
Natural Language Can Help Bridge
the Sim2Real Gap

Albert Yu, Adeline Foote, Raymond Mooney, and Roberto Martı́n-Martı́n
UT Austin

{albertyu, addiefoote, mooney}@utexas.edu, robertomm@cs.utexas.edu

Abstract—The main challenge in learning image-conditioned
robotic policies is acquiring a visual representation conducive
to low-level control. Due to the high dimensionality of the
image space, learning a good visual representation requires a
considerable amount of visual data. However, when learning
in the real world, data is expensive. Sim2Real is a promising
paradigm for overcoming data scarcity in the real-world target
domain by using a simulator to collect large amounts of cheap
data closely related to the target task. However, it is difficult to
transfer an image-conditioned policy from sim to real when the
domains are very visually dissimilar. To bridge the sim2real visual
gap, we propose using natural language descriptions of images
as a unifying signal across domains that captures the underlying
task-relevant semantics. Our key insight is that if two image
observations from different domains are labeled with similar
language, the policy should predict similar action distributions
for both images. We demonstrate that training the image encoder
to predict the language description or the distance between
descriptions of a sim or real image serves as a useful, data-
efficient pretraining step that helps learn a domain-invariant
image representation. We can then use this image encoder as
the backbone of an IL policy trained simultaneously on a large
amount of simulated and a handful of real demonstrations.
Our approach outperforms widely used prior sim2real methods
and strong vision-language pretraining baselines like CLIP and
R3M by 25 to 40%. See additional videos and materials at
https://robin-lab.cs.utexas.edu/lang4sim2real/.

I. INTRODUCTION

Recently, visual imitation learning (IL) has achieved sig-
nificant success on manipulation tasks in household environ-
ments [46, 5]. However, these methods rely on large amounts
of data in very similar domains to train data-hungry image-
conditioned policies [5, 6, 39]. Some researchers are attempt-
ing to generalize visual IL to any target domain by collecting
large datasets of demonstrations from mixed domains. In this
work, we explore a different approach: can we transfer a policy
trained on cheaply acquired, diverse simulation data to a real-
world target task with just a few demonstrations?

A solution to effectively leverage cheap sim data while
successfully fitting scarce real-world demonstrations is to
create a domain-agnostic visual representation and use it for
policy training. Such a representation should enable the policy
to use the simulation image-action data as an inductive bias to
learn with few-shot real world data. This representation must
allow the policy to tap into the right distribution of actions
by being broad enough to capture the task-relevant semantic
state from image observations, yet fine-grained enough to
be conducive to low-level control. For instance, a sim and

“gripper holding 
bread over square”

“gripper holding milk 
next to container”

“gripper wrapping 
blender wire”

Language 
emb. space

Domain-invariant 
learned image space

“gripper holding carrot 
above yellow mat”

Policy learning

𝐼!"#

𝐼$%&'

𝜋(𝑎|𝑓 𝐼 )

Fig. 1. Bridging the sim2real gap with language. Robot images from
simulation and the real world with similar language descriptions (green &
purple borders) are mapped to similar features in language embedding space,
while sim and real images with different language descriptions (teal & red)
are mapped to faraway locations. We propose using language embedding
similarities to re-shape the image embeddings (center) to create a domain-
invariant image space. A policy is learned conditioned on these image
embeddings from both sim and real images (right).

real image observation, both showing the robot gripper a few
inches above a pan handle, should lie close together in the
image embedding space to lead to similar actions, even if the
two images have large differences in pixel space.

How might we acquire supervision for learning such a visual
representation? Language is an ideal medium for providing it.
Descriptions of task-relevant features in image observations,
such as whether or not a gripper is close to a pan handle,
serve as a unifying signal to align the representations of
images between sim and real. We hypothesize that if a sim
and real image have similar language descriptions (e.g., “the
gripper is open and right above the pan handle”), then their
underlying semantic states are also similar, and thus the actions
the policy predicts conditioned on each image should also
be semantically similar (e.g., moving downward to reach
the pan handle). The pretrained embedding space of large
language models (LLMs) offers a well-tuned signal that can

https://robin-lab.cs.utexas.edu/lang4sim2real/


be leveraged to measure the semantic similarity between real
and sim images via their associated language descriptions (see
Fig. 1). This simple insight allows us to learn a domain-
agnostic visual representation to bridge the visual sim2real
gap.

A popular paradigm in foundation model research is to first
pretrain the backbone on large datasets, and then add and
train a task-specific head to process the backbone outputs to
perform a downstream task. We borrow from this paradigm
by first pretraining an image encoder to predict the pretrained
embeddings of language descriptions of images from roughly
a few hundred trajectories in sim and real, with language
labels on each image. Then we use this image encoder as
the backbone of our IL policy and train on action-labeled data
from both the sim and real domains simultaneously, where we
only need a few action-labeled demonstrations from the real
world.

In this paper, we introduce Lang4Sim2Real, a lightweight
framework for transferring between any two domains that
have large visual differences but contain data across a similar
distribution of tasks. Our approach has the following main
advantages over prior sim2real efforts:
1) Alleviates the need for the engineering-intensive task of

system identification, or more broadly trying to exactly
match a sim environment to the real environment both
visually and semantically.

2) Enables sim2real transfer on tasks involving deformable
objects that are hard to simulate with the same dynamics
and visual appearance as the real-world version of the
objects.

3) Bridges a wide sim2real gap that includes differences in:
camera point-of-view (1st vs 3rd person), friction and
damping coefficients, task goals, robot control frequencies,
and initial robot and object position distributions.

In the few-shot setting, on long-horizon multi-step real-
world tasks, these advantages enable Lang4Sim2Real to out-
perform prior SOTA methods in sim2real and vision repre-
sentation learning by 25-40%. To our knowledge, this is the
first work that shows that using language to learn a domain-
invariant visual representation can help improve the sample
efficiency and performance of sim2real transfer.

II. RELATED WORK

Our main contribution is a method to learn domain-invariant
image representations by exploiting natural language descrip-
tions as a bridge between domains for sim2real transfer. While
we believe this has not been explored before, significant
related research has been done in vision-language pretraining,
sim2real techniques, and domain-invariant representations for
control.

A. Vision Pretraining for Robotics

Various works have found that vision-only pretraining
improves performance on image-based robotic policies. Prior
work has explored pretraining objectives ranging from masked

image modeling [43], image reconstruction [64, 16, 48], con-
trastive learning [28, 18], video frame temporal ordering [24],
future frame prediction [64], and image classification [62, 58]
on internet-scale datasets such as ImageNet [10], Ego4D [15],
Something-Something [14], and Epic Kitchens [9]. While
these vision-only pretraining objectives learn good representa-
tions for robotic control within a specific domain distribution
(such as the real world), they are not necessarily robust to the
wide domain shifts encountered during sim2real.

In vision-language pretraining, contrastive learning [42,
63] has been shown to learn valuable representations for
robotic tasks [51, 52]. However, these pretrained visual rep-
resentations are often overly influenced by the semantics of
language captions. This results in a representation that is too
object-centric to differentiate between different frames of a
robot demonstration, lacking the level of granularity needed
for spatial-temporal understanding. R3M [37] addresses this
by learning semantics from language labels of videos but
also training with a time contrastive loss between video
frames. Prior work in multimodal representations [65] found
language to be effective in aligning representations learned
across multiple modalities including depth and audio. Instead
of using language to bridge modalities, our approach uses
language to bridge visual representations between domains.

B. Sim2Real

While we approach sim2real through vision-language pre-
training, there are many alternative, well-researched tech-
niques. Domain randomization [3, 32, 55] involves varying
physical parameters and visual appearances of the simulation
to train a policy that functions in a wide distribution of
domains that hopefully also covers the target domain distribu-
tion. However, domain randomization requires a large amount
of diverse training data and attempts to be simultaneously
performant in an overly broad distribution of states, leading to
a suboptimal and conservative policy that takes longer to train.
System identification [61, 26] involves tuning the simulation
parameters to match the real world in order to create a custom-
tailored simulation environment that easily transfers to the real
domain. However, this process is very engineering intensive
and time consuming, and it may be intractable to simulate
all real world physical interactions with high fidelity and
throughput. In contrast, our sim2real approach can handle
large source and target domain discrepancies with a few target
task demonstrations and does not require system identification
or domain randomization.

C. Domain-Invariant Representations

Several methods have been proposed to learn domain in-
variant representations. The domain-adaptation community has
extensively researched using Generative Adversarial Net-
works (GANs) to map images from one distribution into
another, using pixel space as a medium of common represen-
tation [21, 4, 19, 45]. However, GANs require a large training
dataset and are notorious for unstable training. Additionally,
enforcing similarity on the input image side at the pixel level is



less efficient than our method, which encourages cross-domain
distributional similarity in a compact, low-dimensional image
encoder space. Furthermore, researchers in self-driving have
studied using semantic segmentation and depth maps [35, 2]
as a common representation space between domains, though
their effectiveness has only been demonstrated in navigation
tasks with binary segmentation masks, which is too simplified
for the long-horizon manipulation tasks we consider.

D. Language and Robotics

A growing body of work has investigated training mul-
titask robotic policies conditioned on language instruction
embeddings [22, 30, 33, 34, 50, 54, 53, 25], or a combina-
tion of language instructions and goal images/demonstrations
[23, 49, 60]. Our approach also involves learning a language-
conditioned policy, but unlike prior work, our main novelty
is using language for a second use-case: as scene descrip-
tors during pretraining to pull together semantically similar
image observations between two visually dissimilar domains.
Language has also been used for reward shaping in RL
[36, 12, 13, 11, 31], and as a high-level planner in long-horizon
tasks [20, 1, 7, 44]. These areas of research are more ancillary
to our contributions, as we demonstrate our approach with IL
instead of RL and with fine-grained manipulation tasks that
do not require extensive planning.

