s′ such that a = Is(s′), then we
have that:

‖s′ − s′E‖ ≤ L‖Isπ̃(hΩ(s)))− Isπ̃(hψ(s)))

+ Isπ̃(hψ(s)))− Isφ(hψ(s))‖
≤ L‖Isπ̃(hΩ(s)))− Isπ̃(hψ(s)))‖+ L‖Isπ̃(hψ(s)))− Isφ(hψ(s))‖
≤ LC‖hΩ(s))− hψ(s))‖+ L‖Isπ̃(ŝ′)− Isφ(ŝ′)‖ .

(29)

Theorem 2 (Error Bound of BCO). Consider a deterministic environment whose transition function
T (s, a) is deterministic and L-Lipschitz, and a parameterized policy πψ(a|s) that learns from the
label provided by a parameterized inverse dynamics model Iφ. Then for any state s, the distance
between the desired state s′E and reaching state s′ sampled by a state-to-action policy as BCO (Torabi
et al., 2018) is bounded by:

‖s′ − s′E‖ ≤ L
∥∥∥∥πψ(a|s)−

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗)

∥∥∥∥
+ L

∥∥∥∥∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗))− pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗
∥∥∥∥ , (30)

where π̃ ∈ ωE is a policy instance of the expert hyper-policy ωE such that T (s, π̃(s)) = s
′

E .

15

Under review as a conference paper at ICLR 2022

Proof.

‖s′ − s′E‖ = ‖T (s, πψ(s))− T (s, π̃(s))‖
= ‖T s(πψ(s))− T s(π̃(s))‖
≤ L‖π̃(a|s)− πψ(a|s)‖

= L

∥∥∥∥πψ(a|s)−
∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗

+

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗ −
∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗)) ds

′∗
∥∥∥∥

≤ L
∥∥∥∥πψ(a|s)−

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗)

∥∥∥∥
+ L

∥∥∥∥∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗))− pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗
∥∥∥∥

(31)

An intuitive explanation for the bound is that BCO (Torabi et al., 2018) first seeks to recover a policy
that shares the same hyper-policy with πE via learning an inverse dynamics model and then try to
conduct behavior cloning. Therefore the errors comes from the reconstruction error of π̃ using Iφ
(the second term) and the fitting error of behavior cloning (the first term).

By comparing Theorem 1 and Theorem 2, it is observed that for reaching each state, BCO requires a
good inverse dynamics model over the state space to construct π̃ and then conduct imitation learning
to π̃, while DPO only requires to learn a good inverse dynamics model on the predicted state and
directly construct π̃ without the second behavior cloning step. This intuition meets our evaluation
results in experiment Section 5.1.

C STATE TRANSITION OCCUPANCY MEASURE MATCHING

In the literature of inverse reinforcement learning (Syed et al., 2008; Abbeel & Ng, 2004; Finn
et al., 2016), the ambiguity comes from the multiple answer for matching the feature of the expert
demonstrations. A feasible solution to this problem is the maximum entropy principle that models
the expert data with probability models. In a recent work (Liu et al., 2021), the authors show that
state-action OM matching corresponds to maximum entropy reinforcement learning. Specifically,
consider modeling the state-action OM with the Boltzmann distribution as ρπ(s, a) ∝ exp r(s, a),
then we have that:

DKL(ρπ(s, a)‖ρπE (s, a)) =
∑
s,a

ρπ(s, a) log
ρπ(s, a)

ρπE (s, a)

=
∑
s,a

ρπ(s, a) (−r(s, a) + log ρπ(s, a)) + const

= Eπ [−r(s, a)] +
∑
s,a

ρπ(s, a) log ρπ(s, a) + const

= Eπ [−r(s, a)] +
∑
s,a

ρπ(s, a) log (ρπ(s)π(a|s)) + const

= Eπ [−r(s, a)]−H(π(a|s))−H(ρπ(s)) + const
≤ Eπ [−r(s, a)]−H(π(a|s)) + const ,

(32)

Therefore, maximizing the entropy of the state-action OM accounts for maximizing the entropy of
the policy such that conducting maximum entropy reinforcement learning with a recovered reward
corresponds to the upper bound of the state-action OM matching problem. Similarly, if we model the

16

Under review as a conference paper at ICLR 2022

state transition OM with the Boltzmann distribution as ρπ(s, s′) ∝ exp r(s, s′), then:

DKL(ρπ(s, s′)‖ρπE (s, s′)) =
∑
s,s′

ρπ(s, s′) log
ρπ(s, s′)

ρπE (s, s′)

=
∑
s,s′

ρπ(s, s′) (−r(s, s′) + log ρπ(s, s′)) + const

= Eπ [−r(s, s′)] +
∑
s,s′

ρπ(s, s′) log ρπ(s, s′) + const

= Eπ [−r(s, s′)] +
∑
s,s′

ρπ(s, s′) log ρπ(s, s′) + const

= Eπ [−r(s, s′)]−H(ρπ(s, s′)) + const .

