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ABSTRACT

Regularization is a core component of recent Reinforcement Learning (RL) al-
gorithms. Mirror Descent Value Iteration (MDVI) uses both Kullback-Leibler
divergence and entropy as regularizers in its value and policy updates. Despite
its empirical success in discrete action domains and strong theoretical guarantees,
the performance improvement of a MDVI-based method over the entropy-only-
regularized RL is limited in continuous action domains. In this study, we propose
Mirror Descent Actor Critic (MDAC) as an actor-critic style instantiation of MDVI
for continuous action domains, and show that its empirical performance is signifi-
cantly boosted by bounding the values of actor’s log-density terms in the critic’s
loss function. Further, we relate MDAC to Advantage Learning by recalling that
the actor’s log-probability is equal to the regularized advantage function in tabular
cases, and theoretically show that the error of optimal policy misspecification is
decreased by bounding the advantage terms.

1 INTRODUCTION

Model-free reinforcement learning (RL) is a promising approach to acquire reasonable controllers
in unknown environments. In particular, actor-critic methods are appealing because they can be
naturally applied to continuous control domains. Actor-critic algorithms have been applied in a range
of challenging domains including robot control (Smith et al., 2023), magnetic control of tokamak
plasmas (Degrave et al., 2022), and alignment of large language models (Stiennon et al., 2020).

Regularization is a core component of, not only such actor-critic methods, but also value-based
reinforcement learning algorithms (Peters et al., 2010; Azar et al., 2012; Schulman et al., 2015; 2017;
Haarnoja et al., 2017; 2018a; Abdolmaleki et al., 2018). Kullback-Leibler (KL) divergence and
entropy are two major regularizers that have been adopted to derive many successful algorithms.
In particular, Mirror Descent Value Iteration (MDVI) uses both KL divergence and entropy as
regularizers in its value and policy updates (Geist et al., 2019; Vieillard et al., 2020a) and enjoys
strong theoretical guarantees (Vieillard et al., 2020a; Kozuno et al., 2022). However, despite its
empirical success in discrete action domains (Vieillard et al., 2020b), the performance improvement
of a MDVI-based algorithm over an entropy-only-regularized RL is limited in continuous action
domains (Vieillard et al., 2022).

In this study, we propose Mirror Descent Actor Critic (MDAC) as a model-free actor-critic instantia-
tion of MDVI for continuous action domains, and show that its empirical performance is significantly
boosted by bounding the values of actor’s log-density terms in the critic’s loss function. To understand
the impact of bounding beyond just as an "implementation detail", we relate MDAC to Advantage
Learning (Baird, 1999; Bellemare et al., 2016) by recalling that the policy’s log-probability is equal
to the regularized advantage function in tabular case, and theoretically show that the error of optimal
policy misspecification is decreased by bounding the advantage terms. Our analysis indicates that it is
beneficial to bound the log-policy term of not only the current state-action pair but also the successor
pair in the TD target signal.

Related Works. The key component of our actor-critic algorithm is to bound the log-policy terms
in the critic loss, which can be also understood as bounding the regularized advantages. Munchausen
RL clips the log-policy term for the current state-action pair, which serves as an augumented reward,
as an implementation issue (Vieillard et al., 2020b). Our analysis further supports the empirical
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suceess of Munchausen algorithms. Zhang et al. (2022) extended AL by introducing a clipping
strategy, which increases the action gap only when the action values of suboptimal actions exceed
a certain threshold. Our bounding strategy is different from theirs in the way that the action gap
is increased for all state-action pairs but with bounded amounts. Vieillard et al. (2022) proposed a
sound parameterization of Q-function that uses log-policy. By consruction, the regularized greedy
step of MDVI can be performed exactly even in actor-critic settings with their parameterization. Our
study is orthogonal to theirs since our approach modifies not the parameterization of the critic but its
loss function.

MDVI and its variants are instances of mirror descent (MD) based RL. There are substantial research
efforts in this direction (Wang et al., 2019; Vaswani et al., 2022; Kuba et al., 2022; Yang et al., 2022;
Tomar et al., 2022; Lan, 2023; Alfano et al., 2023). The MD perspective enables to understand the
existing successful algorithms in a unified view, analyze such methods with strong theoretical tools,
and propose a novel and superior one. This paper focuses on a specific choice of mirror, i.e. adopting
KL divegence and entropy as regularizers, and provides a deeper understanding in this specific scope
via a notion of gap-increasing Bellman operators.

It is well known that the log-policy terms in actor-critic algorithms often cause instability, since the
magnitude of log-policy terms grow large naturally in MDP, where a deterministic policy is optimal.
Recent RL implementations handle this problem by bounding the range of the standard deviation
for Gaussian policies (Achiam, 2018; Huang et al., 2022). Beyond such an implementation detail,
Silver et al. (2014) proposed to use deterministic policy gradient, which is a foundation of the recent
actor-critic algorithms such as TD3 (Fujimoto et al., 2018). On the other hand, Iwaki & Asada (2019)
proposed an implicit iteration method to stably estimate the natural policy gradient (Kakade, 2001),
which also can be viewd as a MD-based RL method (Thomas et al., 2013).

Contibutions. Our contributions are summarized as follows: (1) we proposed MDAC, a model-free
actor-critic instantiation of MDVI for continuous action domains, and showed that bounding the
log-density terms in the critic’s loss function significantly improves the performance of MDAC,
(2) we theoretically analyzed the validity and the effectivness of the bounding strategy by relating
MDAC to AL with bouded advantage terms, (3) we empirically explored what types of bounding
functions are effective, and (4) we demonstrated that MDAC performs better than baseline algorithms
in simulated benchmarks.

2 PRELIMINARY

MDP and Approximate Value Iteration. A Markov Decision Process (MDP) is specified by a tuple
(S,A, P,R, γ), where S is a state space,A is an action space, P is a Markovian transition kernel,R is
a reward function bounded by Rmax, and γ ∈ (0, 1) is a discount factor. For τ ≥ 0, we write V τmax =
Rmax+τ log |A|

1−γ (assuming A is finite) and Vmax = V 0
max. We write 1 ∈ RS×A the vector whose

components are all equal to one. A policy π is a distribution over actions given a state. Let Π denote
a set of Markovian policies. The state-action value function associated with a policy π is defined as
Qπ(s, a) = Eπ [

∑∞
t=0 γ

tR(St, At)|S0 = s,A0 = a], where Eπ is the expectation over trajectories
generated under π. An optimal policy satisfies π∗ ∈ argmaxπ∈ΠQ

π with the understanding that
operators are point-wise, and Q∗ = Qπ

∗
. For f1, f2 ∈ RS×A, we define a component-wise dot

product ⟨f1, f2⟩ = (
∑
a f1(s, a)f2(s, a))s ∈ RS . Let Pπ denote the stochastic kernel induced

by π. For Q ∈ RS×A, let us define PπQ = (
∑
s′ P (s

′|s, a)
∑
a′ π(a

′|s′)Q(s′, a′))
s,a
∈ RS×A.

Furthermore, for V ∈ RS let us define PV = (
∑
s′ P (s

′|s, a)V (s′))
s,a
∈ RS×A and PπV =

(
∑
a π(a|s)

∑
s′ P (s

′|s, a)V (s′))
s
∈ RS . It holds that PπQ = P ⟨π,Q⟩. The Bellman operator is

defined as TπQ = R + γPπQ, whose unique fixed point is Qπ. The set of greedy policies w.r.t.
Q ∈ RS×A is written as G(Q) = argmaxπ∈Π⟨Q, π⟩. Approximate Value Iteration (AVI) (Bellman
& Dreyfus, 1959) is a classical approach to estimate an optimal policy. Let Q0 ∈ RS×A be initialized
as ∥Q0∥∞ ≤ Vmax and ϵk ∈ RS×A represent approximation/estimation errors. Then, AVI can be
written as the following abstract form:{

πk+1 ∈ G(Qk)
Qk+1 = Tπk+1

Qk + ϵk+1
.
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Regularized MDP and MDVI. In this study, we consider the Mirror Descent Value Iteration
(MDVI) scheme (Geist et al., 2019; Vieillard et al., 2020a). Let us define the entropy H(π) =
−⟨π, log π⟩ ∈ RS and the KL divergence DKL(π1∥π2) = ⟨π1, log π1 − log π2⟩ ∈ RS

≥0. For
Q ∈ RS×A and a reference policy µ ∈ Π, we define the regularized greedy policy as Gλ,τµ (Q) =

argmaxπ∈Π (⟨π,Q⟩+ τH(π)− λDKL(π∥µ)). We write G0,τ for λ = 0 and G0,0(Q) = G(Q).
We define the soft state value function V (s) ∈ RS as V (s) = ⟨π,Q⟩ + τH(π) − λDKL(π∥µ),
where π = Gλ,τµ (Q). Furthermore, we define the regularized Bellman operator as T λ,τπ|µ Q = R +

γP (⟨π,Q⟩+ τH(π)− λDKL(π∥µ)). Given these notations, MDVI scheme is defined as{
πk+1 = Gλ,τπk

(Qk)

Qk+1 = T λ,τπk+1|πk
Qk + ϵk+1

, (1)

where π0 is initialized as the uniform policy.