III. PROBLEM DESCRIPTION

In this work, we address the problem of few-shot visual
imitation-learning (IL): learning a visuomotor manipulation
policy in the real world based on a few real-world demonstra-
tions. We assume access to a large amount of simulation data
and cast few-shot IL as a sim2real problem. More concretely,
we render the few-shot IL problem as a k + 1 multi-task IL
problem: k tasks from simulation and the target task (with a
few demonstrations) in the real world. In general terms, we
assume a source domain in which data can be acquired cheaply
and a target domain where data is expensive to collect.

In our setting, we consider access to two datasets across two
domains: Ds, which spans multiple tasks in the source domain,
and Dt

target, which contains a small number of demonstrations
of the target task in the target domain we want to transfer
to. Thus, we assume that | Ds | >> | Dt

target |, due to how
expensive target domain data collection is (such as in the real
world). We make two assumptions about the two domains.
First, we assume the source and target tasks are all of the
same general structure, such as multi-step pick-and-place task
compositions, but with different objects and containers across
different subtasks. Otherwise, transfer would be infeasible in
the low-data regime if the source and target domain tasks
lack similarity. Second, to train a common policy for both
domains, we assume the domains share state and action space
dimensionality. We make no further assumptions about the
similarity between the two domains.

All of our datasets are in the form of expert trajectories.
Each trajectory, τ = {(It, st, [at, lt], ltask)}, is a sequence of
tuples containing an image observation, It (128× 128 RGB),

robot proprioceptive state, st (end effector position and joint
angles), and a language instruction of the task, ltask. Note
that ltask is the same over all timesteps of all trajectories in
a given task. [at, lt] denotes that a trajectory may optionally
also include robot actions (in which case we consider the
trajectory a full demonstration) and/or a language description
of the image It. In the following sections, we identify with
τ [L] a trajectory with language descriptions lt, but no actions
at. Similarly, τ [A] is a full demonstration with actions, at, but
no language descriptions, lt.

The language labels for images can be automatically gener-
ated from a programmatic function that maps image observa-
tions to language scene descriptions depending on the relative
position between the robot and the objects in the scene. We
elaborate on these language labels and how to automatically
collect them in Section IV-A. Note that these language scene
descriptions, lt, are different from the language instruction
associated with each task, ltask.

Different data elements and types of trajectories will be
used during pretraining and policy few-shot training: dur-
ing pretraining, we use τ [L] image-language (It, lt) pairs
from Ds ∪Dt

target. During policy learning, we use τ [A]

data: (It, st, at, ltask) tuples from Ds ∪Dt
target. In the next

section, we explain how these two steps are defined for
Lang4Sim2Real.

IV. LANG4SIM2REAL: FEW-SHOT IL WITH SIM&REAL

In our method, we adopt the common pretrain-then-finetune
learning paradigm (see Fig. 2). First, we pretrain an image
backbone encoder on cross-domain language-annotated image
data (Sec. IV-B). Then, we freeze this encoder and train a
policy network composed of trainable adapter modules and a
policy head to perform behavioral cloning (BC) [46] on action-
labeled data from both domains (Sec. IV-C). To leverage the
simulation data, we train a k + 1 multi-task BC policy that
learns for k tasks in the source domain (sim) and 1 in the
target domain (real, few shot).

A. Automatic Language labeling of Images

To acquire image-language pairs for pretraining, we im-
plement an automated pipeline for labeling the images of a
trajectory that occurs synchronously during scripted policy
demonstration collection (see Appendix IX-A). Each if-case in
the scripted policy corresponds to a stage index, where in pick-
and-place, the first stage corresponds to the gripper moving
to a point above the object, the second stage corresponds to
the gripper moving vertically down toward the object, and
so on. We define a list of template strings describing the
scene for each of these stages, so the stage indexes into the
template string list, giving us our language annotation for the
image. See Table III in the Appendix for all template strings,
and Appendix IX-G1 for details about our language labeling
procedure.

However, our language labeling process need not be syn-
chronously coupled with scripted policy demonstration collec-
tion. We also implemented a labeling process using off-the-



𝐼!"#

𝐼$%&'

Image-Language Pretraining1

Multitask, Multidomain Behavioral Cloning2

CNN

La
st

 L
ay

er
 🔥

Sp
at

ia
l 

So
ft

m
ax

FiLM🔥

	+

Task Instruction: “Place carrot on yellow mat.”

LLM

𝑥, 𝑦, 𝑧, 𝑔

concat

1024 512 256

FC Layers

CNN LLM

🔥 ❄

Language-regularized CNN pretraining variants

𝑓!"#$!"

𝑓!"#%&'(

𝑓(')#$!"

𝑓!"#%&'(

Lang 
pred.
𝑔 ⋅

𝑓(')#$!"

𝑓(')#%&'(

𝑓"(')#$!"

𝑓"(')#%&'(

ℒ()),$%+

𝑓(')#%&'(

𝑓!"#
$!"

A. Regression-based B. Distance-based

𝑓(')#$!"

𝑓(')#%&'(𝑑(')#

𝑓!"#$!"
𝑓!"#%&'(

𝑑!"#

ℒ()),,"!-

𝑙!"#

𝑙$%&'

“gripper holding 
bread over square”

“gripper holding carrot 
over yellow mat”

🔥

❄

❄

𝑥

𝑦
𝑧

robot state

Fig. 2. Method. (i) Top: During Image-Language Pretraining, we train
the image encoder fcnn using the language embeddings associated with
descriptions of both sim and real image observations. fd

img and fd
lang refer to

the output features of the CNN and the LLM, respectively, in domain d. With
regression-based loss (A) the image embeddings are pushed to predict the
corresponding language embeddings whereas with distance based loss (B) the
pair of image embeddings is pushed together/apart based on the similarity of
the language embeddings. (ii) Bottom: During Multitask, Multidomain BC,
we freeze our pretrained fcnn, add adapter modules and a policy head and
allow the last layer of the CNN to finetune, then train the resulting multitask
language-conditioned policy on Ds ∪Dt

target.

shelf vision-language models to detect the location of objects
and the gripper in the image to predict the stage number.
This process can be run on previously-collected trajectories
and requires only the images of a trajectory alone, without
need for additional action or state information. We describe
this second process in Appendix IX-G2. Empirically, using
language from this second, more scalable automated approach
does not degrade the performance of our method.

B. Cross-Domain Image-Language Pretraining

After collecting trajectories with language labels, our first
step in Lang4Sim2Real involves learning a domain-invariant
representation that will enable leveraging simulation data for
few shot IL. For that, we need to learn an image observation
encoder, fcnn : It → Rdcnn , that attains the following
property: it should preserve the semantic similarity of scenes in
images between the two domains. For instance, if both image
Is from Ds (sim) and image It from Dt

target (real world) show
the robot’s gripper open and a few inches above the object to

grasp, even if from different viewing angles, then we want their
image embeddings to be close together in the learned image
encoding space. This will facilitate policy learning later, as the
policy will need to draw from a similar distribution of actions
for similar scene semantics, which are now already mapped
into similar visual features.

Theoretically, off-the-shelf pretrained vision-language mod-
els (VLMs) [42, 37] should already possess these properties
as they were trained on a massive distribution of image and
language data. However, in the context of robot manipulation,
pretrained VLMs tend to encode all observations of the trajec-
tory into a very narrow region of the embedding space without
sufficient distinction for task-relevant, semantic aspects of the
image such as the location of the gripper in relation to the
manipulated objects. This renders them unsuitable without
additional finetuning for our application (see Sec. VI).

In Lang4Sim2Real, we propose an alternative approach to
obtain a visual representation with the aforementioned desired
property. We train a ResNet-18 [17] from scratch as our image
encoder using image-language tuples (Is, ls) from Ds and
(It, lt) from Dt

target. We denote this vision language pretrain-
ing dataset as DV L = {(Id, ld) : (Id, ld) ∈ Ds ∪Dt

target},
where d is either the source or target domain. The images
are observations collected during 100 demonstrations from
each of the tasks in Ds and 25-100 demonstrations from
Dt

target, totaling around 10k images per domain. We assume
that the two sets of language descriptions in Ds and Dt

prior are
similarly distributed; otherwise, language may not help learn
domain-invariant features between Ds and Dt.

To effectively leverage language as a bridge between
visually different domains, we need a well-tuned (frozen)
language model, flang : l → Rdlang , to map strings to
dlang−dimensional language embeddings. We use off-the-
shelf miniLM [59], since prior work [34] has demonstrated its
effectiveness for language-conditioned control policies com-
pared to other small, off-the-shelf language models.

Given the data and the language embedding described
above, we propose two variants in Lang4Sim2Real for the
image-language pretraining step that can obtain a sim-real
agnostic representation based on language supervision (see
Fig. 2(i)A-B):

1) Language-Regression: Our first variant is a straight-
forward use of language supervision to shape the image
embedding space: predicting the language embedding of the
description, ld, given the embedding of the corresponding
image, Id. We sample image-language pairs from the DV L

dataset defined above: (Id, ld) ∼ Ds ∪Dt
target. Let g :

Rdcnn → Rdlang be a single linear layer (language predictor
in Fig. 2(i)(A)) trained to minimize the following loss:

Lcnn,reg(DV L) =
∥∥g (fcnn(Id))− flang(l

d)
∥∥2
2

(1)

We use the loss to train both the language predictor and the
CNN backbone. The loss provides strong language supervision
by encouraging fcnn to directly regress toward the frozen
language embeddings of the image descriptions, effectively



making the pretrained image encoder reflect the LLM embed-
ding space.

