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Abstract

Three major challenges in reinforcement learning are the complex dynamical systems
with large state spaces, the costly data acquisition processes, and the deviation of real-world
dynamics from the training environment deployment. To overcome these issues, we study
distributionally robust Markov decision processes with continuous state spaces under the
widely used Kullback–Leibler, chi-square, and total variation uncertainty sets. We propose a
model-based approach that utilizes Gaussian Processes and the maximum variance reduction
algorithm to efficiently learn multi-output nominal transition dynamics, leveraging access
to a generative model (i.e., simulator). We further demonstrate the statistical sample
complexity of the proposed method for different uncertainty sets. These complexity bounds
are independent of the number of states and extend beyond linear dynamics, ensuring the
effectiveness of our approach in identifying near-optimal distributionally-robust policies.
The proposed method can be further combined with other model-free distributionally robust
reinforcement learning methods to obtain a near-optimal robust policy. Experimental
results demonstrate the robustness of our algorithm to distributional shifts and its superior
performance in terms of the number of samples needed.
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1. Introduction
The use of reinforcement learning (RL) algorithms is gaining momentum in various complex
domains, including robotics, nuclear fusion, and molecular discovery. Data acquisition in such
environments can be a challenging and resource-intensive process. Safety considerations may
also limit the amount of data that can be collected through interactions with the environment.
To address this issue, a commonly adopted approach is to train RL policies using a simulator
(generative model) enabling RL agents to learn from a simulated environment.
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Dealing with complex applications that involve large state spaces requires data-efficient
learning, even when a simulator is available. However, achieving optimal policies using
existing approaches often requires a significant amount of training data, making data-efficient
learning an ongoing challenge. Additionally, when deploying a policy to a real-world system,
it is crucial to ensure its performance remains reliable despite mismatches between the
simulator and the real-world system. Such mismatches can arise from approximation errors,
time-varying system parameters, or even due to adversarial influence. The resulting mismatch,
known as the ’sim-to-real gap’, can diminish the performance or impact the reliability of
RL algorithms trained on a simulator model.

In this work, we examine the use of a generative model in distributionally-robust model-
based reinforcement learning. Our aim is to find a distributionally-robust policy that is
near-optimal by actively querying the simulator with a state-action pair selected by the
learning algorithm. To achieve this, we introduce the kernelized Maximum Variance Re-
duction (MVR) algorithm, which identifies a state-action pair with the highest uncertainty
according to the model to learn the nominal model dynamics. The algorithm produces a
nominal dynamics estimate that is utilized within the robust Markov Decision Process (MDP)
framework, where an uncertainty set that includes all models close to the learned one is
considered. We provide a thorough characterization of statistical sample complexity rates
by utilizing the learned model to generate a near-optimal robust policy.

2. Problem Setting

A discounted Markov Decision Process (MDP) is a tuple (S,A, P, r, γ), with S denoting the
state space, the action space A, and the probabilistic transition dynamics P : S ×A → ∆(S).
Here, ∆(S) denotes the set of all probability distributions over S. The reward function
r : S ×A → [0, 1] characterizes the reward r(s, a) the learner receives upon playing a ∈ A in
s ∈ S, and γ ∈ [0, 1] denotes the discount factor. The learner uses a policy π : S → ∆(A) to
select a ∈ A upon observing the state s ∈ S. We define the cumulative discounted reward as∑∞

t=0 γ
tr(st, at) for known initial state s0 and st ∼ P (st−1, at−1) for t > 0 and at ∼ π(st).

The value function Vπ and the state-action value function Qπ are given as follows:

Vπ(s) = EP,π

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
, Qπ(s, a) = r(s, a) + EP,π

[ ∞∑
t=1

γtr(st, at)
]
,

where at ∼ π(st) and st+1 ∼ P (st, at). Finally, we define the optimal policy π∗ corresponding
to dynamics P which yields the optimal value function, i.e., Vπ∗(s) = maxπ Vπ(s) for all
s ∈ S. We assume the standard generative (or random) access model, in which the learner
can query transition data arbitrarily from a simulator, i.e., each query to the simulator (st, at)
outputs a sample st+1 ∈ Rd where st+1 ∼ P (st, at). In particular, we consider the following
frequently used transition dynamics model:

st+1 = f(st, at) + ωt, (1)

where ωt ∈ Rd represents independent additive transition noise and follows a Gaussian
distribution with zero mean and covariance σ2I.

Regularity assumptions: We assume that f is unknown and continuous for tractability
reasons which is a common assumption when dealing with continuous state spaces (e.g.,
(11; 17; 28)). Considering the multi-output definition of f and in line with the previous
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work (e.g., (11; 17)), we define the modified state-action space X as X := S ×A× [d], where
the last dimension i ∈ {1, 2, . . . , d} incorporates the index of the output state vector, i.e.,
f(·, ·) = (f̃(·, ·, 1), . . . , f̃(·, ·, d)) where f̃ : X → R. In particular, we assume that f̃ belongs
to a space of well-behaved functions (RKHS), denoted by H. Further details regarding
the assumption on f are detailed in the appendix. We refer to the simulator environment
determined by f as the nominal model Pf , while the true environment encountered by the
agent in the real world might not be the same (e.g., due to a sim-to-real gap). Consequently,
we utilize the robust MDP framework to tackle this by considering an uncertainty set
comprising of all models close to the nominal one.

Robust Markov Decision Process (RMDP): We consider the robust MDP setting
that addresses the uncertainty in transition dynamics and considers a set of transition
models called the uncertainty set. We use Pf to denote the uncertainty set that satisfies
the (s, a)–rectangularity condition (27) (as defined in Equation (2)), an assumption that is
commonly used in the related literature (e.g., (41; 42; 62)). Similar to MDPs, we specify
RMDP by a tuple (S,A,Pf , r, γ) where the uncertainty set Pf consists of all models close
to a nominal model Pf in terms of a distance measure D:

Pf
s,a = {p ∈ ∆(S) : D(p||Pf (s, a)) ≤ ρ}, and Pf =

⊗
(s,a)∈S×A

Pf
s,a. (2)

Here, D denotes some distance measure between probability distributions, and ρ > 0 defines
the radius of the uncertainty set. In the RMDP setting, the goal is to discover a policy that
maximizes the cumulative discounted reward for the worst-case transition model within the
given uncertainty set. Concretely, the robust value function V R

π,f corresponding to a policy π
and the optimal robust value are given as follows:

V R
π,f (s) = inf

P∈Pf
EP,π

[ ∞∑
t=1

γtr(st, at)
∣∣∣s0 = s

]
, V R

π∗,f (s) = max
π

V R
π,f (s) ∀s ∈ S. (3)

The goal of the learner is to discover a near-optimal robust policy while minimizing the
total number of samples N , i.e., queries to the nominal model (simulator). Concretely, for
a fixed precision ϵ > 0, the goal is to output a policy π̂N after collecting N samples, such
that ∥V R

π̂N ,f − V R
π∗,f∥∞ ≤ ϵ.

3. Sampling Algorithm

In this section, we outline our methodology for addressing the problem described in Section 2.
Maximum variance reduction: With certain assumptions on the loss function and

noise distribution, the function estimation in RKHS is analogous to the Bayesian Gaussian
process framework (47). When used with the same kernel function, this allows the construc-
tion of mean and variance estimates of f̃ ∈ H using Gaussian processes (eq. (8) and eq. (9)).
Based on these, one can construct shrinking statistical confidence bounds that hold with
probability at least 1− δ, i.e., the following holds |f̃(x)− µn−1(x)| ≤ βn(δ)σn−1(x) for every
n ≥ 1 and x ∈ X . Here {βi}ni=1 stands for the sequence of parameters that are suitably set
(see Lemma 5) to ensure the validity of the confidence bounds.We use the maximum variance
reduction (MVR) algorithm (Algorithm 1) to learn about the nominal model f . MVR works
on the principle of reducing the maximum uncertainty measured by the posterior standard
deviation of a GP model calculated by using previously collected data. At each iteration,
MVR queries a state-action pair that has the highest uncertainty according to the model and
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Algorithm 1 Maximum Variance Reduction (MVR) for learning model dynamics
1: Require: Simulator f , kernel k, domain S ×A
2: Set µ0(s, a) = 0, σ0(s, a) = 1 for all (s, a) ∈ S ×A
3: for i = 1, . . . , n do
4: (si, ai) = argmax(s,a)∈S×A ∥σi−1(s, a)∥2
5: Observe si+1 = f(si, ai) + ωi

(i.e., sample si+1 from nominal Pf (si, ai))
6: Update to µi and σi by using (si, ai, si+1)

according to eq. (8) and eq. (9)
7: end for
8: return The dynamics estimate f̂n(·, ·) = µn(·, ·)

uses the obtained observation to update the GP posterior. The algorithm outputs nominal
dynamics estimate f̂n corresponding to the final GP posterior mean µn. We defer further
details of the Gaussian Process framework to the appendix.

4. Sample Complexity

This section discusses the statistical sample complexity of the proposed MVR algorithm
in distributionally robust MDPs rather than designing algorithms to find π̂N as done in
(42; 21; 36). One can easily incorporate the MVR algorithm with the model-free algorithms
from these previous works to find an optimal π̂N using f̂N allowing us to bypass the more
costly simulator f . Given the optimal robust policies π̂N and π∗ corresponding to the
learned nominal dynamics f̂N by the MVR algorithm with N iterations and the true nominal
dynamics f , respectively, we show the number of samples needed by the MVR algorithm to
ensure that the following holds:

|V R
π̂N ,f (s)− V R

π∗,f (s)| ≤ ϵ,∀ s ∈ S. (4)

Theorem 1 (Sample Complexity of MVR under KL uncertainty set) Consider a robust
MDP with nominal transition dynamics f satisfying the regularity assumptions from Section 2
and with uncertainty set defined as in Equation (2) w.r.t. KL divergence. For π∗ denoting
the robust optimal policy w.r.t. nominal transition dynamics f and π̂N denoting the robust
optimal policy w.r.t. learned nominal transition dynamics f̂N via MVR (Algorithm 1), and
δ ∈ (0, 1), ϵ ∈ (0, 1

1−γ ), it holds that maxs |V R
π̂N ,f (s)− V R

π∗,f (s)| ≤ ϵ with probability at least
1− δ for any N such that

N = O
(
e

2−γ
(1−γ)αkl

γ2β2
N (δ)d2ΓNd

(1− γ)4ρ2ϵ2

)
. (5)

Theorem 1 shows the number of samples required from the nominal transition dynamics f
(simulator) to construct a robust optimal policy reliably with high probability. The complex-
ity bounds depend on the maximum information gain ΓNd (Equation (18) a kernel-dependent
quantity that is frequently used in GP optimization), which is sublinear in N for many
commonly used kernels ((52)). Furthermore, in our analysis, we use the confidence bounds
from (54) with β2

N (δ) (see Lemma 6) which only exhibits a logarithmic dependence on N .
An additional d factor that denotes the dimension of the state space S in the obtained bound
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comes from utilizing the multi-output (of dimension d) GP framework to model the transition
dynamics, which also appears in the regret bounds of similar works (11; 17; 18). Finally, the
term αkl ∈ (0, 1

2(1−γ)ρ) is a problem-dependent parameter that is independent of N , which
similarly appears in the guarantees of (41).

We can compare our guarantees with the existing sample-complexity results in model-based
distributionally robust RL which, however, only consider finite state-action spaces (41; 62; 59).
In particular, when considering KL uncertainty sets, (41) obtain sample complexity of order

O
(
e

αkl+2

αkl(1−γ) γ2|S|2|A|
(1−γ)4ρ2ϵ2

)
up to logarithmic factors. Notably, the latter complexity bound

explicitly depends on the cardinality of the state and action spaces |S| and |A|, thus scaling
badly when S and A are large or continuous. Instead, the guarantee of Theorem 1 depends
on the state-action space only through ΓNd which remains bounded even when these are
continuous. This allows us to successfully extend the distributionally robust framework to
continuous state spaces. Other terms in the bound of Theorem 1 such as γ (the discount
factor), ρ (radius of the uncertainty set) have similar dependencies. Crucially, the dependence
on the precision parameter ϵ remains the same when compared to the guarantees provided
for finite state-action setting. We relegate the proof of Theorem 1 and statistical sample
complexities for χ2 distance and TV distance uncertainty sets to the Appendix.
5. Experiments
The aim of our experiments is to show the effectiveness of the proposed distributionally-robust
model-based approach. In particular, our goal is to evaluate the robustness of our policies
against different perturbations of the environment’s parameters, and compare them with
existing non-robust methods. Moreover, we compare our approach with model-free methods
(robust and non-robust) which typically require a significantly larger number of interactions
with the nominal environment. We consider the OpenAI’s gym (8) environments of swing-up
Pendulum, Cartpole, and Reacher and test our approach against various perturbations.

Module 1: Learning the model. To learn the nominal environment, we utilize a
setup similar to that of (38), but use the proposed Max Variance Reduction (MVR) method
(Algorithm 1) instead. Similar to (38), we use a Gaussian process (GP) prior to model the
transition dynamics f(s, a) (alternate models such as Neural Ensembles or Bayesian neural
networks can be used to model the transition dynamics as done in, e.g., (17; 18)). As in
continuous control problems the subsequent states are fairly close, we use our multi-output
GP to model the difference f(st, at)− st+1.

Module 2: Computing a robust policy. Given a learned model f̂n, we compute the
associated robust policy π̂n using the Robust Fitted Q-Iteration (RFQI) algorithm from
(42) . RFQI computes a robust policy from offline data by alternated maximization of a
dual-variable function and a Q-function. We generate such offline data by using a ϵ-greedy
non-robust policy (using Soft Actor-Critic (25) or Model Predictive Control (9; 13)) which
we train on the learned model f̂n from Module 1 and let interact with it for 106/105 steps.
Note that this is crucially different from the vanilla RFQI (42) where the true nominal
environment was used both for training such policy and for generating offline data. Indeed,
this would require a significantly larger number of environment interactions.

We provide further implementation details regarding training, baselines, evaluation and
hyperparameters in Appendix F and discuss the results below. In Figure 1 we plot the average
performance (over 20 episodes) of the different baselines subject to different perturbation types
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(a) Pendulum (b) Cartpole (c) Reacher
Figure 1: Average performance (over 20 episodes) on the considered environments, as a
function of different perturbations: length perturbation for Pendulum, force magnitude
perturbation for Cartpole, and perturbed joint stiffness for Reacher.

MVR+RFQI (ours) MVR+FQI SAC MPC RFQI FQI ((23))

Pendulum 60 60 104 - 106 + 104 106 + 104

Cartpole 150 150 - 2250/step 105 · 2250 105 · 2250
Reacher 2000 2000 106 - 106 + 106 106 + 106

Table 1: Number of interactions with the nominal environment to obtain the results of
Figure 1. For MPC, a total of 2250 interactions are required at each step for planning
multiple rollouts and selecting the best action. Both RFQI and FQI utilize 106/105 offline
data generated by SAC or MPC.

and magnitudes for each environment. Results for other perturbations are relegated to Ap-
pendix F. In Table 1 we report the total number of interactions with the nominal environment
required to compute the evaluated policies. We remark that MVR+RFQI and MVR+FQI
interact with the environment only to learn a good Gaussian Process model via the MVR
approach. Instead, the other model-free methods utilize the nominal environment throughout
the whole training and, in case of RFQI and FQI, even to generate offline data. Notably, the
policy computed by MVR+RFQI displays comparable performance to its model-free counter-
part RFQI which, as shown in Table 1, requires a significantly larger number of environment
interactions. This illustrates the sample-efficiency of the MVR approach in acquiring infor-
mative data and yielding good model estimates. Moreover, as the perturbation magnitude
increases, MVR+RFQI generally achieves higher performance compared to MVR+FQI
and the other non-robust methods, demonstrating the robustness of the computed policies.