Vieillard et al. (2020b) proposed a reparameterization Ψk = Qk + βα log πk. Then, defining
α = τ + λ and β = λ/(τ + λ), the recursion (1) can be rewritten as{

πk+1 = G0,α(Ψk)
Ψk+1 = R+ βα log πk+1 + γP ⟨πk+1,Ψk − α log πk+1⟩+ ϵk+1

. (2)

We refer (2) as Munchausen Value Iteration (M-VI). In the recursion (2), KL regularization is
implicitly applied through Ψk and there is no need to store πk for explicit computation of the KL
term. Notice that the regularized greedy policy πk+1 = G0,α(Ψk) can be obtained analytically in
discrete action spaces as

(
G0,α(Ψk)

)
(s, a) = expΨk(s,a)/α

⟨1,expΨk(s,a)/α⟩ =:
(
smα(Ψk)

)
(s, a).

3 MIRROR DESCENT ACTOR CRITIC WITH BOUNDED BONUS TERMS

In this section, we introduce a model-free actor-critic instantiation of MDVI for continuous action
domains, and show that a naive implementation results in poor performance. Then, we demonstrate
that its performance is improved significantly by a simple modification to its loss function.

Now we derive Mirror Descent Actor Critic (MDAC). Let πθ be a tractable stochastic policy such as
a Gaussian with a parameter θ. Let Qψ be a value function with a parameter ψ. The functions πθ and
Qψ approximate πk and Ψk in the recursion (2), respectively. Further, let ψ̄ be a target parameter that
is updated slowly, that is, ψ̄ ← (1− κ)ψ̄ + κψ with κ ∈ (0, 1). Now, we derive the losses for the
actor πθ and the criticQψ . LetD be a replay buffer that stores past experiences {(s, a, r, s′)}. We can
derive online and off-policy losses from the recursion (2) by (i) letting the parameterized policy πθ
be represent the information projection of πk in terms of the KL divergence, and (ii) approximating
the expectations using the transition samples drawn from D:

LQ(ψ) = E
(s,a,r,s′)∼D,
a′∼πθ(·|s′)

[(
r + βα log πθ(a|s) + γ

(
Qψ̄(s

′, a′)−α log πθ(a
′|s′)

)︸ ︷︷ ︸
y(s,a,r,s′,a′)

−Qψ(s, a)
)2]

, (3)

Lπ(θ) = E
s∼D

[
DKL

(
πθ(a|s)

∥∥ smα(Qψ) (s, a)
)]

= E
s∼D,

a∼πθ(·|s)

[
α log πθ(a|s)−Qψ(s, a)

]
. (4)

Though πθ can be any tractable distribution, we choose commonly used Gaussian policy in this paper.
We lower-bound its standard deviation by a common hyperparameter log σmin, which is typically
fixed to log σmin=−20 (Huang et al., 2022) or log σmin=−5 (Achiam, 2018). Although there are
two hyperparameters α and β originated from KL and entropy regularization, these hyperparameters
need not to be tuned manually. We fixed β = 1− (1− γ)2 as the theory of MDVI suggests (Kozuno
et al., 2022). For α, we perform an optimization process similar to SAC (Haarnoja et al., 2018b).
Noticing that the strength of the entropy regularization is governed by τ = (1− β)α, we optimize
the following loss in terms of α by stochastic gradient descent (SGD) with H̄ = −dim(A):

L(α) = E
s∼D,

a∼πθ(·|s)

[
−(1− β)α log πθ(a|s)− (1− β)αH̄

]
= (1− β)α E

s∼D

[
H (πθ(·|s))− H̄

]
.

(5)
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Figure 1: Effect of bounding log πθ terms.

The reader may notice that (3) and (4) are nothing more
than SAC losses (Haarnoja et al., 2018a;b) with the Mun-
chausen augumented reward (Vieillard et al., 2020b), and
expect that optimizing these losses results in good perfor-
mance. However, a naive implementation of these losses
leads to poor performance. The gray learning curve in Fig-
ure 1 is an aggregated learning result for 6 Mujoco envi-
ronments with log σmin=−5 1. The left column of Figure
2 compares the individual quantities in the TD target in
loss (3) for the initial learning phase in Walker2d-v4
and HalfCheetah-v4. To be precise, the means of the
quantities in the sampled minibatchs are plotted. Clearly,
the magnitude of the log-density terms get much larger
than the reward quickly. We hypothesized that the poor performance of the naive implementation is
due to this scale difference; the information of the reward is erased by the bonus terms. This explo-
sion is more severe in the Munchausen bonus βα log πθ(a|s) than the entropy bonus α log πθ(a

′|s′),
because while a′ is an on-policy sample from the current actor πθ, a is an old off-policy sample from
the replay buffer D. Careful readers may wonder if the larger log σmin resolves this issue. The yellow
learning curve in Figure 1 is the learning result for log σmin = −2, which still fails to learn. The
middle column of Figure 2 shows that the bonus terms are still divergent, and it is caused by the
exploding behavior of α. A naive update of α using the loss (5) and SGD is expressed as

α← α+
ρ(1− β)

N

N∑
n=1

(log πθ(an|sn)− dim(A)) ,

where ρ > 0 is a step-size, N is a mini-batch size and an ∼ πθ(·|sn). This expression indicates that,
if the average of log πθ(a|s) over sampled mini-batches are bigger than dim(A), α keeps growing.
Figure 2 indicates this phenomenon is indeed happening. We argue that, an unstable behavior of a
single component ruins the other learning components through the actor-critic structure. The α log πθ
terms make Qψ oscilatory, which hinders the optimization of the policy πθ and the coefficient α
through the losses (4) and (5). Then, α log πθ terms explode gradually and ruins Qψ again.
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Figure 2: Scale comparison of the quantities in TD target. Left: log σmin = −5, Middle: log σmin = −2, Right:
log σmin = −5 with bounding by tanh. Top: Walker2d-v4, Bottom: HalfCheetah-v4. α is indicated
by the right y-axis.

1More details on the setup and the metrics can be found in Section 5, and Figure 11 in Appendix B.2 shows
the per-environment results.
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We found that "bounding" α log πθ terms improves the performance significantly. To be precise, by
replacing the target y(s, a, r, s′, a′) in the critic’s loss (3) with the following, the agent succeeds to
reach reasonable performance (the green learning curve in Figure 1; log σmin=−5 is used):

y(s, a, r, s′, a′) = r + βtanh (α log πθ(a|s)) + γ
(
Qψ̄(s

′, a′)− tanh (α log πθ(a
′|s′))

)
. (6)

The right column of Figure 2 shows that Qψ is not ruined and α log πθ terms do not explode. In the
next section, we analyze what happens under the hood by theoretically investigating the effect of
bounding α log πθ terms. We argue that bounding α log πθ terms is not just an ad-hoc implementation
issue, but it changes the property of the underlying Bellman operator. We quantify the amount of ruin
caused by α log πθ terms, and show how this negative effect is mitigated by the bounding.

4 ANALYSIS

In this section, we theoretically investigate the properties of the log-policy-bounded target (6) in
tabular settings. Rather than analyzing a specific choice of bounding, e.g. tanh(x), we characterize
the conditions for bounding functions that are validated and effective. For the sake of analysis, we
provide an abstract dynamic programming scheme of the log-policy-bounded target (6) and relate
it to Advantage Learning (Baird, 1999; Bellemare et al., 2016) in Section 4.1. In Section 4.2, we
show that carefully chosen bounding function ensures asymptotically convergence. In Section 4.3,
we show that such bouding is indeed beneficial in terms of inherent error reduction property. All the
proofs will be found in Appendix A.

4.1 BOUNDED ADVANTAGE LEARNING

3 2 1 0 1 2 3

3

2

1

0

1

2

3 clip
tanh

Figure 3: Examples of f, g.

