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ABSTRACT

Regularization is a core component of recent Reinforcement Learning (RL) al-
gorithms. Mirror Descent Value Iteration (MDVI) uses both Kullback-Leibler
divergence and entropy as regularizers in its value and policy updates. Despite
its empirical success in discrete action domains and strong theoretical guarantees,
the performance improvement of a MDVI-based method over the entropy-only-
regularized RL is limited in continuous action domains. In this study, we propose
Mirror Descent Actor Critic (MDAC) as an actor-critic style instantiation of MDVI
for continuous action domains, and show that its empirical performance is signifi-
cantly boosted by bounding the values of actor’s log-density terms in the critic’s
loss function. Further, we relate MDAC to Advantage Learning by recalling that
the actor’s log-probability is equal to the regularized advantage function in tabular
cases, and theoretically show that the error of optimal policy misspecification is
decreased by bounding the advantage terms.

1 INTRODUCTION

Model-free reinforcement learning (RL) is a promising approach to acquire reasonable controllers
in unknown environments. In particular, actor-critic methods are appealing because they can be
naturally applied to continuous control domains. Actor-critic algorithms have been applied in a range
of challenging domains including robot control (Smith et al., 2023), magnetic control of tokamak
plasmas (Degrave et al., 2022), and alignment of large language models (Stiennon et al., 2020).

Regularization is a core component of, not only such actor-critic methods, but also value-based
reinforcement learning algorithms (Peters et al., 2010; Azar et al., 2012; Schulman et al., 2015; 2017,
Haarnoja et al., 2017; 2018a; Abdolmaleki et al., 2018). Kullback-Leibler (KL) divergence and
entropy are two major regularizers that have been adopted to derive many successful algorithms.
In particular, Mirror Descent Value Iteration (MDVI) uses both KL divergence and entropy as
regularizers in its value and policy updates (Geist et al., 2019; Vieillard et al., 2020a) and enjoys
strong theoretical guarantees (Vieillard et al., 2020a; Kozuno et al., 2022). However, despite its
empirical success in discrete action domains (Vieillard et al., 2020b), the performance improvement
of a MDVI-based algorithm over an entropy-only-regularized RL is limited in continuous action
domains (Vieillard et al., 2022).

In this study, we propose Mirror Descent Actor Critic (MDAC) as a model-free actor-critic instantia-
tion of MDVT for continuous action domains, and show that its empirical performance is significantly
boosted by bounding the values of actor’s log-density terms in the critic’s loss function. To understand
the impact of bounding beyond just as an "implementation detail", we relate MDAC to Advantage
Learning (Baird, 1999; Bellemare et al., 2016) by recalling that the policy’s log-probability is equal
to the regularized advantage function in tabular case, and theoretically show that the error of optimal
policy misspecification is decreased by bounding the advantage terms. Our analysis indicates that it is
beneficial to bound the log-policy term of not only the current state-action pair but also the successor
pair in the TD target signal.

Related Works. The key component of our actor-critic algorithm is to bound the log-policy terms
in the critic loss, which can be also understood as bounding the regularized advantages. Munchausen
RL clips the log-policy term for the current state-action pair, which serves as an augumented reward,
as an implementation issue (Vieillard et al., 2020b). Our analysis further supports the empirical
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suceess of Munchausen algorithms. Zhang et al. (2022) extended AL by introducing a clipping
strategy, which increases the action gap only when the action values of suboptimal actions exceed
a certain threshold. Our bounding strategy is different from theirs in the way that the action gap
is increased for all state-action pairs but with bounded amounts. Vieillard et al. (2022) proposed a
sound parameterization of Q-function that uses log-policy. By consruction, the regularized greedy
step of MDVI can be performed exactly even in actor-critic settings with their parameterization. Our
study is orthogonal to theirs since our approach modifies not the parameterization of the critic but its
loss function.

MDVI and its variants are instances of mirror descent (MD) based RL. There are substantial research
efforts in this direction (Wang et al., 2019; Vaswani et al., 2022; Kuba et al., 2022; Yang et al., 2022;
Tomar et al., 2022; Lan, 2023; Alfano et al., 2023). The MD perspective enables to understand the
existing successful algorithms in a unified view, analyze such methods with strong theoretical tools,
and propose a novel and superior one. This paper focuses on a specific choice of mirror, i.e. adopting
KL divegence and entropy as regularizers, and provides a deeper understanding in this specific scope
via a notion of gap-increasing Bellman operators.

It is well known that the log-policy terms in actor-critic algorithms often cause instability, since the
magnitude of log-policy terms grow large naturally in MDP, where a deterministic policy is optimal.
Recent RL implementations handle this problem by bounding the range of the standard deviation
for Gaussian policies (Achiam, 2018; Huang et al., 2022). Beyond such an implementation detail,
Silver et al. (2014) proposed to use deterministic policy gradient, which is a foundation of the recent
actor-critic algorithms such as TD3 (Fujimoto et al., 2018). On the other hand, Iwaki & Asada (2019)
proposed an implicit iteration method to stably estimate the natural policy gradient (Kakade, 2001),
which also can be viewd as a MD-based RL method (Thomas et al., 2013).

Contibutions. Our contributions are summarized as follows: (1) we proposed MDAC, a model-free
actor-critic instantiation of MDVI for continuous action domains, and showed that bounding the
log-density terms in the critic’s loss function significantly improves the performance of MDAC,
(2) we theoretically analyzed the validity and the effectivness of the bounding strategy by relating
MDAC to AL with bouded advantage terms, (3) we empirically explored what types of bounding
functions are effective, and (4) we demonstrated that MDAC performs better than baseline algorithms
in simulated benchmarks.

2 PRELIMINARY

MDP and Approximate Value Iteration. A Markov Decision Process (MDP) is specified by a tuple
(S, A, P,R,~), where S is a state space, .A is an action space, P is a Markovian transition kernel, R is

areward function bounded by Ry,ax, and v € (0, 1) is a discount factor. For 7 > 0, we write V7 . =

max
&*"”ﬁ%ﬂlﬁgw We write 1 € RS> the vector whose

components are all equal to one. A policy 7 is a distribution over actions given a state. Let II denote
a set of Markovian policies. The state-action value function associated with a policy 7 is defined as
Q™ (s,a) = Ex D07 R(St, Ar)|So = s, Ag = a], where E, is the expectation over trajectories
generated under 7. An optimal policy satisfies 7% € argmax, .y @™ with the understanding that
operators are point-wise, and Q* = Q™ . For f1, fo € RS*4, we define a component-wise dot
product (f1, fo) = (3, fi(s,a)f2(s,a)), € RS. Let Py denote the stochastic kernel induced
by 7. For Q € RS*A, let us define P,Q = (3, P(s']s,a) Y, (a'|s")Q(s, a')),q € RSXA,
Furthermore, for V' € RS let us define PV = (Y, P(s|s, a)V(s')),.. € RS*4 and P™V =
(X, m(als) >, P(s's,a)V(s")), € RS. It holds that PQ = P(m, Q). The Bellman operator is
defined as 7,Q = R + vP.(Q, whose unique fixed point is Q™. The set of greedy policies w.r.t.
Q € RS*A is written as G(Q) = argmax, .;(Q, 7). Approximate Value Iteration (AVI) (Bellman
& Dreyfus, 1959) is a classical approach to estimate an optimal policy. Let Q@ € RS> be initialized
as ||Qo||OO < Vinax and ¢, € RS*A represent approximation/estimation errors. Then, AVI can be
written as the following abstract form:

{Wkﬂ € G(Qk)
Q1= Trpy, Qr + €kt

(assuming A is finite) and Vi = V9

max*
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Regularized MDP and MDVI. In this study, we consider the Mirror Descent Value Iteration
(MDVI) scheme (Geist et al., 2019; Vieillard et al., 2020a). Let us define the entropy H(7) =
—(m,logm) € R® and the KL divergence Dki,(mi||ma) = (m1,logm — logms) € RS,. For
Q € RS*A and a reference policy p € II, we define the regularized greedy policy as QQ’T(Q) =
argmax, .y ((m, Q) + 7H(mw) — ADky(r||i)). We write G%7 for A = 0 and G*9(Q) = G(Q).
We define the soft state value function V(s) € RS as V(s) = (7, Q) + 7H(7) — ADxw(7| 1),

where m = G ;}T(Q) Furthermore, we define the regularized Bellman operator as T:‘JQ =R+

~P ({7, Q) + 7H(w) — ADxy(7||p)). Given these notations, MDVI scheme is defined as

Tk+1 = g#;f(Qk)
Qri1 = 7? T Qr €kt

,
k417

ey

where 7 is initialized as the uniform policy.