2) Language-Distance Learning: We also experiment with
a second variant of image-language pretraining that incorpo-
rates language with a softer form of supervision. We posit that
the exact values of the language embeddings do not themselves
convey meaning; rather, key information about the semantic
similarity of two images lies in the pairwise distances between
their corresponding two language embeddings. Thus, we de-
sign an objective to regress the image embedding distances
between a pair of images from the two domains to their
corresponding language distance:

Lcnn,dist(DV L) =
∥∥f⊤

cnn(I
s)fcnn(I

t)− d
(
ls, lt

)∥∥2
2

(2)

where the language distance function we use, d : l× l → R is
BLEURT [47], a learned similarity score between two strings
commonly used in the NLP community. We normalize d(·, ·)
between 0 and 1 for all possible (ls, lt) pairs in our image-
language dataset, where 1 indicates the highest similarity
between any two strings in the dataset. Empirically, over our
set of language descriptions, we found BLEURT provided a
richer signal than simply taking dot products or ℓ-2 distances
between language embeddings. The output of fcnn is unit
normalized before taking the dot product. We compare both
variants (see Sec. VI) to assess whether the additional degrees
of freedom from the looser distance supervision are beneficial
later on for policy training.

C. Multitask, Multidomain Behavioral Cloning

Our second step in Lang4Sim2Real involves learning a
multi-domain, multi-task, language-conditioned BC policy
(see Fig. 2(ii)). By leveraging our learned domain-invariant
representation for robotic control, this policy should be able
to perform well in real-world task with only a few demonstra-
tions, thanks to the additional information it can extract from
simulation.

During this phase of policy learning, we freeze all but the
last layer to preserve the semantic scene information encoded
in the learned, domain-invariant representation, fcnn, while
enabling the network to adapt to the new downstream task
of low-level control. We also insert trainable FiLM layer
blocks [40] as adapter modules in fcnn to process the language
instruction embeddings between the frozen convolution layers.
Finally, we include a few fully-connected layers as a policy
head to process the image feature, fcnn(It), and proprioceptive
state, st, and train the resulting policy π with BC loss to
predict the mean and standard deviation of a multivariate
Gaussian action distribution, as described below.

Let our training dataset DBC = Ds ∪Dt
target be a set

of demonstrations τd, for domain d ∈ {source, target}. As
explained in Sec. III, each demonstration is a sequence of
tuples xt =

(
Idt , s

d
t , a

d
t , ltask

)
containing the image observa-

tion, proprioceptive state, language instruction for the task,
and action at timestep t. We train with the following standard

BC negative log probability loss [41]:

Lπ(DBC) =
1

B

∑
xt∼τd

τd∼DBC

− log π
(
adt
∣∣fcnn(Idt ), sdt , ltask) (3)

where B denotes the batch size.
The policy is trained on k+1 tasks: k from Ds (thousands of

trajectories per task) and 1 from Dt
target (≤ 100 trajectories,

see Sec. V). In each batch, we sample m tasks uniformly
at random from the k + 1 tasks, and then query DBC for a
fixed number of transitions from trajectories for each of the
m selected tasks.

We hypothesize that cross-domain image-language pretrain-
ing (Sec. IV-B) improves policy learning because it helps
ensure that image observations of different domains depicting
semantically similar scenes map into similar regions of the
learned embedding space. This accelerates learning not only on
Ds data but also helps alleviate data scarcity in Dt

target because
the pretrained image backbone encodes Dt

target images into an
in-distribution region of the learned image embedding space,
alleviating common issues with visual distribution shift and
enabling our method to leverage simulation data to compensate
for the lack of real-world action-labeled data, improving
sim2real transfer.

V. EXPERIMENTAL SETUP

We evaluate Lang4Sim2Real in two settings: a sim2sim
setting where we test the transfer abilities between two simu-
lated domains with visual and physical differences, and the
sim2real setting, where the few shot IL is defined in
the real world and we use simulation to address the data
scarcity. Sim2sim serves as a platform to evaluate in depth
the behavior of Lang4Sim2Real with a fully controlled domain
gap, while sim2real is our setting of interest for this work.
We will use three task suites that we explain below. See
Figure 5 in the Appendix for detailed frame rollouts of each
task. In a slight overload of notation from Sec. III, here we
use Ds and Dt to denote the source and target domains,
respectively.

A. Sim2Sim and Sim2Real Environment Differences

In sim2sim, Ds and Dt are both sim environments with
large differences in camera point-of-view (third person vs.
first person), joint friction, and damping. In the sim2real
setting, we employ a setup with a wide sim2real gap that
we aim to bridge using language that includes differences in
control frequency, task goals, visual observation appearance,
objects, and initial positions. More details between the two
environments in sim2sim and sim2real can be found in
Appendix IX-F.

B. Evaluation Metrics

For all sim2sim and sim2real experiments, we measure
task success rate. In sim2real, this is calculated through ten
evaluation trials for each of two seeds per task, for a total of
20 trials per table entry. In each set of ten trials, we place the



object in the same ten initial positions and orientations, evenly
distributed through the range of valid initial object positions.
In sim2sim, we also run two seeds per setting and take a
success rate averaged over 720 trials between the two seeds
in the final few hundred epochs of training.

C. Data

1) Environments: For each of our tasks, we design simu-
lation environments on top of Robosuite [66] in Mujoco [56].
For the real environment, we use Operational Space Con-
trol [27] to control the position of the end-effector of the robot
in Cartesian space. In both simulation and real, we work with
a 7-DOF Franka Emika Panda arm and use a common action
space consisting of the continuous xyz delta displacement
and a continuous gripper closure dimension (normalized from
[−1, 0]). The robot proprioception space is 22-dimensional,
consisting of the robot’s xyz end-effector position, gripper
state, and sine and cosine transformations of the 7 joint angles.
The image observation space is 128× 128 RGB images.

2) Overview of Tasks: For each task suite, we collect data
from simulated domain Ds and real target domain Dt (for
sim2real) or sim target domain Dt (for sim2sim). All
demonstrations in sim and real are collected with a scripted
policy (see Appendix for further details). Sim trajectories
range from 200-320 timesteps long, operated at 50Hz, while
real trajectories run at 2Hz and range from 18-45 timesteps.
Our three task suites allow us to test the effectiveness of
Lang4Sim2Real for sim2real in a wide variety of control
problems ranging from simple stacking in task suite 1, to
multi-step long-horizon pick and place in task suite 2, to
deformable, hard-to-simulate objects in task suite 3.

D. Task Suite 1: Stack Object

In our first suite of tasks, the robot must move an object to
a target. In the simulated domain Ds, the target is on top of a
wooden coaster, and there are four objects: milk carton, soda
can, bread, and cereal box, which correspond to the four tasks.
Both the object and coaster positions are randomized over the
entire workspace. We collect and train on 400 demonstrations
per task (1600 total) as our Ds simulation data.

1) sim2sim: For sim2sim experiments on this task
suite, we define a new Dt simulated environment with differ-
ences from Ds as enumerated in Sec. V-A. Policies are trained
with the 1600 Ds demonstrations and 100 target task Dt

target

demonstrations.
2) sim2real: For sim2real, Ds remains the same as

sim2sim. Dt is a real world environment in which the object
is randomly placed on the left mat and the target task Dt

target

is to move the object onto the right mat and open the gripper
by the end of 20 timesteps.

E. Task Suite 2: Multi-step Pick and Place

Our second suite of tasks is longer-horizon. In simulation,
the robot must first put an object in the pot, then grasp the pot
by its handle and move it onto the stove. We categorize this as
a 2-step pick-and-place task. We use the same four object-task

Fig. 3. The columns depict the three task suites while each row represents an
image domain. Rows from Top to Bottom: Simulation Ds, sim2sim Dt

target,
sim2real Dt

target. Columns from Left to Right: Stack Object, Multi-step
Pick and Place, and Wrap Wire tasks. While similar enough to transfer prior
knowledge between them, our Ds and Dt task versions have a considerable
gap (Sec. V-A) that we are able to bridge using language as regularization
for the image representations.

mappings from Sec. V-D. The object, pot, and stove locations
are all randomized within a quadrant of the workspace. Since
this task is longer horizon, we train on more data—1, 400
trajectories per task in Ds.

1) sim2sim: Similar to the stacking task, in the
sim2sim setting, we define a new Dt environment with
differences from Ds enumerated in Sec. V-A and evaluate over
the four tasks when given 100 target-task Dt

target demonstra-
tions.

2) sim2real: In the sim2real setup, Ds remains the
same, while Dt is the real task of putting a carrot into a bowl,
then putting the bowl onto a plate (see Fig. 3), and ending
with the gripper open after 50 timesteps. In addition to success
rate (Section V-B), we measure average number of consecutive
subtasks completed from the beginning, allowing partial credit
if the robot only succeeds in the first step of placing the carrot
in the bowl. However, if the robot does not finish the first step
but finishes the second step, we do not count this as having
completed any subtasks.