Let f and g be non-decreasing functions over R such that, for both
h ∈ {f, g}, (i) h(x) > 0 for x > 0, h(x) < 0 for x < 0 and
h(0) = 0, (ii) x− h(x) ≥ 0 for x ≥ 0 and x− h(x) ≤ 0 for x ≤ 0,
and (iii) their codomains are connected subsets of [−ch, ch]. The
functions tanh(x) and clip(x,−1, 1) satisfy these conditions. We
understand that the identity map I also satisfies these conditions
with ch →∞. Roughly speaking, we require the functions f and g
to lie in the shaded area in Figure 3. Then, the loss (3), (4) and (6)
can be seen as an instantiation of the following abstract VI scheme:{

πk+1 = G0,α(Ψk)
Ψk+1 = R+ βf (α log πk+1) + γP ⟨πk+1,Ψk − g (α log πk+1)⟩+ ϵk+1

. (7)

Notice that Munchausen-DQN and its variants are instantiations of this scheme, since their imple-
mentations clip the Munchausen bonus term by f(x) = [x]0l0 with l0 = −1 typically, while g = I .
Furthermore, if we choose f = g ≡ 0, (7) reduces to Expected Sarsa (van Seijen et al., 2009).

Now, from the basic property of regularized MDPs, the soft state value function V ∈ RS sat-
isfies V = α log

〈
µβ , exp Q

α

〉
= α log

〈
1, exp Ψ

α

〉
, where Ψ = Q + βα logµ. We write

LαΨ = α log
〈
1, exp Ψ

α

〉
for convention. The basic properties of Lα are summarized in Ap-

pendix A.1. In the limit α → 0, it holds that V (s) = maxa∈A Ψ(s, a). Furthermore, for a policy
π = G0,α(Ψ), α log π equals to the soft advantage function A ∈ RS×A:

α log π = α log
exp Ψ

α

⟨1, exp Ψ
α ⟩

= α log exp

(
Ψ− V
α

)
= Ψ− V =: A,

thus we have that α log πk+1 = Ak. Therefore, as discussed by Vieillard et al. (2020a), the recursion
(2) is written as a soft variant of Advantage Learning (AL):

Ψk+1 = R+ βAk + γP ⟨πk+1,Ψk −Ak⟩+ ϵk+1 = R+ γPVk − β(Vk −Ψk) + ϵk+1.

Given these observations, we introduce a bounded gap-increasing Bellman operator T fgπk+1
:

T fgπk+1
Ψk = R+ βf(Ak) + γP ⟨πk+1,Ψk − g(Ak)⟩ . (8)

5
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Then, the DP scheme (7) is equivalent to the following Bounded Advantage Learning (BAL):{
πk+1 = G0,α(Ψk)
Ψk+1 = T fgπk+1

Ψk + ϵk+1
. (9)

By construction, the operator T fgπk+1
pushes-down the value of actions. To be precise, since

maxa∈A Ψ(s, a) ≤ (LαΨ) (s), the soft advantage Ak is always non-positive. Thus, the re-
parameterized action value Ψk is decreased by adding the term βf(Ak). Obviously, the reduction is
smallest at the optimal action argmaxaΨk(s, a). Therefore, the operator T fgπk+1

increases the action
gaps with bounded magnitude dependent on f . In addition, as the term −γP ⟨πk+1, g(Ak)⟩ in Eq.
(8) indicates, the entropy bonus for the successor state action pair (s′, a′) ∼ Pπ(·|s, a) is decreased
by g.

We remark that BAL preserves the original mirror descent structure of MDVI (1). Noticing that
Qk = Ψk−βα log πk, (1−β)α = τ and βα = λ, and following some steps similar to the derivation
of Munchausen RL in Appendix A.2 of (Vieillard et al., 2020b), the bounded gap-increasing operator
(8) can be rewritten in terms of Q as

T̃ fgπk+1|πk
Qk = R− β (Ak − f(Ak)) + γP (⟨πk+1, Qk +Ak − g(Ak)⟩

+τH(πk+1)− λDKL(πk+1∥πk)) .

Therefore, BAL still aligns the the original mirror descent structure of MDVI, but with additional
modifications to the Bellman backup term. As we see later, the bounded gap-increasing operator (8)
is more tolerant than AL and M-VI to the errors of optimal policy misspecification, which quantify
the ruin caused by the soft advantage Ak = α log πk+1.

4.2 CONVERGENCE OF BAL

First, we investigate the asymptotic converegnce property of BAL scheme. Since gap-increasing
operators are not contraction maps in general, we need an argument similar to the analysis provided
by Bellemare et al. (2016).

We start from the case where α→ 0 while keeping β constant, which corresponds to KL-only regu-
larization. If an action-value function is updated using an operator T ′ that is optimality-preserving,
at least one optimal action remains optimal, and suboptimal actions remain suboptimal. Further, if
the operator T ′ is also gap-increasing, the value of suboptimal actions are pushed-down, which is
advantageous in the presence of approximation or estimation errors (Farahmand, 2011) (please see
Appendix A.2 for formal definitions). Notably, our operator T fgπk+1

is both optimality-preserving and
gap-increasing in the limit α→ 0.

Theorem 1. In the limit α → 0, the operator T fgπk+1
satisfies T fgπk+1

Ψk ≤ T Ψk and T fgπk+1
Ψk ≥

T Ψk − β (Vk −Ψk) and thus is both optimality-preserving and gap-increasing.

Next, we conisider the case α > 0. The following theorem characterizes the possibly biased
convergence of bounded gap-increasing operators under KL-entropy regularization.

Theorem 2. Let Ψ ∈ RS×A, V = LαΨ, T αΨ = R + γPLαΨ and T ′ be an operator with the
properties that T ′Ψ ≤ T αΨ and T ′Ψ ≥ T αΨ−β (V −Ψ). Consider the sequence Ψk+1 := T ′Ψk
with Ψ0 ∈ RS×A, and let Vk = LαΨk. Further, with an abuse of notation, we write V ∗

τ ∈ RS as the
unique fixed point of the operator T τV = Lτ (R+ γPV ). Then, the sequence (Vk)k∈N converges,
and the limit Ṽ = limk→∞ Vk satisfies V ∗

τ ≤ Ṽ ≤ V ∗
α . Furthermore, lim supk→∞ Ψk ≤ Q∗

α and

lim infk→∞ Ψk ≥ 1
1−β

(
Q̃− βṼ

)
, where Q̃ = R+ γP Ṽ .

Since T αΨk ≥ T fIπk+1
Ψk = T αΨk + βf(Ak) ≥ T αΨk + βAk, from Theorem 2 we can assure that

BAL is convergent and Ψk remains in a bounded range if g = I , even though Ṽ ̸= V ∗
τ in general.

Furthermore, this result suggests that Munchausen RL is convergent even when the ad-hoc clipping is
employed. However, Theorem 2 does not support the convergence for g ̸= I , even though g ̸= I is
empirically beneficial as seen in Section 3. The following Proposition 1 offers a sufficient condition
for the asymptotic convergence when g ̸= I , and characterizes the limiting behavior of BAL.
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Proposition 1. Consider the sequence Ψk+1 := T fgπk+1
Ψk produced by the BAL operator (8) with

Ψ0 ∈ RS×A, and let Vk = LαΨk. Assume that for all k ∈ N it holds that

λDKL(πk+1∥πk)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩) ≥ 0. (10)

Then, the sequence (Vk)k∈N converges, and the limit Ṽ = limk→∞ Vk satisfies V ∗
τ −

γ
1−γ

α
1−β log |A| ≤ Ṽ ≤ V ∗

α . Furthermore, lim supk→∞ Ψk ≤ Q∗
α and lim infk→∞ Ψk ≥

1
1−β

(
Q̃− βṼ − γα log |A|

)
, where Q̃ = R+ γP Ṽ .

We remark that the lower bound V ∗
τ −

γ
1−γ

α
1−β log |A| makes sense. Since V τmax = Vmax +

τ log |A|
1−γ ,

the magnutide of the lower bound roughly matches the un-regularized value, which appears because g
decreases the entropy bonus in the Bellman backup. One way to satisfy (10) for all k ∈ N is to use an
adaptive strategy to determine g. Since πk+1 is obtained before the update Ψk+1 = T fgπk+1

Ψk in BAL
scheme (9), it is possible that we first compute DKL(πk+1∥πk) and H(πk+1), and then adaptively
find g that satisfies (10), with additional computational efforts. In the following, however, we provide
an error propagation analysis and argue that a fixed g ̸= I is indeed beneficial.