Vieillard et al. (2020b) proposed a reparameterization ¥, = @y + Salogm. Then, defining
a =7+ Xand 3 = \/(7 + ), the recursion (1) can be rewritten as

{Wm—l =GO (W)

2
Vi1 = R+ Balog g1 + yP (g1, Vi — alog M) + expn @

We refer (2) as Munchausen Value Iteration (M-VI). In the recursion (2), KL regularization is
implicitly applied through ¥, and there is no need to store 7y, for explicit computation of the KL
term. Notice that the regularized greedy policy 741 = G%%(¥}) can be obtained analytically in

discrete action spaces as (G**(¥}))(s,a) = % =: (sma () (s, a).

3  MIRROR DESCENT ACTOR CRITIC WITH BOUNDED BONUS TERMS

In this section, we introduce a model-free actor-critic instantiation of MDVI for continuous action
domains, and show that a naive implementation results in poor performance. Then, we demonstrate
that its performance is improved significantly by a simple modification to its loss function.

Now we derive Mirror Descent Actor Critic (MDAC). Let 7y be a tractable stochastic policy such as
a Gaussian with a parameter 0. Let )y, be a value function with a parameter 1. The functions 7y and
Qy approximate 7, and Wy, in the recursion (2), respectively. Further, let ¢ be a target parameter that
is updated slowly, that is, ¢ < (1 — k)¢ + k1) with & € (0,1). Now, we derive the losses for the
actor g and the critic Q). Let D be a replay buffer that stores past experiences {(s, a,r, s")}. We can
derive online and off-policy losses from the recursion (2) by (i) letting the parameterized policy 7
be represent the information projection of 7y, in terms of the KL divergence, and (ii) approximating
the expectations using the transition samples drawn from D:

LQ(w) - » TI{;}/)ND {(7‘ + Balogmy(als) + ’Y(Qu‘,(s’, a’)—alog 7T9(a’|5/)) —Qy (s, a))Q} . (3)
117/;‘71:9('|5/)7 y(s,a,r,s’,a’)
L*(9) = E_ [DKL (mo(als) || sma(Qyp) (s,a))} - E [a log ¢ (als) — Qw(s,a)}. @
a~mg(-|s)

Though 7y can be any tractable distribution, we choose commonly used Gaussian policy in this paper.
We lower-bound its standard deviation by a common hyperparameter log o, Which is typically
fixed to log omin = —20 (Huang et al., 2022) or log o min = —5 (Achiam, 2018). Although there are
two hyperparameters « and 3 originated from KL and entropy regularization, these hyperparameters
need not to be tuned manually. We fixed 3 = 1 — (1 — 7)? as the theory of MDVI suggests (Kozuno
et al., 2022). For o, we perform an optimization process similar to SAC (Haarnoja et al., 2018b).
Noticing that the strength of the entropy regularization is governed by 7 = (1 — /), we optimize
the following loss in terms of « by stochastic gradient descent (SGD) with H = —dim(.A):

L(a) = leD, [—(1 — B)alogmg(als) — (1 — B)a’}-ﬂ =(1- B)aSINED [’H (mo(-|s)) — 7-_1] .
a~mo(ls)

)
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The reader may notice that (3) and (4) are nothing more o (e B
than SAC losses (Haarnoja et al., 2018a;b) with the Mun- e
chausen augumented reward (Vieillard et al., 2020b), and
expect that optimizing these losses results in good perfor-
mance. However, a naive implementation of these losses
leads to poor performance. The gray learning curve in Fig-
ure | is an aggregated learning result for 6 Mujoco envi-

in
in=—>5, tanh

SAC Normalized IQM Score

ronments with log o, = —5 . The left column of Figure 02

2 compares the individual quantities in the TD target in

loss (3) for the initial learning phase in Walker2d-v4 00

and HalfCheetah-v4. To be precise, the means of the O enmental Steps ety

quantities in the sampled minibatchs are plotted. Clearly,
the magnitude of the log-density terms get much larger
than the reward quickly. We hypothesized that the poor performance of the naive implementation is
due to this scale difference; the information of the reward is erased by the bonus terms. This explo-
sion is more severe in the Munchausen bonus S« log 7y (a|s) than the entropy bonus «log mg(a’|s’),
because while o’ is an on-policy sample from the current actor 7y, a is an old off-policy sample from
the replay buffer D. Careful readers may wonder if the larger log o,;,, resolves this issue. The yellow
learning curve in Figure 1 is the learning result for log oy, = —2, which still fails to learn. The
middle column of Figure 2 shows that the bonus terms are still divergent, and it is caused by the
exploding behavior of a. A naive update of «v using the loss (5) and SGD is expressed as

Figure 1: Effect of bounding log 7 terms.

acat 2P Z log mg(an|s,) — dim(A)),

where p > 0 is a step-size, NV is a mini-batch size and a,, ~ my(-|s,). This expression indicates that,
if the average of log 7y (a|s) over sampled mini-batches are bigger than dim(.A), « keeps growing.
Figure 2 indicates this phenomenon is indeed happening. We argue that, an unstable behavior of a
single component ruins the other learning components through the actor-critic structure. The «log g
terms make (), oscilatory, which hinders the optimization of the policy 7y and the coefficient «
through the losses (4) and (5). Then, o log g terms explode gradually and ruins ), again.
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| ~y
N A fos 10°
o - (
2

o
10
10 .
10° 10
10° 10
!
10 10°
0
2
~10' 10
_10* 10’
5
-10
8 10°
-10
° 10"
-10

05 10 15 20 25 30 35 0.0 10 15 20 25 30 35 40
Envlronmema\ Steps Environmental Steps 185 Environmental Steps 1e5

Walker2d-v4

HalfCheetah-v4

—— logn(als) —— alogn(als) —— logn(a’ls’) —— alogn(a’ls’) r — Qq(s’,a") —_a

Figure 2: Scale comparison of the quantities in TD target. Left: log omin = —5, Middle: log omin = —2, Right:
log omin = —5 with bounding by tanh. Top: Walker2d-v4, Bottom: HalfCheetah-v4. « is indicated
by the right y-axis.

"More details on the setup and the metrics can be found in Section 5, and Figure 11 in Appendix B.2 shows
the per-environment results.
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We found that "bounding” « log 7y terms improves the performance significantly. To be precise, by
replacing the target y(s, a,r, s’,a’) in the critic’s loss (3) with the following, the agent succeeds to
reach reasonable performance (the green learning curve in Figure 1; log op,in, = —5 is used):

y(s,a,r,s',a") = r+ Btanh (alogme(als)) +~ (Qz(s',a’) — tanh (alog me(a’|s’))) . (6)

The right column of Figure 2 shows that (), is not ruined and o log mg terms do not explode. In the
next section, we analyze what happens under the hood by theoretically investigating the effect of
bounding «log 7y terms. We argue that bounding « log 7y terms is not just an ad-hoc implementation
issue, but it changes the property of the underlying Bellman operator. We quantify the amount of ruin
caused by a log 7y terms, and show how this negative effect is mitigated by the bounding.