F. Task Suite 3: Wrap Wire

Our final suite of tasks involves wrapping a long deformable
wire around a fixed object. In simulation Ds, we approximate a
wire with a chain of spheres connected with free joints, and the
task is to wrap the chain around a fixed cylinder (see Fig. 3).
A trajectory is successful if the first link of the chain has
traveled ≥ 5π

3 radians (5/6ths of a full revolution) around the



TABLE I
SIM2REAL : PERFORMANCE BY NUMBER OF REAL WORLD TRAJECTORIES

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt) – ✓ 20 30 45 0 30 35 0.45 1.05 1.05 20 15 45
No Pretrain (Ds +Dt) ✓ ✓ 35 20 55 45 25 55 1.15 1.0 1.4 25 20 20

MMD ✓ ✓ 25 35 80 20 10 35 0.8 0.9 1.1 5 10 20
Domain Random. ✓ ✓ 40 60 40 10 10 25 0.7 0.6 0.7 0 0 0

ADR+RNA ✓ ✓ 35 30 35 15 25 40 0.85 0.8 1.3 0 10 0

Lang Reg. (ours) ✓ ✓ 40 75 80 60 80 90 1.45 1.8 1.9 45 40 45
Lang Dist. (ours) ✓ ✓ 60 45 80 55 70 75 1.35 1.65 1.6 30 25 75

Stage Classif. ✓ ✓ 40 60 60 50 60 50 1.45 1.55 1.5 30 40 50

CLIP (frozen) ✓ ✓ 25 5 15 10 15 40 0.3 0.45 1.0 35 35 30
R3M (frozen) ✓ ✓ 30 45 65 15 60 55 0.7 1.4 1.5 5 25 25

TABLE II
SIM2SIM : SUCCESS RATE BY TASK (%)

Pretraining Stack Object Multi-step Pick and Place Wrap Wire

1 2 3 4 avg 1 2 3 4 avg 1

None (Dt data only) 15.2± 6.5 18.9± 6.7 31.9± 8.5 25.4± 9.2 22.9 20.8± 7.5 17.7± 4.4 16.3± 5.0 17.3± 8.1 18.0 69.2± 8.3
None (Ds +Dt data) 22.5± 9.2 32.3± 9.8 37.9± 8.8 29.2± 8.3 30.5 28.4± 10.9 31.3± 10.7 13.9± 5.5 27.8± 10.2 25.4 82.1± 6.8

Lang Reg. (ours) 20.6± 8.1 57.3 ± 8.1 63.1± 7.7 32.5 ± 6.3 43.4 54.0± 7.2 62.5 ± 12.1 76.0± 8.7 58.5± 9.3 62.8 90.7± 5.4
Lang Dist. (ours) 23.8± 5.4 57.3 ± 10.6 66.9± 5.6 27.9± 10.8 44.0 65.5 ± 13.1 56.7± 9.9 78.6 ± 5.1 54.4± 11.5 63.8 90.0± 5.0

Stage Classif. 30.4 ± 10.4 52.7± 6.0 67.5 ± 8.3 27.9± 7.1 44.6 63.1± 9.9 62.1± 9.3 55.4± 8.5 67.7 ± 9.7 62.1 91.4 ± 3.6

CLIP (frozen) 1.7± 0.4 1.9± 1.9 3.8± 2.5 4.0± 2.7 2.9 36.1± 14.3 39.9± 8.9 28.8± 8.9 48.4± 11.9 38.3 75.6± 7.7
R3M (frozen) 4.5± 3.3 9.0± 4.8 19.8± 6.9 15.4± 5.4 12.2 49.4± 11.6 36.5± 11.9 47.0± 14.1 56.0± 10.0 47.2 90.2± 4.4

cylinder. Our simulation data consists of two tasks: wrapping
counterclockwise and clockwise. The initial position of the
end of the chain is randomized over a region to the left of the
cylinder. Ds contains 400 trajectories per task.

1) sim2sim: For our Dt sim environment, we again apply
the changes specified in Sec. V-A. We additionally swapped
the spheres for capsules and changed the color and texture
of the table, robot arm, and objects. This task has a wider
sim2sim gap from additional visual and dynamics changes.

2) sim2real: In our sim2real experiments, the target
task Dt

target is to first grasp the plug, then wrap the cord
around the base of a blender in the middle of the workspace,
and finally put the plug down, similar to what one might do
before putting the appliance away. Like the sim environment,
we define success if the following two conditions are met:
(1) the plug travels ≥ 5π

3 radians around the blender, and (2)
the plug is placed and the gripper is open at the end of 50
timesteps.

G. Baselines
To evaluate the effectiveness of Lang4Sim2Real, we con-

sider two sets of baselines: non-pretrained baselines where
the CNN is initialized from scratch, and baselines with pre-
trained visual encoders. For the non-pretrained baselines, we
examine training with only Dt data, and training with both Ds

and Dt data. This enables us to understand the benefits of our

proposed training procedure. In sim2real, we also compare
to three popular prior sim2real approaches:

• MMD [57], which aims to minimize the distance between
the mean embedding of all sim images and all real images
of a batch to prevent the real images from being out-of-
distribution relative to the sim images.

• Domain randomization [55] of the colors, textures, and
physics of the Ds environment.

• Automatic Domain Randomization with Random Net-
work Adversary (ADR+RNA) [38], which keeps increas-
ing/decreasing domain randomization bounds depending
on the agent’s performance, and also introduces a ran-
domly initialized network for each trajectory to inject
correlated noise into the agent’s action conditioned on
the state input.

For the pretrained baselines, we consider two strong founda-
tion models as the visual backbone, CLIP [42] and R3M [37],
commonly used visual representations for robotics that are,
like our approach, also shaped by language descriptions of
images/videos, and add a trainable policy head composed of
fully-connected layers sharing the same dimensions as all other
methods in our results.

For each task in sim2real, we train and evaluate with 25,
50, or 100 Dt

target demonstrations.



H. Our Method Variants and Ablations

In our evaluations, we compare language regression (Sec-
tion IV-B1) and language distance (Section IV-B2), the two
pretraining variants of our approach. We also ablate away the
effects of language on our pretraining approach in a method
called “stage classification,” where the pretraining task is to
predict the stage index of an image (see Section IV-A) instead
the language embedding or embedding distance.

VI. EXPERIMENTAL RESULTS

Our results for sim2sim experiments are shown in Table II,
and the results for sim2real are shown in Table I. In both
tables, the methods (rows) are grouped into non-pretrained
baselines, our method variants and ablations, and pretrained
SOTA baselines. In sim2real, we additionally include a
group of three rows to show the performance of prior sim2real
approaches.

A. Experimental Questions and Analysis

Across the three task suites in both sim2real and
sim2sim, our method generally achieves the highest success
rates. To further analyze the effectiveness of our method, we
pose and investigate the following experimental questions.

What is the impact of our pretraining approach? Our
method nearly doubles the success rate of both non-pretrained
baselines in most task suites in sim2real and sim2sim.
This indicates that Lang4Sim2Real can bridge a wide sim2real
gap. One factor that may allow our method to perform well
is that image observations with similar language descriptions
may also have similar action labels. In Appendix IX-C, we
further investigate this hypothesis with an analysis of the
action distributions between images, split by their language
descriptions.

Between the non-pretrained baselines, training on Ds sim
demonstrations in sim2real provides little benefit on stack
object, increases average performance by ≈ 20% on multi-
step pick-and-place, but decreases average performance by
≈ 10% on wrap wire. However, in sim2sim, it provides a 10-
15% increase on most tasks. This suggests that the sim2sim
gap is small enough to benefit from using Ds even without
pretraining, but that the sim2real gap is large enough for
pretraining to be needed to leverage Ds.

How does our method compare to prior sim2real base-
lines? Our method outperforms all of the prior sim2real base-
lines we tested against (second row-group in Table I), which
collectively do relatively poorly in most settings, highlighting
the difficulty of the sim2real problem in our setup.

MMD averages the best performance across the three
sim2real baselines and even achieves competitive performance
on the easiest task of stacking an object. However, on the two
other more difficult tasks, its performance does not scale well
with more trajectories, which we suspect arises from stability
issues in trying to push together the mean of all sim and real
image embeddings in each batch. Domain randomization only
exacerbates the sim2real gap since enabling all randomiza-
tions does not move the distribution of simulation trajectories

closer to the real world trajectories due to the large visual
dissimilarity between our simulation and real environments.
ADR+RNA, which only randomizes the environment as much
as possible without severely hurting the scripted policy per-
formance, averages slightly better performance than domain
randomization, perhaps because the data is less diverse and
easier to fit a policy to than the data from full-scale domain
randomization.

How does our method compare to prior vision-language
pretrained representations? In sim2real, our method out-
performs both pretrained baselines across the board, includ-
ing R3M, which is the strongest baseline on stack object
and multi-step pick-and-place. When trained on increasing
amounts of real-world data, both R3M and CLIP tend to
plateau—CLIP performs no better than 40% on any task, R3M
has an apparent ceiling of 65%, while our method achieves
up to 90%. This suggests that CLIP and R3M do not scale as
well as our method when provided more data, despite being
pretrained on internet-scale video and image data while our
method was pretrained on images from just a few hundred
sim and real trajectories.

In sim2sim, our method also outperforms R3M and CLIP
across the board. Averaging the performance on stacking and
multi-step pick-and-place, our method outperforms R3M by
15-30% and CLIP by 25-40%. On the wrap wire task, our
method and R3M perform comparably, probably because the
task is quite a bit easier for all methods in simulation.

What is the effect of language in learning shared represen-
tations? We ablate the effect of language on our pretraining as
the “stage classification” row in Tables I and II, as mentioned
in Section V-H. In sim2sim, we see similar performance
in language regression pretraining and stage classification
pretraining. However, in sim2real, where the domain gap is
larger, we see language providing a measurable benefit in all
task suites, especially in multi-step pick-and-place, perhaps
because pretraining with language leverages similarities in
language descriptions between the first and second steps of
the pick-and-place task.

How do our two image-language pretraining variants
compare? We compare our two pretraining variants introduced
in Sections IV-B1 and IV-B2, where language regression
directly predicts language embeddings while language dis-
tance is encouraged to maintain pairwise distances based on
BLEURT similarity scores. Again in sim2sim, there is no
clear winner between the two, but in sim2real, language
regression performs better on average. This suggests that when
performing language pretraining for visual representations, the
more constraining regression loss outperforms the less con-
straining distance-matching loss on sim2real performance.

B. Additional Experimental Questions and Results

Finally, we examine a few questions to better understand
the performance of our method under slight changes to the
data and problem setup.

