
WLASL-LEX: a Dataset for Recognising Phonological Properties in
American Sign Language

Anonymous ACL submission

Abstract

Signed Language Processing (SLP) concerns001
the automated processing of signed languages,002
the main means of communication of Deaf and003
hearing impaired individuals. SLP features004
many different tasks, ranging from sign recog-005
nition to translation and production of signed006
speech, but has been overlooked by the NLP007
community thus far. In this paper, we bring008
to attention the task of modelling the phonol-009
ogy of sign languages. We leverage existing010
resources to construct a large-scale dataset of011
American Sign Language signs annotated with012
six different phonological properties. We then013
conduct an extensive empirical study to in-014
vestigate whether data-driven end-to-end and015
feature-based approaches can be optimised to016
automatically recognise these properties. We017
find that, despite the inherent challenges of the018
task, graph-based neural networks that oper-019
ate over skeleton features extracted from raw020
videos are able to succeed at the task to a vary-021
ing degree. Most importantly, we show that this022
performance pertains even on signs unobserved023
during training.024

1 Introduction025

Around 200 languages in the world are signed026

rather than spoken, featuring their own vocabu-027

lary and grammatical structures. For example the028

American Sign Language (ASL) is not a mere trans-029

lation of English into signs and is unrelated to030

the British Sign Language (BSL). This introduces031

many novel challenges to their automated process-032

ing. Research on Sign Language Processing (SLP)033

encompasses tasks such as sign language detection,034

i.e. recognising if and which signed language is035

performed (Moryossef et al., 2020) and sign lan-036

guage recognition (SLR) (Koller, 2020), i.e. the037

identification of signs either in isolation or in con-038

tinuous speech. Other tasks concern the translation039

from signed to spoken (or written) (Camgoz et al.,040

2018) language or the production of signs from text041
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Figure 1: We annotate ASL sign videos with their cor-
responding phonological information and skeleton fea-
tures of the speakers, and train neural networks to recog-
nise the former from the latter.

(Rastgoo et al., 2021). With the recent success of 042

deep learning-based approaches in computer vision 043

(CV), as well as advancements in —from the CV 044

perspective—related tasks of action and gesture 045

recognition (Asadi-Aghbolaghi et al., 2017), SLP 046

is gaining more attention in the CV community 047

(Zheng et al., 2017). 048

Some recent approaches to various SLP tasks 049

rely on phonological features, perhaps due to the 050

complexity of the tasks (Tornay, 2021; Metaxas 051

et al., 2018; Gebre et al., 2013; Tavella et al., 2021). 052

Surprisingly, however, little work has been carried 053

out on explicitly modelling the phonology of signed 054

languages. This presents a timely opportunity to 055

investigate signed languages from a linguist’s per- 056

spective (Yin et al., 2021). In the context of signed 057

languages, phonology typically distinguishes be- 058

tween manual features, such as usage, position and 059

movement of hands and fingers, and non-manual 060

features, such as facial expression. Sign language 061

phonology is a matured field with well-developed 062

theoretical frameworks (Liddell and Johnson, 1989; 063

Fenlon et al., 2017; Sandler, 2012). These phono- 064

logical features, or phonemes, are drawn from a 065

fixed inventory of possible configurations which 066

is typically much smaller than the vocabulary of 067

signed languages (Borg and Camilleri, 2020). For 068

example, there is only a limited number of fingers 069

that can be used to perform a sign due to anatomical 070

constraints. Hence, different signs share phonolog- 071
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ical properties and well performing classifiers can072