4 ANALYSIS

In this section, we theoretically investigate the properties of the log-policy-bounded target (6) in
tabular settings. Rather than analyzing a specific choice of bounding, e.g. tanh(x), we characterize
the conditions for bounding functions that are validated and effective. For the sake of analysis, we
provide an abstract dynamic programming scheme of the log-policy-bounded target (6) and relate
it to Advantage Learning (Baird, 1999; Bellemare et al., 2016) in Section 4.1. In Section 4.2, we
show that carefully chosen bounding function ensures asymptotically convergence. In Section 4.3,
we show that such bouding is indeed beneficial in terms of inherent error reduction property. All the
proofs will be found in Appendix A.

4.1 BOUNDED ADVANTAGE LEARNING

3 — clip 4

Let f and g be non-decreasing functions over R such that, for both tamn y
h e {f, g}, @ h(zx) > 0forz > 0, h(z) < Oforz < Oand °*
h(0) =0, (i) x — h(x) > 0forx > 0and x — h(z) < 0 forz <0, 1 /f
and (iii) their codomains are connected subsets of [—cy, ¢i,]. The N /
functions tanh(z) and clip(z, —1, 1) satisfy these conditions. We /
understand that the identity map I also satisfies these conditions s
with ¢;, — oo. Roughly speaking, we require the functions fandg r
to lie in the shaded area in Figure 3. Then, the loss (3), (4) and (6) s 7

can be seen as an instantiation of the following abstract VI scheme: s 012

Figure 3: Examples of f, g.
frea=gim 0
U1 = R+ Bf (alog i) + P (Thy1, Ui — g (log mry1)) + €xrn

Notice that Munchausen-DQN and its variants are instantiations of this scheme, since their imple-
mentations clip the Munchausen bonus term by f(z) = [x]?o with lg = —1 typically, while g = I.
Furthermore, if we choose f = g = 0, (7) reduces to Expected Sarsa (van Seijen et al., 2009).

Now, from the basic property of regularized MDPs, the soft state value function V € RS sat-

isfies V. = alog <Mﬁ,exp %> = alog <1,exp %>, where U = @ + Balogu. We write
LYY = alog <1,exp %> for convention. The basic properties of LL* are summarized in Ap-
pendix A.1. In the limit & — 0, it holds that V'(s) = maxge4 ¥(s,a). Furthermore, for a policy

T = go""(\I/), alog m equals to the soft advantage function A € RS*A.

v
exp — -V
7\1/> = alogexp (a > =V -V =A4,

alogm = alog
(1,exp

thus we have that alog 711 = Ay. Therefore, as discussed by Vieillard et al. (2020a), the recursion
(2) is written as a soft variant of Advantage Learning (AL):

Vi1 = R+ BAL + 7P (Tjt1, Y — A) + €p1 = R+ 7PV — B(Vie — ¥g) + €41

Given these observations, we introduce a bounded gap-increasing Bellman operator 7;& 9.

TL9 Ui =R+ Bf(Ay) + P (mhy1, Vg — g(Ar)) . (®)

Thk+1
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Then, the DP scheme (7) is equivalent to the following Bounded Advantage Learning (BAL):

Tt =G0 () ©)
Vg1 =TI Uy + enpa

Th41

By construction, the operator 7;129+ , pushes-down the value of actions. To be precise, since
maxgeq U(s,a) < (L*W)(s), the soft advantage Ay is always non-positive. Thus, the re-
parameterized action value Uy, is decreased by adding the term (5 f (A ). Obviously, the reduction is
smallest at the optimal action arg max, W (s, a). Therefore, the operator 7;#; 9 , increases the action
gaps with bounded magnitude dependent on f. In addition, as the term —yP (w11, g(Ag)) in Eq.
(8) indicates, the entropy bonus for the successor state action pair (s’,a’) ~ Py (:|s, a) is decreased

by g.

We remark that BAL preserves the original mirror descent structure of MDVI (1). Noticing that
Qr = ¥ — Balogmy, (1— B)a = 7 and Ba = A, and following some steps similar to the derivation
of Munchausen RL in Appendix A.2 of (Vieillard et al., 2020b), the bounded gap-increasing operator
(8) can be rewritten in terms of () as

T2 e @i = R = B(Ak — f(AR) + 7P ((mrs1, Qi + A — g(Ar))
+TH(Tp41) — ADg 1 (Thg1]|7k)) -

Therefore, BAL still aligns the the original mirror descent structure of MDVI, but with additional
modifications to the Bellman backup term. As we see later, the bounded gap-increasing operator (8)
is more tolerant than AL and M-VI to the errors of optimal policy misspecification, which quantify
the ruin caused by the soft advantage Ay, = olog mj41.

4.2 CONVERGENCE OF BAL

First, we investigate the asymptotic converegnce property of BAL scheme. Since gap-increasing
operators are not contraction maps in general, we need an argument similar to the analysis provided
by Bellemare et al. (2016).

We start from the case where o — 0 while keeping 3 constant, which corresponds to KL-only regu-
larization. If an action-value function is updated using an operator 7" that is optimality-preserving,
at least one optimal action remains optimal, and suboptimal actions remain suboptimal. Further, if
the operator 7~ is also gap-increasing, the value of suboptimal actions are pushed-down, which is
advantageous in the presence of approximation or estimation errors (Farahmand, 2011) (please see
Appendix A.2 for formal definitions). Notably, our operator 7;3;9+ , is both optimality-preserving and
gap-increasing in the limit a« — 0.

Theorem 1. In the limit « — 0, the operator ’7;{&1 satisfies 7;{;511\1';6 < TV, and ﬁiﬂquk >
T — B (Vi — V) and thus is both optimality-preserving and gap-increasing.

Next, we conisider the case « > 0. The following theorem characterizes the possibly biased
convergence of bounded gap-increasing operators under KL-entropy regularization.

Theorem 2. Let U € RS*A V = Low, 70U = R + ~YPLYY and T’ be an operator with the
properties that T'VU < T*W and T'V > T*W — 5 (V — V). Consider the sequence Uy := T Uy,
with Uy € RS*A and let Vi, = LWy Further, with an abuse of notation, we write V* € RS as the
unique fixed point of the operator T™V = L7 (R + vPV). Then, the sequence (V) ren converges,
and the limit V = limy_, o V}, satisfies V¥ <V < V. Furthermore, limsup,,_, o Vi < Q% and

liminfy o0 ¥y > g (Q - 517), where Q) = R+ yPV.