6. Conclusions
We investigated distributionally robust reinforcement learning in the context of continuous
state spaces and non-linear transition dynamics. Specifically, we proposed a model-based
approach within the generative model setting, utilizing maximum variance reduction to
learn nominal transition dynamics effectively. Our results include novel statistical sample
complexity guarantees for commonly used uncertainty sets, required for identifying near-
optimal distributionally robust policies in large state spaces. Through experiments conducted
in popular RL-testing environments, we demonstrated the sample efficiency and robustness
of our algorithm in the presence of distributional shifts. An important avenue for future
research is the extension of our algorithm to the online and offline reinforcement learning
settings.
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Appendix A. Related Work

Reinforcement learning with a generative model is introduced in (30) wherein one assumes
access to a simulator that outputs the next state given any state-action pair. (29) elucidate
various uses for this generative setting and analyze it in further detail. For the finite
MDP case, such a generative setting has been subsequently studied in various works such
as (29; 24; 33) and, recently, by (2) who provide minimax optimality guarantees for the
naive plug-in estimator based algorithm. For large state spaces, generative RL is typically
combined with function approximation as studied, e.g., by (1; 51; 32; 34). Recently, (38)
consider generative RL in continuous state-action spaces from an experimental perspective
and showcase the relevance of this setting to the nuclear fusion dynamics research. In
addition, (34) present an active exploration strategy that utilizes the least-squares value
iteration. Their approach aims to identify a near-optimal policy across the entire state space,
providing polynomial sample complexity guarantees that remain unaffected by the number
of states. In contrast to these works, we use generative RL to discover distributionally robust
policies through the modeling of unknown transition dynamics.

In model-based reinforcement learning, the model learned from a simulator encounters
two issues well discussed in the literature, namely, the model-bias (19; 14) and the simulation
to reality (sim2real) gap (4; 43; 36; 12; 48; 57). To address this from the perspective of
distributional robustness, previous works (62; 41; 59) have considered distributional robust-
ness aspects in the context of finite Markov decision processes (MDPs) using the robust
MDP framework from (27; 40). Various other works utilize this robust MDP framework such
as (58; 56; 60; 37; 5; 44) for the planning problem, and provide asymptotic guarantees for tabu-
lar and linear function approximators (35; 53; 49; 55). Our work is closely related to the recent
works on distributionally robust RL (62; 41; 59). However, unlike ours, the sample complexity
bounds established in these works rely on the number of states and actions, making them im-
practical for large or infinite state spaces. In the model-free setting, distributionally robust RL
with large state space (though, still assumed to be finite) was considered by (42) in a function
approximation setup. They assume access to offline data from the nominal transition dynam-
ics and provide computational sample complexity bounds in terms of the size of the hypothesis
space that is used to represent the set of state-action value functions (Q-function). Other works
such as (46; 20; 36; 61) consider robustness aspects in deep reinforcement learning, but these
approaches lack theoretical guarantees. To the best of our knowledge, our work is the first one
to address the distributionally robust RL problem in the generative model setting with a model-
based approach and large state spaces. Moreover, we are the first to consider general non-linear
transition dynamics and derive provable sample complexity guarantees for such a setting.

Similar to previous works, we utilize the kernelized MDP framework from (11) to model
transition dynamics with continuous states and actions by assuming that the transition func-
tion belongs to an associated Reproducing Kernel Hilbert Space (RKHS). Such continuous
MDP formulations also appear in (17; 18), however, these works consider finite horizon MDPs
while in our work we consider infinite horizon discounted MDPs. In particular, (18) propose
an adversarially robust upper-confidence algorithm to optimize performance in the worst case.
However, their algorithm provides robustness guarantees against adversarial perturbations
to the transition dynamics. Our work differs from this perspective as we consider robustness
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w.r.t. distributional shifts of the transition dynamics. Finally, in the related kernelized bandit
setting, model-based distributionally robust algorithms are proposed in (31; 7; 39).

Appendix B. Theoretical Guarantees of Maximum Variance Reduction
(MVR)

In this section, we detail the assumptions on f and formally introduce the Gaussian process
model. We describe the confidence bound results from (54) and adapt them to the case of
multi-output GP models. Finally, we provide sample complexity guarantees for the MVR
algorithm.

We recall the introduced notation X = S ×A and remark that we use both (si, ai) and
xi interchangeably in this section.

B.1 Regularity Assumptions

We assume that f is unknown and continuous for tractability reasons which is a common
assumption when dealing with continuous state spaces (e.g., (11; 17; 28)). Further on, we
assume that f resides in the Reproducing Kernel Hilbert Space (RKHS). Considering the
multi-output definition of f and in line with the previous work (e.g., (11; 17)), we define the
modified state-action space X (over which the RKHS is defined) as X := S×A×[d], where the
last dimension i ∈ {1, 2, . . . , d} incorporates the index of the output state vector, i.e., f(·, ·) =
(f̃(·, ·, 1), . . . , f̃(·, ·, d)) where f̃ : X → R. In particular, we assume that f̃ belongs to a space
of well-behaved functions, denoted by H, induced by some continuous, positive definite kernel
function k : X × X → R and equipped with an inner product ⟨·, ·⟩k. All functions belonging
to an RKHS H satisfy the reproducing property defined w.r.t. the inner product ⟨·, ·⟩k :
⟨f̃ , k(x, ·)⟩ = f̃(x) for f̃ ∈ H. We also make the following common assumptions: (i) the kernel
function k is bounded k(x, x′) ≤ 1 for all x, x′ ∈ X and X is a compact set (X ⊂ Rp), and (ii)
every function f̃ ∈ H has a bounded RKHS norm (induced by the inner product) ∥f̃∥k ≤ B.

B.2 Gaussian Process Model

Gaussian process (GP) is a non-parametric model that is often used to express uncertainty over
functions on any set (e.g., RKHS). They allow to tractably construct posterior distribution
over functions in the set to estimate the unknown non-linear function f̃ : X → R given data
containing samples from function f̃ . It follows the Bayesian methodology of calculating
posterior given the prior and assumes that the function values at any finite subset of the
domain X follow the multivariate Gaussian distribution. One specifies a GP by a prior mean
function and a covariance function usually defined using a kernel k(x, x′) where x, x′ ∈ X .

Assuming that the samples of f̃ : X → R are noisy measurements of the underlying true
function f̃ with i.i.d. Gaussian noise N (0, λ), the posterior mean and covariance function of
the posterior distribution can be explicitly calculated. In essence, for {x1, . . . , xN} ∈ X and
yn = f̃(xn) + ωn, the posterior mean, covariance and variance are given by:

µn(x) = kn(x)(Kn + Inλ)
−1yn, (6)

kn(x, x
′) = k(x, x′)− kn(x)(Kn + Inλ)

−1kTn (x
′),

σ2
n(x) = kn(x, x). (7)
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Here Kn denotes the covariance matrix whose entries are [Kn]i,j = k(xi, xj) with xi, xj ∈
{x1, · · · , xN} and kn(x) = [k(x, x1), . . . , k(x, xN )] denotes the covariance vector whose entries
are the covariance between x and xj for all xj ∈ {x1, . . . , xN}. The n× n identity matrix
is denoted as In.

We consider multi-output GPs to model the unknown function f that outputs states
in Rd. Similar to Equation (6) and Equation (7), we get analogous expressions for the
multi-output case in Equation (8) and Equation (9).

Multi-output Gaussian process: Under the assumptions of Section 2, modeling
uncertainty and learning the transition model f can be performed via the Gaussian process
framework. A Gaussian process GP (µ(·), k(·, ·)) over the input domain X , is a collection of
random variables (f̃(x))x∈X whose every finite subset (f̃(xi))

n
i=1, n ∈ N, follows multivariate

Gaussian distribution with mean E[f̃(xi)] = µ(xi) and covariance E[(f̃(xi)− µ(xi))(f̃(xj)−
µ(xj))] = k(xi, xj) for every 1 ≤ i, j ≤ n. Standard algorithms implicitly use a zero-mean
GP (0, k(·, ·)) as the prior distribution over f̃ , i.e, f̃ ∼ GP (0, k(·, ·)), and assume that the
noise variables are drawn independently across t from N (0, λ) with λ > 0. Considering the
multi-output definition of f(·, ·) = (f̃(·, ·, 1), . . . , f̃(·, ·, d)),we build d copies of the dataset
such that D1:n,l = {(si, ai, l), si+1,l}ni=1 each with n transitions from a particular state-action
pair (s, a) to component l of next state. For xi = (si, ai) and yi,l = si+1,l, the posterior mean,
covariance and variance for f̃(x, l) are given by:

µnd(x, l) =knd(x, l)(Knd + Indλ)
−1ynd, (8)

knd((x, l), (x
′, l)) =k((x, l), (x′, l))−

knd(x, l)(Knd + Indλ)
−1kTnd(x

′, l′),

σ2
nd(x, l) =knd((x, l), (x, l)). (9)

Here Knd denotes the covariance matrix of dimensions nd×nd whose entries are k((xi, l), (xj , l′))
with 1 ≤ i, j ≤ n and 1 ≤ l, l′ ≤ d. knd(x, l) = [k((x, l), (xi, l

′))]1≤i≤n,1≤l′≤d denotes the
covariance vector and ynd = [yi,l]1≤i≤n,1≤l≤d denotes the output vector.

Correspondingly, the posterior mean and variance for f would be

µn(s, a) = (µnd(s, a, 1), · · · , µnd(s, a, d)), (10)
σn(s, a) = (σnd(s, a, 1), · · · , σnd(s, a, d)). (11)

B.3 Non-adaptive Multi-output Confidence Bounds

Our Algorithm 1 uses the maximum variance reduction rule to learn about the transition
dynamics. As seen in our analysis (see Theorem 10), we are interested in constructing
confidence intervals for f only at the end of n iterations (i.e., after taking n samples), and
hence, we do not require anytime confidence bounds (e.g., as in (52)). Moreover, in our
algorithm, the current decision (si, ai) does not depend on the previous noise realizations.
By focusing on the single-output case first, the following confidence lemma from (54), can be
used to construct confidence intervals with β(δ) independent of n which holds w.h.p. for a
fixed x ∈ X :

Lemma 2 Given n noisy observations of f̃ : X → R with ∥f∥k ≤ B where noise {ω1, · · · , ωn}
is independent of inputs {x1, · · ·xn}, for β(δ) = B + σ

λ

√
2 log(2/δ), and µn, σn as defined in
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Equation (6) and Equation (7), the following holds for a fixed x ∈ X with probability at least
1− δ,

|f(x)− µn(x)| ≤ β(δ)σn(x).

To extend this result over the entire input set x ∈ X , the authors in (54) use a discretization
assumption which ensures that there exists a discretization Dn such that f̃(x)− f̃([x]n) ≤ 1√

n
,

where [x]n = argminx′∈Dn
∥x− x′∥2 and |Dn| ≤ CBdnd/2 for C being independent of n and

B (RKHS norm bound). Consequently, they obtain the following lemma providing uniform
confidence bounds:

Lemma 3 ((54, Theorem-3)) Given n noisy observations of f̃ : X → R, X ⊂ R satisfying
∥f̃∥k ≤ B where noise {ω1, · · · , ωn} is independent of inputs {x1, · · ·xn} ⊂ X and when
there exists discretization Dn of X with |Dn| ≤ CBdnd/2, for β(δ) = B + σ

λ

√
2 log(2/δ) and

βn(δ) = 2B + β( δ
3C(B+

√
nβ(2δ/3n))dnd/2 ), µn, σn as defined in Equation (6) and Equation (7),

the following holds for all x ∈ Dn with probability at least 1− δ,

|f̃(x)− µn(x)| ≤ βn(δ)σn(x).

To extend this result to multiple dimensions as required in our work, we take the same
discretization assumption as in (54). But considering the multi-output definition of f , we
define the modified state-action space X . This is in line with (11), which also has a similar
multi-output setting. We define the modified state-action space as X := S×A×{1, 2, · · · , d}
where the last dimension i ∈ {1, 2, · · · , d} incorporates the index of the output vector,
in the sense that f(·, ·) = (f̃(·, ·, 1), · · · , f̃(·, ·, d)) where f̃ : X → R. We then detail the
discretization assumption as in (54) w.r.t. f̃ (see also Section 2 for more details).

Assumption 4 For every n ∈ N and f̃ ∈ Hk(S×A×I) there exists a discretization Dn(S×
A) of S×A such that f̃(s, a, i)−f̃([s, a]n, i) ≤ 1√

n
, where [s, a]n = argmin(s′,a′)∈Dn(S×A) ∥(s, a)−

(s′, a′)∥2, i ∈ I, and |Dn(S × A)| ≤ CBpnp/2 ( |Dn(S × A × I)| ≤ CBpnp/2d) for C being
independent of n and B, and S ×A ⊂ Rp.

Assumption 4 allows us to provide bounds for ∥f(s, a)− µn(s, a)∥2 for all (s, a) ∈ S using
Lemma 3. Note that Assumption 4 does not discretize the modified state-action space
(X = S × A× {1, 2, · · · , d}) but instead discretizes S × A for each i ∈ I. Hence, |Dn(S ×
A× I)| ≤ CBpnp/2d, and βn(δ) will change accordingly. We describe the following lemma
detailing the same.

Lemma 5 Under Assumption 4 with βn(δ) as in Lemma 3 and training a Gaussian pro-
cess model on observations up to iteration n ({s1, · · · , sn}) and their corresponding inputs
({(s0, a0), · · · , (sn−1, an−1)}), it holds with probability at least 1− δ,

∥f(s, a)− µn(s, a)∥2 ≤ βn(δ)
√
d∥σn([s, a]n)∥2 +

2d√
n
,

uniformly for all (s, a) ∈ S ×A and [s, a]n = argmin(s′,a′)∈Dn(S×A) ∥(s, a)− (s′, a′)∥2.
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Proof For any (s, a) ∈ S ×A,

∥f(s, a)− µn(s, a)∥2

=

√√√√ d∑
i=1

(f̃(s, a, i)− µn(s, a, i))2 (12)

=

√√√√ d∑
i=1

|f̃(s, a, i)− f̃([s, a]n, i) + f̃([s, a]n, i)− µn([s, a]n, i) + µn([s, a]n, i)− µn(s, a, i)|2

≤
d∑

i=1

(
|f̃(s, a, i)− f̃([s, a]n, i)|+ |f̃([s, a]n, i)− µn([s, a]n, i)|+ |µn([s, a]n, i)− µn(s, a, i)|

)
(13)

≤

(
d∑

i=1

(|f̃([s, a]n, i)− µn([s, a]n, i)|)

)
+

2d√
n

(14)

≤ βn(δ)

(
d∑

i=1

(σn([s, a]n, i))

)
+

2d√
n

(15)

≤ βn(δ)
√
d

√√√√ d∑
i=1

(σn([s, a]n, i))2 +
2d√
n

(16)

≤ βn(δ)
√
d∥σn([s, a]n)∥2 +

2d√
n
. (17)

In Equation (13), Equation (16) we use ∥x∥2 ≤ ∥x∥1 ≤
√
d∥x∥2. And Equation (14) and

Equation (15) follow from Assumption 4 (since f̃ , µn ∈ Hk(S × A × I)) and Lemma 3,
respectively.

B.4 Sample Complexity Guarantees

Our objective is to obtain a uniform upper bound on the model precision ∥µn(s, a)−f(s, a)∥2
for all state-action pairs (s,a) while accounting for the errors induced by discretization. Here,
µn(·, ·) is obtained from Algorithm 1. We achieve this by using Lemma 5 to obtain a bound
in terms of maximum information gain (Equation (18)).