4.3 BOUNDING DECREASES THE ERRORS OF OPTIMAL POLICY MISSPECIFICATION

Theorem 2 indicates that BAL is convergent but possibly biased even when g = I . However, we
can still upper-bound the error between the optimal entropy-regularized state value V ∗

τ , which is the
unique fixed point of the operator T τV = Lτ (R+ γPV ), and the entropy-regularized state value
V πk
τ for the sequence of the policies {πk}k generated by BAL. Theorem 3 below, which generalizes

Theorem 1 in Zhang et al. (2022) to KL-entropy-regularized settings with the bounding functions f
and g, provides such a bound and highlights the advantage of BAL for both f ̸= I and g ̸= I .

Theorem 3. Let {πk}k be a sequence of the policies obtained by BAL. Defining ∆fg
k =

⟨π∗, β (A∗
τ − f(Ak−1))− γP ⟨πk, Ak−1 − g(Ak−1)⟩⟩, it holds that:

∥V ∗
τ − V πK+1

τ ∥∞ ≤
2γ

1− γ

[
2γK−1V τmax +

K−1∑
k=1

γK−k−1
∥∥∥∆fg

k

∥∥∥
∞

]
. (11)

Since the suboptimality of BAL is characterize by Theorem 3, we can discuss its convergence
property as in previous researches (Kozuno et al., 2019; Vieillard et al., 2020a). The bound (11)
resembles the standard suboptimality bounds in the literature (Munos, 2005; 2007; Antos et al.,
2008; Farahmand et al., 2010), which consists of the horizon term 2γ/(1− γ), initialization error
2γK−1V τmax that goes to zero as K → ∞, and the accumulated error term. However, our error
terms do not represent the Bellman backup errors, but capture the misspecifications of the optimal
policy as we discuss later. We note that, the error term ∆fg

k does not contain the error ϵk, because
we simply omitted it in our analysis as done by Zhang et al. (2022). Our interest here is not in
the effect of the approximation/estimation error ϵk, but in the effect of the ruin caused by the
soft advantage Ak = α log πk+1, that is, the error inherent to the soft-gap-increasing nature of
M-VI and BAL in model-based tabular settings without any approximation. In the following,
we consider a decompostion of the error ∆fg

k = ∆Xf
k + ∆Hg

k and argue that (1) the cross term
∆Xf
k = −β ⟨π∗, f(Ak−1)⟩ has major effect on the sub-optimality and is always decreased by f ̸= I ,

and (2) the entropy terms ∆Hg
k = ⟨π∗, βA∗

τ − γP ⟨πk, Ak−1 − g(Ak−1)⟩⟩ are decreased by g ̸= I ,
although which is not always true.

To ease the exposition, first let us again consider the case α → 0 while keeping β > 0 constant.
Then, noticing that we have G0,0(Ψ) = G(Ψ), LαΨ(s)→ maxb∈A Ψ(s, b) and g(0) = 0, it follows
that the entropy terms are equal to zero: ⟨π∗, A∗⟩ = ⟨πk+1, Ak⟩ = ⟨πk+1, g(Ak)⟩ = 0. Thus, ∆fg

k

reduces to ∆Xf
k = −β ⟨π∗, f(Ak−1)⟩ and ∆Xf

k (s) = −βf (Ψk−1(s, π
∗(s))−Ψk−1(s, πk(s))).

Therefore, ∆k represents the error incurred by the misspecification of the optimal policy. For AL, the
error is ∆XI

k (s) = β (Ψk−1(s, πk(s))−Ψk−1(s, π
∗(s))). Since both AL and BAL are optimality-

preserving for α → 0, we have ∥∆XI
k ∥∞ → 0 and ∥∆Xf

k ∥∞ → 0 as k → ∞. Howerver, their
convergence speed is governed by the magnitude of ∥∆XI

k ∥∞ and ∥∆Xf
k ∥∞ at finite k, respectively.
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We remark that for all k it holds that |∆Xf
k | ≤ |∆XI

k | point-wise. Indeed, from the non-positivity
of Ak and the requirement to f , we always have Ak = I(Ak) ≤ f(Ak) point-wise and then
−βI(Ak(s, a)) ≥ −βf(Ak(s, a)) for all (s, a) and k, both sides of which are non-negative. Thus, we
have ⟨π∗,−βf(Ak−1)⟩ ≤ ⟨π∗,−βI(Ak−1)⟩ point-wise and therefore |∆Xf

k | ≤ |∆XI
k |. Furthermore,

we have ∥∆XI
k ∥∞ ≤

2Rmax

1−γ for AL while ∥∆Xf
k ∥∞ ≤ cf for BAL. Therefore, BAL has better

convergence property than AL by a factor of the horizon 1/(1− γ) in the case where Ψk is far from
optimal.

For the case α > 0, ∥∆fg
k ∥∞ → 0 does not hold in general. Further, the entropy terms are no longer

equal to zero. However, the cross term, which is an order of 1/(1−γ), is much larger unless the action
space is extremely large since the entropy is an order of log |A| at most, and is always decreased by
f ̸= I . Furthermore, we can expect that g ̸= I decreases the error ∆Hg

k , though it does not always
true. If g ̸= I , the entropy terms reduce to ∆HI

k = ⟨π∗, βA∗⟩. Since Ak−1 is non-positive, we have
Ak−1 − g(Ak−1) ≤ 0 from the requirements to g. Since the stochastic matrix P is non-negative, we
have P ⟨πk, Ak−1 − g(Ak−1)⟩ ≤ 0, where the l.h.s. represents the decreased negative entropy of the
successor state and its absolute value is again an order of log |A| at most. Since A∗ ≤ 0 also, whose
absolute value is an order of 1/(1 − γ), it holds that βA∗ ≤ βA∗ − γP ⟨πk, Ak−1 − g(Ak−1)⟩
and thus ∆HI

k = ⟨π∗, βA∗⟩ ≤ ⟨π∗, βA∗
τ − γP ⟨πk, Ak−1 − g(Ak−1)⟩⟩ = ∆Hg

k . When ∆Hg
k is

non-positive, it is guaranteed that
∣∣∆Hg

k

∣∣ ≤ ∣∣∆HI
k

∣∣. In addition, we can expect that this error is
largely decreased by zero function g(x) ≡ 0, though it makes harder to satisfy the inequality (10).
However, this inequality does not always hold because it depends on the actual magnitude of A∗ and
P ⟨πk, Ak−1 − g(Ak−1)⟩.
Overall, there is a trade-off in the choice of g; g = I always satisfies the sufficient condition of
asymptotic convergence (10), but the entropy term is not decreased. On the other hand, g(x) ≡ 0
is expected to decrease the entroy term, though which possibly violates (10) and might hinder the
asymptotic performance. In the next section, we examine how the choice of f and g affects the
empirical performance.

5 EXPERIMENT

5.1 BAL ON GRID WORLD

First, we compare the model-based tabular M-VI (2) and BAL (9) schemes. As discussed by Vieillard
et al. (2020a), the larger the value of β is, the slower the initial convergence of MDVI gets, and thus
M-VI as well. Since the reduction of the misspecification error by BAL is particularly effective when
Ψk is far from the optimal, we can expect that BAL is effective especially in earlier iterations. We
vaidate this hypothesis by a model-based tabular setting.

We use a gridworld environment, where transition kernel P and reward function R are directly
available. We performed 100 independent runs with random initialization of Ψ0. Figure 4 compares
the normalized value of the suboptimality ∥V πk − V ∗

τ ∥∞, where the interquatile mean (IQM) is
reported as suggested by Agarwal et al. (2021). The result suggests that BAL outperforms M-VI
initially. Furthermore, g ̸= I performs slightly better than g = I in the earlier stage, even in this
toy problem. Therefore, it is validated that BAL is effective especially in earlier iterations. More
experimental details are found in Appendix B.1.

5.2 MDAC ON MUJOCO LOCOMOATION ENVIRONMENTS

Setup and Metrics. Next, we empirically evaluate the effectiveness of MDAC on 6 Mujoco en-
vironments (Hopper-v4, HalfCheetah-v4, Walker2d-v4, Ant-v4, Humanoid-v4 and
HumanoidStandup-v4) from Gymnasium (Towers et al., 2023). We evaluate our algorithm
and baselines on 3M environmental steps, except for easier Hopper-v4 on 1M steps. For the
reliable benchmarking, we again report the aggregated scores over all 6 environments as suggested
by Agarwal et al. (2021). To be precise, we train 10 different instances of each algorithm with
different random seeds and calculate baseline-normalized scores along iterations for each task as
score =

scorealgorithm−scorerandom

scorebaseline−scorerandom
, where the baseline is the mean SAC score after 3M steps (1M

for Hopper-v4). Then, we calculate the IQM score by aggregating the learning results over all
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Figure 4: Results of M-VI and BAL on Gridworld.
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Figure 5: Effect of f ̸= I and g ̸= I on Mujoco.