(33)

However, maximum the entropy of the state-transition OM ρπ(s, s′) =
∫
a
π(a|s)ρπ(s)T (s′|s, a) da

does not account for maximizing the entropy of the policy, and therefore can not alleviate the
ambiguity.

D EXPERIMENTS

D.1 EXPERIMENT SETTINGS

D.1.1 REAL-WORLD TRAFFIC DATASET

NGSIM I-80 dataset includes three videos with a total length of 45 minutes recorded in a fixed area,
from which 5596 driving trajectories of different vehicles can be obtained. We choose 85% of these
trajectories as the training set and the remaining 15% as the test set. In our experiment, the state
space includes the position and velocity vectors of the ego vehicle and six neighbor vehicles and the
actions are acceleration and the change in steering angle.

Figure 7: Visualization of NGSIM I-80 data set and its mapping on the simulator. This figure is borrowed from
(Henaff et al., 2019).

D.1.2 IMPLEMENTATION DETAILS

For all experiments, we implement the decoupled policy network, value network as two-layer MLPs
with 256 hidden units and the discriminator as 128 hidden units. For fairness, we re-implement all
the algorithms based on a Pytorch code framework2 and adopt Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) as the RL learning algorithm for GAIfO and DPO.

For Mujoco benchmarks, we train an SAC agent to collect expert data, and take it for training the
imitation learning agents without any normalization. At training time we remove the terminal state
and episode will end until 1000 steps. At testing time the terminal state are set for fair comparison.

For NGSIM driving experiment, the original state contains the information of other cars, which
is hard to predict. Therefore, we ignore it when predicting the state transition and the action of
inverse dynamics. During training, we randomly pick one car to be controlled by the policy at the
beginning of every episode, and we replay the other cars by data. The episode ends when cars

2https://github.com/KamyarGh/rl_swiss

17

Under review as a conference paper at ICLR 2022

collide or successfully get through the road. To reduce the sampling time in the driving simulator,
we implemented parallel sampling using Python multiprocessing library. In practice, we ran 25
simulators to collect samples at the same time.

D.1.3 HYPERPARAMETERS

We list the key hyperparameters of the best performance of DPO on each task in Tab. 4. For each task,
we first fine-tune GAIfO to find good hyperparameters for generative adversarial training, depending
on which we further fine-tune state predictor coefficient λh and inverse dynamics coefficient λI from
a initial hyperparameter λh = 1.0 and λI = 0.5. We find λh affects the performance most, along with
the multi-step number k and the cycle loss. Note that DPO needs at least 1-step rollout for training
the state transition predictor. In our experiment, we do not fine-tune the number of pre-training steps,
and the final performances are almost the same with / without pre-training in most of environments.
However, in few tasks, it can even deteriorate the training.

Table 4: Hyperparameters of DPO.

Environments Invert. InvDouble. Hop. Walk. Half. Ant. NGSIM.
Trajectory maximum length 1000 1500
Optimizer AdamOptimizer
Discount factor γ 0.99
Replay buffer size 2e5 2e6
Batch size 256 1024
State predictor coefficient λh 1.0 0.35 1.2 1.0
Tuning range of λh [1.0] [0.3,0.35,0.45,0.5,1.0] [0.9,1.0,1.1,1.2,1.3] [1.0]
Inverse dynamics coefficient λI 0.5 0.25 0.5
Tuning range of λI [0.5] [0.25,0.5] [0.5]
Generative adversarial coefficient λG 1.0
Generative adversarial reward form logD − log (1−D) logD
Multi-step k 1 3 1 2 1
Cycle loss 7 3 7
Pre-train step 0 50000 0
Q learning rate 3e-4
π learning rate 3e-4
D learning rate 3e-4
Gradient penalty weight 4.0 0.5 4.0
Reward scale 2.0

D.2 QUALITATIVE ANALYSIS ON THE LEARNED POLICY

In this section, we provide qualitative experiments on investigating how the learned policy behaves.
Based on the setting as in Section 5.1, we first analyse how the state transition predictor behaves.
Specifically, we compare the learned prediction with the expert state transition, shown in Fig. 8,
which indicates that the prediction by state transition predictor exactly match the state transition in
the demonstration and achieve to the duty of ‘plan the target’.

