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ABSTRACT

We study the hard problem of 3D object segmentation in complex point clouds
without requiring human labels of 3D scenes for supervision. By relying on the
similarity of pretrained 2D features or external signals such as motion to group 3D
points as objects, existing unsupervised methods are usually limited to identifying
simple objects like cars or their segmented objects are often inferior due to the
lack of objectness in pretrained features. In this paper, we propose a new two-
stage pipeline called GOPS. The core concept of our method is to learn generative
and discriminative object-centric priors as a foundation from object datasets in the
first stage, and then to learn multiple objects by querying against the pretrained
priors in the second stage. We extensively evaluate our method on two real-world
datasets and a newly created synthetic dataset, demonstrating remarkable segmen-
tation performance, clearly surpassing all existing unsupervised methods.

1 INTRODUCTION

The emerging applications in autonomous navigation, embodied AI, and mixed reality necessitate
precise semantic 3D scene understanding. Particularly, the ability to identify complex objects in
3D point clouds is crucial for machines to reason about and interact with real-world environments.
Existing works to tackle 3D object segmentation mainly rely on dense or sparse human labels for 3D
supervision (Wang et al., 2018; Schult et al., 2023), or large-scale image/language annotations for
2D-3D supervision (Takmaz et al., 2023; Yin et al., 2024). Although they have achieved excellent
segmentation results, the required large-scale annotations are laborious to collect, making them
unappealing and less generic in real applications.

To overcome this limitation, a few unsupervised methods aim to group 3D points as objects by ei-
ther relying on heuristics such as distributions of point normals/colors/motions (Zhang et al., 2023;
2024; Song & Yang, 2022), or the similarity of self-supervised pretrained point features commonly
reprojected from 2D images (Rozenberszki et al., 2024; Shi et al., 2024). Despite obtaining encour-
aging results, they can usually identify simple objects like cars in self-driving scenarios, or their
segmented objects are often inferior in quality due to the lack of objectness of pretrained features.

In this paper, we aim to design a generic pipeline that can precisely identify complex objects in
3D point clouds without requiring any costly human labels of 3D scenes for supervision. However,
this is extremely challenging as it involves two fundamental questions: 1) what are objects (i.e.,
object priors)? and 2) how to effectively estimate multiple these objects in complex scenes? In
fact, in real 3D world, this is even harder, because different objects of the same category (e.g.,
chairs) may exhibit distinctive morphologies due to severe occlusions, different orientations located,
and sensory noises. This means that: 1) the yet to be defined or learned object priors should be
both discriminative, robust and continuous in latent space, and 2) the yet to be designed estimation
strategy should take into account possible missed detections during object exploration.

With this motivation, we introduce a new learning framework comprising two natural stages: 1)
3D object prior learning, followed by 2) object estimation of 3D scenes without needing human
labels for supervision. As illustrated in the left block of Figure 1, in the first stage, we aim to train
an object-centric network to learn both discriminative and robust object priors from single object
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Figure 1: An illustration of the overall framework.

shapes such as ShapeNet (Chang et al., 2015). In the second stage, as shown in the right block of
Figure 1, we introduce a multi-object estimation network to infer multiple objects in an input point
cloud, just by using learned object priors in the first stage without needing human labels to train.

For the object-centric network, to learn desired object priors against potential occlusions, noises,
and chaotic object orientations, we choose to learn an object-centric generative model. In particular,
given an object point cloud, the network aims to estimate a conditional latent distribution via existing
techniques such as Variational Autoencoder (VAE) (Kingma & Welling, 2014) and diffusion model
(Ho et al., 2020). The latent code is expected to be unique for a specific viewing angle, and the
network could regress the object orientation with regard to a canonical pose. In this way, the learned
generative object priors could be robust for occlusions or noises, whereas the orientation estimation
ability would allow the learned priors to be discriminative for different object orientations.