6 environments. We also report pointwise 95% percentile stratified bootstrap confidence intervals.
We use Adam optimizer (Kingma & Ba, 2015) for all the gradient-based updates. The discount
factor is set to γ = 0.99. All the function approximators, including those for baseline algorithms,
are fully-connected feed-forward networks with two hidden layers and each hidden layer has 256
units with ReLU activations. We use a Gaussian policy with mean and standard deviation provided
by the neural network. We fixed log σmin=−5. More experimental details, including a full list of the
hyperparameters and per-environment results, will be found in Appendix B.2.

Effect of bounding functions f and g. We start from evaluating how the performance of MDAC is
affected by the choice of the bounding functions. First, we evaluate whether bounding both log π(a|s)
terms is beneficial. We compare 3 choices: (i) f = g = I , (ii) f(x) = tanh(x/10), g = I and (iii)
f(x)=g(x)=tanh(x/10). Figure 5 compares the learning results for these choices and it indicates
that bounding both α log π terms is indeed beneficial.
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Figure 6: Comparison of f and g.

Next, we compare 5 choices under f = g ̸= I: (i)
clip(x,−1, 1), (ii) clip(x/10,−1, 1), (iii) tanh(x),
(iv) tanh(x/10), and (v) sign(x). Notice that the last
choice (v) violates our requirement to the bounding
functions. Figure 6 compares the learning curves
for these choices. The result indicates that the per-
formence difference between clip(x) and tanh(x) is
small. On the other hand, the performance is boosted
if the slower saturating functions are used. Fur-
thermore, sign(x) resulted in the worst performance
among these choices. Figure 7 compares the frequen-
cies of clipping α log π terms by clip(x,−1, 1) and
clip(x/10,−1, 1) in the sampled minibatchs for the
initial learning phase in Walker2d-v4, HalfCheetah-v4 and Ant-v4. For clip(x,−1, 1),
the clipping occurs frequently especially for the current (s, a) pairs and the information of relative
α log π values between different state-actions are lost. On the other hand, for clip(x/10,−1, 1), the
clipping rarely happens and the information of relative α log π values are leveraged in the learning.
These results suggest that the relative values of α log π tems between different state-actions are
beneficial for the learning process, even though the raw values (by f=g=I) are harmful.

20000 40000 60000 80000 100000
Environmental Steps

0.0

0.2

0.4

0.6

0.8

1.0

C
lip

pi
ng

 F
re

qu
en

cy

Walker2d-v4

20000 40000 60000 80000 100000
Environmental Steps

HalfCheetah-v4

20000 40000 60000 80000 100000
Environmental Steps

Ant-v4

clip(x, 1, 1); current
clip(x, 1, 1); successor
clip(x/10, 1, 1); current
clip(x/10, 1, 1); successor

Figure 7: Comparison of clipping frequencies by f(x) = g(x) = clip(x,−1, 1) and f(x) = g(x) =
clip(x/10,−1, 1) in early learning stage.
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Figure 8: Benchmarking results on Mujoco.

Comparison to baseline algorithms. We compare
MDAC against SAC (Haarnoja et al., 2018b), an
entropy-only-regularized method, and TD3 (Fuji-
moto et al., 2018), a non-regularized method. We
adopted f(x) = g(x) = clip(x/10,−1, 1). Figure 8
compares the learning results. Notice that the final
IQM score of SAC does not match 1, because the
scores are normalized by the mean of all the SAC
runs, whereas IQM is calculated by middle 50% runs.
The results show that MDAC overtakes both SAC
and TD3. Roughly speaking, MDAC requires only
the half amount of samples to reach reasonable per-
formance compared to SAC.

5.3 MDAC ON DEEPMIND CONTROL SUITE
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Figure 9: Learning results on DeepMind Control
Suite dog envoironments.

Finally, we compare MDAC and SAC on challenging
dog domain from DeepMind Control Suite (Tunya-
suvunakool et al., 2020). We adopted stand, walk,
trot and run tasks. We train 10 different instances
of each algorithm for 2M environmental steps, and
report SAC normalized IQM scores. We adopted
f(x) = g(x) = clip(x/10,−1, 1) for MDAC again.
Hyperparameters are set to equivalent values as Mu-
joco experiments. Figure 9 compares the learning
results. Though the aggregated result is not statis-
tically strong, MDAC tends to reach better perfor-
mace than SAC especially in walk and run. While
the performances of both algorithms often degrade
during the learning due to the difficulty of the dog
domain, this degradation is slightly mild for MDAC.
We conjecture that this effect is due to the implicit
KL-regularized nature of MDAC.

6 CONCLUSION

In this study, we proposed MDAC, a model-free actor-critic instantiation of MDVI for continuous
action domains. We showed that its empirical performance is significantly boosted by bounding the
values of log-density terms in the critic loss. By relating MDAC to AL, we theoretically showed that
the error of optimal policy misspecification is decreased by bounding the advantage terms, as well
as the convergence analyses. Our analysis indicated that bounding both of the log-policy terms is
beneficial. Lastly, we evaluated the effectiveness of MDAC empirically in simulated environments.

Limitations. This study has three major limitations. First, our theoretical analyses are valid only for
fixed α. Thus, its exploding behavior observed in Section 3 for f = g = I is not captured. Second,
our theoretical analyses apply only to tabular cases in the current forms. To extend our analyses to
continuous state-action domains, we need measure-theoretic considerations as explored in Appendix
B of (Puterman, 1994). Last, our analyses and experiments do not offer the optimal design of the
bounding functions f and g. We leave these issues as open questions.
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Ethics Statement. Although the work presented here has an academic nature mostly, it helps the
development of capable autonomous agents. While our contributions do not have a direct path to
negative societal impacts, we urge that these must be considered when our research is applied.

Reproducibility Statement. The proofs for our theoretical results are formaly provided in Appendix
A. Our theoretical statements include their assumptions. Please be noticed that the focus of our paper
is limited to MDP. Regarding the experimental reproducibility; we submitted the anonymized code to
reproduce our experimental results. We provided the essential information of experimental settings in
Section 5. We also provided further experimental details in Appendix B.
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A PROOFS

A.1 BASIC PROPERTIES OF Lα

In this section, we omit Ψ’s dependency to state s for the brevity. Let Ψ ∈ RA. For α > 0, we write
LαΨ = α log

〈
1, exp Ψ

α

〉
∈ R.

Lemma 1. It holds that

max
a∈A

Ψ(a) ≤ LαΨ ≤ max
a∈A

Ψ(a) + α log |A|.

Proof. Let y = maxa∈A Ψ(a). We have that

exp
y

α
≤
〈
1, exp

Ψ

α

〉
=
∑
a∈A

exp
Ψ(a)

α
≤ |A| exp y

α
.

Applying the logarithm to this inequality, we have

y

α
≤ log

〈
1, exp

Ψ

α

〉
≤ y

α
+ log |A|,

and thus the claim follows. ■

Lemma 2. It holds that limα→0 LαΨ→ maxa∈A Ψ(a) .

Proof. Let y = maxa∈A Ψ(a) and B = {a ∈ A|Ψ(a) = y}. It holds that

lim
α→0

LαΨ = lim
α→0

α log
∑
a∈A

exp
Ψ(a)

α

= lim
α→0

α log

(
exp

y

α

∑
a∈A

exp
Ψ(a)− y

α

)

= y + lim
α→0

α log

∑
a∈B

exp
Ψ(a)− y

α︸ ︷︷ ︸
=1

+
∑
a̸∈B

exp
Ψ(a)− y

α


= y + lim

α→0
α log

|B|+∑
a̸∈B

exp
Ψ(a)− y

α

 .

Since Ψ(a)− y < 0 for a ∈ B, we have exp Ψ(a)−y
α → 0 for a ∈ B, which concludes the proof. ■

A.2 PROOF OF THEOREM 1

We start from providing the formal definition of optimality-preserving and gap-increasing.

Definition 1 (Optimality-preserving). An operator T ′ is optimality-preserving if, for any Q0 ∈
RS×A and s ∈ S, letting Qk+1 := T ′Qk, Ṽ (s) := limk→∞ maxb∈AQk(s, b) exists, is unique,
Ṽ (s) = V ∗(s), and for all a ∈ A, Q∗(s, a) < V ∗(s, a) =⇒ lim supk→∞Qk(s, a) < V ∗(s).