Since Ty, > TS W) = T, + Bf(Ay) > Ty, + B Ay, from Theorem 2 we can assure that

Tk+1
BAL is convergent and ¥, remains in a bounded range if g = I, even though V' # V* in general.
Furthermore, this result suggests that Munchausen RL is convergent even when the ad-hoc clipping is
employed. However, Theorem 2 does not support the convergence for g # I, even though g # [ is
empirically beneficial as seen in Section 3. The following Proposition 1 offers a sufficient condition
for the asymptotic convergence when g # I, and characterizes the limiting behavior of BAL.
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Proposition 1. Consider the sequence V1 := T,/ 9 Wy produced by the BAL operator (8) with

Tk

Uy € RS*A and let Vi, = L*Wy,. Assume that for all k € N it holds that
ADkL (T ||me) = vP™ (aH(Tr41) + (Trg1, 9(Ag))) 2 0. (10)

Then, the sequence (Vi)gen converges, and the limit vV o= limg_yoo Vi satisfies VF —

2 log|A| < V < V¥ Furthermore, limsup,_,. Vi < QF and liminfy_, .o U >

1—~v1-p8
ﬁ (Q — BV —~alog|A ), where Q = R + PV

We remark that the lower bound V* — ﬁ ﬁ log |.A| makes sense. Since V7. = Vipax + ﬂ%‘f”,
the magnutide of the lower bound roughly matches the un-regularized value, which appears because g
decreases the entropy bonus in the Bellman backup. One way to satisfy (10) for all £ € N is to use an
adaptive strategy to determine g. Since 7y is obtained before the update Uy = 7;fka .Yy in BAL
scheme (9), it is possible that we first compute Dkr,(741]||7x) and H(mg+1), and then adaptively
find g that satisfies (10), with additional computational efforts. In the following, however, we provide

an error propagation analysis and argue that a fixed g # I is indeed beneficial.

4.3 BOUNDING DECREASES THE ERRORS OF OPTIMAL POLICY MISSPECIFICATION

Theorem 2 indicates that BAL is convergent but possibly biased even when g = I. However, we
can still upper-bound the error between the optimal entropy-regularized state value V¥, which is the
unique fixed point of the operator 77V = L7 (R + vPV), and the entropy-regularized state value
V.7 for the sequence of the policies {7}, generated by BAL. Theorem 3 below, which generalizes
Theorem 1 in Zhang et al. (2022) to KL-entropy-regularized settings with the bounding functions f
and g, provides such a bound and highlights the advantage of BAL for both f = I and g # I.

Theorem 3. Let {m;}r be a sequence of the policies obtained by BAL. Defining A{g =
(7, B (A7 — f(Ak—1)) = vP {7k, Ak—1 — g(Ak—1))), it holds that:

. (11)

K-—1

2

IV = VIt < 12 |2 Vot 2 v ]
k=1

Since the suboptimality of BAL is characterize by Theorem 3, we can discuss its convergence
property as in previous researches (Kozuno et al., 2019; Vieillard et al., 2020a). The bound (11)
resembles the standard suboptimality bounds in the literature (Munos, 2005; 2007; Antos et al.,
2008; Farahmand et al., 2010), which consists of the horizon term 2/(1 — +), initialization error
2yK -1y that goes to zero as K — oo, and the accumulated error term. However, our error
terms do not represent the Bellman backup errors, but capture the misspecifications of the optimal
policy as we discuss later. We note that, the error term Aig does not contain the error €;,, because
we simply omitted it in our analysis as done by Zhang et al. (2022). Our interest here is not in
the effect of the approximation/estimation error €, but in the effect of the ruin caused by the
soft advantage Ar, = alog i1, that is, the error inherent to the soft-gap-increasing nature of
M-VI and BAL in model-based tabular settings without any approximation. In the following,
we consider a decompostion of the error Ai“’ = Az(f + A?:g and argue that (1) the cross term
Afff = —B(r*, f(Ar_1)) has major effect on the sub-optimality and is always decreased by f # I,

and (2) the entropy terms A?fg = (*, AL — yP (mp, Ap—1 — g(Ar_1))) are decreased by g # I,
although which is not always true.

To ease the exposition, first let us again consider the case & — 0 while keeping 5 > 0 constant.
Then, noticing that we have G%°(¥) = G(¥), L*W(s) — maxpe 4 ¥(s,b) and g(0) = 0, it follows
that the entropy terms are equal to zero: (7*, A*) = (741, Ak) = (Tr41,9(Ax)) = 0. Thus, A£9
reduces to AX = — B (n*, f(Ar_1)) and AN (s) = —Bf (Up_1(s,7(s)) — i1 (s, 71(5))).
Therefore, Ay, represents the error incurred by the misspecification of the optimal policy. For AL, the
error is AXY(s) = B (Wy_1(s, mk(s)) — Wk_1(s,7*(s))). Since both AL and BAL are optimality-
preserving for o — 0, we have [|AX!||o, — 0 and AN — 0as k — co. Howerver, their
convergence speed is governed by the magnitude of || A%/, and HA?’[ |l at finite k, respectively.
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We remark that for all k it holds that |Az(f | < |A¥!| point-wise. Indeed, from the non-positivity
of Ay and the requirement to f, we always have A, = I(A;) < f(Ax) point-wise and then
—BI(Ag(s,a)) > —Bf(Ar(s,a)) forall (s, a) and k, both sides of which are non-negative. Thus, we
have (7%, —Bf(A_1)) < (r*, —BI(Aj_1)) point-wise and therefore |AX 7| < |AX!|. Furthermore,
we have |AXT || < % for AL while [|AX/||l.. < ¢; for BAL. Therefore, BAL has better

convergence property than AL by a factor of the horizon 1/(1 — +) in the case where Wy, is far from
optimal.

For the case o > 0, ||A£g |lco — 0 does not hold in general. Further, the entropy terms are no longer
equal to zero. However, the cross term, which is an order of 1/(1 —+y), is much larger unless the action
space is extremely large since the entropy is an order of log |.4| at most, and is always decreased by
f # I. Furthermore, we can expect that g # I decreases the error AM9 though it does not always
true. If g # I, the entropy terms reduce to A7 = (r*, BA*). Since Aj_1 is non-positive, we have
A1 — g(Ag—1) <0 from the requirements to g. Since the stochastic matrix P is non-negative, we
have P (., Ax—1 — g(Ak—1)) < 0, where the Lh.s. represents the decreased negative entropy of the
successor state and its absolute value is again an order of log |.A| at most. Since A* < 0 also, whose
absolute value is an order of 1/(1 — «), it holds that SA* < SA* — yP (m, Ap—1 — g(Ak—1))
and thus A7 = (r*, BA*) < (7%, BAE — yP (1, Akt — g(Ax_1))) = A9 When AT is
non-positive, it is guaranteed that ‘A?g | < |A}i‘” | In addition, we can expect that this error is
largely decreased by zero function g(x) = 0, though it makes harder to satisfy the inequality (10).
However, this inequality does not always hold because it depends on the actual magnitude of A* and

P (m, Ap—1 — 9(Ar—1)).

Overall, there is a trade-off in the choice of g; g = I always satisfies the sufficient condition of
asymptotic convergence (10), but the entropy term is not decreased. On the other hand, g(z) = 0
is expected to decrease the entroy term, though which possibly violates (10) and might hinder the
asymptotic performance. In the next section, we examine how the choice of f and g affects the
empirical performance.

5 EXPERIMENT

5.1 BAL ON GRID WORLD

First, we compare the model-based tabular M-VI (2) and BAL (9) schemes. As discussed by Vieillard
et al. (2020a), the larger the value of j is, the slower the initial convergence of MDVI gets, and thus
M-VI as well. Since the reduction of the misspecification error by BAL is particularly effective when
W, is far from the optimal, we can expect that BAL is effective especially in earlier iterations. We
vaidate this hypothesis by a model-based tabular setting.

We use a gridworld environment, where transition kernel P and reward function R are directly
available. We performed 100 independent runs with random initialization of . Figure 4 compares
the normalized value of the suboptimality ||V™ — V*||, where the interquatile mean (IQM) is
reported as suggested by Agarwal et al. (2021). The result suggests that BAL outperforms M-VI
initially. Furthermore, g # I performs slightly better than g = I in the earlier stage, even in this
toy problem. Therefore, it is validated that BAL is effective especially in earlier iterations. More
experimental details are found in Appendix B.1.