To characterize the precision of the learned model, we use the maximum information
gain (52)

Γn(X ) = max
x1,...,xn∈X

0.5 log det(In + λ−1Kn), (18)

a kernel-dependent quantity that is frequently used in GP optimization. For many commonly
used kernels, Γn is sublinear in n, which implies that the predictive uncertainties are shrinking
sufficiently fast, and thus f̂n is capable of generalizing well across the entire domain. This
is formalized in the following lemma.
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Lemma 6 For βn(δ) set as in Lemma 3 and Id denoting {1, 2, · · · , d}, the MVR algorithm
(Algorithm 1) outputs the dynamics estimate f̂n(·, ·) = µn(·, ·) such that the following holds
uniformly for all (s, a) ∈ S ×A with probability at least 1− δ,

∥µn(s, a)− f(s, a)∥2 ≤ O
(βn(δ)2ed√

n

√
Γnd(S ×A× Id)

)
.

The preceding lemma asserts that we can effectively estimate the unknown dynamics by
utilizing the pure exploration procedure and that the error in the model reduces as we increase
the number of samples. In the subsequent section, we leverage this finding to establish the
minimum number of samples needed to obtain a distributionally robust policy that is close
to optimal.
Proof From Lemma 5, it holds that with probability at least 1 − δ uniformly for all
(s, a) ∈ S ×A:

∥µn(s, a)− f(s, a)∥2 ≤ βn(δ)
√
d∥σn([s, a]n)∥2 +

2d√
n

≤ βn(δ)
√
d max
(s,a)∈S×A

∥σn(s, a)∥2 +
2d√
n

≤ βn(δ)
√
d∥σn(sn, an)∥2 +

2d√
n

≤ 2d√
n
+

βn(δ)

n

√
d

n∑
j=1

∥σj(sn, an)∥2

≤ 2d√
n
+

βn(δ)

n

√
d

n∑
j=1

∥σj(sj , aj)∥2 (19)

≤ βn(δ)√
n

√
d

√√√√ n∑
j=1

∥σj(sj , aj)∥22 +
2d√
n

≤ βn(δ)2ed√
n

√
Γnd(S ×A× Id) +

2d√
n

(20)

= O
(βn(δ)2ed√

n

√
Γnd(S ×A× Id)

)
. (21)

Here, Equation (19) follows from the decision rule in line-4 of Algorithm 1 and Equation (20)
is obtained using standard bound for the sum of variances in the case of multi-output GPs
from (18, Lemma-7) and (11, Lemma-11).

Appendix C. Proof Outline

We begin by defining the robust Bellman operator (27) in terms of the robust state-action
value function QR

π,f as follows:

QR
π,f (s, a) =r(s, a) + γ inf

D(p||Pf (s,a))≤ρ
Es′∼p

[
V R
π,f (s

′)
]
. (22)
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Step (i): The first step is to bound the approximation error of policy π̂n (i.e., the left-
hand side of Equation (4)) by the sum of two error terms: |V R

π̂N ,f (s) − V R
π̂N ,f̂N

(s)| and

|V R
π̂N ,f̂N

(s)− V R
π∗,f |. Utilizing the robust Bellman Equation (22), bounding such errors boils

down to bounding differences of the form:

max
s

∣∣∣ inf
KL(p||Pf (s,π̂N (s)))≤ρ

Es′∼p

[
V R
π̂N ,f (s

′)
]
− inf

KL(p||Pf̂n
(s,π̂N (s)))≤ρ

Es′∼p

[
V R
π̂N ,f (s

′)
]∣∣∣. (23)

where Pf (s, a) denotes the Gaussian transition distribution with mean f(s, a) and covariance
σ2I.

Step (ii): The major challenge of bounding Equation (23) lies in the inner infinite-
dimensional minimization problems over distributions. To overcome this, we can reformulate
such problems into single-dimensional ones using duality (26; 62; 41) according to the
following lemma.

Lemma 7 (Variant of (26)) For random variable X and function V satisfying that V (X)
has a finite Moment Generating function, it holds for all ρ > 0:

inf
P :KL(P ||P0)≤ρ

EX∼P [V (X)] = sup
α≥0

{−α log(EX∼P0 [e
−V (X)

α ])− αρ}. (24)

Let H(V, P ) := supα≥0{−α log(EX∼P [e
−V (X)

α ]) − αρ}. Thus, applying Lemma 7, we
rewrite Equation (23) as the difference of two single-dimensional convex optimization problems
with expectations over Pf and Pf̂N

, respectively:

max
s

∣∣∣H(V R
π̂N ,f , Pf (s, π̂N (s)))−H(V R

π̂N ,f , Pf̂N
(s, π̂N (s)))

∣∣∣
≤ max

V (·)∈V
max
s,a

∣∣∣H(V, Pf (s, a))−H(V, Pf̂N
(s, a))

∣∣∣
≤ max

V (·)∈V
max
s,a

max
α∈[α,α]

c
∣∣∣Es′∼Pf(s,a)

[e
−V (s′)

α ]− Es′∼Pf̂N (s,a)
[e

−V (s′)
α ]

∣∣∣, (25)

where c, α, α > 0 are constants, V denotes the value functional space, and the last inequality
holds due to certain structural properties of the single-dimensional optimization problem
in the RHS of Equation (24).

Step (iii): Finally, we bound Equation (25) using the difference between the estimated
model f̂N and the true f , which is characterized by Lemma 6, in Appendix D. Moreover,
to address the outer maximum over all value functions, states, and actions, we incorporate
a covering number argument.

Other uncertainty sets: We further obtain the statistical sample complexities for χ2

distance and TV distance uncertainty sets. We note that the analysis follows similar steps
as the ones of Theorem 1. The major difference lies in incorporating and handling the dual
forms of χ2/TV uncertainty sets in our analysis which differ from the one of Lemma 7. For χ2

uncertainty set, we utilize the dual formulation that appears in (22), while for TV uncertainty
sets we follow the approach of (59). As before, we can upper bound Lemma 23 via covering
number arguments and the distance between the nominal transition dynamics f and the
learned transition dynamics f̂N by using Theorem 6. Below, we outline the statistical sample
complexity in the case of χ2 and TV uncertainty sets in Theorems 8 and 9, respectively.
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Proposition 8 (Sample Complexity of MVR under χ2 uncertainty set) Under the setup
of Theorem 1 with uncertainty set defined w.r.t. χ2 distance, it holds that maxs |V R

π̂N ,f (s)−
V R
π∗,f (s)| ≤ ϵ with probability at least 1− δ for any N such that

N = O
(( 1 + 2ρ√

1 + 2ρ− 1

)4γ4β2
N (δ)d2ΓNd

(1− γ)8ϵ4

)
. (26)

Proposition 9 (Sample Complexity of MVR under TV uncertainty set)
Under the setup of Theorem 1 with uncertainty set defined w.r.t. TV distance, it holds

that maxs |V R
π̂N ,f (s)− V R

π∗,f (s)| ≤ ϵ with probability at least 1− δ for any N such that

N = O
((2 + ρ)2

ρ2
γ2β2

N (δ)d2ΓNd

(1− γ)4ϵ2

)
. (27)

We relegate the proofs of Theorems 8 and 9 to Appendices E.1 and E.2. In comparison to the
exponential dependence on 1

1−γ for KL uncertainty set in Theorem 1, we note that for both
χ2/TV uncertainty sets, we obtain polynomial dependence on 1

1−γ . In the context of the TV
uncertainty set, the dependency on ϵ in Theorem 9 remains consistent with the finite state
case ((41)). However, in the χ2 case, the bound presented in Theorem 8 exhibits a worse
dependence on ϵ compared to the result derived in (41). This difference arises because we
refrain from utilizing the same dual reformulation lemmas from (27), as they are applicable
exclusively to finite state-action settings. Improving these rates is an interesting direction
for future work.
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Appendix D. Sample Complexity Bounds for KL Uncertainty Sets

Theorem 10 (Sample Complexity of MVR under KL uncertainty set) Consider a robust
MDP with nominal transition dynamics f satisfying the regularity assumptions from Section 2
and with uncertainty set defined as in Equation (2) w.r.t. KL divergence. For π∗ denoting
the robust optimal policy w.r.t. nominal transition dynamics f and π̂N denoting the robust
optimal policy w.r.t. learned nominal transition dynamics f̂N via MVR (Algorithm 1), and
δ ∈ (0, 1), ϵ ∈ (0, 1

1−γ ), it holds that maxs |V R
π̂N ,f (s)− V R

π∗,f (s)| ≤ ϵ with probability at least
1− δ for any N such that

N = O
(
e

2−γ
(1−γ)αkl

γ2β2
N (δ)d2ΓNd

(1− γ)4ρ2ϵ2

)
. (28)

Proof Step (i): As detailed in the proof outline of Section 4, in order to bound |V R
π̂n,f

(s)−
V R
π∗,f (s)|, we begin by adding and subtracting V R

π̂n,f̂n
(s) which is the robust value function

w.r.t. the nominal transition dynamics f̂n and its corresponding optimal policy π̂n. Then, we
split the difference into two terms as follows:

|V R
π̂n,f (s)− V R

π∗,f (s)| = |V R
π̂n,f (s)− V R

π̂n,f̂n
(s)|︸ ︷︷ ︸

(i)

+ |V R
π̂n,f̂n

(s)− V R
π∗,f (s)|︸ ︷︷ ︸

(ii)

. (29)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 11
and Lemma 12 respectively. From Lemma 11, we obtain that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
KL(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− inf

KL(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣.

(30)

And from Lemma 12, we obtain that

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣
≤ γ

1− γ
max

s

∣∣∣ inf
KL(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− inf

KL(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]∣∣∣.

(31)

Note that both these terms in Equations (30) and (31) are of the form mentioned in the
Step (i) of Section 4.

Step (ii): Next, corresponding to Step (ii) of the proof outline in Section 4, we use
Lemma 7 to bound Equations (30) and (31). Denote M := 1

1−γ ≥ maxs V
R
π (s) for convenience.

Using Equation (30) and Lemma 14 (internally using Lemma 7), conditioned on the event of
Lemma 14 holding true, it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ 1

1− γ
max

s

∣∣∣γ inf
KL(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

KL(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣
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≤ max
s,a

(
2γM2

ρ e
M
α max

α∈[α,M
ρ
]

∣∣∣Es′∼Pf̂n
(s,a)[e

−V R
π̂n,f (s′)

α ]− Es′∼Pf (s,a)[e
−V R

π̂n,f (s′)
α ]

∣∣∣). (32)

≤ max
V (·)∈V

max
s,a

(
2γM2

ρ e
M
α max

α∈[α,M
ρ
]

∣∣∣Es′∼Pf̂n
(s,a)[e

−V (s′)
α ]− Es′∼Pf (s,a)[e

−V (s′)
α ]

∣∣∣). (33)

We can bound (ii) similarly.

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ (34)

≤ max
V (·)∈V

max
s,a

(
2γM2

ρ e
M
α max

α∈[α,M
ρ
]

∣∣∣Es′∼Pf̂n
(s,a)[e

−V (s′)
α ]− Es′∼Pf (s,a)[e

−V (s′)
α ]

∣∣∣). (35)

Step (iii): Next, we want to utilize the learning error bound (Equation (21)) that bounds
the difference between the means of true nominal transition dynamics Pf and learned nominal
transition dynamics Pf̂n

to bound Equations (33) and (35).

We begin by bounding the difference
∣∣∣Es′∼Pf̂n

(s,a)[e
−V (s′)

α ]− Es′∼Pf (s,a)[e
−V (s′)

α ]
∣∣∣, by the

difference in means of Pf and Pf̂n
in Lemma 15. Since Equation (33) has a max over all

value functions, we introduce a covering number argument in Lemma 17 to reform it to a
max over the functions in the ζ−covering set. We then use Lemma 15 to obtain bounds in
terms of maximum information gain ΓNd (Equation (18)) and ζ. Further details regarding
the covering number argument are deferred to Lemma 17. Then, we apply the result of
Lemma 17 with ζ = 1 (defined in Lemma 17) on Equation (33). Then, it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣ = O

(
2M2

ρ e
M
αkl e

1
αkl

βn(δ)
√

2ed2Γnd

σ
√
n

)
, (36)

where αkl is a problem-dependent constant denoting the minimum value of α defined in
Lemma 14. A similar constant also appears in the sample complexity bounds provided in
(41; 62). Note that βn, which appears in Lemma 2, has a logarithmic dependence on n.
Similarly, from Equation (35) and Lemmas 15,17, we obtain

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ = O
(
2γM2

ρ e
M
αkl e

1
αkl

βn(δ)
√
2ed2Γnd

σ
√
n

)
. (37)

Note that we want to bound V R
π̂n,f

(s) − V R
π∗,f (s) = (i) + (ii) over all s ∈ S. Using

maxs

∣∣∣V R
π̂n,f

(s) − V R
π∗,f (s)

∣∣∣ ≤ maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗,f (s)

∣∣∣ + maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗,f (s)

∣∣∣ and
substituting M by 1/(1− γ), we obtain from Equation (36) and Equation (37)

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

(
γe

1
(1−γ)αkl e

1
αkl

βn(δ)d
√
2eΓnd

(1− γ)2ρσ
√
n

)
.

Finally, to ensure that maxs |V R
π̂n,f

(s)− V R
π∗,f (s)| ≤ ϵ , it suffices to have

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

(
γe

1
(1−γ)αkl e

1
αkl

βn(δ)d
√
2eΓnd

(1− γ)2ρσ
√
n

)
= ϵ.
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By inverting the previously obtained result, we arrive at

n = O
(
e

2
(1−γ)αkl e

2
αkl

γ2β2
n(δ)d

2Γnd

(1− γ)4ρ2ϵ2

)
.

Lemma 11 (Simplification using robust Bellman equation) Denote (i) :=
∣∣∣V R

π̂n,f
(s) −

V R
π̂n,f̂n

(s)| for V R
π̂n,f

being the robust value function of policy π̂n w.r.t. true nominal transition

dynamics f and V R
π̂n,f̂n

being the robust value function of policy π̂n w.r.t. learned nominal
transition dynamics f . Then the following holds,

(i) =
∣∣∣V R

π̂n,f (s)− V R
π̂n,f̂n

(s)
∣∣∣

≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣.
(38)

Proof Since both the quantities are w.r.t. the same policy, using the definition of the robust
Q-function and the robust Bellman equation (see Equation (22)), we obtain:

(i) = |V R
π̂n,f (s)− V R

π̂n,f̂n
(s)| (39)

= |QR
π̂n,f (s, π̂n(s))−QR

π̂n,f̂n
(s, π̂n(s))|

= |r(s, π̂n(s))− r(s, π̂n(s))

+ γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f̂n

(s′)
]
|

= |γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f̂n

(s′)
]
| (40)

Adding and subtracting γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f

(s′)
]

to Equation (40), we obtain

the following two terms:

(ia) = |γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
|,

(ib) = |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f̂n

(s′)
]
|.

Now, we use Lemma 13 to bound (ib). We have:

(ib) = |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f̂n

(s′)
]
|
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Lemma13
≤ γmax

s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣ (Lemma13). (41)

Plugging Equation (41) into Equation (39) and using the fact that (i) = (ia) + (ib), we
have

(i) = |V R
π̂n,f (s)− V R

π̂n,f̂n
(s)| (42)

≤ (ia) + γmax
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

= |γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
|

+ γmax
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣. (43)

Taking maximum over states in Equation (42) and Equation (43) we have

max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ max
s

∣∣∣γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣

+ γmax
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣.