What is the effect of pretraining on image-language pairs
where the language granularity is reduced? We evaluate



the impact of reduced language granularity on sim2real
performance. See Appendix IX-H for results.

How does our method perform if we cannot pretrain
directly on image-language pairs from the target task?
There are scenarios in which we might not have access
to the real-world target task Dt

target during the pretraining
phase, as pretraining is often done without knowledge of the
downstream task. To investigate this, we introduce a real-world
prior task Dt

prior that we pretrain on, and use real-world target
task data Dt

target only during imitation learning. The advantage
of this problem setup is that we can reuse the same fcnn for
multiple downstream real-world target tasks as long as they
are sufficiently similar to the real-world prior task. In this
modified problem setup, our method still mostly outperforms
all baselines, which demonstrates that our method does not
overfit to the real-world task it sees during pretraining. See
Appendix IX-I for full results.

Can our method be combined with prior large-scale
vision-language pretrained networks? We experiment with
combining R3M and our method. Results are discussed in
Appendix IX-J.

VII. CONCLUSION

Vision-based policies struggle with distributional shift dur-
ing sim2real transfer. To address this challenge, we introduced
a low-data-regime visual pretraining approach that leverages
language to bridge the sim2real visual gap with only 25-100
real-world trajectories with automatically generated language
labels. We evaluate the effectiveness of our approach on
multi-step long-horizon tasks and hard-to-simulate deformable
objects. In the few-shot setting, our approach outperforms
state-of-the-art vision-language foundation models and prior
sim2real approaches across 3 task suites in both sim2sim
and sim2real.

VIII. LIMITATIONS AND FUTURE WORK

One of the main limitations of our work is that the learned
representation may have limited generalizability compared to
existing pretraining methods that leverage internet-scale data
to enable a large degree of generalization. Our approach
targets a specific distribution and domain of real-world tasks
and operates in the low-data regime for both pretraining and
policy learning, so it does not yield general-purpose visual
representations that can be applied to a wide distribution of
target tasks. Future work could investigate scaling our method
to large-scale datasets to further reduce the number of real-
world demonstrations needed for effective sim2real transfer.

Our method also assumes that the template language de-
scriptions used by the automatic labelling process describe
similar aspects of images across the two domains, and may
perform worse if the language between sim and real de-
scribed images at extremely different levels of granularity.
Furthermore, our approach relies on segmenting all trajectories
of a task into stages of a certain granularity so that the
associated template language is diverse enough to prevent the
learned visual representation from mapping the entire input

image distribution to a collapsed point. On contact-rich tasks
involving continuous motions or complex object deformations,
it may be harder to segment a trajectory and label these
segments with language.

Another avenue for future work involves exploring sim2real
by combining existing pretraining approaches such as time-
contrastive learning and masked image modeling in conjunc-
tion with the language-based pretraining we propose, as adding
temporal or masked prediction terms to the objective may
enable more fine-grained representations that complement the
coarseness of language.

IX. ACKNOWLEDGEMENTS

We would like to thank members of the RobIn Lab at UT
Austin for their valuable suggestions and help with debugging
real robot issues. This research was supported by NSF NRI
Grant IIS-1925082.

REFERENCES

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui
Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada,
Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Ret-
tinghouse, Diego Reyes, Pierre Sermanet, Nicolas Siev-
ers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke,
Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan
Yan, and Andy Zeng. Do as I can and not as I say:
Grounding language in robotic affordances. In arXiv
preprint arXiv:2204.01691, 2022.

[2] Bo Ai, Zhanxin Wu, and David Hsu. Invariance is key
to generalization: Examining the role of representation in
sim-to-real transfer for visual navigation. arXiv preprint
arXiv:2310.15020, 2023.

[3] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipula-
tion. The International Journal of Robotics Research, 39
(1):3–20, 2020.

[4] Konstantinos Bousmalis, Nathan Silberman, David Do-
han, Dumitru Erhan, and Dilip Krishnan. Unsupervised
pixel-level domain adaptation with generative adversarial
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3722–
3731, 2017.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.



[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[7] Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao,
Keerthana Gopalakrishnan, Michael S. Ryoo, Austin
Stone, and Daniel Kappler. Open-vocabulary queryable
scene representations for real world planning. In arXiv
preprint arXiv:2209.09874, 2022.

[8] Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Xiang
Li, Wei Ye, Jindong Wang, Guosheng Hu, and Marios
Savvides. Conv-adapter: Exploring parameter efficient
transfer learning for convnets, 2024.

[9] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision:
The epic-kitchens dataset. In European Conference on
Computer Vision (ECCV), 2018.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[11] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An
Huang, Yuke Zhu, and Anima Anandkumar. Minedojo:
Building open-ended embodied agents with internet-scale
knowledge. Advances in Neural Information Processing
Systems, 35:18343–18362, 2022.

[12] Prasoon Goyal, Scott Niekum, and Raymond Mooney.
Using natural language for reward shaping in reinforce-
ment learning. 2019. URL https://arxiv.org/abs/1903.
02020.

[13] Prasoon Goyal, Scott Niekum, and Raymond Mooney.
Pixl2r: Guiding reinforcement learning using natural
language by mapping pixels to rewards. 2020. URL
https://arxiv.org/abs/2007.15543.

[14] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common
sense. In Proceedings of the IEEE international con-
ference on computer vision, pages 5842–5850, 2017.

[15] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, et al. Ego4d: Around
the world in 3,000 hours of egocentric video. arXiv
preprint arXiv:2110.07058, 2021.

[16] Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu,
Roberto Martı́n-Martı́n, and Li Fei-Fei. Maskvit: Masked
visual pre-training for video prediction. arXiv preprint
arXiv:2206.11894, 2022.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[19] Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi
Khansari, and Yunfei Bai. Retinagan: An object-aware
approach to sim-to-real transfer. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 10920–10926. IEEE, 2021.

[20] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah
Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol
Hausman, and Brian Ichter. Inner monologue: Embodied
reasoning through planning with language models. In
arXiv preprint arXiv:2207.05608, 2022.

[21] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan,
Dmitry Kalashnikov, Alex Irpan, Julian Ibarz, Sergey
Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-
to-real via sim-to-sim: Data-efficient robotic grasping
via randomized-to-canonical adaptation networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12627–12637,
2019.

[22] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea
Finn. BC-z: Zero-shot task generalization with robotic
imitation learning. In 5th Annual Conference on Robot
Learning, 2021. URL https://openreview.net/forum?id=
8kbp23tSGYv.

[23] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General
robot manipulation with multimodal prompts. arXiv,
2022.

[24] Ya Jing, Xuelin Zhu, Xingbin Liu, Qie Sima, Taozheng
Yang, Yunhai Feng, and Tao Kong. Exploring visual
pre-training for robot manipulation: Datasets, models and
methods. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11390–
11395. IEEE, 2023.

[25] Siddharth Karamcheti, Megha Srivastava, Percy Liang,
and Dorsa Sadigh. Lila: Language-informed latent ac-
tions. In 5th Annual Conference on Robot Learning,
2021. URL https://arxiv.org/pdf/2111.03205.

[26] Manuel Kaspar, Juan D Muñoz Osorio, and Jürgen Bock.
Sim2real transfer for reinforcement learning without dy-
namics randomization. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 4383–4388. IEEE, 2020.

[27] Oussama Khatib. A unified approach for motion and
force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and

https://arxiv.org/abs/1903.02020
https://arxiv.org/abs/1903.02020
https://arxiv.org/abs/2007.15543
https://openreview.net/forum?id=8kbp23tSGYv
https://openreview.net/forum?id=8kbp23tSGYv
https://arxiv.org/pdf/2111.03205


Automation, 3(1):43–53, 1987.
[28] Michael Laskin, Aravind Srinivas, and Pieter Abbeel.

Curl: Contrastive unsupervised representations for re-
inforcement learning. In International Conference on
Machine Learning, pages 5639–5650. PMLR, 2020.

[29] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su,
Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino
with grounded pre-training for open-set object detection,
2023.

[30] Corey Lynch and Pierre Sermanet. Language conditioned
imitation learning over unstructured data. Robotics:
Science and Systems, 2021. URL https://arxiv.org/abs/
2005.07648.

[31] Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash
Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayara-
man. Liv: Language-image representations and rewards
for robotic control. arXiv preprint arXiv:2306.00958,
2023.

[32] Jan Matas, Stephen James, and Andrew J Davison.
Sim-to-real reinforcement learning for deformable object
manipulation. In Conference on Robot Learning, pages
734–743. PMLR, 2018.

[33] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks, 2021. URL https://arxiv.org/abs/2112.
03227.

[34] Oier Mees, Lukas Hermann, and Wolfram Burgard. What
matters in language conditioned imitation learning. arXiv
preprint arXiv:2204.06252, 2022.

[35] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem,
and Vladlen Koltun. Driving policy transfer via modu-
larity and abstraction. arXiv preprint arXiv:1804.09364,
2018.

[36] Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter,
Silvio Savarese, and Chelsea Finn. Learning language-
conditioned robot behavior from offline data and crowd-
sourced annotation. In 5th Annual Conference on Robot
Learning, 2021. URL https://arxiv.org/pdf/2109.01115.

[37] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022.

[38] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving rubik’s cube with a
robot hand, 2019.

[39] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex
Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky,
Anant Rai, Anikait Singh, Anthony Brohan, et al. Open
x-embodiment: Robotic learning datasets and rt-x mod-
els. arXiv preprint arXiv:2310.08864, 2023.

[40] Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron C. Courville. Film: Visual reasoning
with a general conditioning layer. In AAAI, 2018.

[41] Dean Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. In Conference on Neural Information
Processing Systems (NeurIPS), 1988.