Definition 2 (Gap-increasing). An operator T ′ is gap-increasing if for allQ0 ∈ RS×A, s ∈ S, a ∈ A,
letting Qk+1 := T ′Qk and Vk(x) := maxbQk(s, b), lim infk→∞

[
Vk(s) − Qk(s, a)

]
≥ V ∗(s) −

Q∗(s, a).

The following lemma characterizes when an operator is optimality-preserving and gap-increasing.

Lemma 3 (Theorem 1 in (Bellemare et al., 2016)). Let V (s) := maxbQ(s, b) and let T be the
Bellman optimality operator T Q = R + γPV . Let T ′ be an operator with the property that
there exists an ρ ∈ [0, 1) such that for all Q ∈ RS×A, s ∈ S, a ∈ A, T ′Q ≤ T Q, and T ′Q ≥
T Q− ρ (V −Q). Then T ′ is both optimality-preserving and gap-increasing.
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Now, we state our Theorem 1 again.

Theorem 4 (Theorem 1 in the main text). In the limit α→ 0, the operator T fgπk+1
satisfies T fgπk+1

Ψk ≤
T Ψk and T fgπk+1

Ψk ≥ T Ψk−β (Vk −Ψk) and thus is both optimality-preserving and gap-increasing.

Proof. From Lemma 2, we have Lα(s)Ψ → maxa∈A Ψ(s, a) as α → 0 for Ψ ∈ RS×A.
Observe that, for h ∈ {f, g}, it holds that h(Ak) = h(Ψk − Vk) ≤ 0 since Ak(s, a) =
Ψk(s, a) − maxb∈A Ψk(s, b) ≤ 0 and h does not flip the sign of argument. Additionally, for
πk+1 ∈ G(Ψk) it follows that ⟨πk+1, h(Ak)⟩ = 0 since h(0) = 0. It holds that

T fgπk+1
Ψk − T Ψk = R+ βf(Ak) + γP ⟨πk+1,Ψk − g(Ak)⟩ −R− γP ⟨πk+1,Ψk⟩

= β f(Ak)︸ ︷︷ ︸
≤0

−γP ⟨πk+1, g(Ak)⟩︸ ︷︷ ︸
=0

≤ 0.

Furthermore, observing that x− f(x) ≤ 0 for x ≤ 0, it follows that

T fgπk+1
Ψk − T Ψk + β (Vk −Ψk) = −β

(
Ak − f(Ak)︸ ︷︷ ︸

≤0

)
− γP

〈
πk+1, g(Ak)

〉︸ ︷︷ ︸
=0

≥ 0.

Thus, the operator T fgπk+1
satisfies the conditions of Lemma 3. Therefore we conclude that T fgπk+1

is
both optimality-preserving and gap-increasing. ■

A.3 PROOF OF THEOREM 2

We provide several lemmas that are used to prove Theorem 2.

Lemma 4. For Q ∈ RS×A, let V = LτQ and Ψ′ = Q−βV
1−β . Then it holds that LαΨ′ = V .

Proof. It holds that

LαΨ′ = α log

〈
1, exp

1

α

Q− βV
1− β

〉
= α log

〈
1, exp

(
1

α

Q

1− β

)〉
+ α log exp

(
− 1

α

βV

1− β

)
= Lα

Q

1− β
− βV

1− β
.

We have

G0,α
(

Q

1− β

)
=

exp 1
α

Q
1−β〈

1, exp 1
α

Q
1−β

〉 =
exp Q

τ〈
1, exp Q

τ

〉 = G0,τ (Q) =: πτ ,

and thus

Lα
Q

1− β
=

〈
πτ ,

Q

1− β

〉
+ αH(πτ ) =

1

1− β
(
⟨πτ , Q⟩+ (1− β)αH(πτ )

)
=

1

1− β
LτQ.

Thus it follows that LαΨ′ = V . ■

Lemma 5. Let Ψ ∈ RS×A, V = LαΨ and T ′ be an operator with the properties that T ′Ψ ≤ T αΨ
and T ′Ψ ≥ T αΨ − β (V −Ψ) = T αΨ + β (A). Consider the sequence Ψk+1 := T ′Ψk with
Ψ0 ∈ RS×A, and let Vk = LαΨk. Then the sequence (Vk)k∈N converges.

Proof. From T ′Ψ ≤ T αΨ and observing that T α has a unique fixed point, we have

lim sup
k→∞

Ψk = lim sup
k→∞

(T ′)kΨ0 ≤ lim sup
k→∞

(T α)kΨ0 = Q∗
α. (12)
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Thus, lim supk→∞ Ψk =: Ψ̃ is upper-bounded. Let Ṽ := lim supk→∞ Vk. We will see that
lim infk→∞ Vk = Ṽ also. We have

Vk+1 = LαΨk+1 = ⟨πk+2,Ψk+1⟩+ αH(πk+2)

≥ ⟨πk+1,Ψk+1⟩+ αH(πk+1)

= ⟨πk+1, T ′Ψk⟩+ αH(πk+1)

≥ ⟨πk+1, T αΨk + βAk⟩+ αH(πk+1)

(a)
= ⟨πk+1, T αΨk⟩+ (1− β)αH(πk+1)

(b)
= ⟨πk+1, Qk + γP (Vk − Vk−1)⟩+ (1− β)αH(πk+1)

(c)
= ⟨πk+1, Qk + γP (Vk − Vk−1)⟩+ τH(πk+1)− λDKL(πk+1∥πk) + λDKL(πk+1∥πk)
(d)
= Vk + ⟨πk+1, γP (Vk − Vk−1)⟩+ λDKL(πk+1∥πk)
≥ Vk + ⟨πk+1, γP (Vk − Vk−1)⟩ ,

where (a) follows from ⟨πk+1, Ak⟩ = ⟨πk+1, α log πk+1⟩ = −αH(πk+1), (b) follows from T αΨk =
R + γPLαΨk = R + γPVk = Qk+1, (c) follows from (1 − β)α = τ , and (d) follows from
Vk = LαΨk = ⟨πk+1, Qk⟩+ τH(πk+1)− λDKL(πk+1∥πk). Thus we have

Vk+1 − Vk ≥ γPπk+1(Vk − Vk−1)

and by induction

Vk+1 − Vk ≥ γkPk+1:2(V1 − V0),
where Pk+1:2 = Pπk+1Pπk · · ·Pπ2 . From the conditions on T ′, if V0 is bounded then V1 is also
bounded, and thus ∥V1 − V0∥∞ < ∞. By definition, for any δ > 0 and n ∈ N, ∃k ≥ n such that
Vk > Ṽ − δ. Since Pk+1:2 is a nonexpansion in∞-norm, we have

Vk+1 − Vk ≥ −γk ∥V1 − V0∥∞ ≥ −γ
n ∥V1 − V0∥∞ =: −ϵ,

and for all t ∈ N,

Vk+t − Vk ≥ −
t−1∑
i=0

γiϵ ≥ −ϵ
1− γ

.

Thus, we have
inf
t∈N

Vk+t ≥ Vk −
ϵ

1− γ
> Ṽ − δ − ϵ

1− γ
.

It follows that for any δ′ > 0, we can choose an n ∈ N to make ϵ small enough such that for all
k ≥ n, Vk > Ṽ − δ′. Hence

lim inf
k→∞

Vk = Ṽ ,

and thus Vk converges. ■

Lemma 6. Let T ′ be an operator satisfying the conditions of Lemma 5. Then for all k ∈ N,

|Vk| ≤
1

1− γ

[
3 ∥V0∥∞ +Rmax + α log |A|

]
. (13)

Proof. Following the derivation of Lemma 5, we have

Vk+1 − V0 ≥ −
k∑
i=1

γi ∥V1 − V0∥∞ ≥
−1

1− γ
∥V1 − V0∥∞ . (14)

We also have

V1 = LαT ′Ψ0 ≤ LαT αΨ0 = max ⟨π,R+ γPV0⟩+ αH(π) ≤ ∥R+ γPV0∥∞ + α log |A|
and then for pointwise

V1 − V0 ≤ Rmax + 2 ∥V0∥∞ + α log |A|.
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Combining above and (14), we have

Vk+1 ≥ V0 −
1

1− γ
(Rmax + 2 ∥V0∥∞ + α log |A|) (15)

≥ −1− γ
1− γ

∥V0∥∞ −
1

1− γ
(Rmax + 2 ∥V0∥∞ + α log |A|) (16)

≥ − 1

1− γ

[
3 ∥V0∥∞ +Rmax + α log |A|

]
. (17)