Moving γmaxs

∣∣∣V R
π̂n,f

(s)− V R
π̂n,f̂n

(s)
∣∣∣ to the LHS and dividing (1− γ) on both sides, it holds

that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣.
(44)

Lemma 12 (Simplification using robust Bellman equation) Denote (ii) :=
∣∣∣V R

π̂n,f̂n
(s) −

V R
π∗,f (s)

∣∣∣ for V R
π̂n,f̂n

being the robust value function of policy π̂n w.r.t. learned nominal

transition dynamics f̂n and V R
π∗,f being the robust value function of policy π∗ w.r.t. true

nominal transition dynamics f . Then the following holds,

(ii) =
∣∣∣V R

π̂n,f̂n
(s)− V R

π∗,f (s)
∣∣∣

≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣
≤ γ

1− γ
max

s

∣∣∣ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]∣∣∣.
(45)
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Proof We first note that QR
π∗,f (s, π̂n(s)) ≤ QR

π∗,f (s, π
∗(s)) as π∗ is the robust optimal policy

for the nominal transition dynamics f (see Equation (3)). As a result, we have

(ii) = |V R
π̂n,f̂n

(s)− V R
π∗,f (s)| (46)

= |QR
π̂n,f̂n

(s, π̂n(s))−QR
π∗,f (s, π

∗(s))|

≤ |QR
π̂n,f̂n

(s, π̂n(s))−QR
π∗,f (s, π̂n(s))|

= |r(s, π̂n(s))− r(s, π̂n(s))

+ γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f̂n

(s′)
]
− γ inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
|.

= |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f̂n

(s′)
]
− γ inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
| (47)

Adding and subtracting γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]

to Equation (47), we obtain the

following two terms:

(iia) = |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f̂n

(s′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π∗,f (s

′)
]
|,

(iib) = |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− γ inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
|.

Now, we use Lemma 13 to bound (iia) . We have:

(iia) = |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π̂n,f̂n

(s′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π∗,f (s

′)
]
|

≤ γmax
s

∣∣∣V R
π∗,f (s)− V R

π̂n,f̂n
(s)
∣∣∣. (48)

Plugging Equation (48) into Equation (46) and using the fact that (ii) = (iia) + (iib), we
have

(ii) = |V R
π∗,f (s)− V R

π̂n,f̂n
(s)| (49)

≤ (iib) + max
s

∣∣∣V R
π∗,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

= |γ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− γ inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
|

+ γmax
s

∣∣∣V R
π∗,f (s)− V R

π̂n,f̂n
(s)
∣∣∣. (50)

Taking maximum over states in Equation (49) and Equation (50) and following similar steps
as in Equation (44), we have

(ii) ≤ max
s

∣∣∣V R
π∗,f (s)− V R

π̂n,f̂n
(s)
∣∣∣
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≤ max
s

∣∣∣γ inf
D(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

D(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣

+ γmax
s

∣∣∣V R
π∗,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
D(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− inf

D(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]∣∣∣.
(51)

Lemma 13 (from (41, Lemma 1)) Let V1 and V2 be two value functions from S →
[0, 1/(1 − γ)]. Let D be any distance measure between probability distributions (e.g., KL-
divergence, χ2− divergence, or variation distance defined in Equation (2)). The following
inequality (1-Lipschitz w.r.t. V ) holds true∣∣∣ inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V1(s

′)
]
− inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V2(s

′)
]∣∣∣ ≤ max

s′
|V2(s

′) − V1(s
′)|.

Proof We want to bound∣∣∣ inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)
]
− inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V2(s

′)
]∣∣∣.

Notice that

inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)
]
− inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V2(s

′)
]

= inf
D(p||Pf̃ (s,a))≤ρ

sup
D(p′|Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)
]
− Es′∼p′

[
V2(s

′)
]

≥ inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)
]
− Es′∼p

[
V2(s

′)
]

= inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)− V2(s
′)
]
,

where the inequality follows from the property of supremum. By the definition of inf, for
any ϵ > 0, there exists some distribution q s.t. D(q|Pf̃ (s, a)) ≤ ρ satisfying

Es′∼q

[
V1(s

′)− V2(s
′)
]
− ϵ ≤ inf

D(p||Pf̃ (s,a)))≤ρ
Es′∼p

[
V1(s

′)− V2(s
′)
]
.

Then, we have

inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V2(s

′)
]
− inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V1(s

′)
]

≤ − inf
D(p||Pf̃ (s,a))≤ρ

Es′∼p

[
V1(s

′)− V2(s
′)
]

≤ −Es′∼q

[
V1(s

′)− V2(s
′)
]
+ ϵ
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≤ Es′∼q

[
V2(s

′)− V1(s
′)
]
+ ϵ

≤ max
s′

|V2(s
′)− V1(s

′)|+ ϵ. (52)

Let ϵ → 0, we obtain one side of the desired bound.
One can similarly bound infD(p||Pf̃ (s,a))≤ρ Es′∼p

[
V1(s

′)
]
− infD(p||Pf̃ (s,a))≤ρ Es′∼p

[
V2(s

′)
]

by just interchanging V1 and V2 everywhere. Combining this argument with Equation (52),
we obtain∣∣∣ inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V1(s

′)
]
− inf

D(p||Pf̃ (s,a))≤ρ
Es′∼p

[
V2(s

′)
]∣∣∣ ≤ max

s′
|V2(s

′) − V1(s
′)|.

Lemma 14 (Simplification using Lemma 7 reformulation) For any value function V (·) :
S → [0, 1/(1− γ)], define the event E as follows:

max
s

∣∣∣∣∣ inf
KL(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

KL(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]∣∣∣∣∣ ≤
max
s,a

2M
ρ e

M
α max

α∈[α,α]

∣∣∣∣Es′∼Pf̂n(s,a)
[e

−V (s′)
α ]− Es′∼Pf (s,a)[e

−V (s′)
α ]

∣∣∣∣ .
Then, for any n > {maxs,aN

′(ρ, Pf (s, a)),maxs,aN
′′(ρ, Pf (s, a))} where N ′(ρ, Pf (s, a)) =

O
(
β2
n(δ)2ed

2Γnd

(κ−e−ρ

2
)2

)
and N ′′(ρ, Pf (s, a)) = O

(
4M2e

2M
α β2

n(δ)2ed
2Γnd

(ρτ)2

)
with α = M

ρ , M = 1
1−γ , κ

defined in Equation (68), τ defined in Equation (71), and α = α∗/2 defined in Equation (57),
the event E holds true with probability at least 1− δ.

Proof (A similar proof as in (62, Lemma-4)). First note that,

max
s

∣∣∣∣∣ inf
KL(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

KL(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]∣∣∣∣∣ ≤
max
s,a

∣∣∣∣∣ inf
KL(p||Pf̂n

(s,a))≤ρ
Es′∼p

[
V (s′)

]
− inf

KL(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣∣∣ . (53)

Recall (26, Theorem-1) for distributionally robust optimization with a random variable X
and a random function H. One can rewrite an infinite-dimensional optimization problem as
a scalar optimization problem:

sup
P :KL(p||P0)≤ρ

EX∼P [H(X)] = inf
α≥0

{α log(EX∼P0 [e
H(X)

α ]) + αρ}. (54)

For now, we focus on bounding

∣∣∣∣∣ inf
KL(p||Pf̂n

(s,a))≤ρ
Es′∼p

[
V (s′)

]
− inf

KL(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣∣∣
for one particular (s, a). For brevity, we write Pf (s, a) and Pf̂n

(s, a) as Pf and Pf̂n
, respec-

tively. By Equation (54), we have

inf
P :KL(p||Pf )≤ρ

Es′∼P [V (s′)] = max
α≥0

{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ}, (55)
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inf
P :KL(p||P̂f̂n

)≤ρ
Es′∼P [V (s′)] = max

α≥0
{−α log(Es′∼Pf̂n

[e
−V (s′)

α ])− αρ}. (56)

For the finite state-action space setting, (62, Lemma-4) characterizes the property of the
optimal α∗. Following a similar proof strategy, we denote

α∗ = argmax
α≥0

{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ}, (57)

and
α̂∗
n = argmax

α≥0
{−α log(Es′∼Pf̂n

[e
−V (s′)

α ])− αρ}. (58)

To ensure that maxα≥0{−α log(Es′∼Pf
[e

−V (s′)
α ])−αρ}−maxα≥0{−α log(Es′∼Pf̂n

[e
−V (s′)

α ])−
αρ} is small enough, we need to show that α∗ and α̂∗

n are close enough. For this, one considers
two different cases, α∗ = 0 and α∗ > 0.

Case-1: In Case-1, we investigate the conditions for α̂∗
n = 0 given that α∗ = 0. According

to (26, Proposition-2), for α∗ = 0 to occur, the random variable Y := V (s′) where s′ ∼
N (f(s, a), σ2I) must satisfy three conditions namely, (i) Y must be bounded, (ii) Y must
have finite mass at its essential infimum, and (iii) the finite mass at essential infimum should
be greater than e−ρ. So we want to verify whether these conditions hold true for Ŷn := V (s′)
where s′ ∼ N (f̂n(s, a), σ

2I) when Y satisfies these conditions.
We restate definition of the essential infimum for a real-valued random variable Y , denoted

as ESI(Y ).
ESI(Y ) = sup{t ∈ R : P{Y < t} = 0}. (59)

We first show that Y = V (s′) where s′ ∼ N (f(s, a), σ2I) and Ŷn = V (s′) where s′ ∼
N (f̂n(s, a), σ

2I) have the same essential infimum. By the definition of ESI(Y ), for any ϵ > 0,
it holds that

P{ESI(Y ) ≤ Y < ESI(Y ) + ϵ} > 0, P{Y < ESI(Y )} = 0. (60)

It implies for Y = V (s′) and s′ ∼ N (f(s, a), σ2I) that

Ps′∼N (f(s,a),σ2I){s′ ∈ Rd : ESI(Y ) ≤ Y = V (s′) < ESI(Y ) + ϵ} > 0, (61)

Ps′∼N (f(s,a),σ2I){s′ ∈ Rd : Y = V (s′) < ESI(Y )} = 0. (62)

It further implies that, the set {s′ ∈ Rd : ESI(Y ) ≤ V (s′) < ESI(Y ) + ϵ} must have a
Lebesgue measure greater than 0 and {s′ ∈ Rd : V (s′) < ESI(Y )} must have a Lebesgue
measure equal to 0 since s′ ∼ N (f(s, a), σ2I) is a continuous distribution.

Due to this fact that the set {s′ ∈ Rd : ESI(Y ) ≤ V (s′) < ESI(Y ) + ϵ} has a Lebesgue
measure greater than zero and noting that N (f̂n(s, a), σ

2I) is also a continuous distribu-
tion with the same support as of N (f(s, a), σ2I) (i.e., the probability density function
of N (f̂n(s, a), σ

2I) is positive whenever probability density function of N (f(s, a), σ2I) is
positive), it holds that

Ps′∼N (f̂n(s,a),σ2I){s
′ ∈ Rd : ESI(Y ) ≤ Ŷn = V (s′) < ESI(Y ) + ϵ} > 0. (63)
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A similar argument follows for

Ps′∼N (f̂n(s,a),σ2I){s
′ ∈ Rd : Ŷn = V (s′) < ESI(Y )} = 0. (64)

In essence, Equations (63) and (64) imply,

P{ESI(Y ) ≤ Ŷn < ESI(Y ) + ϵ} = 0, P{Ŷn < ESI(Y )} > 0.

Hence, from the definition of ESI(·) in Equations (59) and (60), we have ESI(Y ) = ESI(Ŷn).
As a result, for α∗ = 0 to occur and for Y = V (s′)(s′ ∼ N (f(s, a), σ2I)) to have finite

mass at the essential infimum (condition-(ii)), i.e, P{Y = ESI(Y )} > 0, it requires that

Ps′∼N (f(s,a),σ2I){s′ ∈ Rd : Y = V (s′) = ESI(Y )} > 0.

This will further require that the set {s′ ∈ Rd : Y = V (s′) = ESI(Y )} must have a Lebesgue
measure greater than 0. Following a similar argument as to have obtained Equation (63)
(the probability density function of N (f̂n(s, a), σ

2I) is positive whenever probability density
function of N (f(s, a), σ2I) is positive), the set {s′ ∈ Rd : Y = V (s′) = ESI(Y )} having
Lebesgue measure greater than 0, will imply

Ps′∼N (f̂n(s,a),σ2I){s
′ ∈ Rd : Ŷn = V (s′) = ESI(Y )} > 0, (65)

and
P{Ŷn = ESI(Y )} > 0 (66)

Since ESI(Y ) = ESI(Ŷn), Equations (65) and (66) imply

P{Ŷn = ESI(Ŷn)} > 0, (67)

Hence, if P{Y = ESI(Y )} > 0 holds true, it also holds that P{Ŷn = ESI(Ŷn)} > 0. This
implies that whenever Y has a finite mass at its essential infimum, Ŷn also has finite mass at
its essential infimum (condition-(ii) satisfied).

But, recall that according to (26, Proposition-2) for α∗ = 0 to occur, the finite mass
which Y has at its essential infimum should also be greater than e−ρ (condition-(iii)). Hence,
one has to check if Y satisfies

Ps′∼N (f(s,a),σ2I){s′ ∈ Rd : Y = V (s′) = ESI(Y )} > e−ρ, (68)

what is the condition that Yn satisfies

Ps′∼N (f̂n(s,a),σ2I){s
′ ∈ Rd : Ŷn = V (s′) = ESI(Ŷn)} > e−ρ,

so that α̂∗
n = 0 whenever α∗ = 0. Denote κ := Ps′∼N (f(s,a),σ2I){s′ ∈ Rd : Y = V (s′) =

ESI(Y )}, κn := Ps′∼N (f̂n(s,a),σ2I){s
′ ∈ Rd : Ŷn = V (s′) = ESI(Ŷn)}, and Smin := {s′ ∈ Rd :

V (s′) = ESI(Y ) = ESI(Ŷn)}. If κ > e−ρ and κ−κn ≤ κ−e−ρ

2 , then it will hold that κn > e−ρ.

|κ− κn| =

∣∣∣∣∣
∫
Smin

1√
(2πσ2)d

(e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 )dx

∣∣∣∣∣
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≤
∫
Smin

1√
(2πσ2)d

∣∣∣∣∣e− ∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2

∣∣∣∣∣dx
≤
∫
Rd

1√
(2πσ2)d

∣∣∣∣∣e− ∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2

∣∣∣∣∣dx
≤ ∥f(s, a)− f̂n(s, a)∥2 (Lemma15)

≤ O
(βn(δ)√2ed2Γnd√

n

)
,

We need O
(
βn(δ)

√
2ed2Γnd√
n

)
≤ κ−e−ρ

2 , which in turn requires n = O
(
β2
n(δ)2ed

2Γnd

(κ−e−ρ

2
)2

)
=

N ′(ρ, Pf (s, a)). Hence, for n > maxs,aN
′(ρ, Pf (s, a)) with probability at least 1− δ, it holds

that
κn > e−ρ,

for all (s, a) ∈ S ×A whenever κ > e−ρ, implying α∗
n = 0 whenever α∗ = 0.

Case-2: Consider the case of α∗ > 0. The idea is to bound both α∗ and α̂∗
n by a set [α,α]

and bound maxα≥0{(−α log(Es′∼Pf (s,π(s))[e
−V (s′)

α ])− αρ)− (−α log(Es′∼Pf(s,π′(s))
[e

−V (s′)
α ])−

αρ)} for α taking values within set [α, α]. We first provide a upper bound for α∗ as M
ρ where

M = 1
1−γ denoting the maximum value of V (s′).

max
α≥0

{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ} ≥ lim

α→0
[−α log(Es′∼Pf

[e
−V (s′)

α ])− αρ]

= ESI(V (s′)|s′∼Pf
) (Lemma16)

≥ 0. (69)

Since maxs V (s) ≤ M , we have

−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ ≤ −α log(e

−M
α )− αρ = M − αρ.

It implies for α > M
ρ that

−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ < 0. (70)

By Equation (69), since maxα≥0{−α log(Es′∼Pf
[e

−V (s′)
α ])−αρ} ≥ 0, argmaxα≥0{−α log(Es′∼Pf

[e
−V (s′)

α ])−
αρ} cannot be greater than M

ρ due to Equation (70) holding for all α > M
ρ . Hence, we have

α∗ ≤ M
ρ . A similar argument holds for α̂∗

n and it holds that α̂∗
n ≤ M

ρ .
Denote α := α∗/2, α := M

ρ , and

τ := min
{
α log(Es′∼Pf

[e
−V (s′)

α ])+αρ, α log(Es′∼Pf
[e

−V (s′)
α ])+αρ

}
−α∗ log

(
Es′∼Pf

[e
−V (s′)

α∗ ]
)
−α∗ρ.