be used to predict those properties for signs un-073

seen during training. This potentially holds even074

across different languages, because, while differ-075

ent languages may dictate different combinations076

of phonemes, there are also significant overlaps077

(Tornay et al., 2020).078

Finally, these phonological properties have a079

strong discriminatory power when determining080

signs. For example, in ASL-Lex (Caselli et al.,081

2017), a lexicon which also captures phonology in-082

formation, the authors report that more than 50% of083

its 994 described signs have a unique combination084

of only six phonological properties and more than085

80% of the signs share their combination with at086

most two other signs. By relying on additional (i.e.,087

phonological) information from resources such as088

ASL-Lex, many signs can be determined from (pre-089

dicted) phonological properties alone, without en-090

countering them in training data. This is a capa-091

bility that current data-driven approaches to SLR092

lack by design (Koller, 2020). Thus, in combina-093

tion, mature approaches to phonology recognition094

can facilitate the development of sign language095

resources. This is an important task for both doc-096

umenting low-resource sign languages as well as097

rapid developing of large-scale datasets, to fully098

harness data-driven CV approaches.099

To spur research in this direction, we extend the100

preliminary work by Tavella et al. (2021) and intro-101

duce the task of Phonological Property Recognition102

(PPR). More specifically, this paper contributes103

(i) WLASLLex2001, a large-scale, automatically104

constructed PPR dataset, (ii) an analysis of the105

dataset quality, and (iii) an empirical study of the106

performance of different deep-learning based base-107

lines thereon.108

2 Methodology109

We address PPR as a classification problem based110

on features extracted from videos of people speak-111

ing SL. Albeit manual annotation approaches are112

generally adopted, an automated approach would113

be less time and resource consuming, allowing re-114

searchers to limit their efforts to data validation.115

To extract such features, we take advantage of pre-116

trained deep models from the computer vision com-117

munity (Rong et al., 2021; Wang et al., 2019). Fi-118

nally, we train several deep models to classify them119

as phonological classes.120

Dataset construction: As previously men-121

tioned, ASL-Lex (Caselli et al., 2017) contains 122

phonological features of American Sign Language, 123

such as where the sign is executed, the movement 124

performed by the hand or the number of hands 125

involved. The latter properties were coded by 3 126

ASL-versed people. In our work, we are interested 127

in recognising phonological classes from videos 128

of people speaking ASL. Consequently, we aim to 129

construct a dataset suitable for supervised learn- 130

ing, containing videos labelled with 6 phonological 131

properties. We choose: (i) flexion, aperture of the 132

selected fingers of the dominant hand at sign onset, 133

(ii) major location, general location of the domi- 134

nant hand at sign onset, (iii) minor location, spe- 135

cific location of the dominant hand at sign onset, 136

(iv) movement, path movement of the first mor- 137

pheme in the sign, (v) selected fingers, fingers that 138

are moving or foregrounded in the first morpheme 139

of the sign, and (vi) sign type, symmetry of the 140

hands according to Battison (1978). A detailed 141

description of all the properties is provided in the 142

appendix. We selected these manual properties as 143

they have a strong discriminatory power to predict 144

signs based on their configuration (Caselli et al., 145

2017). One of the limitations of ASL-Lex is the 146

small number of examples and its limited variety: 147

its first iteration (ASL-Lex 1.0) contains less than 148

1000 videos, all signed by the same person. While 149

sufficient for educational purposes, these videos 150

are of limited suitability for developing robust clas- 151

sifiers that can capture the diversity of ASL speak- 152

ers (Yin et al., 2021). To this end, we source videos 153

from WLASL (Li et al., 2020) (Word Level-ASL), 154

one of the largest available SL datasets, featuring 155

more than 2000 glosses demonstrated by over 100 156

people, for a total of more than 20000 videos. Each 157

sign is performed by at least 3 different signers, 158

which implies greater variability compared to hav- 159

ing one gloss performed by only one user. By cross 160

referencing ASL-Lex and WLASL2000 based on 161

corresponding glosses, we can increase the number 162

of samples available to train our models. Finally, 163

to leverage state of the art SLR architectures that 164

operate over structured input, we enrich each raw 165

video with its extracted keypoints that represent 166

the joints of the speaker. To do so, we use two 167

pretrained models, FrankMocap (Rong et al., 2021) 168

and HRNet (Wang et al., 2019). While these track- 169

ing algorithms follow different paradigms, the for- 170

mer extracting 3D coordinates based on a predicted 171

human model and the latter predicting keypoints as 172
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coordinates from videos directly, they produce sim-173