Now assume that the upper bound of (13) holds up to k ∈ N. Then we have

Vk+1 = LαT ′Ψk ≤ LαT αΨk
= max ⟨π,R+ γPVk⟩+ αH(π)
≤ Rmax + γ ∥Vk∥∞ + α log |A|

≤ Rmax +
γ

1− γ

[
3 ∥V0∥∞ +Rmax + α log |A|

]
+ α log |A|

≤ γ

1− γ
3 ∥V0∥∞ +

(
1 +

γ

1− γ

)
(Rmax + α log |A|)

≤ 1

1− γ

[
3 ∥V0∥∞ +Rmax + α log |A|

]
The claim follows since (13) holds for k = 0. ■

Theorem 5 (Theorem 2 in the main text). Let Ψ ∈ RS×A, V = LαΨ, T αΨ = R+ γPLαΨ and T ′

be an operator with the properties that T ′Ψ ≤ T αΨ and T ′Ψ ≥ T αΨ− β (V −Ψ). Consider the
sequence Ψk+1 := T ′Ψk with Ψ0 ∈ RS×A, and let Vk = LαΨk. Further, with an abuse of notation,
we write V ∗

τ ∈ RS as the unique fixed point of the operator T τV = Lτ (R + γPV ). Then, the
sequence (Vk)k∈N converges, and the limit Ṽ = limk→∞ Vk satisfies V ∗

τ ≤ Ṽ ≤ V ∗
α . Furthermore,

lim supk→∞ Ψk ≤ Q∗
α and lim infk→∞ Ψk ≥ 1

1−β

(
Q̃− βṼ

)
, where Q̃ = R+ γP Ṽ .

Proof. From (12), we already have the upper bound Ψ̃ := lim supk→∞ Ψk ≤ Q∗
α. Now, it holds that

Ψk+1 = T ′Ψk

≥ T αΨk − β (Vk −Ψk)

= R+ γPVk − βVk + βΨk. (18)

Since LαΨ = α log ⟨1, expΨ/α⟩ is continuous w.r.t. Ψ, Lemma 6 implies that the sequence
(Ψk)k∈N is bounded. Now, Vk converges to Ṽ by Lemma 5. Furthermore, by Lemma 6 and
Lebesgue’s dominated convergence theorem, we have

lim
k→∞

PVk = PṼ . (19)

Taking the lim sup of both sides of (18), we obtain

Ψ̃ ≥ R+ γP Ṽ − βṼ + βΨ̃

= Q̃− βṼ + βΨ̃,

where Q̃ = R+ γP Ṽ . Thus it holds that

Ψ̃ ≥ 1

1− β

(
Q̃− βṼ

)
. (20)

In addition, from the fact lim infk→∞ Vk = Ṽ and taking the lim inf of both sides of (18), which
Lemma 6 guarantees to exist again, we also obtain the lower bound of lim infk→∞ Ψk:

lim inf
k→∞

Ψk ≥
1

1− β

(
Q̃− βṼ

)
.
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Applying Lα to the both sides of (20) and from Lemma 4, it follows that

Ṽ ≥ Lτ Q̃ = Lτ
(
R+ γP Ṽ

)
= T τ Ṽ .

Using the above recursively, we have

Ṽ ≥ lim
k→∞

(T τ )kṼ = V ∗
τ . (21)

Now, since LαΨ is continuous w.r.t. Ψ and strictly increasing everywhere, it holds that

lim sup
k→∞

Vk = lim sup
k→∞

LαΨk = Lα lim sup
k→∞

Ψk ≤ LαQ∗
α = V ∗

α . (22)

Combining (21) and (22), we have

V ∗
τ ≤ Ṽ ≤ V ∗

α .

■

A.4 PROOF OF PROPOSITION 1

We provide several lemmas that are used to prove Theorem 1.

Lemma 7. Consider the sequence Ψk+1 := T fgπk+1
Ψk produced by the BAL operator (8) with

Ψ0 ∈ RS×A, and let Vk = LαΨk. Then the sequence (Vk)k∈N converges, if it holds that

λDKL(πk+1∥πk)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩) ≥ 0 (23)

for all k ∈ N.

Proof. We follow similar steps as in the proof of Lemma 5. First, since T fgπk+1
Ψk ≤ T αΨk we have

lim supk→∞ Ψk =: Ψ̃ ≤ Q∗
α. Let Ṽ := lim supk→∞ Vk. Now, it holds that

Vk+1 = LαΨk+1 = ⟨πk+2,Ψk+1⟩+ αH(πk+2)

≥ ⟨πk+1,Ψk+1⟩+ αH(πk+1)

=
〈
πk+1, T fgπk+1

Ψk

〉
+ αH(πk+1)

=
〈
πk+1, Tπk+1

Ψk − γP ⟨πk+1, g(Ak)⟩+ βf(Ak)
〉
+ αH(πk+1)

(a)

≥
〈
πk+1, Tπk+1

Ψk − γP ⟨πk+1, g(Ak)⟩+ βAk
〉
+ αH(πk+1)

(b)
=
〈
πk+1, Tπk+1

Ψk
〉
+ τH(πk+1)− γ ⟨πk+1, P ⟨πk+1, g(Ak)⟩⟩

(c)
= ⟨πk+1, R+ γP (Vk − αH(πk+1))⟩+ τH(πk+1)− γPπk+1 ⟨πk+1, g(Ak)⟩
(d)
= ⟨πk+1, Qk + γP (Vk − Vk−1)⟩+ τH(πk+1)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩)
(e)
= Vk + γPπk+1(Vk − Vk−1) + λDKL(πk+1∥πk)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩) ,

where (a) follows from the non-negativity of the advantage Ak and x− f(x) ≤ 0, where (b) follows
from ⟨πk+1, Ak⟩ = ⟨πk+1, α log πk+1⟩ = −αH(πk+1) and (1 − β)α = τ , (c) follows from Vk =
LαΨk = ⟨πk+1,Ψk⟩+αH(πk+1), (d) follows from T αΨk = R+γPLαΨk = R+γPVk = Qk+1,
and (e) follows from Vk = LαΨk = ⟨πk+1, Qk⟩+ τH(πk+1)− λDKL(πk+1∥πk). Thus, if it holds
that

λDKL(πk+1∥πk)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩) ≥ 0

for all k, we have

Vk+1 − Vk ≥ γPπk+1(Vk − Vk−1).

Therefore, by following the steps equivalent to the proof of Lemma 5, we have that lim infk→∞ Vk =
Ṽ and Vk converges. ■
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Lemma 8. Let the conditions of Lemma 7 holds. Then for all k ∈ N,

|Vk| ≤
1

1− γ

[
3 ∥V0∥∞ +Rmax + α log |A|

]
. (24)

Proof. Since the proof of Lemma 6 relies on two inequalities T ′Ψ ≤ T αΨ and Vk+1 − Vk ≥
γPπk+1(Vk − Vk−1), the claim follows from the identical steps. ■

We are ready to prove Proposition 1.

Proposition 2 (Proposition 1 in the main text). Consider the sequence Ψk+1 := T fgπk+1
Ψk produced

by the BAL operator (8) with Ψ0 ∈ RS×A, and let Vk = LαΨk. Assume that for all k ∈ N it holds
that

λDKL(πk+1∥πk)− γPπk+1 (αH(πk+1) + ⟨πk+1, g(Ak)⟩) ≥ 0. (25)

Then, the sequence (Vk)k∈N converges, and the limit Ṽ = limk→∞ Vk satisfies V ∗
τ −

γ
1−γ

α
1−β log |A| ≤ Ṽ ≤ V ∗

α . Furthermore, lim supk→∞ Ψk ≤ Q∗
α and lim infk→∞ Ψk ≥

1
1−β

(
Q̃− βṼ − γα log |A|

)
, where Q̃ = R+ γP Ṽ .

Proof. We already have the upper bound Ψ̃ := lim supk→∞ Ψk ≤ Q∗
α. It holds that

Ψk+1 = T fgπk+1
Ψk

= Tπk+1
Ψk − γP ⟨πk+1, g(Ak)⟩+ βf(Ak)

(a)

≥ Tπk+1
Ψk + β (Vk −Ψk)

= R+ γPVk − βVk + βΨk − γαPH(πk+1)

≥ R+ γPVk − βVk + βΨk − γα log |A|, (26)

where (a) follows from the non-positivity of the soft advantage and the property of f and g. Since
LαΨ = α log ⟨1, expΨ/α⟩ is continuous w.r.t. Ψ, Lemma 8 implies that the sequence (Ψk)k∈N
is bounded. Now, Vk converges to Ṽ by Lemma 7. Furthermore, by Lemma 8 and Lebesgue’s
dominated convergence theorem, we have limk→∞ PVk = PṼ . Let Ψ̄ := lim infk→∞ Ψk. Taking
the lim inf of both sides of (26), we obtain

Ψ̄ ≥ R+ γP Ṽ − βṼ + βΨ̄− γα log |A|
= Q̃− βṼ + βΨ̄− γα log |A|,

where Q̃ = R+ γP Ṽ . Thus it holds that

Ψ̄ ≥ 1

1− β

(
Q̃− βṼ − γα log |A|

)
.