In addition, we further discuss the output action probability of the inverse dynamics, shown in Fig. 9.
In the figure, we compare the action distribution among 20 possible actions at 3 different states with
the expert ground truth. We conclude that the inverse dynamics mismatch is not the key for imitating
expert the state sequence since the agent can select different actions from the expert as long as they
lead to the same transition. Therefore, the inverse dynamics module play his role for ‘learn the skill’
of the agent’s own.

D.3 ANALYSIS ON NO REDUNDANT ACTION

To better understand what the effect of the added action ambiguity achieves, we also include an
experiment on the grid world environment in Section 5.1 when there are no redundant actions to show
if empirically the baseline algorithms suffer from environments with action ambiguity. As shown in
Fig. 10, BCO and DPO share similar asymptotic performance (KLD), but DPO has a significantly
faster convergence rate. On the contrary, GAIfO also fails to find the second path.

D.4 DISTRIBUTIONAL EVALUATION METRIC

Apart from the accumulated reward reported in Tab. 2, the performance of imitation learning methods
should also be evaluated by distributional similarities to expert data. For example, in SOIL tasks we try

18

Under review as a conference paper at ICLR 2022

state prime

st
at

e

Expert

state prime

st
at

e

DPO

Figure 8: Each grid in the ‘Expert’ graph represents
the transition probability from s (state) to s′ (state
prime) in demonstration data. Since some states do
not appear in the demonstration, the transition proba-
bilities from such states are undefined, and we exclude
them from the graph. The ‘DPO’ graph shows the state
prime output by state transition predictor from each
state accordingly.

0.00

0.25

0.50

0.75

1.00

se
le

ct
io

n
pr

ob
ab

ili
ty

0.0

0.1

0.2

0.3

se
le

ct
io

n
pr

ob
ab

ili
ty

Expert

DPO

1

2

3

Figure 9: The learned policy (action selection proba-
bility) among 20 possible actions at 3 states (which
is marked on the top sub-graph). The distributions in
different states are split by red lines, and the resulting
transition is labeled between two sub-graphs. This
shows that the inverse dynamics mismatch is not the
key for imitating expert the state sequence since the
agent can select different actions from the expert as
long as they lead to the same transition.

Expert DPO

BCO GAIfO

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

5
JS Divergence
Policy / SP Loss
ID Loss
DPO
BCO

Figure 10: The rollout density and loss curves when k = 1. BCO and DPO have similar asymptotic performance
(KLD), but DPO has a significantly faster convergence rate. On the contrary, GAIfO still fails to find the second
path.

19

Under review as a conference paper at ICLR 2022

to evaluate the KL divergence between policy and expert state transitions DKL(ρπE (s, s′)‖ρπ(s, s′))
for different methods. Since it is hard to compute the distributional distance in high-dimensional
continuous control environments, we reduce the dimension of the input data to 2 dimensions. Specifi-
cally, we adopt UMAP (McInnes & Healy, 2018), which maintains a mapping function that can be
used for transforming new data collections. In our case, we first fit a UMAP model on the expert
demonstration and then use it to transform (s, s′) pairs collected by different algorithms. We first
estimate the distribution via Kernel Density Estimation (KDE) (Rosenblatt, 1956) with Gaussian
kernel to compute the Kullback-Leibler (KL) divergence, and show the qualitative results in Tab. 5.
Furthermore, we visualize a 2 dimensional distributional density example of these trajectories on
Halfcheetah in Fig. 11. Higher frequency positions in collected data are colored darker in the plane,
and higher the value with respect to its marginal distributions. And it is noticeably that DPO does not
reach a higher return but recover the better expert state transition occupancy measure.

Table 5: KL divergence between policy-sampled and the expert state transitions distribution.

Hopper Walker2d HalfCheetah Ant

BCO 1.32 ± 0.04 1.63 ± 0.26 5.76 ± 0.31 3.76 ± 0.42
GAIfO 1.77 ± 0.05 1.32 ± 0.21 2.47 ± 0.79 0.40 ± 0.04
DPO 1.76 ± 0.05 1.13 ± 0.09 1.68 ± 0.16 0.48 ± 0.06

Figure 11: Visualization of sampled state transition distributions on HalfCheetah environment using UMAP
reduction.

D.5 ABLATION STUDY ON HYPERPARAMETERS

In this section we investigate the effect on different values of hyperparameter λh. As illustrated in
Fig. 12, the final performance is robust upon a range of λh. However, we find it affects the sample
efficiency and the optimal hyperparameter among different tasks differs.