Regarding the multi-object estimation network, we aim to discover individual objects as many as
possible on scene-level point clouds, but only relying on our pretrained object-centric network. Our
insight is that, given a subvolume of points cropped from the input scene point cloud, if it happens
to include a single valid object, its latent priors should be able to recover/generate a plausible object
shape and orientation, so to be accurately aligned with the input subset. Otherwise, that input sub-
volume should be discarded or its location and size should be updated until a valid object is found.
In the meantime, once a valid object is found, the network should be able to detect all other similar
objects accordingly, instead of needing excessive search. To achieve this goal, we introduce two par-
allel branches for the network, 1) an object discovery branch based on reinforcement learning (RL)
exploration which receives rewards from our pretrained object-centric network, and 2) an object
segmentation branch supervised by pseudo object labels discovered. Notably, the RL-based discov-
ery branch is discarded once the segmentation branch is well trained, thus the whole multi-object
estimation network is efficient during inference.

Our framework, named GOPS, learns generative object priors via the object-centric network, al-
lowing us to effectively segment individual objects on scene point clouds. The closest work to us
is EFEM (Lei et al., 2023), but its learned object priors are not generative and the object discovery
strategy heavily relies on heuristics to search limited objects. Our contributions are:

• We introduce a two-stage learning pipeline for 3D object segmentation. An object-centric gener-
ative model is designed to learn both discriminative and robust object priors.

• We design a multi-object estimation network to effectively discover individual objects just by re-
ceiving rewards from the pretrained object-centric priors without needing human labels in training.

• We demonstrate superior object segmentation results and clearly surpass the state-of-the-art unsu-
pervised methods on multiple datasets.

2 RELATED WORKS

Fully-/Weakly-supervised 3D Object Segmentation: Significant progress has been made in fully-
supervised object segmentation of 3D point clouds, including bottom-up point clustering meth-
ods (Wang et al., 2018; Han et al., 2020; Chen et al., 2021; Vu et al., 2022), top-down detection
based approaches (Hou et al., 2019; Yi et al., 2019; Yang et al., 2019; He et al., 2021; Shin et al.,
2024), and Transformer based methods (Jiahao Lu et al., 2023; Lai et al., 2023; Schult et al., 2023;
Sun et al., 2023; Kolodiazhnyi et al., 2024). A number of succeeding methods leverage relatively
weak labels such as 3D bounding boxes (Chibane et al., 2022; Tang et al., 2022) or object centers
(Griffiths et al., 2020) to identify 3D objects. Although achieving excellent accuracy on public 3D
datasets, they primarily rely on laborious human annotations to train neural networks.
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3D Object Segmentation with Self-supervised/Supervised 2D/3D Features: Recently, with the
advancement of self-supervised pretraining techniques and fully-supervised foundation models, a
line of methods (Ha & Song, 2022; Lu et al., 2023; Takmaz et al., 2023; Liu et al., 2023; Nguyen
et al., 2024; Yan et al., 2024; Roh et al., 2024; Boudjoghra et al., 2024; Tai et al., 2024; Yin et al.,
2024) have been developed to leverage pretrained 2D/3D or language features (Xie et al., 2020;
Caron et al., 2021; Radford et al., 2021; Kirillov et al., 2023) as supervision signals to discover 3D
objects on closed or open world datasets. Despite showing promising results, these methods still
rely on large-scale annotated data in 2D/3D domain or aligned vision-language data pairs, making
them costly and unappealing in real applications.

Unsupervised 3D Object Segmentation: To avoid data annotation, a couple of recent methods
are proposed to discover 3D objects by relying on heuristics such as distributions of point nor-
mals/colors/motions (Zhang et al., 2023; 2024; Song & Yang, 2022), or the similarity of pretrained
features from 2D domain (Rozenberszki et al., 2024; Shi et al., 2024). However, their capability of
identifying complex 3D objects is often inferior.

3D Object-centric Prior Learning: To learn object-centric priors, most methods usually train a
deterministic reconstruction network to predict 3D objects in different representations such as mesh
(Yang et al., 2018), point clouds (Fan et al., 2017), signed distance fields (SDF) (Park et al., 2019),
and unsigned distance fields UDF (Chibane et al., 2020), whereas another line of works (Achlioptas
et al., 2018; Kim et al., 2021; Klokov et al., 2020; Luo & Hu, 2021; Chou et al., 2023; Li et al.,
2023a; Zeng et al., 2022) train a generative network to learn object shape distributions using Gen-
erative Adversarial Networks (GAN) (Goodfellow et al., 2014), VAE (Kingma & Welling, 2014),
normalizing flows (Kim et al., 2020), or diffusion models (Ho et al., 2020). These methods often
aims to generate a diverse range of single 3D objects. By contrast, our framework is not primarily
targeting at 3D generation, but demonstrating the ability to discover multiple 3D objects.