29



We first show that,

∣∣∣ log(Es′∼Pf̂n
[e

−V (s′)
α ]

Es′∼Pf
[e−

V (s′)
α ]

)
∣∣∣ ≤ e

M
α |Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]|. (71)

Consider 2 cases: Es′∼Pf̂n
[e

−V (s′)
α ] ≥ Es′∼Pf

[e
−V (s′)

α ] and Es′∼Pf
[e

−V (s′)
α ] > Es′∼Pf̂n

[e
−V (s′)

α ]

Case-1: Es′∼Pf̂n
[e

−V (s′)
α ] ≥ Es′∼Pf

[e
−V (s′)

α ]:

| log(
Es′∼Pf̂n

[e
−V (s′)

α ]

Es′∼Pf
[e−

V (s′)
α ]

)| = log(
Es′∼Pf̂n

[e
−V (s′)

α ]

Es′∼Pf
[e−

V (s′)
α ]

)

= log(1 +
Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]

Es′∼Pf
[e−

V (s′)
α ]

)

≤
Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]

Es′∼Pf
[e−

V (s′)
α ]

≤ e
M
α (Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]).

Case-2: Es′∼Pf̂n
[e

−V (s′)
α ] < Es′∼Pf

[e
−V (s′)

α ]:

| log(
Es′∼Pf̂n

[e
−V (s′)

α ]

Es′∼Pf
[e−

V (s′)
α ]

)| = log(
Es′∼Pf

[e
−V (s′)

α ]

Es′∼Pf̂n
[e−

V (s′)
α ]

)

= log(1 +
Es′∼Pf

[e
−V (s′)

α ]− Es′∼Pf̂n
[e

−V (s′)
α ]

Es′∼Pf̂n
[e−

V (s′)
α ]

)

≤
Es′∼Pf

[e
−V (s′)

α ]− Es′∼Pf̂n
[e

−V (s′)
α ]

Es′∼Pf̂n
[e−

V (s′)
α ]

≤ e
M
α (Es′∼Pf

[e
−V (s′)

α ]− Es′∼Pf̂n
[e

−V (s′)
α ]).

Hence, Equation (71) holds. Then, for α ∈ [α, α], we have

|(α log(Es′∼Pf̂n
[e

−V (s′)
α ]) + αρ)− (α log(Es′∼Pf

[e
−V (s′)

α ]) + αρ)| (72)

= α| log(1 +
Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]

Es′∼Pf
[e−

V (s′)
α ]

)|

(i)

≤ αe
M
α |Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]|
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(ii)

≤ αe
M
α ∥f(s, a)− f̂n(s, a)∥ (Lemma15)

(iii)

≤ O
(
αe

M
α βn(δ)

√
2ed2Γnd

n

)
(fromEquation (21)). (73)

Here (i) holds from Equation (71), (ii) from Lemma 15 and (iii) from Equation (21).
We further show that α̂∗

n ∈ [α, α]. The first step in achieving that is to restrict n >

N ′′(ρ, Pf (s, a)) = O
(
4M2e

2M
α β2

n(δ)2ed
2Γnd

(ρτ)2

)
. It implies that if O

(
αe

M
α βn(δ)

√
2ed2Γnd

n

)
< τ/2

and for n > maxs,aN
′′(ρ, Pf (s, a)) from Equation (73) with probability at least 1− δ, for all

(s, a) ∈ S ×A, we have

max
α,α∗,α

|(α log(Es′∼Pf̂n
[e

−V (s′)
α ]) + αρ)− (α log(Es′∼Pf

[e
−V (s′)

α ]) + αρ)| ≤ τ/2. (74)

It further implies that

max
α∈[α,α]

{(−α log(Es′∼Pf̂n
[e

−V (s′)
α ])− αρ)}

(i)

≥ −α∗ log(Es′∼Pf̂n
[e

−V (s′)
α∗ ])− α∗ρ

(ii)

≥ −α∗ log(Es′∼Pf
[e

−V (s′)
α∗ ])− α∗ρ− τ/2

(iii)

≥ max{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ,−α log(Es′∼Pf

[e
−V (s′)

α ])− αρ}+ τ/2

(iv)

≥ max{−α log(Es′∼Pf̂n
[e

−V (s′)
α ])− αρ,−α log(Es′∼Pf̂n

[e
−V (s′)

α ])− αρ}. (75)

where (i) follows from the fact that α∗ ∈ [α, α], (ii) follows from Equation (74), (iii) follows
from the definition of τ in Equation (71) and (iv) again follows from Equation (74).

Thus α̂∗
n ∈ [α, α] follows from Equation (75) and concavity of −α log(Es′∼Pf

[e
−V (s′)

α ])−αρ

w.r.t. α. Note that α∗ also belongs in this set. We bound maxα≥0{−α log(Es′∼Pf
[e

−V (s′)
α ])−

αρ} −maxα≥0{−α log(Es′∼Pf̂n
[e

−V (s′)
α ])− αρ} only between α ∈ [α, α] instead of all α > 0.

As a result, it holds that∣∣∣∣∣ max
α∈[α,α]

{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ} − max

α∈[α,α]
{−α log(Es′∼Pf̂n

[e
−V (s′)

α ])− αρ}

∣∣∣∣∣ (76)

≤ max
α∈[α,α]

∣∣∣∣∣{−α log(Es′∼Pf
[e

−V (s′)
α ])− αρ} − {−α log(Es′∼Pf̂n

[e
−V (s′)

α ])− αρ}

∣∣∣∣∣.
= max

α∈[α,α]
α| log(1 +

Es′∼Pf̂n
[e

−V (s′)
α ]− Es′∼Pf

[e
−V (s′)

α ]

Es′∼Pf
[e−

V (s′)
α ]

)|

≤ max
α∈[α,α]

2αe
M
α |Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]|.

≤ 2M
ρ e

M
α max

α∈[α,α]
|Es′∼Pf̂n

[e
−V (s′)

α ]− Es′∼Pf
[e

−V (s′)
α ]|,
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where the first inequality follows from Equation (71) and second inequality follows from the
bounds of α. Taking a maximum over all (s, a) gets the desired result.

Lemma 15 (Bound by difference between estimated model f̂n and true f) For any value
function V (s′) : S → [0, 1/(1− γ)] and any α > 0, it holds that

|Es′∼Pf̂n
(s,a)[e

−V (s′)
α ]− Es′∼Pf (s,a)[e

−V (s′)
α ]| ≤ σ−1∥f(s, a)− f̂n(s, a)∥,

where Pf̂n
(s, a) = N (f̂n(s, a), σ

2I) and Pf (s, a) = N (f(s, a), σ2I).

Proof∣∣∣∣Es′∼Pf̂n
(s,a)[e

−V (s′)
α ]− Es′∼Pf (s,a)[e

−V (s′)
α ]

∣∣∣∣ =
∣∣∣∣∣
∫
Rd

1√
(2πσ2)d

e
−V (s′)

α (e−
∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2 )

∣∣∣∣∣
≤
∫
Rd

1√
(2πσ2)d

e
−V (s′)

α

∣∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣∣
≤
∫
Rd

1√
(2πσ2)d

∣∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣∣
(i)
≤ 2 · TV(Pf̂n

(s, a), Pf (s, a))

(ii)
≤ 2

√
KL(Pf̂n

(s, a), Pf (s, a))/2

(iii)
≤ 2

√
∥f(s, a)− f̂n(s, a)∥2/4σ2

≤ ∥f(s, a)− f̂n(s, a)∥/σ,

where (i) follows from the definition of Total Variation (TV) distance between any two
multivariate Gaussians, (ii) uses the Pinsker’s inequality, (iii) uses the formula for KL-
divergence between multivariate Gaussian distributions.

Lemma 16 (Proposition-2 in (26)) For any function V (·) : S → [0, 1/(1− γ)] and random
variable Y = V (s′) for s′ ∼ Pf (s, a), we have

lim
α→0

[−α log(Es′∼Pf (s,a)[e
−V (s′)

α ])− αρ] = ESI(Y ), (77)

where ESI(Y ) = sup{t ∈ R : P{Y < t} = 0} (essential infimum).

Proof Consider the case when M > ESI(Y ). Let κM = P(V (s′) ≤ M) =
∫
s′ 1(V (s′) ≤

M)e−
∥s′−f(s,a)∥2

σ2 . It holds that

− α log
(
Es′∼Pf (s,a)[e

−V (s′)
α ]

)
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= −α log
(
Es′∼Pf (s,a)[1(V (s′) ≤ M)e

−V (s′)
α + 1(V (s′) > M)e

−V (s′)
α ]

)
≤ −α log

(
Es′∼Pf (s,a)[1(V (s′) ≤ M)e

−V (s′)
α ]

)
≤ −α log

(
Es′∼Pf (s,a)[1(V (s′) ≤ M)e

−M
α ]
)

≤ −α log
(
κMe

−M
α ]
)

= M − α log(κM ). (78)

Thus for any M > ESI(Y ), we have

lim
α→0

[{−α log(Es′∼Pf (s,a)[e
−V (s′)

α ])− αρ] ≤ M.

Combining with the fact that limα→0[{−α log(Es′∼Pf (s,a)[e
−V (s′)

α ])− αρ] ≥ ESI(Y ), we get
the desired result.

Lemma 17 (ζ−cover construction) For V denoting the set of value functions from S →
[0, 1/(1− γ)], α = M/ρ, α as defined in Lemma 14 we have with probability at least 1− δ,

max
V ∈V

max
s,a

2αe
M
α max

α∈[α,α]
|Es′∼Pf̂n

(s,a)[e
−V (s′)

α ]− Es′∼Pf (s,a)[e
−V (s′)

α ]|

≤ O
(
2(
M

ρ
)e

M
αkl e

ζ
αkl

βn(δ)
√
2ed2Γnd√
n

)
.

Proof Let NV(ζ) be the ζ− cover of the set V. By definition, there exists V ′ ∈ NV(ζ) such
that ∥V ′ − V ∥ ≤ ζ for every V ∈ V.

|Es′∼Pf̂n
(s,a)[e

−V (s′)/α]− Es′∼Pf (s,a)[e
−V (s′)/α]|

≤ |
∫
Rd

1√
(2πσ2)d

e
−V (s′)

α (e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 )|

≤
∫
Rd

1√
(2πσ2)d

e
−V (s′)

α |e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 |

≤
∫
Rd

1√
(2πσ2)d

e
−V (s′)+V ′(s′)

α e
−V ′(s′)

α |e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 |

(i)

≤ e
ζ

αkl

∫
Rd

1√
(2πσ2)d

e
−V ′(s′)

α |e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 |

≤ max
V ′∈NV (ζ)

max
s,a

max
α∈[αkl,α]

e
ζ

αkl

∫
Rd

1√
(2πσ2)d

e
−V ′(s′)

α |e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 |. (79)

Here (i) is obtained using the fact that ∥V ′ − V ∥ ≤ ζ and αkl is the minimum value of α as
defined in Lemma 14. Using Equation (79), we bound uniformly over all V ∈ V, we have

max
V ∈V

max
s,a

2αe
M
αkl max

α∈[αkl,α]
|Es′∼Pf̂n

(s,a)[e
−V (s′)

α ]− Es′∼Pf (s,a)[e
−V (s′)

α ]|
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≤ max
V ′∈NV (ζ)

max
s,a

max
α∈[αkl,α]

2αe
M
αkl e

ζ
αkl

∫
Rd

1√
(2πσ2)d

e
−V ′(s′)

α |e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 |

≤ max
V ′∈NV (ζ)

max
s,a

max
α∈[αkl,α]

2αe
M
αkl e

ζ
αkl

∫
Rd

1√
(2πσ2)d

|e−
∥s′−f(s,a)∥2

σ2 − e−
∥s′−f̂n(s,a)∥2

σ2 | (80)

(i)

≤ max
s,a

4ασ−1e
M
αkl e

ζ
αkl ∥f(s, a)− f̂n(s, a)∥

(ii)

≤ O
(
2(
M

ρ
)e

M
αkl e

ζ
αkl

βn(δ)
√

2ed2Γnd

σ
√
n

)
Here (i) follows from Lemma 15 and by the fact that none of the remaining terms inside max
depend on V ′ or α. And (ii) follows from α = M

ρ and Equation (21).

Appendix E. Other Uncertainty Sets

E.1 χ2 Uncertainty Set

The f-divergence ((3; 16)) between probability measures P and P0 defined over X for a
convex function f : R → R̄+ = R+ ∪ {∞} satisfying f(1) = 0 and f(t) = ∞ for any t < 0 is
defined as follows:

Df (P ||P0) =

∫
f
( dP

dP0

)
dP0. (81)

Specifically (22) considers the Cressie-Read family of f-divergences ((15), see Appendix E.1)
which includes χ2 divergence (k = 2), etc. This family of f-divergences can be parametrized
by k ∈ (−∞,∞)\{0, 1} with fk(t) :=

tk−kt+k−1
k(k−1) Using this, we state the reformulation result

from (22, Lemma-1).

Lemma 18 For k ∈ (1,∞), k∗ = k/k − 1, any ρ > 0 and ck(ρ) = (1 + k(k − 1)ρ)
1
k and

X ∼ P0 where P0 is any probability distribution over X with H : X → R, we have

sup
P :Dfk

(P ||P0)≤ρ
EP [H(X)] = inf

η∈R
{ck(ρ)(EP0 [(H(X)− η)k∗+ ])

1
k∗ + η}. (82)

Theorem 19 (Sample Complexity under χ2 uncertainty set) Consider a robust MDP (see
Section 2) with nominal transition dynamics f and uncertainty set defined as in Equation (2)
w.r.t. χ2 divergence. For π∗ denoting the robust optimal policy w.r.t. nominal transition
dynamics f and π∗

N denoting the robust optimal policy w.r.t. learned nominal transition
dynamics f̂N via Algorithm 1, and δ ∈ (0, 1), ϵ ∈ (0, 1

1−γ ),it holds that maxs |V R
π∗
N ,f (s) −

V R
π∗,f (s)| ≤ ϵ with probability at least 1− δ for any N ≥ Nχ2, where

Nχ2 = O
(( 1 + 2ρ√

1 + 2ρ− 1

)4γ4βn(δ)2d2γnd
ϵ4(1− γ)8

)
. (83)

Proof Step (i): As detailed in the proof outline of Section 4, in order to bound V R
π̂n,f

(s)−
V R
π∗,f (s), we begin by adding and subtracting V R

π̂n,f̂n
(s) which is the robust value function
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w.r.t. the nominal transition dynamics f̂n and its corresponding optimal policy π̂n. Then, we
split the difference into two terms as follows:

V R
π̂n,f (s)− V R

π∗,f (s) = V R
π̂n,f (s)− V R

π̂n,f̂n
(s)︸ ︷︷ ︸

(i)

+V R
π̂n,f̂n

(s)− V R
π∗,f (s)︸ ︷︷ ︸

(ii)

. (84)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 11 and
Lemma 12 respectively. From Lemma 11, we obtain that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
χ2(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− inf

χ2(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣.
(85)

And from Lemma 12, we obtain that

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣
≤ γ

1− γ
max

s

∣∣∣ inf
χ2(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− inf

χ2(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]∣∣∣.
(86)

Note that both these terms in Equations (85) and (86) are of the form mentioned in the
Step (i) of Section 4.