20

Under review as a conference paper at ICLR 2022

0.3 0.35 0.3 0.45 0.5
0

2000

4000

6000

8000

10000

Fi
na

l P
er

fo
rm

an
ce

HalfCheetah

0.9 1.0 1.1 1.2 1.3
0

1000

2000

3000

4000

5000

6000

Fi
na

l P
er

fo
rm

an
ce

Ant

Figure 12: Hyperparameter study on λh.

D.6 EMPIRICAL CORRELATION BETWEEN COMPOUNDING ERROR AND REWARD

The motivation of DPO indicates that if the agent can exactly predict where the expert will go and
then learn a skill to reach that place, it can solve SOIL efficiently. In previous sections we propose
to evaluate the distance of the reaching states and the predicted consecutive states to quantify the
compounding error. Interestingly, in our experiments, we do find that the compounding error has a
great impact on the efficacy of DPO. Therefore, we analyze the empirical correlation between the
prediction-real distance and the reward. Specifically, we sample several epochs from experiments
with different hyperparameters on each tasks and draw the connection of its prediction-real distance
and its reward. As shown in Fig. 13, lower distance always achieves higher performance, indicating
the rationality of the intuition and the key ingredient for utilizing DPO.

6 8 10 12 14 16 18
Pred Real MSE

500

1000

1500

2000

2500

Av
er

ag
e

R
et

ur
n

Hopper-v2

0 20 40 60 80 100 120 140
Pred Real MSE

2000

2500

3000

3500

4000

Av
er

ag
e

R
et

ur
n

Walker-v2

0 100 200 300 400 500 600
Pred Real MSE

5000

6000

7000

8000

9000

10000

Av
er

ag
e

R
et

ur
n

HalfCheetah-v2

15 20 25 30 35
Pred Real MSE

4000

4200

4400

4600

4800

Av
er

ag
e

R
et

ur
n

Ant-v2

Figure 13: The empirical correlation between the prediction-real distance and the reward. Typically, less
prediction-real distance achieves better performance

D.7 COMPLETE EVALUATION RESULTS

In this section we show complete evaluation training curves of DPO with different regularization in
Fig. 14. Typically, experiments with less prediction-real distance can achieve better performance. It
is worth noting that, DPO can generally achieve better efficiency than the baselines in most of the
environments. However, with fine-tuning the regularization, we are able to dig the potential of DPO.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

500

1000

1500

2000

2500

3000

R
et

ur
n

Hopper-v2

0 0.4 0.8 1.2 1.6 2.0 2.4 2.6e7
steps

0

500

1000

1500

2000

2500

3000

3500

4000

R
et

ur
n

Walker-v2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0e7
steps

0

2000

4000

6000

8000

10000

R
et

ur
n

Half-v2

GAIfO-DP DPO w/o Reg DPO w M.S-2 Reg DPO w M.S-3 Reg DPO w Cycle Reg DPO w Cycle-M.S-2 Reg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

1000

2000

3000

4000

5000

R
et

ur
n

Ant-v2

Figure 14: Complete learning curves of DPO with different regularization.

D.8 ADDITIONAL COMPARISON AND ABLATION ON INVERSE DYNAMICS REGULARIZATION

In this section we emphasize on the regularization on the inverse dynamics. In this paper, specifically,
we propose to utilize the policy gradient with generative adversarial methods to encourage the agent

21

Under review as a conference paper at ICLR 2022

Table 6: Additional ablation studies on the inverse dynamics regularization.

InvertedPendulum InvertedDoublePendulum Hopper Walker2d HalfCheetah Ant
BCO 1000.0 ± 0.00 416.92 ± 141.56 1516.91 ± 524.86 270.45 ± 33.22 6.56 ± 151.49 456.45 ± 179.76

GAIfO 1000.0 ± 0.00 8589.46 ± 1391.82 3068.10 ± 24.90 3864.03 ± 326.64 8918.66 ± 1031.41 4879.13 ± 897.46
DPO (w/o PG) 1000.00 ± 0.00 3933.33 ± 3414.51 713.17 ± 369.05 310.53 ± 68.27 -442.55 ± 120.23 -383.12 ± 198.18
DPO (w PG) 1000.00 ± 0.00 8587.96 ± 1394.29 3163.74 ± 64.46 4395.21 ± 216.96 10522.08 ± 394.44 5413.03 ± 161.97