Now, applying Lα to the both sides of the above and follwoing the argument to derive (21), we have

Ṽ ≥ Lτ Q̃− γα

1− β
log |A| = T τ Ṽ − γα

1− β
log |A|,

where we used the fact that Lα(Q+c) = Lα(Q)+c for a constant c. Therefore, using this expression
recursively we obtain

Ṽ ≥ V ∗
τ −

γ

1− γ
α

1− β
log |A|.

Furthermore, since Ψ̃ = lim supk→∞ Ψk ≤ Q∗
α we have lim supk→∞ Vk ≤ V ∗

α again. ■
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A.5 PROOF OF THEOREM 3

Theorem 6 (Theorem 3 in the main text). Let {πk}k be a sequence of the policies obtained by BAL.
Defining ∆fg

k = ⟨π∗, β (A∗
τ − f(Ak−1))− γP ⟨πk, Ak−1 − g(Ak−1)⟩⟩, it holds that:

∥V ∗
τ − V πK+1

τ ∥∞ ≤
2γ

1− γ

[
2γK−1V τmax +

K−1∑
k=1

γK−k−1
∥∥∥∆fg

k

∥∥∥
∞

]
. (27)

Proof. For the policy πk+1 = G0,α(Ψk), the operator T 0,τ
πk+1

is a contraction map. Let V πK+1
τ denote

the fixed point of T 0,τ
πK+1

, that is, V πK+1
τ = T 0,τ

πK+1
V
πK+1
τ . Observing that πk+1 = Gλ,τπk

(Qk) =

Gλ,τπk
(R+ γPVk−1), we have for K ≥ 1,

V ∗
τ − V πK+1

τ = T 0,τ
π∗ V ∗

τ − T
0,τ
π∗ VK−1 + T 0,τ

π∗ VK−1 − T τVK−1 + T τVK−1 − T 0,τ
πK+1

V πK+1
τ

(a)

≤ γPπ
∗
(V ∗
τ − VK−1) + γPπK+1(VK−1 − V πK+1

τ )

= γPπ
∗
(V ∗
τ − VK−1) + γPπK+1(VK−1 − V ∗

τ + V ∗
τ − V πK+1

τ )

= (I − γPπK+1)
−1 (

γPπ
∗
− γPπK+1

)
(V ∗
τ − VK−1) , (28)

where (a) follows from T 0,τ
π∗ VK−1 ≤ T τVK−1 = T 0,τ

πK+1
VK−1 and the definition of T 0,τ

π .

We proceed to bound the term V ∗
τ − VK−1:

V ∗
τ − VK−1 = T 0,τ

π∗ V ∗
τ − T

0,τ
π∗ VK−2 + T 0,τ

π∗ VK−2 − LαΨK−1

= γPπ
∗
(V ∗
τ − VK−2) + ∆K−1,

where ∆K−1 = T 0,τ
π∗ VK−2 − LαΨK−1. Observing that

LαΨK−1 = ⟨πK ,ΨK−1⟩+ αH(πK)

= max
π
⟨π,ΨK−1⟩+ αH(π)

≥ ⟨π∗,ΨK−1⟩+ αH(π∗)

= ⟨π∗, R+ βf(AK−2) + γP ⟨πK−1,ΨK−2 − g(AK−2)⟩⟩+ (τ + βα)H(π∗),

we have

∆K−1 = ⟨π∗, R+ γPVK−2⟩+ τH(π∗)− LαΨK−1

≤ ⟨π∗, γPVK−2⟩ − ⟨π∗, βf(AK−2) + γP ⟨πk−1,ΨK−2 − g(AK−2)⟩⟩ − βαH(π∗)

= ⟨π∗, β (A∗
τ − f(AK−2))− γP ⟨πK−1, AK−2 − g(AK−2)⟩⟩

=: ∆fg
K−1.

Thus, it follows that

V ∗
τ − VK−1 ≤ γPπ

∗
(V ∗
τ − VK−2) + ∆fg

K−1

≤
(
γPπ

∗)K−1
(V ∗
τ − V0) +

K−1∑
k=1

(
γPπ

∗)K−k−1
∆fg
k .

Plugging the above into (28) and taking ∥·∥∞ on both sides, we obtain

∥V ∗
τ − V πK+1

τ ∥∞ ≤
2γ

1− γ

[
2γK−1V τmax +

K−1∑
k=1

γK−k−1
∥∥∥∆fg

k

∥∥∥
∞

]
. (29)

■
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B ADDITIONAL EXPERIMENTAL DETAILS.

B.1 BAL ON GRID WORLD.

Figure 10 shows the grid world environment used in Section 5.1. The reward is r = 1 at the top-
right and botom left corners, r = 2 at the bottom-right corner and r = 0 otherwise. The action
space is A = {North,South,West,East}. An attempted action fails with probability 0.1 and
random action is performed uniformly. We set γ = 0.99. We chose α = 0.02 and β = 0.99, thus
τ = (1 − β)α = 0.0002 and λ = βα = 0.0198. Since the transition kernel P and the reward
function R are directly available for this environment, we can perform the model-based M-VI (2)
and BAL (9) schemes. We performed 100 independent runs with random initialization of Ψ by
Ψ0(s, a) ∼ Unif(−V τmax, V

τ
max). Figure 4 compares the normalized value of the suboptimality

∥V πk − V ∗
τ ∥∞, where we computed V ∗

τ by the recursion Vk+1 = T τVk = Lτ (R + γPVk) with
V0(s) = 0 for all state s ∈ S.

Figure 10: Grid world environment for model-based experiment.

B.2 MDAC ON MUJOCO.

We used PyTorch2 and Gymnasium3 for all the experiments. We used rliable4 to calculate the IQM
scores. MDAC is implemented based on SAC agent from CleanRL5. Each trial of MDAC run
was performed by a single NVIDIA V100 with 8 CPUs and took approximately 8 hours for 3M
environment steps. For the baselines, we used SAC agent from CleanRL with default parameters
from the original paper. We used author’s implementation6 for TD3 with default parameters.

Table 1 summarizes the hyperparameter values for MDAC, which are equivalent to the values for
SAC except the additional β.

Per-environment results. Here, we provide per-environment results for ablation studies. Figure 12,
13, 14 and 15 show the per-environment results for Figure 5, 6, 8 and. 9, respectively.

Quantities in TD target under clipping. Figure 16 shows the the quantities in TD target for
f = g = clip(x,−1, 1) and f = g = clip(x/10,−1, 1).

2https://github.com/pytorch/pytorch
3https://github.com/Farama-Foundation/Gymnasium
4https://github.com/google-research/rliable
5https://github.com/vwxyzjn/cleanrl
6https://github.com/sfujim/TD3
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Table 1: MDAC Hyperparameters

Parameter Value

optimizer Adam (Kingma & Ba, 2015)
learning rate 3 · 10−4

discount factor γ 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU
target smoothing coefficient by polyack averaging (κ) 0.005
target update interval 1
gradient steps per environmental step 1
reparameterized KL coefficient β 1− (1− γ)2
entropy target H̄ to optimize τ = (1− β)α −dim(A)
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Figure 11: Per-environment performances for Figure 1. The median scores of 10 independent runs are reported.
The shaded region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 12: Per-environment performances for Figure 5. The median scores of 10 independent runs are reported.
The shaded region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 13: Per-environment performances for Figure 6. The median scores of 10 independent runs are reported.
The shaded region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 14: Per-environment performances. The median scores of 10 independent runs are reported. The shaded
region corresponds to the minimum and maximum scores over the 10 runs.
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Figure 15: Per-environment performances in dog domain from DeepMind Control Suite. The median scores of
10 independent runs are reported. The shaded region corresponds to the minimum and maximum scores over the
10 runs.
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Figure 16: Scale comparison of the quantities in TD target. Top row: clip(x,−1, 1), Bpttom row:
clip(x/10,−1, 1), Left column: Walker2d-v4, Middle column: HalfCheetah-v4. Right column:
Ant-v4.
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