ilar outputs. An important distinction is that while174

FrankMocap estimates the 3D keypoints, HRNet175

outputs 2D keypoints with associated prediction176

confidence scores. We use these different models177

to explore whether different tracking algorithms af-178

fect the recognition of phonological classes.We se-179

lect a subset of features of the upper body, namely:180

nose, eyes, shoulders, elbows, wrists, thumbs and181

first/last knuckles of the fingers. These manual fea-182

tures were determined to be the most informative183

while performing sign language recognition (Jiang184

et al., 2021b).185

Our final dataset, WLASL-Lex2001186

(WLASL2000 + ASL-Lex 1.0), is composed187

of 10017 videos corresponding to 800 glosses,188

3D skeletons (x, y, z from FrankMocap and x,189

y and score from HRNet) labelled with their190

phonological properties. A characteristic of this191

dataset is that it follows a long tailed distribution.192

Due to the nature of language, some phonological193

properties are more common than others, which194

means that some classes are more represented than195

others. On the one hand, the training setup for196

our models should take this factor into account,197

but on the other hand, the advantage of training198

over phonological classes instead of glosses is that199

different glosses can share phonological classes.200

Models: To estimate the complexity of the201

dataset, we use the majority-class baseline and202

the Multi-Layer Perceptron (MLP) as a basic deep203

model. We further use Long Short-Term Memory204

(LSTM) and Gated Recurrent Units (GRU) as mod-205

els capable of capturing the temporal component of206

videos. As state-of-the-art SLP architectures that207

have been used to perform SLR, we use the I3D208

3D Convolutional Neural Network (Carreira and209

Zisserman, 2017; Li et al., 2020) able to learn from210

raw videos, and the Spatio-Temporal Graph Con-211

volutional Network (STGCN) (Jiang et al., 2021b)212

that captures both spatial and temporal components213

from the extracted keypoints.214

Experimental Setup: We generate one dataset215

and train different models for each phonological216

property. While this might not be the optimal way,217

as opposed to a multiclass multilabel approach, it is218

the best one in order to understand which features219

can and cannot be singularly learned, making the220

error analysis much easier. From now on, when221

we cite the dataset, we refer to an instance of the222

WLASL-Lex 2001 dataset, whose labels are the223

values of a single phonological class. We make this 224

distinction because we split the dataset into train, 225

validation and test sets (with a 70 : 15 : 15 ra- 226

tio) using a stratified strategy based on the selected 227

phonological class (Phoneme). By doing so, we 228

make sure that all the different splits contain all pos- 229

sible values for a phonological class. Because our 230

dataset features multiple videos per gloss, glosses 231

in the test set appear in the training set as well. 232

Thus, to investigate how well the models can pre- 233

dict properties on unseen glosses, we also produce 234

label-stratified splits on gloss-level (Gloss), such 235

that videos of glosses in the validation and test set 236

do not appear in training data and vice versa. 237

The I3D is pre-trained on Kinetics-400 (Car- 238

reira and Zisserman, 2017) and fine-tuned on our 239

datasets. The other models are trained from scratch 240

using keypoints as input. We fix the length of all in- 241

put to 150 frames, longer sequences are truncated 242

while shorter sequences are looped to reach the 243

fixed length. We select the best performing model 244

based on performance on the validation set and for 245

the final test set performance we train the models 246

on both train and validation set. For more details 247

on model selection, consult the appendix. We mea- 248

sure both accuracy, to investigate how well models 249

perform in general, and class-balanced accuracy to 250

take into account how well they are able to model 251

different classes of the phonological properties. 252

3 Results and discussion 253

The upper half of Table 1 presents the results for 254

the six datasets split in a stratified fashion, not tak- 255

ing into account the corresponding glosses. The 256

poor performance of the simple MLP architecture 257

suggests that the tasks are in fact challenging and 258

do not exhibit easily exploitable regularities. Due 259

to its simplicity, for some properties it is barely 260

able to reach the baseline (34% vs. 35% and 44% 261

vs. 50% for movement and flexion respectively). In 262

particular, MLP classifying based on FrankMocap 263

(MLPF ) output is often the worst performing com- 264

bination. Conversely, STGCN using HRNet output 265

(STGCNH ) outperforms other models on all six 266

tasks. In some cases, for example when predicting 267

movement or flexion, it is the only model which 268

significantly surpasses the majority class baseline. 269

This superior performance is expected, as specif- 270

ically this combination of the STGCN operating 271

over HRNet-extracted keypoints has been shown to 272

be the largest contributor to the SLR performance 273
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FLEXION MAJLOCATION MINLOCATION MOVEMENT FINGERS SIGNTYPE
A A A A A A A A A A A A