5.2 MDAC oN MuJoCcO LOCOMOATION ENVIRONMENTS

Setup and Metrics. Next, we empirically evaluate the effectiveness of MDAC on 6 Mujoco en-
vironments (Hopper-v4, HalfCheetah-v4, Walker2d-v4, Ant-v4, Humanoid-v4 and
HumanoidStandup-v4) from Gymnasium (Towers et al., 2023). We evaluate our algorithm
and baselines on 3M environmental steps, except for easier Hopper—v4 on 1M steps. For the
reliable benchmarking, we again report the aggregated scores over all 6 environments as suggested
by Agarwal et al. (2021). To be precise, we train 10 different instances of each algorithm with
different random seeds and calculate baseline-normalized scores along iterations for each task as

score = X Calgorithm “8O%random where the baseline is the mean SAC score after 3M steps (1M
SCOr€paseline —SCOT€random

for Hopper-v4). Then, we calculate the IQM score by aggregating the learning results over all
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Figure 4: Results of M-VI and BAL on Gridworld. Figure 5: Effect of f # I and g # I on Mujoco.

6 environments. We also report pointwise 95% percentile stratified bootstrap confidence intervals.
We use Adam optimizer (Kingma & Ba, 2015) for all the gradient-based updates. The discount
factor is set to v = 0.99. All the function approximators, including those for baseline algorithms,
are fully-connected feed-forward networks with two hidden layers and each hidden layer has 256
units with ReLU activations. We use a Gaussian policy with mean and standard deviation provided
by the neural network. We fixed log o,i, = —5. More experimental details, including a full list of the
hyperparameters and per-environment results, will be found in Appendix B.2.

Effect of bounding functions f and g. We start from evaluating how the performance of MDAC is
affected by the choice of the bounding functions. First, we evaluate whether bounding both log 7 (a|s)
terms is beneficial. We compare 3 choices: (i) f =g =1, (ii) f(z) =tanh(x/10),g =TI and (iii)
f(z)=g(x)=tanh(z/10). Figure 5 compares the learning results for these choices and it indicates
that bounding both «log 7 terms is indeed beneficial.

Next, we compare 5 choices under f = g # I: (i) o .
clip(z,—1,1), (i) clip(x/10,—1,1), (iii) tanh(z),
(iv) tanh(z/10), and (v) sign(x). Notice that the last , g

choice (v) violates our requirement to the bounding —o f=g=clip(x, ~1,1)
functions. Figure 6 compares the learning curves o S-mi (S
for these choices. The result indicates that the per- s~ f=g=tann(x/10)
formence difference between clip(z) and tanh(z) is el
small. On the other hand, the performance is boosted

if the slower saturating functions are used. Fur-
thermore, sign(x) resulted in the worst performance
among these choices. Figure 7 compares the frequen-
cies of clipping « log 7 terms by clip(z, —1, 1) and
clip(z/10, —1, 1) in the sampled minibatchs for the
initial learning phase in Walker2d-v4, HalfCheetah-v4 and Ant-v4. For clip(z, —1,1),
the clipping occurs frequently especially for the current (s, a) pairs and the information of relative
alog 7 values between different state-actions are lost. On the other hand, for clip(z/10, —1, 1), the
clipping rarely happens and the information of relative « log 7 values are leveraged in the learning.
These results suggest that the relative values of avlog 7 tems between different state-actions are
beneficial for the learning process, even though the raw values (by f=g=1) are harmful.

SAC Normalized IQM Score
o o o
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o
N
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0 500 1000 1500 2000 2500 3000
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Figure 6: Comparison of f and g.
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Figure 7: Comparison of clipping frequencies by f(z) = g(z) = clip(z,—1,1) and f(z) = g(z) =
clip(z/10, —1, 1) in early learning stage.
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Comparison to baseline algorithms. We compare
MDAC against SAC (Haarnoja et al., 2018b), an 10
entropy-only-regularized method, and TD3 (Fuji-
moto et al., 2018), a non-regularized method. We
adopted f(z) =g(z) = clip(x/10,—1,1). Figure 8
compares the learning results. Notice that the final
IQM score of SAC does not match 1, because the
scores are normalized by the mean of all the SAC
runs, whereas IQM is calculated by middle 50% runs.

SAC Normalized IQM Score
o ° o
IS > ®

o
N

The results show that MDAC overtakes both SAC | DL
and TD3. Roughly speaking, MDAC requires only 00 g RS
the half amount of samples to reach reasonable per- 0 L mental Stops (e o

formance compared to SAC. Figure 8: Benchmarking results on Mujoco.

5.3 MDAC oN DEEPMIND CONTROL SUITE

Finally, we compare MDAC and SAC on challenging

dog domain from DeepMind Control Suite (Tunya- " e

suvunakool et al., 2020). We adopted stand, walk, MDAC
trot and run tasks. We train 10 different instances
of each algorithm for 2M environmental steps, and
report SAC normalized IQM scores. We adopted
f(z) = g(x) = clip(x/10, —1,1) for MDAC again.
Hyperparameters are set to equivalent values as Mu-
joco experiments. Figure 9 compares the learning -
results. Though the aggregated result is not statis- 2 / \\/\
tically strong, MDAC tends to reach better perfor- —

mace than SAC especially in walk and run. While
the performances of both algorithms often degrade O e nental Stepetesy 2
during the learning due to the difficulty of the dog

domain, this degradation is slightly mild for MDAC.
We conjecture that this effect is due to the implicit
KL-regularized nature of MDAC.

SAC Normalized IQM Score

Figure 9: Learning results on DeepMind Control
Suite dog envoironments.

6 CONCLUSION

In this study, we proposed MDAC, a model-free actor-critic instantiation of MDVI for continuous
action domains. We showed that its empirical performance is significantly boosted by bounding the
values of log-density terms in the critic loss. By relating MDAC to AL, we theoretically showed that
the error of optimal policy misspecification is decreased by bounding the advantage terms, as well
as the convergence analyses. Our analysis indicated that bounding both of the log-policy terms is
beneficial. Lastly, we evaluated the effectiveness of MDAC empirically in simulated environments.

Limitations. This study has three major limitations. First, our theoretical analyses are valid only for
fixed a. Thus, its exploding behavior observed in Section 3 for f = g = I is not captured. Second,
our theoretical analyses apply only to tabular cases in the current forms. To extend our analyses to
continuous state-action domains, we need measure-theoretic considerations as explored in Appendix
B of (Puterman, 1994). Last, our analyses and experiments do not offer the optimal design of the
bounding functions f and g. We leave these issues as open questions.

10
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Ethics Statement. Although the work presented here has an academic nature mostly, it helps the
development of capable autonomous agents. While our contributions do not have a direct path to
negative societal impacts, we urge that these must be considered when our research is applied.

Reproducibility Statement. The proofs for our theoretical results are formaly provided in Appendix
A. Our theoretical statements include their assumptions. Please be noticed that the focus of our paper
is limited to MDP. Regarding the experimental reproducibility; we submitted the anonymized code to
reproduce our experimental results. We provided the essential information of experimental settings in
Section 5. We also provided further experimental details in Appendix B.
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A PROOFS

A.1 BASIC PROPERTIES OF L¢

In this section, we omit W’s dependency to state s for the brevity. Let ¥ € R, For o > 0, we write
LY = alog<1,exp %) eR.