3 GOPS

3.1 OVERVIEW

Our framework consists of two stages/networks. The object-centric network is designed to learn
object-level generative priors from a set of individual 3D objects (e.g., thousands of chairs in
ShapeNet (Chang et al., 2015)). After this object-centric network is well trained and frozen, our
ultimate goal is to use it to optimize another multi-object estimation network to discover as many
similar objects as possible on complex 3D scene point clouds such as thousands of 3D rooms in
ScanNet (Dai et al., 2017). Details of the two networks are discussed in Sections 3.2&3.3.

3.2 OBJECT-CENTRIC NETWORK

Given a set of individual 3D objects usually with a canonical pose collected in existing datasets, a
specific object is denoted as O ∈ RM×3 where M represents the number of 3D points with three
channels of location xyz. Other possible features such as RGB or normals are ignored in this paper
for simplicity. Our object-centric network comprises two modules elaborated below and they will
be trained on these 3D objects.

O ∈RM×3

Encoder MLP

fR (𝜙, 𝜃, 𝜓)R⟵

Figure 2: Object orientation esti-
mation module.

Object Orientation Estimation Module: Our final goal is to
segment potential objects in 3D scene point clouds, but those
objects are usually located with unknown poses. This means
that our object-centric network should be able to first infer var-
ious orientations of objects with respect to a canonical pose. To
this end, we introduce a neural module fR to directly regress
the orientation of an input object point cloud or the inverse of
the viewing angle with regard to a canonical pose.

As illustrated in Figure 2, given an object point cloud O, we feed it into an encoder to obtain a
128-dimensional global vector followed by multilayer perceptrons (MLPs) to directly regress three
orientation parameters R ←− (ϕ, θ, ψ). For simplicity, we adopt PointNet++ (Qi et al., 2017) with
a self-attention layer in each block as our encoder, though other sophisticated backbones can also
be used, and the L1 loss is applied following (Ke et al., 2020). To train this module, we create
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Figure 3: The object generative prior learning module with VAE-based and diffusion-based variants.

a sufficient number of training pairs by randomly rotating canonically-posed synthetic objects in
ShapeNet. Details of the neural architecture and dataset preparation are in Appendix A.

Object Generative Prior Learning Module: Again, our final objective is to identify multiple ob-
jects in 3D scenes, but those objects often come with noises, self or mutual occlusions, and/or
domain shifts. A naı̈ve solution is to augment existing object-level datasets by creating countless
samples for training, but this is data inefficient. We argue that it is more preferable to learn a
generative module fG, as it is inherently capable of capturing more robust and continuous latent
distributions from a moderate amount of 3D objects, as also validated by our ablation in Section 4.4.

As shown in the left block of Figure 3, we adopt a VAE framework (Kingma & Welling, 2014)
to learn conditional latent distributions. In particular, this module takes a canonically-posed object
point cloud Ō as input to an encoder, learning a 128-dimensional latent distributionN (µ,σ2). The
encoder architecture is the same as our object orientation estimation module. The sampled latent
code is then fed into MLPs to learn an SDF (Park et al., 2019). This SDF decoder exactly follows
EFEM (Lei et al., 2023). As shown in the right block of Figure 3, our module is also flexible to
adopt the popular diffusion model as an alternative. Following Diffusion-SDF (Chou et al., 2023),
our diffusion-based variant learns to denoise latent codes and is trained jointly with our VAE variant.
All details of the encoder/decoder and VAE/diffusion layers are provided in Appendix A.

Training & Test: Both our object orientation estimation module fR and object generative prior
learning module fG are simply trained in a fully-supervised manner on an object dataset. Since our
final goal is to leverage the pretrained fR and fG for multi-object segmentation, it is less important
to test its ability of generating high-quality single objects on benchmarks.