[42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. arXiv preprint arXiv:2103.00020,
2021.

[43] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter
Abbeel, Jitendra Malik, and Trevor Darrell. Real-world
robot learning with masked visual pre-training. In
Conference on Robot Learning, pages 416–426. PMLR,
2023.

[44] Shreyas Sundara Raman, Vanya Cohen, David Paulius,
Ifrah Idrees, Eric Rosen, Ray Mooney, and Stefanie
Tellex. Cape: Corrective actions from precondition errors
using large language models. In 2nd Workshop on
Language and Robot Learning: Language as Grounding,
2023.

[45] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine,
Julian Ibarz, and Mohi Khansari. Rl-cyclegan: Reinforce-
ment learning aware simulation-to-real. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11157–11166, 2020.

[46] Stefan Schaal. Is imitation learning the route to humanoid
robots? Trends in cognitive sciences, 3(6):233–242, 1999.

[47] Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
Bleurt: Learning robust metrics for text generation. arXiv
preprint arXiv:2004.04696, 2020.

[48] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu,
Stephen James, Kimin Lee, and Pieter Abbeel. Masked
world models for visual control. In Conference on Robot
Learning, pages 1332–1344. PMLR, 2023.

[49] Rutav Shah, Roberto Martı́n-Martı́n, and Yuke Zhu.
Mutex: Learning unified policies from multimodal task
specifications. arXiv preprint arXiv:2309.14320, 2023.

[50] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang,
and Jeannette Bohg. Concept2robot: Learning manipu-
lation concepts from instructions and human demonstra-
tions. In Proceedings of Robotics: Science and Systems
(RSS), 2020.

[51] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport:
What and where pathways for robotic manipulation. In
Proceedings of the 5th Conference on Robot Learning
(CoRL), 2021.

[52] Mohit Shridhar, Lucas Manuelli, and Dieter Fox.
Perceiver-actor: A multi-task transformer for robotic ma-
nipulation. Conference on Robot Learning, 2022.

[53] Andrew Silva, Nina Moorman, William Silva, Zulfiqar
Zaidi, Nakul Gopalan, and Matthew Gombolay. Lancon-
learn: Learning with language to enable generalization in
multi-task manipulation. In IEEE Robotics and Automa-

https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2112.03227
https://arxiv.org/abs/2112.03227
https://arxiv.org/pdf/2109.01115


tion Letters, 2021.
[54] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-

task reinforcement learning with context-based represen-
tations. arXiv preprint arXiv:2102.06177, 2021.

[55] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ in-
ternational conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

[56] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026–5033. IEEE, 2012.

[57] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko,
and Trevor Darrell. Deep domain confusion: Maximizing
for domain invariance, 2014.

[58] Che Wang, Xufang Luo, Keith Ross, and Dongsheng
Li. Vrl3: A data-driven framework for visual deep
reinforcement learning. Advances in Neural Information
Processing Systems, 35:32974–32988, 2022.

[59] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained
transformers, 2020.

[60] Albert Yu and Raymond J Mooney. Using both demon-
strations and language instructions to efficiently learn
robotic tasks. arXiv preprint arXiv:2210.04476, 2022.

[61] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk.
Preparing for the unknown: Learning a universal pol-
icy with online system identification. arXiv preprint
arXiv:1702.02453, 2017.

[62] Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian
Wang, Yi Wu, Yang Gao, and Huazhe Xu. Pre-trained
image encoder for generalizable visual reinforcement
learning. Advances in Neural Information Processing
Systems, 35:13022–13037, 2022.

[63] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas
Steiner, Daniel Keysers, Alexander Kolesnikov, and Lu-
cas Beyer. Lit: Zero-shot transfer with locked-image
text tuning. CoRR, abs/2111.07991, 2021. URL https:
//arxiv.org/abs/2111.07991.

[64] Tony Zhao, Siddharth Karamcheti, Thomas Kollar,
Chelsea Finn, and Percy Liang. What makes representa-
tion learning from videos hard for control? 2022. URL
https://api.semanticscholar.org/CorpusID:252635608.

[65] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Ji-
axi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, et al. Languagebind: Ex-
tending video-language pretraining to n-modality by
language-based semantic alignment. arXiv preprint
arXiv:2310.01852, 2023.

[66] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation frame-
work and benchmark for robot learning. arXiv preprint

arXiv:2009.12293, 2020.

https://arxiv.org/abs/2111.07991
https://arxiv.org/abs/2111.07991
https://api.semanticscholar.org/CorpusID:252635608


APPENDIX

A. Scripted Policy for Real-World Data Collection

Algorithm 1 Scripted Wrap Wire
1: centerPos ← blender center position
2: placeAttempted ← False
3: targetDistToCenter ← 0.15
4: numTimesteps ← 45
5: direction ← true if clockwise, false if counterclockwise
6: for t in [0, numTimesteps) do
7: wirePos ← position of the graspable part of the wire
8: eePos ← end effector position
9: pickPosDist ← ∥eePos− wirePos∥2

10: done ← is wrapped > 11π
6

from the start to end of wire around
centerPos in direction

11: if placeAttempted then
12: action ← 0
13: else if object not grasped AND pickPosDist > distThresh then
14: // Move toward wire
15: action ← wirePos − eePos
16: else if object not grasped then
17: // gripper is very close to wire
18: action ← pickPos − eePos
19: close gripper // Object is in gripper
20: else if wire not lifted then
21: action ← [0, 0, 1] // Move up
22: else if not done then
23: relPos ← eePos− centerPos
24: distToCenter ← ∥relPos∥2
25: normRelPos ← (relPos/distToCenter) ∗ targetDistToCenter
26: actionMaintainDistance ← relPos ∗ (targetDistToCenter −

distToCenter) // move toward/away from center
27: actionMoveTangent ← [−normRelPos[1], normRelPos[0], 0.0]

// Move tangent to the blender
28: if direction then
29: actionMoveTangent ← actionMoveTangent ∗ −1
30: end if
31: action ← actionMaintainDistance + actionMoveTangent
32: else
33: action ← open gripper // Drop wire
34: placeAttempted ← True
35: end if
36: end for

Algorithm 2 Scripted Pick and Place Function
function PICKPLACE(pickPos, dropPos, distThresh, placeAttempted)

eePos ← end effector position
dropPosDist ← ∥eePos− dropPos∥2
pickPosDist ← ∥eePos− pickPos∥2
if placeAttempted then

action ← 0
else if object not grasped AND pickPosDist > distThresh then

// Move toward target object
action ← pickPos − eePos

else if object not grasped then
// gripper is very close to object

action← (pickPos − eePos, close gripper) // Object is in gripper
else if object not lifted then

// Move gripper upward to avoid hitting other objects/containers
action ← [0, 0, 1]

else if dropPosDist > distThresh then
// Move toward target container

action ← dropPos − eePos
else

action ← open gripper // Object falls into container
placeAttempted ← True

end if
noise ∼ N (0, 0.1)
action ← action + noise

return action, placeAttempted
end function

Algorithm 3 Stack Object
1: pickPos ← target object position
2: dropPos ← target container position
3: numTimesteps ← 18
4: distThresh ← 0.02
5: placeAttempted ← False
6: for t in [0, numTimesteps) do
7: action, placeAttempted ← PICKPLACE(pickPos, dropPos, dist-

Thresh, placeAttempted)
8: s′ ← env.step(action)
9: end for

Algorithm 4 Scripted 2-step Pick and Place
1: pickPos ← [object position, first container position]
2: dropPos ← [first container position, second container position]
3: numTimesteps ← 45
4: distThresh ← 0.02
5: placeAttempted ← [False, False]
6: si ← 0 // step index (starts at 0, and increments to 1 when first

pick-place step is complete)
7: stepCompleted ← [False, False]
8: for t in [0, numTimesteps) do
9: action, placeAttempted[si] ← PICKPLACE(pickPos[si],

dropPos[si], distThresh, placeAttempted[si])
10: if stepIsSuccessful(si) AND not stepsCompleted[si] then
11: stepsCompleted[si] ← True
12: si ← 1
13: end if
14: s′ ← env.step(action)
15: end for

B. Detailed Policy Network Architecture & Hyperparameters

For the policy backbone, we use a ResNet-18 architecture
but made changes to the strides and number of channels
to adapt the network to our 128 × 128 × 3 image size.
Hyperparameters are shown in Table V. A detailed layer-by-
layer architecture figure of our policy is shown in Figure 6.
During policy training, only the last CNN layer, FiLM blocks,
and policy head (FC layers) are finetuned, while all other
layers are kept frozen.

C. Does Language Similarity Imply Action Distribution Sim-
ilarity?

We hypothesize that one of the ways language is an effective
bridge for sim2real transfer is that the sim and real action
distributions of the demonstrations are similar when the image
observations have similar language descriptions. Figure 4
shows the action distribution similarities between sim and real
when the language descriptions are similar (top row), and
when the language descriptions are different (bottom row).
Each column represents a component of the action distribu-
tion. We plot three components: z-axis actions, xy-magnitude
(which is the ℓ2 norm of the (x, y) action dimensions), and
the gripper dimension. We observe that action distributions are
indeed more similar for images described by similar language
than for images described by different language.

D. Task and Data Details

Figure 5 provides film strips of trajectories from the source
domain data Ds, target domain prior task data Dt

prior, and
target domain target task data Dt

target, for each of the three
task suites.