Lemma 1. It holds that

max ¥(a) < LY < max ¥(a) + alog|Al.
acA acA

Proof. Lety = max,eca ¥(a). We have that

exp = < <1 exp — > Z exp < |A| exp

acA

O =

Applying the logarithm to this inequality, we have

\
Y < log<1,exp> < Y + log |A|,
« « «

and thus the claim follows. |

Lemma 2. It holds that lim,_,o L*¥ — max,c4 ¥(a) .

Proof. Lety = maxgeq ¥(a) and B = {a € A|¥(a) = y}. It holds that

S , Y(a)
(}}L%L \I!_ilg%)alogZeXpT
acA
U(a) —
= lim alog (exp 4 Z exp M)
a—0 (0% (0%
acA
:y—i—olllgbalog Zexp —|—Zexp
a€B aéB

=1

_ ~ Y(a) -y
= y+i1310a10g |B| + %exp

Since ¥(a) —y < 0 for a € B, we have exp W — 0 for @ € B, which concludes the proof. W

A.2 PROOF OF THEOREM 1

We start from providing the formal definition of optimality-preserving and gap-increasing.
Definition 1 (Optimality-preserving). An operator T’ is optimality-preserving if, for any Qo €
RS*A and s € S, letting Qi1 = T'Qr V(s) = limg 00 maxpe 4 Qi (S, b) exists, is unique,
V(s) = V*(s), and for all a € A, Q*(s,a) < V*(s,a) = limsup,_, ., Qx(s,a) < V*(s).
Definition 2 (Gap-increasing). An operator T is gap-increasing if for all Qo € RS*A, s € S, a 6 .A
letting Q11 = T'Q and Vi (z) := max, Qk(s,b), liminfg_, [Vk — Qk(s,a) ] >V

Q" (s,a).

The following lemma characterizes when an operator is optimality-preserving and gap-increasing.

Lemma 3 (Theorem 1 in (Bellemare et al., 2016)). Let V(s) := max, Q(s,b) and let T be the
Bellman optimality operator TQ = R + yvPV. Let T' be an operator with the property that
there exists an p € [0,1) such that for all Q € RS*A, s € S;a € A, T'Q < TQ, and T'Q >
TQ —p(V — Q). Then T is both optimality-preserving and gap-increasing.

14
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Now, we state our Theorem 1 again.
Theorem 4 (Theorem 1 in the main text). In the limit o — 0, the operator 7;3;9+ , satisfies ’7;1;2 Uy <
TV and TI9 Wy, > T —B (Vi — W},) and thus is both optimality-preserving and gap-increasing.

Tk+1

Proof. From Lemma 2, we have L*(s)¥ — max,c4 ¥(s,a) as o — 0 for ¥ € RS*A,
Observe that, for h € {f,g}, it holds that h(Ar) = h(¥, — Vi) < 0 since Ai(s,a) =
Uy (s,a) — maxpeq Ui(s,b) < 0 and h does not flip the sign of argument. Additionally, for
Tr+1 € G(Py) it follows that (mx11, h(Ag)) = 0 since h(0) = 0. It holds that

T U, — T, = R+ Bf(A) + VP (Thy1, Ui — g(Ar)) = R — P (mpp1, V)

Th41
=B f(Ax) =P (mr41, 9(Ax)) < 0.
<0 =0

Furthermore, observing that  — f(z) < 0 for x < 0, it follows that

TI9 Wy — T, + B (Vi — ) = —B(Ar — f(Ar)) = ¥P (mkt1,9(Ar)) = 0.

Thk+1
<0 =0

Thus, the operator T,/ 9 , satisfies the conditions of Lemma 3. Therefore we conclude that T 9, 1s
both optimality-preserving and gap-increasing.
A.3  PROOF OF THEOREM 2

We provide several lemmas that are used to prove Theorem 2.

Lemma 4. For Q € RS*A Jet V =L"Q and V' = =Y. Then it holds that LV =V .

1-p
Proof. 1t holds that
1
L“\If’alog<1,ex le BBV>
a 1-—
1 1 BV
= alog <1,exp (al;Qﬁ)> + alogexp <_alﬁ—5>
_qe @ _ BV
1-8 1-p
We have
1 Q
gOa Q _ eXpEﬂ — exp% _gOT(Q): T
1-5 <1 expli> <1 epr> "
’ al-pB ’
and thus

a;;l%{;ﬁ =(r AAEQA, oH(r.) = 1 e — ari(m = “};‘* 4

Thus it follows that LW/’ = V. [ ]

Lemma 5. Let U € RS¥A V = LW and T be an operator with the properties that T'W < T*U
and T'VU > TV — 3(V =) = TV + B(A). Consider the sequence Vi1 := T'VUy with
Uy € RS*A and let Vi, = LYy, Then the sequence (V},)ren converges.

Proof. From T'¥ < T*W and observing that 7 has a unique fixed point, we have

lim sup ¥, = limsup(77)* ¥, < limsup(7%)*¥, = Qr. (12)

k—o0 k—o0 k—o0
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Thus, limsup,_,, Vi =: U is upper-bounded. Let V := lim SUP_y00 Vi- We will see that
liminfy_, o, Vi = V also. We have
Virr = LW 1 = (T2, Yiy1) + aH(mrt2)
> (g1 Yig1) + oH(mpy1)
= (Tpt1, T'Ur) + aH(Ths1)
(Tt1, TOUy + BAg) + aH(T11)

(Tt 1, TOg) + (1 = B)aH (Tp41)
(11, Qi +YP(Vie = V1)) + (1 = B)aH (mg41)
= )

= (g1, Qr + VP (Ve — Vi) + TH(Thq1) — ADKL (M1 ||7r) + ADke (g1 || 7x)

d
D v+ (Ths1, YP(Vie = V1)) + ADKL (T2 |78

> Vi + (Mg 1, VP (Ve — Vi)

where (a) follows from (711, Ag) = (741, alog 1) = —aH(mk41), (b) follows from T*W), =
R+ ~PL*¥;, = R+ vPVi = Qp+1, (¢) follows from (1 — f)a = 7, and (d) follows from
Vi =LY, = <7Tk+1, Qk> + TH(TFk+1) - ADKL(Wk+1||7Tk)- Thus we have

Vg1 — Vg > yP™ 41 (Vi — Vie—q)

A%

—~
S
=

—~
N

and by induction
Vier1 — Vie 2 Y Poy12(Vi — Vo),

where Pyy1.0 = P™+1P7 ... P™_ From the conditions on 7", if V} is bounded then V; is also
bounded, and thus ||V} — V||, < oco. By definition, for any 6 > 0 and n € N, 3k > n such that

Vi > V — 4. Since Py 1.2 is a nonexpansion in co-norm, we have
Vi = Ve = =" [Vi = Voll, = =" IV — Vollo, =
and forall t € N,

Vk+t Z ’V 6

Thus, we have
€

1-— ’y.
It follows that~ for any &’ > 0, we can choose an n € N to make e small enough such that for all
k>n,V, >V —¢§. Hence

lank+t2Vk_L>‘7_5—
teN 1—x

liminf Vj, =V,

k—o0

and thus V}, converges. |

Lemma 6. Let T be an operator satisfying the conditions of Lemma 5. Then for all k € N,

1
Vil < == [317 )l + P + arlog 4] (13)

Proof. Following the derivation of Lemma 5, we have

k
. -1
Vi1 —Vo > — Vi = W > — Vi =W . 14
=Yoo= -> 7w OHOO_l_WH 1= Vol (14)

i=1
We also have
Vi =LT'¥y <L“T*¥y = max (7, R+ vPVy) + aH(n) < |R + PVl + alog|A|
and then for pointwise
Vi = Vo < Riax + 2 [[Voll o, +alog|A.