P
ho

ne
m

e

Baseline 50.3 11.1 34.4 20.0 33.9 3.1 35.5 16.7 48.2 11.1 39.3 20
MLPH 50.1± 2.5 11.1 70.3± 2.3 64.0 51.6± 2.5 28.2 34.3± 2.4 18.7 59.4± 2.5 25.0 73.9± 2.2 52.6
MLPF 50.3± 2.5 11.1 57.8± 2.5 46.8 34.3± 2.4 9.1 34.3± 2.4 18.7 43.4± 2.5 12.9 67.0± 2.4 42.8
RNNH 49.0± 2.5 30.0 75.8± 2.2 72.4 64.3± 2.4 46.0 35.1± 2.4 29.5 71.0± 2.3 46.5 78.7± 2.1 58.8
RNNF 50.3± 2.5 11.1 64.6± 2.4 54.2 30.3± 2.3 4.0 35.4± 2.4 18.1 46.5± 2.5 12.4 70.9± 2.3 46.8
STGCNH 62.3± 2.4 45.0 83.2± 1.9 78.6 74.5± 2.2 63.5 63.6± 2.4 58.2 73.8± 2.2 56.0 84.5± 1.8 69.6
STGCNF 43.4± 2.5 20.8 70.5± 2.3 62.1 53.0± 2.5 40.0 45.7± 2.5 37.8 63.1± 2.4 32.8 73.0± 2.2 53.1

3DCNN 46.5± 2.5 13.2 64.3± 2.4 55.2 42.3± 2.5 18.6 32.9± 2.4 20.8 47.5± 2.5 14.5 69.5± 2.3 44.8

G
lo

ss

Baseline 53.1 11.1 35.7 20.0 42.0 5.0 35.2 16.7 47.4 12.5 38.3 20.0
MLPH 44.6± 2.5 15.5 68.1± 2.3 56.6 47.3± 2.5 19.7 28.4± 2.2 19.8 56.2± 2.5 22.9 75.3± 2.2 50.7
MLPF 50.3± 2.5 11.1 56.6± 2.5 42.9 38.3± 2.4 10.7 37.1± 2.4 21.7 39.3± 2.5 12.5 68.4± 2.4 41.2
RNNH 49.0± 2.5 30.0 72.8± 2.2 67.3 49.3± 2.5 26.3 32.2± 2.3 24.9 60.7± 2.5 32.5 75.4± 2.2 53.5
RNNF 50.3± 2.5 11.1 64.1± 2.4 52.6 44.4± 2.4 17.8 36.7± 2.4 20.1 27.3± 2.3 12.7 72.0± 2.3 46.9
STGCNH 49.1± 2.5 21.6 77.3± 2.1 70.0 55.1± 2.4 32.7 52.5± 2.5 46.5 65.7± 2.4 34.4 76.6± 2.1 54.4
STGCNF 39.0± 2.5 14.4 66.7± 2.3 60.1 45.1± 2.4 21.1 43.1± 2.5 34.9 60.0± 2.5 29.2 71.3± 2.3 47.5

3DCNN 46.0± 2.5 12.8 64.9± 2.4 52.0 10.8± 1.5 13.6 32.0± 2.3 19.3 45.9± 2.5 14.7 71.6± 2.3 46.3

Table 1: Accuracy (A.) and per-class averaged accuracy (A) of various models on the test tests of the six tasks. For
accuracy, we report the error margin as a confidence interval at α = 0.05 using asymptotic normal approximation.
We omit error margins for balanced accuracy as the low number of classes results in a small sample size.