TABLE III
LANGUAGE DESCRIPTION TEMPLATES OF IMAGE OBSERVATIONS

Task Template String
Pick and Place gripper open, reaching for {objName}, out of {contName}

gripper open, moving down over {objName}, out of {contName}
gripper closing, with {objName}, out of {contName}
gripper closed, moving up with {objName}, out of {contName}
gripper closed, moving sideways with {objName}, out of {contName}
gripper closed, with {objName}, above {contName}
gripper open, dropped {objName}, in {contName}

Wrap Wire gripper open, reaching for {graspObjName}
gripper open, moving down over {graspObjName}
gripper closing around {graspObjName}
gripper closed, moving up with {graspObjName}
{direction} left
{direction} front
{direction} right
{direction} back
gripper open, above {graspObjName} with {flexWraparoundObjName} fully wrapped
gripper open, above {graspObjName} with {flexWraparoundObjName} fully unwrapped

Variable Possible Values
objName milk, bread, can, cereal, pot, carrot, bowl, bridge
contName coaster, pot, stove, bowl, plate
flexWraparoundObjName beads, cord, ethernet cable
graspObjName last bead, white plug, bridge
direction clockwise, counterclockwise

Fig. 4. These plots show the action distribution of demonstrations across both sim and real, broken down by each component of the action: xy-action
magnitude, z-axis actions, and gripper actions. The first row shows simulation (green) and real world (blue) action distributions for images described by
similar language. The second row shows the same distribution of simulation actions (green) as in the first row, but compared with real-world action distributions
from images labeled with very different language from the sim actions (blue). Notably, the action distributions are generally similar for images with similar
language (first row), and different for images with different language (second row). This suggests that pretraining our CNN on language embedding prediction
benefits downstream policy learning because it allows the domain-invariant learned representations to tap into similar action distributions for completing a
task.



𝓓𝒔 𝓓𝒕𝒂𝒓𝒈𝒆𝒕
𝒕 𝓓𝒑𝒓𝒊𝒐𝒓

𝒕
Ta

sk
 1

:
S

ta
c

k
 O

b
je

c
t sim2real

sim2sim

Ta
sk

 2
:

2
-s

te
p

 p
ic

k
a

n
d

 p
la

c
e

sim2real

sim2sim

Ta
sk

 3
:

W
ra

p
 W

ir
e sim2real

sim2sim

Fig. 5. This table builds on Figure 3 and depicts the 3 datasets for each task with filmstrips. The rows show the three task suites while each column
represents one of the three datasets we use during pretraining or policy learning. Our main results in Tables I and II use Ds ∪Dt

target for pretraining and
policy learning, whereas our results in Table IV use Ds ∪Dt

prior for pretraining and Ds ∪Dt
target for policy learning. This table shows the visual differences

between sim and real, as well as the task in Dt
prior versus Dt

target.

E. Training Hyperparameters

Table VI shows our BC training hyperparameters.
In each training iteration, we sample 4 random tasks from

our training buffer and get 57 samples per task, for a total
batch size of 228.

TABLE VI
IMITATION LEARNING HYPERPARAMETERS.

Attribute Value
Number of Tasks per Batch 4
Batch Size per Task 57
Learning Rate 3× 10−4

F. Sim2Sim and Sim2Real Differences

In our sim2sim experiments, Ds and Dt are both sim
environments with the following differences:

1) Camera point-of-view: Ds image observations are third
person (looking toward the robot), and Dt image obser-
vations are first person (over the shoulder), a large change
of viewing angle.

2) Friction and Damping: Joint friction and damping co-
efficients are 5× and 50× higher in Dt than Ds, which
significantly changes the dynamics.

In our sim2real experiments, Ds in sim and Dt in real
have the following differences:

1) Control frequency: The simulated Ds policy runs at
50Hz while the real world Dt policy runs at 2Hz.

2) Objects: The objects on the scene in each task differ
between simulation and real data, except the robot itself.

3) Visual Observation: Backgrounds and camera angles are
markedly different between the two domains.

4) Initial positions: The initial object and robot positions
are different across sim and real.

G. Labeling Image Observations with Language

1) Language labeling during Scripted Policy: We auto-
matically label image observations with language descriptions
during the scripted policy data collection process. Each image
is assigned a stage number based on the if-case of the
scripted policy, which corresponds to a semantic positional
arrangement between the gripper and the relevant objects on



TABLE IV
SIM2REAL : PERFORMANCE IN Ds ∪Dt

target ∪Dt
prior SETTING BY NUMBER OF TARGET TASK DEMONSTRATIONS

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target Dt

prior 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt data only) – ✓ ✓ 45 30 65 40 20 30 1.15 0.9 1.15 25 45 35
No Pretrain (Ds +Dt data) ✓ ✓ ✓ 20 55 25 45 30 50 1.25 1.2 1.4 15 30 30

MMD ✓ ✓ ✓ 35 30 40 70 45 35 1.65 1.25 1.2 15 0 20
Domain Random. ✓ ✓ ✓ 25 45 60 15 15 20 0.9 0.55 0.85 0 5 5

ADR+RNA ✓ ✓ ✓ 15 10 20 50 5 50 1.35 0.7 1.25 15 10 20

Lang Reg. (ours) ✓ ✓ – 50 55 85 55 80 95 1.2 1.8 1.95 25 50 55
Lang Dist. (ours) ✓ ✓ – 30 65 70 25 50 65 0.95 1.4 1.5 15 25 60

Stage Classif. ✓ ✓ – 70 60 70 20 60 85 0.9 1.5 1.8 15 20 70

CLIP (frozen) ✓ ✓ ✓ 30 25 35 25 45 35 0.55 0.95 0.95 35 40 45
R3M (frozen) ✓ ✓ ✓ 80 70 80 75 75 85 1.6 1.55 1.75 30 25 20

TABLE V
POLICY π HYPERPARAMETERS.

Attribute Value
Input Height 128
Input Width 128
Input Channels 3
Number of Kernels [16, 32, 64, 128]
Kernel Sizes [7, 3, 3, 3, 3]
Conv Strides [2, 2, 1, 1, 1]
Maxpool Stride 2
Fully Connected Layers [1024, 512, 256]
Hidden Activations ReLU
FiLM input size 384
FiLM hidden layers 0
Spatial Softmax Temperature 1.0
Learning Rate 3× 10−4

Policy Action Distribution Multivariate Isotropic Gaussian N (µ, σ)
Policy Outputs (µ, σ)
Image Augmentation Random Crops
Image Augmentation Padding 4

the scene. Stage numbers map 1-to-1 to the template language
strings shown in Table III.

For example, for the pick-and-place/stack object task, we
define 7 stages and 7 corresponding language string templates,
where the first stage is when the gripper moves toward a point
above the object, the second stage is when the gripper moves
downward toward the object, and so on. For the 2-step pick-
and-place task, we use 14 stages—2 consecutive lists of the 7
individual pick place string templates, where the object and
container variables of each template are filled in with the
proper names.

Though our approach to labeling image observations with
language was done during demonstration collection, we em-
phasize that images can be automatically labeled with lan-
guage in hindsight after demonstrations are collected. For
instance, one can run an object detector on the images to
estimate the position of the gripper in relation to the scene
objects. This information can be used to determine what stage
in a pick-and-place trajectory an image observation falls into.

2) Alternative Approach: Language labeling with off-the-
shelf VLMs: To relax the requirement that our automated
language labeling process must occur synchronously with a
scripted policy collecting demonstrations, we implemented an
alternative approach that is decoupled from the demonstra-
tion collection process. First, we use an off-the-shelf open-
vocabulary object detector model, GroundingDINO [29], to
output bounding boxes for the relevant objects on the scene.
No finetuning of GroundingDINO is required. Second, we
train a CNN-based gripper state predictor to predict the gripper
position (x, y, z) as well as whether the gripper is opened or
closed in a given image. This network is trained on previously
collected (image, gripper position, gripper opened/closed) data
from 100 trajectories, and takes one minute to train on a single
A5000 GPU. Using these two models, we can get the gripper
state and position relative to the objects, enabling us to predict
a stage number that corresponds fairly closely with the actual
stage number as outputted by our scripted policy. Finally, we
verified that training our method on VLM-derived language
annotations does not degrade performance. We performed
image-language pretraining with language labels from either
labeling method and tested on 2-step pick-and-place with 100
real-world trajectories. Both methods achieve 90% success rate
averaged over 2 seeds.

H. Impact of Language Granularity on Performance

To examine the impact of decreasing language granularity
on sim2real performance, we segment the trajectories into
fewer and fewer stages, until the extreme case where the
entire trajectory has only a single stage, which means that
all images across all trajectories of a task have the same exact
language description embedding. The language descriptions
we use for each stage, for varying numbers of stages per task,
are displayed in Tables VIII (2-step pick-and-place) and IX
(wire wrap).

Results are shown in Table VII. The trend is noisy, but
in general, decreasing language granularity hurts performance
slightly. Still, our method is robust to lower granularity, which



matches our hypothesis that our pretraining approach provides
significant performance gains simply by pushing sim and
real images into a similar embedding distribution even if the
language granularity is extremely coarse.

I. sim2real results with no pretraining on Dt
target

In Tables I and II, we presented results in a setting where
we both pretrained and did policy learning on two datasets,
Ds and Dt

target. Sometimes it is unrealistic to assume that
during pretraining, we have access to the downstream target
task we are ultimately interested in. In such scenarios, it may
be more realistic to assume we instead have real-world data
for a prior task, Dt

prior. Thus, in this setting, we experiment
with pretraining on Ds ∪Dt

prior and training our policy on
Ds ∪Dt

target.
Our method uses extra language labels during pretraining

that the baselines do not have access to. While these language
labels can be acquired at scale, to compensate for this data
advantage, we decided to give all baselines an augmented
Dt

prior dataset that includes action-labeled demonstrations, in
addition to the target task, Dt

target. Note that our method is not
given Dt

prior action-labeled data: it is trained only on Dt
prior

images with language labels during image-language pretrain-
ing (Sec. IV-B) but not during BC policy learning. Therefore,
the baselines in a sense serve as upper bounds as they are
given

∣∣Dt
prior

∣∣ = 50 additional action-labeled demonstrations.
In other words, during policy learning, the baselines train
on action-labeled demonstrations from Ds ∪Dt

prior ∪Dt
target

while ours are only trained on Ds ∪Dt
target. Results are shown

in Table IV.
How different are Dt

prior and Dt
target? In sim2sim and

sim2real for stack object and 2-step pick-and-place, the
robot interacts with different objects in the two real-world
tasks. Instead of a carrot as in Dt

target, in Dt
prior, the robot

interacts with a paper box for the stack object task suite and
a rigid toy wooden block for 2-step pick-and-place.