16



Under review as a conference paper at ICLR 2025

Combining above and (14), we have

1
Viert 2 Vo = 1 (s + 21Val + alog | A) (15)
> Y il = (B + 2 [[Vall, + alog [A)) (16)
= 1 — 0ll oo 1_’7 max Oll oo a log
1
2 _ﬁ[3“%”oo +Rmax +OélOg|./4|:| (17)

Now assume that the upper bound of (13) holds up to & € N. Then we have

Vit = LOT0, < LOTOU,
= max (7, R + vyPV}) + aH(m)
< Rmax + 7 [Vl oo + alog|A|

§}%mx+1{?;PHWﬂu;+Rmm4kabgLM}+athM

~y
“1—v I 0|oo+( +1_7>( ax +alog |A])
1
S1.5 [3 [Vollo + Rmax + alog |,4@
The claim follows since (13) holds for k = 0. -

Theorem 5 (Theorem 2 in the main text). Let U € RS*XA V = Loy, ToU = R+ ~PIL*V and T’
be an operator with the properties that T'U < T*W and T’V > TV — B (V — V). Consider the
sequence V1 := T' WUy, with Ug € RS*A and let Vj, = LUy Further, with an abuse of notation,
we write V. € RS as the unique fixed point of the operator T™V = L™ (R + vPV). Then, the
sequence (Vi) ren converges, and the limit V = limp_ o0 Vi satisfies V¥ < V< Vi . Furthermore,

limsupy_, o Ui < Qf and liminfyyo0 Uy > 145 (Q _ Bf/), where O = R + APV

Proof. From (12), we already have the upper bound ¥ := limsup,, . ¥; < Q. Now, it holds that

U1 =T'0y
> TV, — B (Vi — W)
=R+ PV, — BVi + p¥y. (18)
Since LU = «log (1,exp ¥ /a) is continuous w.r.t. W, Lemma 6 implies that the sequence

(Uk)ken is bounded. Now, Vj converges to V' by Lemma 5. Furthermore, by Lemma 6 and
Lebesgue’s dominated convergence theorem, we have

lim PV = PV. (19)

k—00
Taking the lim sup of both sides of (18), we obtain
U > R+~PV — BV + B
= Q- BV + 87,
where Q = R + yPV. Thus it holds that
1

izm(é—ﬁf/). (20)

In addition, from the fact lim infj_, . V;, = V and taking the lim inf of both sides of (18), which
Lemma 6 guarantees to exist again, we also obtain the lower bound of lim infy_, o, Uy:

1

1-p

lim inf W, >
k—o0

(@-av)

17
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Applying L“ to the both sides of (20) and from Lemma 4, it follows that
V>LTO=L" (R+7Pf/) — TV
Using the above recursively, we have
V> lim (T7)*V =V} 1)
k—oo
Now, since L*W is continuous w.r.t. ¥ and strictly increasing everywhere, it holds that

limsup V4, = limsup L*Uy, = L*limsup ¥y, < LeQ% = V. (22)

k—o0 k—o0 k—o0

Combining (21) and (22), we have
Vi<V <V

A.4 PROOF OF PROPOSITION 1

We provide several lemmas that are used to prove Theorem 1.

Lemma 7. Consider the sequence ¥y 1 = T19 W, produced by the BAL operator (8) with

k41
Uy € RS*A, and let Vi, = LYWy, Then the sequence (Vy,)ren converges, if it holds that

ADxr (T4 llme) — yP™ (@H(Trs1) + (Th41,9(Ak))) > 0 (23)
forallk € N.
Proof. We follow similar steps as in the proof of Lemma 5. First, since 7;fk 9+ . W, < TP, we have
limsup,,_,., ¥p = ¥ < Q. Let V := limsup,,_,._ Vi. Now, it holds that

Viepr = L1 = (Thg2, Yigr) + oH(Tq2)
> (M1, Vie1) + aH(Tg11)

<7Tk+1,7;,€+1‘1’k> + oM (1)
= (Mot 1s Trpsr Wk — VP (rt1, 9(Ar)) + BF(Ar)) + aH (g 11)

g (st Trosr Ui — VP (Thg1, 9(A)) + BAR) + oM (Tpq1)
i ( k+1,m+lwk> +7H (1) = 7 (T, P (T, 9(Aw)
D (M1, R+ AP (Vi — aM(mi1))) + TH(T0g1) = YP™4 (mgr, 9(Ar)
@ (Tht1, Qr + YP(Vie = Vi1)) + 7H(mp1) — vP™ (aH(Tgq1) + (Trt1, 9(Ax)))
Vi £y P (Vi = Vo) + ADice (s ) — vP™4 (aH(miin) + (maer, 9(Ar)))

where (a) follows from the non-negativity of the advantage Ay and z — f(x) < 0, where (b) follows
from (mgy1, Ag) = (Mpt1, alog mpy1) = —aH(mg41) and (1 — B)a = 7, (c) follows from V;, =
Lew, = <7Tk+1, \I/k> +O/H(7Tk+1), (d) follows from 7 W, = ]%+’}/ID}LO‘\I/]f = R+~yPVy = Qk-&-l;
and (e) follows from Vk = La\:[/k = <’7‘l’]€+17 Qk‘> + TH(WkJrl) — )\DKL (7Tk+1 H’l‘rk) Thus, if it holds
that

ADky(Tg41||7x) — YP™ (aH (Tht1) + (g1, 9(Ar))) =0
for all k, we have
Vier1 — Vie > yP™ 41 (Viy — Vie—n).

Therefore, by following the steps equivalent to the proof of Lemma 5, we have that lim infy o0 Vi =
V and V}, converges. |

18
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Lemma 8. Let the conditions of Lemma 7 holds. Then for all k € N,

1
Vil < 7= [317 )l + P + arlog A 24)

Proof. Since the proof of Lemma 6 relies on two inequalities 7' < 7*W¥ and Vi1 — Vi >
~yPTr+1 (V). — Vj_1), the claim follows from the identical steps. [ ]

We are ready to prove Proposition 1.

Proposition 2 (Proposition 1 in the main text). Consider the sequence V41 := 7;’;“ Wy, produced
by the BAL operator (8) with ¥ € RS*A and let Vi, = L*W},. Assume that for all k € N it holds

that

ADkL (T l|me) = y P (@ (Th1) + (Thp1, 9(Ar))) 2 0. (25)

Then the sequence (Vi)ken converges, and the limit Vo= limg_yoo Vi satisfies VF —

512 Blog|A| < V < V. Furthermore, limsup, . ¥ < Q¥ and liminfj_,. ¥; >
ﬁ(@— ),whereQ:R—i—’fo/.

Proof. We already have the upper bound ¥ := limsup,,_, . ¥} < Q%. It holds that

Upyr = T19 Ty,

Th+1

= Trpis Y — YP(Tet1, 9(Ar)) + Bf(Ag)

(@)
> Trea U+ B (Vi — W)
=R+ ~PVy — BVi + BV, — yaPH(mk41)
> R+ PV — BV + Yy, — yalog | Al (26)
where (a) follows from the non-positivity of the soft advantage and the property of f and g. Since
LU = alog (1,exp ¥/a) is continuous w.r.t. ¥, Lemma 8 implies that the sequence (Uk)ken

is bounded. Now, V}, converges to V' by Lemma 7. Furthermore, by Lemma 8 and Lebesgue’s
dominated convergence theorem, we have limg_,o. PV, = PV. Let ¥ := liminfy_, ., V. Taking
the lim inf of both sides of (26), we obtain

U > R+ PV — BV + ¥ — yalog|A|

=Q — BV + BY —yalog| 4],
where Q = R + yPV. Thus it holds that
b
1-p

Now, applying L“ to the both sides of the above and follwoing the argument to derive (21), we have

> —— (Q - BV —alog|Al).