Step (ii): Next, corresponding to Step (ii) of the proof outline in Section 4, we
use Lemma 18 to bound Equations (85) and (86). Denote M := 1

1−γ ≥ maxs V
R
π (s) and

c2(ρ) :=
√
1 + 2ρ for convenience. Using Equation (85) and Lemma 20 (internally using

Lemma 18), it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ 1

1− γ
max

s

∣∣∣γ inf
χ2(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

χ2(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣

≤ max
s,a

(
γ
√
1 + 2ρ

1− γ
sup

η∈[0, c2(ρ)M
c2(ρ)−1

]

{∣∣∣EPf (s,a)[(−V R
π̂n,f (s

′) + η)2+]− EPf̂n
(s,a)[(−V R

π̂n,f (s
′) + η)2+]

∣∣∣ 12}).
(87)

≤ max
V (·)∈V

max
s,a

(
γ
√
1 + 2ρ

1− γ
sup

η∈[0, c2(ρ)M
c2(ρ)−1

]

{∣∣∣EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]

∣∣∣ 12}).
(88)

We can bound (ii) similarly.

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ (89)
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≤ max
V (·)∈V

max
s,a

(
γ
√
1 + 2ρ

1− γ
sup

η∈[0, c2(ρ)M
c2(ρ)−1

]

{∣∣∣EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]

∣∣∣ 12}).
(90)

Step (iii): Next, we want to utilize the learning error bound (Equation (21)) that bounds
the difference between the means of true nominal transition dynamics Pf and learned nominal
transition dynamics Pf̂n

to bound Equations (88) and (90).

We begin by bounding the difference
∣∣∣EPf (s,a)[(−V (s′) + η)2+]−EPf̂n

(s,a)[(−V (s′) + η)2+]
∣∣∣,

by the difference in means of Pf and Pf̂n
in Lemma 23. Since Equation (88) has a max over

all value functions, we introduce a covering number argument in Lemma 21 to reform it to a
max over the functions in the ζ−covering set. We then use Lemma 23 to obtain bounds in
terms of maximum information gain ΓNd (Equation (18)) and ζ. Further details regarding
the covering number argument are deferred to Lemma 21. Then, we apply the result of
Lemma 21 with ζ = 1 (defined in Lemma 21) on Equation (88). Then, it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣ = O

((γ(c2(ρ))2M2

c2(ρ)− 1

)(βn(δ)√2ed2γnd
σ
√
n

) 1
2

)
. (91)

Note that βn, which appears in Lemma 2, has a logarithmic dependence on n. Similarly,
from Equation (90), and Lemmas 23, 21, we obtain

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ = O

((γ(c2(ρ))2M2

c2(ρ)− 1

)(βn(δ)√2ed2γnd
σ
√
n

) 1
2

)
. (92)

Note that we want to bound V R
π̂n,f

(s) − V R
π∗,f (s) = (i) + (ii) over all s ∈ S. Using

maxs

∣∣∣V R
π̂n,f

(s) − V R
π∗,f (s)

∣∣∣ ≤ maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗,f (s)

∣∣∣ + maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗
n,f

(s)
∣∣∣ and

substituting M by 1/(1− γ), we obtain from Equation (91) and Equation (92)

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

((γ(c2(ρ))2M2

c2(ρ)− 1

)(βn(δ)√2ed2γnd
σ
√
n

) 1
2

)
.

Finally, to ensure that maxs |V R
π̂n,f

(s)− V R
π∗,f (s)| ≤ ϵ , it suffices to have

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

((γ(c2(ρ))2M2

c2(ρ)− 1

)(βn(δ)√2ed2γnd
σ
√
n

) 1
2

)
= ϵ.

Moving
√
n and ϵ to opposite sides and squaring both sides twice, we obtain

n = O
(( 1 + 2ρ√

1 + 2ρ− 1

)4γ4βn(δ)2d2γnd
σ2ϵ4(1− γ)8

)
.
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Lemma 20 (Simplification using Lemma 18 reformulation) For any value function V from
S → [0, 1/(1− γ)], it holds that

max
s

∣∣∣ inf
χ2(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

χ2(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]∣∣∣ ≤
max
s,a

c2(ρ) sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]|

1
2 }, (93)

where c2(ρ) =
√
1 + 2ρ and M = 1/(1− γ).

Proof First note that,

max
s

| inf
χ2(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

χ2(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
| ≤

max
s,a

∣∣∣ inf
χ2(p||Pf̂n

(s,a))≤ρ
Es′∼p

[
V (s′)

]
− inf

χ2(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣. (94)

Using Lemma 18 and focusing to bound right side of Equation (94) for one particular (s, a)
state-action pair, we obtain∣∣∣ inf

χ2(p||Pf̂n
(s,a))≤ρ

Es′∼p

[
V (s′)

]
− inf

χ2(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣ =∣∣∣ sup
η∈R

{−c2(ρ)(EPf (s,a)[(−V (s′)− η)2+])
1
2 − η} − sup

η∈R
{−c2(ρ)(EPf̂n

(s,a)[(−V (s′)− η)2+])
1
2 − η}

∣∣∣
(i)
=
∣∣∣ sup
η∈R

{−c2(ρ)(EPf (s,a)[(−V (s′)+η)2+])
1
2+η}−sup

η∈R
{−c2(ρ)(EPf̂n

(s,a)[(−V (s′)+η)2+])
1
2+η}

∣∣∣,
(95)

where (i) is obtained by replacing η with −η.
Let gχ2(η, Pf (s, a)) :=

(
− c2(ρ)(EPf (s,a)[(−V (s′) + η)2+])

1
2 + η

)
. Note that gχ2(η, Pf (s, a))

satisfies the following: For η ≤ 0 (implying (−V (s′) + η) ≤ 0 and (−V (s′) + η)+ = 0),

gχ2(η, Pf (s, a)) = η ≤ 0. (96)

And for η = c2(ρ)M
c2(ρ)−1 > 0,

gχ(
c2(ρ)M
c2(ρ)−1 , Pf (s, a)) = −c2(ρ)(EPf (s,a)[(−V (s′) + c2(ρ)M

c2(ρ)−1)
2
+])

1
2 + c2(ρ)M

c2(ρ)−1

(i)

≤ c2(ρ)M
c2(ρ)−1 − c2(ρ)(EPf (s,a)[(−M + c2(ρ)M

c2(ρ)−1)
2
+])

1
2

≤ c2(ρ)M
c2(ρ)−1 − c2(ρ)(EPf (s,a)[(

M
c2(ρ)−1)

2
+])

1
2

≤ c2(ρ)M
c2(ρ)−1 − c2(ρ)M

c2(ρ)−1

= 0, (97)
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where (i) follows from the fact that the random variable V (s′) is bounded by M = 1/1− γ.
A similar result can be shown for gχ2(η, Pf̂n

(s, a)) (or for any P). Along with the convex-

ity of η → gχ(η, P ) ((22)), and infχ2(p||P )≤ρ Es′∼p

[
V (s′)

]
≥ 0, Equation (96) and Equa-

tion (97) imply that the sup is attained between [0, c2(ρ)M
c2(ρ)−1 ] for both supη∈R gχ(η, Pf (s, a))

and supη∈R gχ(η, Pf̂n
(s, a)). Using this in Equation (95) we have,∣∣∣ sup

η∈R
{gχ(η, Pf (s, a))} − sup

η∈R
{gχ(η, Pf̂n

(s, a))}
∣∣∣ (98)

=
∣∣∣ sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{g(χη, Pf (s, a))} − sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{gχ(η, Pf̂n
(s, a))}}

∣∣∣ (99)

≤ sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|gχ(η, Pf (s, a))− gχ(η, Pf̂n
(s, a))|} (100)

≤ sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|c2(ρ)(EPf (s,a)[(−V (s′) + η)2+])
1
2 − c2(ρ)EPf̂n

(s,a)[(−V (s′) + η)2+])
1
2 |} (101)

≤ c2(ρ) sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]|

1
2 }. (102)

The last step is obtained using the basic inequality |
√
a−

√
b| ≤

√
|a− b|.

Lemma 21 (ζ−cover construction) For V denoting the set of value functions from S →
[0, 1/(1− γ)] it holds with probability at least 1− δ,

max
V ∈V

max
s,a

sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]|

1
2 } ≤

O

(( c2(ρ)M

c2(ρ)− 1

)(βn(δ)√2ed2γnd
σ
√
n

) 1
2

)
, (103)

where c2(ρ) =
√
1 + 2ρ, M = 1/(1− γ).

Proof Let NV(ζ) be the ζ− cover of the set V. By definition, there exists V ′ ∈ NV(ζ) such
that ∥V ′ − V ∥ ≤ ζ for every V ∈ V.

|EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]|

≤ |EPf (s,a)[(−V (s′) + η)2+]− EPf (s,a)[(−V ′(s′) + η)2+]|
+ |EPf (s,a)[(−V ′(s′) + η)2+]− EPf̂n

(s,a)[(−V ′(s′) + η)2+]|

+ |EPf̂n
(s,a)[(−V ′(s′) + η)2+]− EPf̂n

(s,a)[(−V (s′) + η)2+]|.

(104)

(i)

≤ 4∥V ′ − V ∥2 + 4η∥V ′ − V ∥+ |EPf (s,a)[(−V ′(s′) + η)2+]− EPf̂n
(s,a)[(−V ′(s′) + η)2+]|,

(105)
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where (i) follows from Lemma 22. Using Equation (105) we bound uniformly over all V ∈ V ,

max
V ∈V

max
s,a

sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{|EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]|

1
2 } (106)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{(
4∥V ′ − V ∥2 + 4η∥V ′ − V ∥+ |EPf (s,a)[(−V ′(s′) + η)2+]

− EPf̂n
(s,a)[(−V ′(s′) + η)2+]|

) 1
2

}
(ii)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{(
EPf (s,a)[(−V ′(s′) + η)2+]− EPf̂n

(s,a)[(−V ′(s′) + η)2+]
) 1

2

}

+
√
4ζ2 + 4ζ c2(ρ)M

c2(ρ)−1

(iii)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, c2(ρ)M

c2(ρ)−1
]

{(
c2(ρ)M
c2(ρ)−1

)√
2σ−1∥f(s, a)− f̂n(s, a)∥

}
+
√
4ζ2 + 4ζ c2(ρ)M

c2(ρ)−1

(iv)

≤ O

((
c2(ρ)M
c2(ρ)−1

)(
βn(δ)

√
2ed2γnd

σ
√
n

) 1
2

)
+
√
4ζ2 + 4ζ c2(ρ)M

c2(ρ)−1 (107)

(v)

≤ O

((
c2(ρ)M
c2(ρ)−1

)(
βn(δ)

√
2ed2γnd

σ
√
n

) 1
2

)
, (108)

where (ii) follows from ∥V ′ − V ∥ ≤ ζ and η ≤ c2(ρ)M
c2(ρ)−1 , (iii) follows from Lemma 23, (iv)

follows from Equation (21), and (v) follows from substituing ζ = 1 (or any constant).

Lemma 22 For any two value functions V, V ′ from S → [0, 1/(1− γ)], it holds that∣∣∣EPf (s,a)[(−V ′(s′) + η)2+]− EPf (s,a)[(−V (s′) + η)2+]
∣∣∣ ≤ 2∥V ′ − V ∥2 + 2η∥V ′ − V ∥. (109)

Proof Let pPf (s,a)(·) denote the probability density function of Pf (s, a). Then,

EPf (s,a)[(−V ′(s′) + η)2+]− EPf (s,a)[(−V (s′) + η)2+]

≤
∫

s′∼Pf (s,a)

(
1(V ′(s′) < η)(−V ′(s′) + η)2 − 1(V (s′) < η)(−V (s′) + η)2

)
pPf (s,a)(s

′)ds′.

≤
∫
s′∼Pf (s,a)

(
1(V ′(s′) < η)− 1(V (s′) < η)

)
(−V ′(s′) + η)2pPf (s,a)(s

′)ds′︸ ︷︷ ︸
(i)

+

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
(−V ′(s′) + η)2 − (−V (s′) + η)2

)
pPf (s,a)(s

′)ds′︸ ︷︷ ︸
(ii)

.

(110)
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where the last inequality is obtained by adding and subtracting 1(V (s′) < η)(−V ′(s′) + η)2.
We begin by bounding (ii). We have,

(ii) =

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
(−V ′(s′) + η)2 − (−V (s′) + η)2

)
pPf (s,a)(s

′)ds′

=

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
− V ′(s′) + V (s′)

)(
− V ′(s′)− V (s′) + 2η

)
pPf (s,a)(s

′)ds′

≤
∫

s′∼Pf (s,a)

1(V (s′) < η)
(
1(V ′(s′) < η) + 1(V ′(s′) ≥ η)

)(
− V ′(s′) + V (s′)

)
(
− V ′(s′)− V (s′) + 2η

)
pPf (s,a)(s

′)ds′

≤
∫

1(V (s′), V ′(s′) < η)(−V ′(s′) + V (s′))(−V ′(s′)− V (s′) + 2η)pPf (s,a)(s
′)ds′︸ ︷︷ ︸

(ii−a)

+

∫
1(V (s′) < η ≤ V ′(s′))(−V ′(s′) + V (s′))(−V ′(s′)− V (s′) + 2η)pPf (s,a)(s

′)ds′︸ ︷︷ ︸
(ii−b)

.

(111)

Bounding (ii− a) first, we have,

(ii− a) =

∫
1(V (s′), V ′(s′) < η)(−V ′(s′) + V (s′))(−V ′(s′)− V (s′) + 2η)pPf (s,a)(s

′)ds′

(a)

≤
∫

1(V (s′), V ′(s′) < η)
∣∣∣− V ′(s′) + V (s′)

∣∣∣(−V ′(s′)− V (s′) + 2η)pPf (s,a)(s
′)ds′

(b)

≤
∫

s′∼Pf (s,a)

1(V (s′), V ′(s′) < η)
∣∣∣− V ′(s′) + V (s′)

∣∣∣(2η)pPf (s,a)(s
′)ds′

≤2η∥V ′ − V ∥, (112)

where (a) and (b) follows from (−V ′(s′)− V (s′) + 2η) > 0 as V (s′), V ′(s′) < η. And (ii− b)
can be bounded as,

(ii− b) =

∫
1(V (s′) < η ≤ V ′(s′))(−V ′(s′) + V (s′))(−V ′(s′)− V (s′) + 2η)pPf (s,a)(s

′)ds′

≤
∫

1(V (s′) < η ≤ V ′(s′))
∣∣∣− V ′(s′) + V (s′)

∣∣∣∣∣∣− V ′(s′)− V (s′) + 2η
∣∣∣pPf (s,a)(s

′)ds′

(c)

≤
∫

1(V (s′) < η ≤ V ′(s′))
∣∣∣− V ′(s′) + V (s′)

∣∣∣∣∣∣− V (s′) + V ′(s′)
∣∣∣pPf (s,a)(s

′)ds′

≤
∫

s′∼Pf (s,a)

1(V (s′) < η ≤ V ′(s′))
∣∣∣− V ′(s′) + V (s′)

∣∣∣2pPf (s,a)(s
′)ds′

≤ ∥V ′ − V ∥2, (113)
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where (c) follows from η ≤ V ′(s′). Bounding (i) similarly,

i =

∫
s′∼Pf (s,a)

(
1(V ′(s′) < η)− 1(V (s′) < η)

)
(−V ′(s′) + η)2pPf (s,a)(s

′)ds′

≤
∫
s′∼Pf (s,a)

(
1(V ′(s′) < η ≤ V (s′))

)
(−V ′(s′) + η)2pPf (s,a)(s

′)ds′

≤
∫
s′∼Pf (s,a)

(
1(V ′(s′) < η ≤ V (s′))

)
(−V ′(s′) + V (s′))2pPf (s,a)(s

′)ds′

≤ ∥V ′ − V ∥2. (114)

Using Equations (110) to (114) we get the desired result.

Lemma 23 (Bound by difference between estimated model f̂n and true f) For any value
function V (s′) : S → [0, 1/(1− γ)] and any α > 0, it holds that

|EPf (s,a)[(−V (s′)+ η)2+]−EPf̂n
(s,a)[(−V (s′)+ η)2+]| ≤ 2σ−1

( c2(ρ)M

c2(ρ)− 1

)2
∥f(s, a)− f̂n(s, a)∥,

where Pf̂n
(s, a) = N (f̂n(s, a), σ

2I) and Pf (s, a) = N (f(s, a), σ2I), η ∈ [0, c2(ρ)M
c2(ρ)−1 ], c2(ρ) =√

1 + 2ρ and M = 1/(1− γ).