on the WLASL2000 dataset (Jiang et al., 2021a).274

Models that operate over structured input often out-275

perform the 3D CNN, demonstrating the utility of276

additional information provided by the skeleton277

features. The results also suggest that models using278

the HRNet skeleton output outperform those who279

use FrankMocap, possibly due to confidence scores280

produced by HRNet and associated with the coor-281

dinates. This difference in performance suggests282

to conduct a more rigorous study to investigate the283

impact of different feature extraction methods as a284

possible future research direction.285

The lower half of Table 1 shows the evaluation286

results on unseen glosses (Gloss). The performance287

of all tasks and all models deteriorates, suggesting288

that their success is partly derived from exploiting289

the similarities of videos that appear in training and290

test data and refer to the same gloss. However, the291

best model, STGCNH , performs comparably to the292

Phoneme-split, with a drop of less than 10 accuracy293

points for five of the six tasks.294

Often, automatically constructed datasets such295

as ours, have a performance ceiling, for example296

due to incorrectly assigned ground truth labels or297

low quality of input data (Chen et al., 2016). To298

investigate the former, we measure the agreement299

on videos that all models misclassify using Fleiss’300

κ. Intuitively, if all models agree on a label differ-301

ent than the ground truth, the ground truth label302

might be wrong. We find that averaged across the303

six tasks, the agreement is negligible: 0.09± 0.06304

and 0.11 ± 0.09 for Phoneme and Gloss split, re-305

spectively. Similarly, for the latter, if all models306

consistently fail to assign any correct label for a307

given video (e.g. all models err on a video appear- 308

ing in the test sets of movement and flexion), this 309

can hint at low quality of the input, exacerbating 310

processing it correctly. We find that this is not the 311

case with WLASL-LEX2001, as videos appearing 312

in test sets of different tasks tend to have a low mu- 313

tual misclassification rate: 1% and 0.7% of videos 314

appearing in test sets of two and three tasks were 315

misclassified by all models for all associated tasks 316

for the Phoneme split. For the Gloss split the num- 317

bers are 3 and 0% for two and three tasks, respec- 318

tively. Together, these observations suggest that 319

the models presented in this paper are unlikely to 320

reach the performance ceiling on WLASL-Lex2001 321

and more advanced approaches could obtain even 322

higher accuracy scores. 323

4 Conclusion 324

In this paper, we discuss the task of Phonologi- 325

cal Property Recognition (PPR). We automatically 326

construct a dataset for the task featuring six phono- 327

logical properties and analyse it extensively. We 328

find that there is potential for improvement over 329

our presented data-driven baseline approaches. Re- 330

searchers pursuing this direction can focus on de- 331

veloping better-performing models, for example by 332

relying on jointly learning all properties, as labels 333

for different properties can be mutually dependent. 334

Another possible avenue is to investigate the 335

feasibility of using PRR to perform tokenisation of 336

continuous sign language speech, by decomposing 337

it into multiple phonemes, which is identified as 338

one of the big challenges of SLP (Yin et al., 2021). 339
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A Hyperparameters optimization458

Table 2 contains all the hyperparameters explored459

during our experiment over each different model.460

The best model is the one that maximises the461

Matthew’s correlation coefficient462

463

MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

464

465

with TP, TN,FP, FN being true/false posi-466

tive/negative. For the STGCN we use hyperparam-467

eters chosen by Jiang et al. (2021a), because initial468

experiments on our data showed a difference of at469

most 2% accuracy, which is within the uncertainty470

estimate. To find the optimal hyperparameters for471

the other models, we perform Bayesian optimisa-472

tion over a pre-defined set We maximise Matthew’s473

correlation coefficient (MCC) (Matthews, 1975) on474

the validation sets of all six tasks. We choose MCC475

as it provides a good trade-off between overall and476

class-level accuracy which is necessary due to the477

unbalance inherently present in our dataset.478

Model Parameters

MLP

number of layers
hidden dimension
dropout
learning rate
scheduler step size
gamma

RNN
number of RNN layers
RNN hidden dimension
RNN dropout

STGCN

learning rate
number of groups
block size,
window size
scheduler step size
dropout
warmup epochs

3D CNN

dropout
learning rate
gamma
scheduler step size
window size

Table 2: Set of explored hyperparameters for each dif-
ferent model

B Seed dependency 479

Table 3 illustrates the performance on the test set 480

for each model with respect to chance as measured 481

by training 5 models from different random seeds. 482

The performance difference is negligible suggest- 483

ing that model training is largely stable with regard 484

to chance. 485

Model Accuracy
MLP 74.39± 0.35

RNN 79.12± 0.46

STGCN 84.12± 0.29

3D CNN 69.23± 0.93

Table 3: Mean and standard deviation of accuracy of all
architectures trained with the HRNet output, measured
on the SIGNTYPE test set and averaged over 5 different
random seeds. Results for the 3D CNN are obtained
from the validation set.

C Phonological classes description 486

Tables 4 to 9 describe in detail the meaning of 487

values for all the phonological classes according to 488

ASL-Lex (Caselli et al., 2017). 489

The cardinality is calculated on WLASL-Lex, 490

which is why some classes that are in ASL-Lex are 491

not represented (i.e., cardinality equal to 0). 492
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Value Definition Cardinality
imrp index, middle, ring, pinky finger 4824
imr index, middle, ring finger 95
mrp middle, ring, pinky finger 28
im index, middle finger 1296
ip index, pinky finger 51
mr middle, ring finger 0
mp middle, pinky finger 0
rp ring, pinky finger 0
i index finger 2547
m middle finger 259
r ring finger 0
p pinky 407
thumb thumb 510