DPO (w/o SP) 801.14 ± 444.66 5977.65 ± 4655.55 2587.88 ± 1237.44 3902.7 ± 171.12 8816.94 ± 998.3 5043.12 ± 552.29
DPO (w/o PG, w CL) 1000.0 ± 0.0 120.73 ± 23.17 1235.19 ± 938.26 20.63 ± 37.73 -585.45 ± 73.58 7.33 ± 22.56

to match the state transition of the expert. This is proved to improve the performance and the sample
efficiency as shown in Section 5.2. However, in other point of view, our work can also be seen as
adding additional supervision signals for a generative adversarial imitation learning method, due to
the flexibility of the decoupled policy structure. Therefore, one can regard utilizing policy gradient
(PG) in DPO as encouraging the imitator to follow the expert demonstrations better than a naive
inverse model. Under this view, we aim to conduct ablation studies on the importance of the PG.

To this end, we compare PG with a related work (Pathak et al., 2018), which studies the problem of
state-only imitation learning by matching the demonstrated image sequence. In the training stage,
Pathak et al. (2018) allow the agent to learn a goal-conditioned skill (GSP) policy (i.e, an recurrent
inverse dynamics model) to predict a plausible action; and in the evaluation stage, the agent is
provided with demonstrated images, and it executes to achieve the every intermediate goal states
one-by-one. Compared with DPO, Pathak et al. (2018) does not predict the target, instead the policy
takes both the intermediate goal states sg from the demonstration along with the action history ah into
planning the next action to reach the goal states. To achieve that, Pathak et al. (2018) also requires
a binary classifier to identify whether the agent achieves the goals so that it can switch to the next
goal state. Furthermore, Pathak et al. (2018) proposes a foward-consistency loss, which is used to
regularize the inverse dynamics model to predict a plausible action; on the contrary, in our work,
we want to regularize the state transition predictor to be consistent with the environmental forward
dynamics, and therefore we do not apply the cycle loss to update the inverse dynamics model but
utilize the PG regularization. Intuitively, in Pathak et al. (2018), the consistency is computed as:

s, sg, ah
GSP Policy−−−−−−→ a

Forward Model−−−−−−−−→ s̃′ s′︸ ︷︷ ︸
Consistency Loss

execute (s,a)←−−−−−− Real Env

However, our cycle consistency is more like the one in Edwards et al. (2020):

sE
State Predictor−−−−−−−→ ŝ′

Inverse Dynamics−−−−−−−−−→ a
Forward Model−−−−−−−−→ s̃′︸ ︷︷ ︸

Consistency Loss

Considering that using cycle consistency of Pathak et al. (2018) or discriminator rewards of ours
in training of inverse dynamics are both encouraging state-matching, we include a comparison
experiment for replace the policy gradients as the cycle consistency loss in Pathak et al. (2018), as
denoted as DPO (w/o PG, w CL) shown in Tab. 6. From the results, we observe that the consistency
regularization on inverse dynamics can decrease the compounding error in some environments (from
the performance gain of DPO (w/o PG, w CL) over DPO (w/o PG)), but is far less effective than the
PG regularization. This is rather obvious on the harder tasks with higher-dimensional state spaces.

To further illustrate if both supervision signals count, we also test the performance of DPO without
the loss of expert state prediction, denoted as DPO (w/o SP) in Tab. 6. Obviously, without predicting
the expert states, DPO (w/o SP) behaves even worse than GAIfO on some tasks since the inputs
for the inverse dynamics no longer have semantic meanings and therefore the supervised loss for
the inverse dynamics might hurt the performance. This ablation shows that explicitly predicting the
expert’s next states actually matters and is meaningful in achieving higher performance.

22

	Introduction
	Preliminaries
	Methodology
	Rethinking the Optimality in SOIL
	Policy Decoupling
	Tackling Compounding Error Challenges
	Regularization on Target Planning
	Efficient Skills Learning via Decoupled Policy Gradient

	Overall Algorithm

	Related Work
	Experiments
	Understanding the Decoupled Structure
	Comparative Evaluations
	Compounding Error Reduction
	Learn to Drive from Real-World Traffic Data

	Conclusion
	Algorithm
	Proofs
	State Transition Occupancy Measure Matching
	Experiments
	Experiment Settings
	Real-World Traffic Dataset
	Implementation Details
	Hyperparameters

	Qualitative Analysis on the Learned Policy
	Analysis on No Redundant Action
	Distributional Evaluation Metric
	Ablation Study On Hyperparameters
	Empirical Correlation between Compounding Error and Reward
	Complete Evaluation Results
	Additional Comparison and Ablation On Inverse Dynamics Regularization