Proof ∣∣∣EPf (s,a)[(−V (s′) + η)2+]− EPf̂n
(s,a)[(−V (s′) + η)2+]

∣∣∣
=
∣∣∣ ∫

Rd

1√
(2πσ2)d

(−V (s′) + η)2+(e
− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2 )
∣∣∣

≤
∫
Rd

1√
(2πσ2)d

(−V (s′) + η)2+

∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣
(i)

≤
( c2(ρ)M

c2(ρ)− 1

)2 ∫
Rd

1√
(2πσ2)d

∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣
(ii)
≤ 2

( c2(ρ)M

c2(ρ)− 1

)2
· TV(Pf̂n

(s, a), Pf (s, a))

(iii)
≤ 2

( c2(ρ)M

c2(ρ)− 1

)2√
KL(Pf̂n

(s, a), Pf (s, a))/2

(iv)
≤ 2

( c2(ρ)M

c2(ρ)− 1

)2√
∥f(s, a)− f̂n(s, a)∥2/4σ2

≤
( c2(ρ)M

c2(ρ)− 1

)2
∥f(s, a)− f̂n(s, a)∥/σ,

where (i) follows from (−V (s′) + η)2+ ≤
(

c2(ρ)M
c2(ρ)−1

)2
as η ≤

(
c2(ρ)M
c2(ρ)−1

)
, (ii) follows from the

definition of Total Variation (TV) distance between any two multivariate Gaussians, (iii) uses
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the Pinsker’s inequality, and (iv) uses the formula for KL-divergence between multivariate
Gaussian distributions.

E.2 Total Variation Distance

Similar to Lemma 18, we want a similar convex reformulation for the variation distance. We
derive such a reformulation starting from the dual reformulation from (50) and (6) stated as
Proposition-1 in (22).

Lemma 24 For X ∼ P0 where P0 is any probability distribution over X with H : X → R ,
ρ > 0 and, Df (P ||P0) defined as in Equation (81) , it holds that

sup
P :Df (P ||P0)≤ρ

EP [H(X)] = inf
λ≥0,η∈R

{
EP0

[
λf∗

(H(X)− η

λ

)]
+ λρ+ η

}
. (115)

Note that the total variation distance between two probability distributions P and P0 is
attained by substituting fTV(t) = |t− 1| in Df (P ||P0) =

∫
f
(

dP
dP0

)
dP0. The corresponding

Fenchel conjugate f∗
TV(s) for fTV(t) = |t− 1| would be

f∗
TV(s) =


−1, s ≤ −1

s, s ∈ [−1, 1]

∞, s > 1

(116)

As we require infP :TV(P ||P0)≤ρ EP [H(X)], using Equation (115) and replacing η with −η, we
have

inf
P :TV(P ||P0)≤ρ

EP [H(X)] = sup
λ≥0,η∈R

{−EP0

[
λf∗

TV

(−H(X) + η

λ

)]
− λρ+ η}. (117)

Using Equation (117), we derive a convex reformulation in Lemma 25

Lemma 25 (Reformulation for total variation distance based on (59)) For ρ > 0 and X ∼ P0

where P0 is any probability distribution over X with H : X → R, for 0 ≤ H(x) ≤ 1
1−γ and

ESI(Y ) = sup{t ∈ R : P{Y < t} = 0} (essential infimum), it holds that

inf
P :TV(P ||P0)≤ρ

EP [H(X)] = sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{
− EP0 [−H(X) + η]+ − (−ESI(H(x)) + η)+

2
ρ+ η

}
.

(118)

where TV denotes the total variation distance.
Proof

Substituting Equation (116) in Equation (117) to obtain the reformulation for total
variation distance, we have

inf
P :TV(P ||P0)≤ρ

EP [H(X)] (119)
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= sup
λ≥0,η∈R,−H(x)+η

λ
≤1

{−EP0

[
λmax

{−H(X) + η

λ
,−1

}]
− λρ+ η} (120)

= sup
λ≥0,η∈R,−H(x)+η

λ
≤1

{−EP0

[
max

{
−H(X) + η,−λ

}]
− λρ+ η} (121)

= sup
λ≥0,η∈R,−H(x)+η

λ
≤2

{−EP0

[
max

{
−H(X) + η − λ,−λ

}]
− λρ+ η − λ} (122)

= sup
λ≥0,η∈R,−H(x)+η

λ
≤2

{−EP0

[
max

{
−H(X) + η, 0

}]
− λρ+ η} (123)

= sup
λ≥0,η∈R,−H(x)+η

λ
≤2

{−EP0

[
−H(X) + η

]
+
− λρ+ η}. (124)

Here Equation (122) is obtained by substituting η with η − λ. In order to optimize over λ,
we need to choose the minimum λ satisfying the constraints. We require λ ≥ −H(x)+η

2 which
translates to λ ≥ −ESI(H(x))+η

2 (as this constraint originates inside the expectation, points
with zero mass, {t ∈ R : P{Y < t} = 0}, will have no effect). Substituting this, we have

inf
P :TV(P ||P0)≤ρ

EP [H(X)] = sup
η∈R

{−EP0

[
−H(X) + η

]
+
− (−ESI(H(x)) + η)+

2
ρ+ η}. (125)

Denote the inner function in Equation (125), as

gTV(η, P0) = −EP0

[
−H(X) + η

]
+
− (−ESI(H(x)) + η)+

2
ρ+ η. (126)

Note that for η ≤ 0, the first two terms in gTV(η, P0) will be 0 if H(x) > 0 for all x. This
implies

gTV(η, P0) = η ≤ 0 ∀ η ≤ 0. (127)

Also, as H(x) ≤ 1
1−γ , we substitute η = 2+ρ

ρ(1−γ) in gTV(η, P0), and bound it as follows:

gTV

( (2 + ρ)

ρ(1− γ)
, P0

)
= −EP0

[
−H(X) +

(2 + ρ)

ρ(1− γ)

]
+
−

(−ESI(H(x)) + (2+ρ)
ρ(1−γ))+

2
ρ+

(2 + ρ)

ρ(1− γ)
(128)

= EP0

[
H(X)

]
− (2 + ρ)

ρ(1− γ)
−

(−ESI(H(x)) + (2+ρ)
ρ(1−γ))+

2
ρ+

(2 + ρ)

ρ(1− γ)
(129)

= EP0

[
H(X)

]
−

(−ESI(H(x)) + (2+ρ)
ρ(1−γ))+

2
ρ (130)

= EP0

[
H(X)

]
−

(−ESI(H(x)) + (2+ρ)
ρ(1−γ))

2
ρ (131)

= EP0

[
H(X)− 1

1− γ

]
+

ρESI(H(x))

2
− ρ

2(1− γ)
(132)
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= EP0

[
H(X)− 1

1− γ

]
+

ρ

2
(ESI(H(x))− 1

(1− γ)
) (133)

≤ 0. (134)

Here Equation (129), Equation (131) and Equation (134) are obtained from the fact that
that H(x) ≤ 1

1−γ (−H(x)+ (2+ρ)
ρ(1−γ) > 0) and ESI(H(x)) ≤ 1

1−γ (−ESI(H(x))+ (2+ρ)
ρ(1−γ) > 0).

Along with the convexity of gTV(η, P0), Equation (127) and Equation (134) imply that the
supη∈R{gTV(η, P0)} is attained in the η range [0, (2+ρ)

ρ(1−γ) ].

Theorem 26 (Sample Complexity under TV uncertainty set) Consider a robust MDP (see
Section 2) with nominal transition dynamics f and uncertainty set defined as in Equation (2)
w.r.t. TV distance. For π∗ denoting the robust optimal policy w.r.t. nominal transition
dynamics f and π∗

N denoting the robust optimal policy w.r.t. learned nominal transition
dynamics f̂N via Algorithm 1, and δ ∈ (0, 1), ϵ ∈ (0, 1

1−γ ),it holds that maxs |V R
π∗
N ,f (s) −

V R
π∗,f (s)| ≤ ϵ with probability at least 1− δ for any N ≥ NTV, where

NTV = O
((2 + ρ)2γ2

ρ2(1− γ)4
βn(δ)

2d2γnd
ϵ2

)
. (135)

Proof Step (i): As detailed in the proof outline of Section 4, in order to bound V R
π̂n,f

(s)−
V R
π∗,f (s), we begin by adding and subtracting V R

π̂n,f̂n
(s) which is the robust value function

w.r.t. the nominal transition dynamics f̂n and its corresponding optimal policy π̂n. Then, we
split the difference into two terms as follows:

V R
π̂n,f (s)− V R

π∗,f (s) = V R
π̂n,f (s)− V R

π̂n,f̂n
(s)︸ ︷︷ ︸

(i)

+V R
π̂n,f̂n

(s)− V R
π∗,f (s)︸ ︷︷ ︸

(ii)

. (136)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 11 and
Lemma 12 respectively. From Lemma 11, we obtain that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ γ

1− γ
max

s

∣∣∣ inf
TV(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− inf

TV(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣.

(137)

And from Lemma 12, we obtain that

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣
≤ γ

1− γ
max

s

∣∣∣ inf
TV(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]
− inf

TV(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V R
π∗,f (s

′)
]∣∣∣.

(138)

Note that both these terms in Equations (137) and (138) are of the form mentioned in the
Step (i) of Section 4.
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Step (ii): Next, corresponding to step (ii) of the proof outline in Section 4, we use
Lemma 25 to bound Equations (137) and (138). Denote M := 1

1−γ ≥ maxs V
R
π (s) for

convenience. Using Equation (137) and Lemma 27 (internally using Lemma 25), it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣

≤ 1

1− γ
max

s

∣∣∣γ inf
TV(p||Pf (s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]
− γ inf

TV(p||Pf̂n
(s,π̂n(s)))≤ρ

Es′∼p

[
V R
π̂n,f (s

′)
]∣∣∣

≤ γ

1− γ
max
s,a

(
sup

η∈[0, (2+ρ)
ρ(1−γ)

]

{∣∣∣(EPf (s,a)[(−V R
π̂n,f̂n

(s′) + η)+])− EPf̂n
(s,a)[(−V R

π̂n,f̂n
(s′) + η)+])

∣∣∣})
(139)

≤ γ

1− γ
max
V (·)∈V

max
s,a

(
sup

η∈[0, (2+ρ)
ρ(1−γ)

]

{∣∣∣(EPf (s,a)[(−V (s′) + η)+])− EPf̂n
(s,a)[(−V (s′) + η)+])

∣∣∣}).
(140)

We can bound (ii) similarly.

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ (141)

≤ γ

1− γ
max
V (·)∈V

max
s,a

(
sup

η∈[0, (2+ρ)
ρ(1−γ)

]

{∣∣∣(EPf (s,a)[(−V (s′) + η)+])− EPf̂n
(s,a)[(−V (s′) + η)+])

∣∣∣}).
(142)

Step (iii): Next, we want to utilize the learning error bound (Equation (21)) that bounds
the difference between the means of true nominal transition dynamics Pf and learned nominal
transition dynamics Pf̂n

to bound Equations (140) and (142).

We begin by bounding the difference
∣∣∣EPf (s,a)[(−V (s′) + η)+]−EPf̂n

(s,a)[(−V (s′) + η)+]
∣∣∣,

by the difference in means of Pf and Pf̂n
in Lemma 28. Since Equation (140) has a max over

all value functions, we introduce a covering number argument in Lemma 29 to reform it to a
max over the functions in the ζ−covering set. We then use Lemma 28 to obtain bounds in
terms of maximum information gain ΓNd (Equation (18)) and ζ. Further details regarding
the covering number argument are deferred to Lemma 29. Then, we apply the result of
Lemma 29 with ζ = 1 (defined in Lemma 29) on Equation (140). Then, it holds that

(i) ≤ max
s

∣∣∣V R
π̂n,f (s)− V R

π̂n,f̂n
(s)
∣∣∣ = O

((
(2+ρ)γ
ρ(1−γ)2

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
. (143)

Note that βn, which appears in Lemma 2, has a logarithmic dependence on n. Similarly,
from Equation (142), and Lemmas 28, 29, we obtain

(ii) ≤ max
s

∣∣∣V R
π̂n,f̂n

(s)− V R
π∗,f (s)

∣∣∣ = O

((
(2+ρ)γ
ρ(1−γ)2

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
. (144)
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Note that we want to bound V R
π̂n,f

(s) − V R
π∗,f (s) = (i) + (ii) over all s ∈ S. Using

maxs

∣∣∣V R
π̂n,f

(s) − V R
π∗,f (s)

∣∣∣ ≤ maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗,f (s)

∣∣∣ + maxs

∣∣∣V R
π̂n,f̂n

(s) − V R
π∗
n,f

(s)
∣∣∣ and

substituting M by 1/(1− γ), we obtain from Equation (143) and Equation (144)

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

((
(2+ρ)γ
ρ(1−γ)2

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
.

Finally, to ensure that maxs |V R
π̂n,f

(s)− V R
π∗,f (s)| ≤ ϵ , it suffices to have

max
s

∣∣∣V R
π̂n,f (s)− V R

π∗,f (s)
∣∣∣ = O

((
(2+ρ)γ
ρ(1−γ)2

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
= ϵ.

Moving
√
n and ϵ to opposite sides and squaring both sides, we obtain

n = O

(((2 + ρ)2γ2

ρ2(1− γ)4

)(βn(δ)22ed2γnd
σ2ϵ2

))
.

Lemma 27 (Simplification using Lemma 25 reformulation) Let V be a value function from
S → [0, 1/(1− γ)]. Then, it holds that

max
s

| inf
TV(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

TV(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
| ≤

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{|(EPf (s,a)[(−V (s′) + η)+])− EPf̂n
(s,a)[(−V (s′) + η)+])|}.

Proof First note that,

max
s

∣∣∣ inf
TV(p||Pf̂n

(s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]
− inf

TV(p||Pf (s,π̂n(s)))≤ρ
Es′∼p

[
V (s′)

]∣∣∣ ≤
max
s,a

∣∣∣ inf
TV(p||Pf̂n

(s,a))≤ρ
Es′∼p

[
V (s′)

]
− inf

TV(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣ (145)

Using Lemma 25 and focusing to bound right side of Equation (145) for one particular (s, a)
state action pair, we obtain∣∣∣ inf

TV(p||Pf̂n
(s,a))≤ρ

Es′∼p

[
V (s′)

]
− inf

TV(p||Pf (s,a))≤ρ
Es′∼p

[
V (s′)

]∣∣∣
=
∣∣∣ sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{−EPf (s,a)

[
− V (s′) + η

]
+
−

(−ESIPf (s,a)(V (s′)) + η)+

2
ρ+ η}−

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{−EPf̂n
(s,a)

[
− V (s′) + η

]
+
−

(−ESIPf̂n
(s,a)(V (s′)) + η)+

2
ρ+ η}

∣∣∣ (146)
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≤ sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{|(EPf (s,a)[(−V (s′) + η)+])− EPf̂n
(s,a)[(−V (s′) + η)+])|}. (147)

Here, Equation (147) is obtained using ESIPf (s,a)(V (s′)) = ESIPf̂n
(s,a)(V (s′)) as shown in

proof of Lemma 14 (Case-1).

Lemma 28 (Bound by difference between estimated model f̂n and true f) Let V be a value
function from S → [0, 1/(1− γ)]. Then, it holds that

|EPf (s,a)[(−V (s′) + η)+]− EPf̂n
(s,a)[(−V (s′) + η)+]| ≤

( (2 + ρ)

ρ(1− γ)

)
σ−1∥f(s, a)− f̂n(s, a)∥,

(148)
where Pf̂n

(s, a) = N (f̂n(s, a), σ
2I) and Pf (s, a) = N (f(s, a), σ2I) and η ∈ [0, (2+ρ)

ρ(1−γ) ].