In sim2sim on wire wrap, Dt
prior contains data of the

beads being wrapped clockwise, instead of counterclockwise
in Dt

target. In sim2real for wire wrap, the plug, cord, and
blender in Dt

target are replaced by a wooden block, ethernet
cable, and spool, respectively, in Dt

prior data. The differences
between Dt

prior and Dt
target can be visually examined in

Figure 5.
What trends are different between Table IV (with Dt

prior)
and Table I (without Dt

prior)? Most of the trends are similar.
Re-examining our main experimental questions, we see that
our method still nearly doubles the success rate of both
non-pretrained baselines, outperforms all three prior sim2real
baselines, and that using language regression is important to
achieve the most gains from pretraining (language regression
outperforms stage classification and language distance, on
average). However, in this new problem setting in sim2real,
R3M outperforms our method in the lowest data regime
with 25 target task demonstrations, perhaps because of the
additional 50 Dt

prior demonstrations that our method does not

train on. However, on 50 and 100 trajectories for the longer-
horizon multi-step pick and place task, our method achieves
higher sim2real performance than the best of either pretrained
baseline.

J. Combining R3M with Our Approach

We implemented and evaluated multiple ways to combine
R3M with our image-language pretraining to see if it would
be possible to leverage the benefits of both R3M’s large-scale
pretraining and our method’s domain-invariant representation
learning. Instead of initializing a ResNet from scratch before
image-language pretraining, we experiment with using R3M
weights and finetuning the last layer, the entire network, or in-
serted convolutional adapter modules [8]. Finetuning adapters
(denoted R3M+adapters) performs the best in sim2sim,
matching the performance of our method on 2-step pick-and-
place.

Based on this sim2sim performance, we evaluated
R3M+adapters on sim2real, but this performed worse than
either frozen R3M or our method in sim2real (Table X).
We hypothesize that this is because during image-language
pretraining on both sim and real images, the trainable adapters
learn to pick out features primarily in the simulation images
as this is out-of-distribution for R3M which was trained on
real-world videos, which enables R3M+adapters to do well
in sim2sim but not sim2real.



TABLE VII
SIM2REAL : PERFORMANCE WITH VARYING LANGUAGE GRANULARITY

Method Multi-step Pick and Place Wrap Wire
Success Rate (%) Subtasks Completed Success Rate (%)

25 50 100 25 50 100 25 50 100

No Pretrain (Dt) 40 20 30 1.15 0.9 1.15 25 45 35
No Pretrain (Ds +Dt) 45 30 50 1.25 1.2 1.4 15 30 30

all-stages 55 80 95 1.2 1.8 1.95 25 50 55
half-stages 45 60 65 1.15 1.45 1.55 5 35 25

2-stages 35 45 75 1.05 1.3 1.6 20 50 40
1-stage 55 65 80 1.3 1.55 1.75 15 15 45

1 stage per domain 10 50 50 0.65 1.3 1.25 15 15 20

TABLE VIII
SIM2REAL : LANGUAGE ANNOTATIONS AND LANGUAGE GRANULARITY ON 2-STEP REAL-WORLD PICK-AND-PLACE

All-stages Half-stages 2-stage 1-stage
gripper open, reaching for carrot,
out of bowl

gripper open, reaching for carrot,
out of bowl

picking carrot and putting in bowl

random language embedding

gripper open, moving down over
carrot, out of bowl
gripper closing, with carrot, out of
bowl

gripper closing, with carrot, out of
bowl

gripper closed, moving up with car-
rot, out of bowl gripper closed, moving up with

carrotgripper closed, moving sideways
with carrot, out of bowl
gripper closed, with carrot, above
bowl
gripper open, dropped carrot, in
bowl

gripper open, dropped carrot, in
bowl

gripper open, reaching for bowl, out
of plate

gripper open, reaching for bowl,
out of plate

picking bowl and putting in plate
gripper open, moving down over
bowl, out of plate
gripper closing, with bowl, out of
bowl

gripper closing, with bowl, out of
plate

gripper closed, moving up with
bowl, out of plate gripper closed, moving up with

bowlgripper closed, moving sideways
with carrot, out of bowl
gripper closed, with bowl, above
plate
gripper open, dropped bowl, in plate gripper open, dropped bowl, in plate

TABLE IX
SIM2REAL : LANGUAGE ANNOTATIONS AND LANGUAGE GRANULARITY ON WIRE WRAP

All-stages half-stages 2-stage 1-stage
gripper open, reaching for plug gripper open, reaching for plug

picking and wrapping beads
around cylinder random language embedding

gripper open, moving down over
plug
gripper closing around plug gripper closing and lifting pluggripper closed, moving up with plug
counter-clockwise left

counter-clockwisecounter-clockwise front
counter-clockwise right
counter-clockwise back
clockwise left

clockwiseclockwise front
clockwise right
clockwise back
gripper open, above plug with wire
fully wrapped

gripper open, above blender with
wire fully wrapped beads fully wrapped

gripper open, above plug with wire
fully unwrapped

gripper open, above blender with
wire fully unwrapped



𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘(𝑐!", 𝑐#$% , 𝑠)
𝑥: 𝑐!", ℎ, 𝑤

conv3x3 (stride s)

𝑥: 𝑐#$%, ℎ/𝑠, 𝑤/𝑠

BatchNorm, ReLU

conv3x3 (stride 1)

BatchNorm

🔥𝐹𝑖𝐿𝑀𝐵𝑙𝑜𝑐𝑘(𝑐!"#)

+

ReLU

𝑜𝑢𝑡: 𝑐#$%, ℎ/𝑠, 𝑤/𝑠

𝑧&'"(

𝑧&'"(

𝑥: 𝑐, ℎ/𝑠, 𝑤/𝑠

𝛾
learned

projection

𝛽
learned

projection

∗

+

𝑜𝑢𝑡: 𝑐, ℎ/𝑠, 𝑤/𝑠

𝐹𝑖𝐿𝑀𝐵𝑙𝑜𝑐𝑘(𝑐)

conv7x7 (stride 2)

BatchNorm, ReLU

MaxPool3x3 (stride 2)

𝑥: 16,64,64

𝑥: 16,32,32

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16,2

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16,1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,32, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,32, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,64, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,64, 1

🔥𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,128, 1

🔥𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 128,128, 1

𝑥: 128,16,16

Spatial Softmax

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠: 256,

𝑟𝑜𝑏𝑜𝑡	𝑠𝑡𝑎𝑡𝑒: 22,Concat

🔥FC Layers [1024, 512, 256]

𝑎𝑐𝑡𝑖𝑜𝑛: 𝑥, 𝑦, 𝑧, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟

𝐼𝑚𝑎𝑔𝑒	𝑜𝑏𝑠: 3,128,128

𝑧&'"(: 	 (384, )

LLM

𝑙%')*:	“put carrot in bowl”

CNN

Fig. 6. Detailed Policy Network Architecture. Fire denotes layers trained during policy learning. The early CNN modules are kept frozen to maintain the
intermediate representations learned from the pretraining phase.

TABLE X
SIM2REAL : FINETUNING R3M WITH OUR METHOD

Pretraining Action-labeled Data Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target Dt

prior 25 50 100 25 50 100 25 50 100

R3M + adapters, Lang Reg. ✓ ✓ – 0 30 40 0.7 0.95 1.25 0 5 5

Lang Reg. (ours) ✓ ✓ – 55 80 95 1.2 1.8 1.95 25 50 55
R3M (frozen) ✓ ✓ ✓ 75 75 85 1.6 1.55 1.75 30 25 20


	Introduction
	Related Work
	Vision Pretraining for Robotics
	Sim2Real
	Domain-Invariant Representations
	Language and Robotics

	Problem Description
	Lang4Sim2Real: Few-Shot IL with Sim&Real
	Automatic Language labeling of Images
	Cross-Domain Image-Language Pretraining
	Language-Regression
	Language-Distance Learning

	Multitask, Multidomain Behavioral Cloning

	Experimental Setup
	Sim2Sim and Sim2Real Environment Differences
	Evaluation Metrics
	Data
	Environments
	Overview of Tasks

	Task Suite 1: Stack Object
	sim2sim
	sim2real

	Task Suite 2: Multi-step Pick and Place
	sim2sim
	sim2real

	Task Suite 3: Wrap Wire
	sim2sim
	sim2real

	Baselines
	Our Method Variants and Ablations

	Experimental Results
	Experimental Questions and Analysis
	Additional Experimental Questions and Results

	Conclusion
	Limitations and Future Work
	Acknowledgements
	Scripted Policy for Real-World Data Collection
	Detailed Policy Network Architecture & Hyperparameters
	Does Language Similarity Imply Action Distribution Similarity?
	Task and Data Details
	Training Hyperparameters
	Sim2Sim and Sim2Real Differences
	Labeling Image Observations with Language
	Language labeling during Scripted Policy
	Alternative Approach: Language labeling with off-the-shelf VLMs

	Impact of Language Granularity on Performance
	sim2real results with no pretraining on `3́9`42`"̇613A``45`47`"603A`3́9`42`"̇613A``45`47`"603ADttarget
	Combining R3M with Our Approach