L'Q -

i A
6log\A| TV 1_610g|./4|,

where we used the fact that L*(Q +¢) = L.*(Q) + ¢ for a constant ¢. Therefore, using this expression
recursively we obtain

(7 * v «
V>V —— 1 .
>V 1_71_50g|«4\

Furthermore, since ¥ = limsup;,_, . ¥;, < Q% we have limsup,,_, . Vi < V;/ again. u
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A.5 PROOF OF THEOREM 3

Theorem 6 (Theorem 3 in the main text). Let {rmy } be a sequence of the policies obtained by BAL.
Defining AJY = (7%, B (A* — f(Ax_1)) — VP (mh, A1 — g(Ag_1))), it holds that:

K-1
2
||V* V7TK+1HOO < ’y’y Q,YK 1Vr;ax+ Z ,nykrfl HA{QHOO‘| . (27)
k=

Proof. For the policy 7441 = G%%(¥},), the operator 7.%°7 is a contraction map. Let V;" “" denote

Tk+1

the fixed point of 797 | that is, V, **' = 797 V[ *!' Observing that 7y, = Q;};T(Qk) -

TK+1° 7TK+1

QQLT(R + ~vPVj_1), we have for K > 1,

VI = VIR = TV = T Vi + T Viees = T Vi + T Vigoy — T27 Vs

TR41
(a) .
S AP (V= Vi) + P75 (Vi = VIR
= ,YPTF* (VT* - VK—l) + ’YPTFK-H (VK—l - VT* + VT* - VTWK-H)
_ (I_,YPWK+1)_1 (’yPﬂ'* _’yPﬂK-%—l) (VT* _VK—l)a (28)

where (a) follows from 7;O;TVK_1 < T Vg_1=TOT

TK+1

Vi _1 and the definition of ’TO T

We proceed to bound the term V* — Vi _;:

VE =V =TV =T Vg g4+ T Vg — Loy
= ’yPTr* (VT* — VK,Q) + AK71,
where Age 1 = T Vo — L®Wx ;. Observing that
]LO(\I’K,1 = <7TK, \I/K,1> + aH(ﬂ'K)

=max (1, Vi _1) + aH(r)

> (", U _q) +aH(n™)

= (", R+ Bf(Ak—2) + 7P (mr-1,¥Yk—2 — g(AKx_2))) + (T + Ba)H(7"),
we have

Ag_1 = (", R+yPVk_o) + TH(r*) — LV _,
< (7", Y PV —2) — (7", Bf(Ax—2) + YP (-1, VK2 — g(AK—2))) — BaH(7")
= (1", B(A; — f(Ak—2)) =YP (K1, Ax 2 — g(AK _2)))
=: Af(g_l.
Thus, it follows that
Vi = Vi1 S9P™ (V) = Vi—a) + AY,
K-1

< (P ) T vE )+ Y (vPT
k=1

\K—k—1
)AL

Plugging the above into (28) and taking ||-|| ., on both sides, we obtain

2y N K—k— 1H i
AR A2 VT A 9” 29
|| oo < 72 max+§ v 29)
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B ADDITIONAL EXPERIMENTAL DETAILS.

B.1 BAL ON GRID WORLD.

Figure 10 shows the grid world environment used in Section 5.1. The reward is » = 1 at the top-
right and botom left corners, » = 2 at the bottom-right corner and » = 0 otherwise. The action
space is A = {North, South, West, East}. An attempted action fails with probability 0.1 and
random action is performed uniformly. We set v = 0.99. We chose o = 0.02 and § = 0.99, thus
7 = (1 - f)a = 0.0002 and A = Sa = 0.0198. Since the transition kernel P and the reward
function R are directly available for this environment, we can perform the model-based M-VI (2)
and BAL (9) schemes. We performed 100 independent runs with random initialization of ¥ by
Uo(s,a) ~ Unif(=V7 VI ). Figure 4 compares the normalized value of the suboptimality
[[V™ — V*|loo, where we computed V* by the recursion V41 = 77V, = L7(R + vPV}) with
Vo(s) = 0 for all state s € S.

Figure 10: Grid world environment for model-based experiment.

B.2 MDAC oN MuJoOCO.

We used PyTorch? and Gymnasium? for all the experiments. We used rliable* to calculate the IQM
scores. MDAC is implemented based on SAC agent from CleanRL’. Each trial of MDAC run
was performed by a single NVIDIA V100 with 8 CPUs and took approximately 8 hours for 3M
environment steps. For the baselines, we used SAC agent from CleanRL with default parameters
from the original paper. We used author’s implementation® for TD3 with default parameters.

Table 1 summarizes the hyperparameter values for MDAC, which are equivalent to the values for
SAC except the additional S.

Per-environment results. Here, we provide per-environment results for ablation studies. Figure 12,
13, 14 and 15 show the per-environment results for Figure 5, 6, 8 and. 9, respectively.

Quantities in TD target under clipping. Figure 16 shows the the quantities in TD target for
f=g=clip(z,—1,1) and f = g = clip(z/10,—1,1).

https://github.com/pytorch/pytorch

3https ://github.com/Farama-Foundation/Gymnasium
*nttps://github.com/google-research/rliable
Shttps://github.com/vwxyzin/cleanrl
Shttps://github.com/sfujim/TD3
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Table 1: MDAC Hyperparameters

Parameter | Value
optimizer Adam (Kingma & Ba, 2015)
learning rate 3-1074
discount factor ~ 0.99
replay buffer size 106
number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU
target smoothing coefficient by polyack averaging (x) | 0.005
target update interval 1
gradient steps per environmental step 1
reparameterized KL coefficient 3 1—(1—7)?
entropy target H to optimize 7 = (1 — B)« —dim(.A)
Hopper-v4 Walker2d-v4 HalfCheetah-v4
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Figure 11: Per-environment performances for Figure 1. The median scores of 10 independent runs are reported.
The shaded region corresponds to the minimum and maximum scores over the 10 runs.
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1209 Figure 12: Per-environment performances for Figure 5. The median scores of 10 independent runs are reported.
1210 The shaded region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 13: Per-environment performances for Figure 6. The median scores of 10 independent runs are reported.

1237 g p g p P
1onn The shaded region corresponds to the minimum and maximum scores over the 10 runs.
1239
1240
1241

23



Under review as a conference paper at ICLR 2025

Hopper-v4 Walker2d-v4 HalfCheetah-v4
3500 6000 15000
o 3000 5000 12500
s
8 2500 4000 10000
@
2000
E 3000 7500
S 1500
w
= 2000 5000
8 1000
2500
500 1000
0
0 0
0.0 0.2 0.4 06 0.8 1.0 00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30
1e6 1e6 1e6
Ant-v4 Humanoid-v4 HumanoidStandup-v4
8000 200000
6000 175000
g 6000
S 4000 150000
2]
3 125000
@ 2000 4000
8 100000
7
2 0 2000 75000
50000
-2000
0 25000
00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30 00 05 10 15 20 25 30
Environmental Steps 1e6 Environmental Steps 1e6 Environmental Steps 1e6

Figure 14: Per-environment performances. The median scores of 10 independent runs are reported. The shaded
region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 15: Per-environment performances in dog domain from DeepMind Control Suite. The median scores of
10 independent runs are reported. The shaded region corresponds to the minimum and maximum scores over the
10 runs.
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Figure 16: Scale comparison of the quantities in TD target. Top row: clip(z,—1,1), Bpttom row:
clip(z/10,—1,1), Left column: Walker2d-v4, Middle column: HalfCheetah-v4. Right column:
Ant-v4.
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