Table 4: Values and relative definitions for selected fingers

Value Definition Cardinality
Head Sign is produced on or near the head 3137
Arm Sign is produced on or near the arm 219
Body Sign is produced on or near the trunk 1019
Hand Sign is produced on or near the non-dominant hand 2194
Neutral Sign is not produced in another location on the body 3448
Other Sign is produced in another unspecified location on the body 0

Table 5: Values and relative definitions for major location

Value Definition Cardinality
1 Fully open: no joints of selected fingers are flexed 5037
2 Bent (closed): non-base joints are flexed 693
3 Flat-open: base joints flexed less than 90 degrees 909
4 Flat-closed: base joints flexed equal to or more that 90 degrees 507
5 Curved open: base and non-base joints flexed without contact 1130
6 Curved closed: base and non-base joints flexed with contact 642
7 Fully closed: base and non-base joints fully flexed 795
Stacked Stacked: Flexion of selected fingers differs 123
Crossed Crossed 181

Table 6: Values and relative definitions for flexion
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Value Definition Cardinality
HeadTop Sign is produced on top of the head 20
Forehead Sign is produced at the forehead 246
Eye Sign is produced near the eye 616
CheekNose Sign is produced on the cheek or nose 511
UpperLip Sign is produced on the upper lip 53
Mouth Sign is produced on the mouth 431
Chin Sign is produced on the chin 717
UnderChin Sign is produced under the chin 74
UpperArm Sign is produced on the upper arm 39
ElbowFront Sign is produced in the crook of the elbow 0
ElbowBack Sign is produced on the outside of the elbow 13
ForearmBack Sign is produced on the outside of the forearm 32
ForearmFront Sign is produced on the inside of the forearm 10
ForearmUlnar Sign is produced on the ulnar side of the forearm 56
WristBack Sign is produced on the back of the wriset 23
WristFront Sign is produced on the front of the wrist 0
Neck Sign is produced on the neck 68
Shoulder Sign is produced on the shoulder 101
Clavicle Sign is produced on the clavicle 419
TorsoTop Sign is produced in the upper third of the torso 0
TorsoMid Sign is produced in the middle third of the torso 0
TorsoBottom Sign is produced in the bottom third of the torso 19
Waist Sign is produced at the waist 34
Hips Sign is produced on the hips 59
Palm Sign is produced on the plam of the non-dominant hand 925
FingerFront Sign is produced on the front of the fingers of the non-dominant hand 99
PalmBack Sign is produced on the back of the palm of the non-dominant hand 218
FingerBack Sign is produced on the back of the fingers of the non-dominant hand 186
FingerRadial Sign is produced on the radial side of the non-dominant hand 410
FingerUlnar Sign is produced on the ulnar side of the non-dominant hand 40
FingerTip Sign is produced on the tip of the fingers of the non-dominant hand 158
Heel Sign is produced on the heel of the non-dominant hand 88
Other Sign is produced in an unspecified location on the body 707
Neutral Sign is not produced on or near the body 3390

Table 7: Values and relative definitions for minor location
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Value Definition Cardinality
One Handed Sign only recruits one hand 3939

Symmetrical
Or Alternating

Sign recruits both hands
Phonological specifications for both hands are identical
Movement of both hands is either symmetrical or alternating

3358

Asymmetrical
Same Handshape

Sign recruits both hands
Only the dominant hand moves
The location and orientation of the hands may differ,
but the other specifications of handshape are the same
Non-Dominant hand must be an unmarked handshape (B A S 1 C O 5)

938

Asymmetrical
Different Handshape

Sign recruits both hands
Only the dominant hand moves
The location and orientation of the hands may differ,
and the other specifications of handshape are not the same
Non-Dominant hand must be an unmarked handshape (B A S 1 C O 5)

1639

Other Sign violates Battison’s Symmetry and Dominance Conditions 143

Table 8: Values and relative definitions for sign type

Value Definition Cardinality
Straight Straight movement of the dominant hand through xyz space 1938

Curved
Single arc movement of the dominant hand through xyz space
Hands may or may not make contact with multiple locations

1255

BackAndForth Sequence of more than one straight or curved movements 3549

Circular
Circular movement of the dominant hand through space
Rotation alone does not constitute a circular movement

1129

None Entire sign (or first free morpheme) does not have a path movement 1748
Other Sign has another unspecified path movement 398

Table 9: Values and relative definitions for movement
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