Proof ∣∣∣EPf (s,a)[(−V (s′) + η)+]− EPf̂n
(s,a)[(−V (s′) + η)+]

∣∣∣
=
∣∣∣ ∫

Rd

1√
(2πσ2)d

(−V (s′) + η)+(e
− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2 )
∣∣∣

≤
∫
Rd

1√
(2πσ2)d

(−V (s′) + η)+

∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣
(i)

≤ (2 + ρ)

ρ(1− γ)

∫
Rd

1√
(2πσ2)d

∣∣∣e− ∥x−f(s,a)∥2

2σ2 − e−
∥x−f̂n(s,a)∥2

2σ2

∣∣∣
(ii)
≤ 2

(2 + ρ)

ρ(1− γ)
· TV(Pf̂n

(s, a), Pf (s, a))

(iii)
≤ 2

(2 + ρ)

ρ(1− γ)

√
KL(Pf̂n

(s, a), Pf (s, a))/2

(iv)
≤ 2

(2 + ρ)

ρ(1− γ)

√
∥f(s, a)− f̂n(s, a)∥2/4σ2

≤ (2 + ρ)

ρ(1− γ)
∥f(s, a)− f̂n(s, a)∥/σ,

where (i) follows from (−V (s′) + η)2+ ≤ (2+ρ)
ρ(1−γ) as η ≤ (2+ρ)

ρ(1−γ) , (ii) follows from the definition
of Total Variation (TV) distance between any two multivariate Gaussians, (iii) uses the
Pinsker’s inequality, and (iv) uses the formula for KL-divergence between multivariate
Gaussian distributions.

Lemma 29 (ζ−cover construction) For V denoting the set of value functions from S →
[0, 1/(1− γ)], with probability at least 1− δ it holds that
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max
V ∈V

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{|EPf (s,a)[(−V (s′) + η)+]− EPf̂n
(s,a)[(−V (s′) + η)+]|}

≤ O

((
(2+ρ)
ρ(1−γ)

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
, (149)

where NV(ζ) is the ζ−cover for V.

Proof Let NV(ζ) be the ζ− cover of the set V. By definition, there exists V ′ ∈ NV(ζ) such
that ∥V ′ − V ∥ ≤ ζ for every V ∈ V.

|EPf (s,a)[(−V (s′) + η)+]− EPf̂n
(s,a)[(−V (s′) + η)+]|

≤ |EPf (s,a)[(−V (s′) + η)+]− EPf (s,a)[(−V ′(s′) + η)+]|
+ |EPf (s,a)[(−V ′(s′) + η)+]− EPf̂n

(s,a)[(−V ′(s′) + η)+]|

+ |EPf̂n
(s,a)[(−V ′(s′) + η)+]− EPf̂n

(s,a)[(−V (s′) + η)+]|.

(150)

(i)

≤ 2∥V ′ − V ∥+ |EPf (s,a)[(−V ′(s′) + η)+]− EPf̂n
(s,a)[(−V ′(s′) + η)+]|, (151)

where (i) follows from Lemma 30. Using Equation (151), we bound uniformly over all V ∈ V .
Using Equation (151) we bound uniformly over all V ∈ V,

max
V ∈V

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{|EPf (s,a)[(−V (s′) + η)+]− EPf̂n
(s,a)[(−V (s′) + η)+]|} (152)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{∣∣∣2∥V ′ − V ∥+ |EPf (s,a)[(−V ′(s′) + η)+]− EPf̂n
(s,a)[(−V ′(s′) + η)+]|

∣∣∣}
(ii)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{∣∣∣EPf (s,a)[(−V ′(s′) + η)+]− EPf̂n
(s,a)[(−V ′(s′) + η)+]

∣∣∣}+ 2ζ

(iii)

≤ max
V ′∈NV (ζ)

max
s,a

sup
η∈[0, (2+ρ)

ρ(1−γ)
]

{(
(2+ρ)
ρ(1−γ)

)
σ−1∥f(s, a)− f̂n(s, a)∥

}
+ 2ζ

(iv)

≤ O

((
(2+ρ)
ρ(1−γ)

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
+ 2ζ (153)

(v)

≤ O

((
(2+ρ)
ρ(1−γ)

)(
βn(δ)

√
2ed2γnd

σ
√
n

))
, (154)

where (ii) follows from ∥V ′ − V ∥ ≤ ζ , (iii) follows from Lemma 28, (iv) follows from
Equation (21), and (v) follows from substituing ζ = 1 (or any constant).

Lemma 30 For any two value functions V, V ′ : S → [0, 1
1−γ ], it holds that

|EPf (s,a)[(−V ′(s′) + η)+]− EPf (s,a)[(−V (s′) + η)+]| ≤ ∥V ′ − V ∥. (155)
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Proof Noting that both the distributions are w.r.t. the same distribution Pf (s, a) we have,

EPf (s,a)[(−V ′(s′) + η)+]− EPf (s,a)[(−V (s′) + η)+]

≤
∫

s′∼Pf (s,a)

(
1(V ′(s′) < η)(−V ′(s′) + η)− 1(V (s′) < η)(−V (s′) + η)

)
pPf (s,a)(s

′)ds′. (156)

Adding and subtracting 1(V (s′) < η)(−V ′(s′) + η) to Equation (156), we obtain 2 terms,

i =

∫
s′∼Pf (s,a)

(
1(V ′(s′) < η)− 1(V (s′) < η)

)
(−V ′(s′) + η)pPf (s,a)(s

′)ds′ (157)

ii =

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
(−V ′(s′) + η)− (−V (s′) + η)

)
pPf (s,a)(s

′)ds′. (158)

Bounding i first,

i =

∫
s′∼Pf (s,a)

(
1(V ′(s′) < η)− 1(V (s′) < η)

)
(−V ′(s′) + η)pPf (s,a)(s

′)ds′ (159)

=

∫
s′∼Pf (s,a)

(
1(V ′(s′) < η ≤ V (s′))

)
(−V ′(s′) + η)pPf (s,a)(s

′)ds′

−
∫
s′∼Pf (s,a)

(
1(V (s′) < η < V ′(s′))

)
(−V ′(s′) + η)pPf (s,a)(s

′)ds′
(160)

≤
∫
s′∼Pf (s,a)

(
1(V ′(s′) < η ≤ V (s′))

)
(−V ′(s′) + V (s′))pPf (s,a)(s

′)ds′

−
∫
s′∼Pf (s,a)

(
1(V (s′) < η < V ′(s′))

)
(−V ′(s′) + V (s′))pPf (s,a)(s

′)ds′
(161)

≤
∫
s′∼Pf (s,a)

(
1(V ′(s′) < η ≤ V (s′))

)
(−V ′(s′) + V (s′))pPf (s,a)(s

′)ds′

+

∫
s′∼Pf (s,a)

(
1(V (s′) < η < V ′(s′))

)
(V ′(s′)− V (s′))pPf (s,a)(s

′)ds′
(162)

≤ ∥V ′ − V ∥. (163)

Similarly bounding ii,

ii =

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
(−V ′(s′) + η)− (−V (s′) + η)

)
pPf (s,a)(s

′)ds′ (164)

=

∫
s′∼Pf (s,a)

1(V (s′) < η)
(
− V ′(s′) + V (s′)

)
pPf (s,a)(s

′)ds′ (165)

≤
∫

s′∼Pf (s,a)

1(V (s′) < η)
∣∣∣− V ′(s′) + V (s′)

∣∣∣pPf (s,a)(s
′)ds′ (166)

≤ ∥V ′ − V ∥. (167)

Using Equations (163) and (167) we get the desired result.

49



Appendix F. Additional Experiments and Details

In this section, we report additional experiments and discuss further details of our experi-
mental setup.

Environments: We consider the OpenAI’s gym (8) environments of swing-up Pendulum,
Cartpole and Reacher, respectively. Pendulum has a 2-dimensional state space and scalar
actions ((38)). For Cartpole, we consider a scalar continuous action space as done in (38),
while states are 4-dimensional. Reacher, instead, consists of a 2DOF robot arm with 8-
dimensional states. For each environment we test our approach against various perturbations
as outlined below.

Baselines: We compare our approach, which we denote as MVR+RFQI, with the
following baselines:

• MVR+FQI: This is a natural non-robust baseline that consists of computing a non-
robust policy via the Fitted Q-Iteration (FQI) algorithm (23) on the same offline data
used by MVR+RFQI,

• Soft Actor-Critic (SAC) (25), or Model Predictive Control (MPC) (9; 13), as model-free
methods which compute non-robust policies interacting with the nominal environment
(in case of MPC, the latter is used for planning),

• RFQI (42), which also requires the nominal environment and uses 106 offline data
collected by SAC or MPC to train a robust policy,

• FQI (23), which trains a non-robust policy from the same data.

Training: Model-free methods are trained directly on the nominal environments. In
particular, for Pendulum and Reacher we train SAC until convergence for 104 and 106

steps, respectively. On the continuous actions Cartpole, instead, we run MPC following the
implementation of (45; 38) which requires a total of 2250 planning interactions to select the
optimal action at each step. Depending on the environment, we utilize SAC or MPC mixed
with an ϵ-greedy rule to collect 106 offline data. These are used to train the offline methods
RFQI and FQI as done in (42). For the model-based approaches, instead, we first run MVR
for a sufficiently informative number of samples (60 for Pendulum, 150 for Cartpole and 2000
for Reacher) to obtain an estimated model f̂n. Then, we use SAC (trained against model
f̂n) or MPC to collect 106 offline data on such estimated environment. These data are then
used to train MVR+RFQI and MVR+FQI.

Evaluation: For each environment, we evaluate the computed policy against different
perturbation types and magnitudes. For Cartpole, we perturb the magnitude of the actuation
force. Its nominal value is 10 and we perturb up to 300%. Also, we consider perturbations to
gravity in the range of (-100%,100%) with the nominal value being 9.82. For the Pendulum,
we consider perturbations to the length of the pendulum and action perturbations (where
a random action is chosen with ϵ probability). Finally, in the case of Reacher we consider
perturbations to the joint’s stiffness (from 0 to 100) coupled with perturbations of the joint’s
equilibrium position. Further details on the chosen perturbations and hyperparameters used
are provided in Appendix F.
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All experiments were run with GPU clusters: 10xNVidia 32Gb Tesla V100 with In-
tel(R) processors (2 cores, 2.50 GHz) and 256Gb RAM. For all the experiments, we use the
environment implementations of (38) as done in https://github.com/fusion-ml/trajectory-
information-rl/tree/main. Also, to learn the environment transition model, we use the same
corresponding GP hyperparameters proposed by (38). For the offline RFQI/FQI algorithms
we follow the implementation of (42; 10) in https://github.com/zaiyan-x/RFQI. We use
the same default hyperparameters as used in their code except for training steps, batch
size and robustness radius ρ (for RFQI) which we tune depending on the environment as
outlined next. For SAC in Pendulum experiments, we use the implementation and hyperpa-
rameters of https://github.com/DLR-RM/rl-baselines3-zoo. Whereas, for SAC in Reacher
experiments, we use the implementation and hyperparameters of https://github.com/fusion-
ml/bac-baselines, https://github.com/IanChar/rlkit2 (as done in (38)).

Pendulum: In Pendulum experiments, we construct the learned model using 60 samples
from the true environment. Then, we train a SAC policy on such a model for 2 ∗ 104 steps
and use it (with the probability of choosing a random action being 0.3 or 0.5) to generate
106 offline data (these are used both for MVR+RFQI and MVR+FQI). For training steps
and batch size we consider the following combinations: {′2000− 100′,′ 5000− 100′,′ 10000−
100′,′ 20000− 100′,′ 35000− 100′,′ 50000− 100′,′ 5000− 500′,′ 5000− 1000′}. We combine all
these combinations with the following values of ρ – {0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}. For
each algorithm, we pick the best-performing combination in terms of average reward over 20
episodes for all (or most) perturbation values. We do this separately for length perturbations
and action perturbations. In the length perturbation, the pendulum’s length is changed from
its nominal value to a new value depending on the perturbation percentage. In the action
perturbation, a random action is chosen instead of the action chosen by the policy with
various probabilities ranging from [0, 1]. We detail the optimal hyperparameters we realized
for each algorithm in Table 2 for the length and action perturbation, respectively. Moreover,
we plot the average performance (over 20 episodes) of the different baselines w.r.t. length
and action perturbations in Figure 2. We notice that in the case of length perturbation,
the robust algorithms (RFQI and MVR+RFQI) outperform the corresponding non-robust
baselines. In the case of action perturbations, we observe all algorithms except for SAC
achieve similar performance.

Figure 2: Pendulum experiments.
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Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 5000 100 0.3 0.5
MVR+FQI 2000 100 - 0.5

RFQI 2000 100 0.9 0.5
FQI 5000 500 - 0.5

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 20000 100 0.5 0.3
MVR+FQI 50000 100 - 0.3

RFQI 50000 100 0.1 0.5
FQI 5000 500 - 0.5

Table 2: Hyperparameters for Pendulum - length perturbation (top) and action perturbation
(bottom).

Cartpole: In Cartpole experiments, we construct the learned model using 150 samples
from the true environment. Then, we run MPC on such a model following the implemen-
tation and hyperparameters of (38; 45) requiring 2250 samples to calculate the optimal
action at each step and use it (with the probability of choosing a random action being
0.3) to generate 106 offline data for MVR+RFQI and MVR+FQI. For training steps
and batch size, we test the following combinations: {′2000 − 100′,′ 5000 − 100′,′ 10000 −
100′,′ 20000− 100′,′ 35000− 100′,′ 50000− 100′,′ 5000− 500′,′ 5000− 1000′}, and consider radii
ρ in {0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}. We consider perturbations of the force magnitude
and the gravity, whereby the actuation force/gravity is changed from its nominal value to
a new value depending on the perturbation percentage. We report the best-performing
(average over 20 episodes) hyperparameters for each algorithm in Table 3. Such parameters
were observed to be a good choice for both perturbation types. Finally, we plot the average
performance (over 20 episodes) of the different baselines w.r.t. force magnitude and gravity
perturbations in Figure 3. We notice that in both perturbations, the robust algorithms
(RFQI and MVR+RFQI) outperform the corresponding non-robust baselines.

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 5000 500 0.5 0.3
MVR+FQI 50000 100 - 0.3

RFQI 5000 100 0.3 0.3
FQI 10000 100 - 0.3

Table 3: Hyperparameters for Cartpole.

Reacher: In Reacher experiments, we construct the learned model using 2000 samples
from the true environment. Then, we train a SAC policy on such a model for 106 steps and use
it (with the probability of choosing a random action being 0.3) to generate 106 offline data for
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Figure 3: Cartpole experiments.

MVR+RFQI and MVR+FQI. For training steps and batch size, we consider the following
combinations: {′10000− 500′,′ 20000− 500′,′ 40000− 500′,′ 80000− 500′,′ 160000− 1000′},
while we consider radii ρ in {0.1, 0.3, 0.5, 0.7, 0.9}. We consider perturbations of the joint
stiffness subject to different equilibrium positions, the latter represented by the ’Springref’
parameter which we take to be 50 or 100. In both perturbation types, the joint stiffness is
changed from its nominal value of 0 to a new value depending on the perturbation magnitude.
Best-performing hyperparameters’ configurations are reported in Table 4. We plot the average
performance (over 20 episodes) of the different baselines in Figure 4. Similar to the other
environments, we observe the robust algorithms (RFQI and MVR+RFQI) outperform the
corresponding non-robust baselines.

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 10000 500 0.5 0.3
MVR+FQI 20000 500 - 0.3

RFQI 40000 500 0.1 0.3
FQI 20000 500 - 0.3

Table 4: Hyperparameters for Reacher.

Figure 4: Reacher experiments with ’Springref’ parameter set to 50 (left) or 100 (right).
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