3.3 MULTI-OBJECT ESTIMATION NETWORK

With the object-centric network well-trained on an object dataset, our core objective is to segment
many similar objects on complex scene point clouds without human labels for training. Given a
single scene point cloud, a naı̈ve solution is to randomly crop many subvolumes of points at different
locations with different volume sizes, and then feed these subvolumes into our pretrained object-
centric network, obtaining their orientations followed by shape reconstruction. By verifying whether
each subvolume is matched with its corresponding reconstructed shape, we can regard the perfectly
matched ones as objects discovered. However, such a random cropping is extremely inefficient due
to the lack of a suitable learning strategy. In fact, it is also infeasible to directly learn subvolume
parameters like regressing object bounding boxes, essentially because the cropping operation is non-
differentiable. To this end, we introduce a novel multi-object estimation network to discover objects
via reinforcement learning (RL). The network has two parallel branches sharing a backbone.

Given an input scene point cloud P ∈ RN×3, we first feed it into a backbone network (not pre-
trained) fbone, obtaining per-point features F ∈ RN×128 which will be used in our two branches as
discussed below. SparseConv (Graham et al., 2018) is adopted as the backbone for simplicity.

Object Discovery Branch: Due to the lack of human labels in training, discovering objects is
actually a trial-and-error process. In this regard, we formulate it as an RL problem, which also does
not require dense or continuous labels. Because our pretrained object-centric network inherently
has rich object priors and can serve as an indicator of objectness, it is naturally suitable to act as a
reward generator. We set up the RL pipeline as follows, including definitions of the agent and its
action space, a policy network, reward design, and the training loss.

1) Agent: An ambitious agent is to directly discover per-point object masks in action space, but the
exploration cost would exponentially grow against the number of 3D scene points. In this regard,
we opt to learn fewer parameters instead. Particularly, we create a virtual agent called dynamic con-
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Figure 4: The framework of multi-object estimation network.

tainer C in 3D scene space. For simplicity, we choose it as a cylinder with an unconstrained height
and parameterize it by its center projected on xy plane and its diameter, i.e., C ←− [Cx, Cy, Cd].
This agent is expected to start from an (randomly) initial location and size, then dynamically change
its parameters in its action space according to a policy network, and receive rewards by interacting
with our pretrained object-centric network, eventually moving to a valid object.

2) Action Space: Regarding the three parameters [Cx, Cy, Cd], we define two groups of actions as
follows. To speed up exploration, both groups are executed simultaneously at every timestamp.

• Group #1: The dynamic container will move {forward, backward} to update Cx, move {left,
right} to update Cy all by a fixed and predefined step size ∆s, or keep still with an action pause.
During exploration, the dynamic container will only choose one of the five actions at every times-
tamp to update its two location parameters [Cx, Cy].

• Group #2: The dynamic container will {enlarge, reduce} its diameter Cd by a fixed and prede-
fined ratio α to update its current volume size, or keep unchanged with an action keep. During
exploration, the container will only choose one of the three actions at every timestamp to adjust
its size parameter Cd.

3) Policy Network: As shown in the leftmost block of Figure 4, we have per-point features F of the
input scene P . Assuming the container agent has randomly initialized parameters [C0

x, C
0
y , C

0
d ] at

time t0, we crop the corresponding 3D points and features within container, denoted as P 0
c ∈ RK×3

and F 0
c ∈ RK×128 respectively, where K represents the number of points and may vary at future

timestamps. Both P 0
c and F 0

c are regarded as container state features at time t0, and they are fed
into our attention-based policy network fpol, directly predicting a policy for next actions of both
groups at time t1, denoted as p1

cxy
∈ R5 and p1

cd
∈ R3 respectively. We also estimate a state value

v0 in parallel, as illustrated by the upper block of Figure 4. With the predicted policy, the agent
will execute corresponding actions at next timestamps, and the future exploration will repeat this
process until the agent being stopped. Note that, over training, the container’s future steps will be
more likely to approach a valid object, though its first step is always randomly initialized.

Step #1 Step #2

!𝑫!"∈RK×1

Step #3 Step #4

fR fG fG

10𝑟"⟵

!𝑷!"

𝑹!"
Per-point
SDF values

𝛿!

< 𝛿"

yes

no𝑷!" Candidate
Object Points

'𝑷!"∗
𝑴"
#Binarization

Recovered
Full Shape

Chamfer
Distance

−1𝑟"⟵

Pseudo Masks

𝑴!
"

Aligned
Object Points

Candidate
Masks

Figure 5: The steps to generate rewards for the container from our pretrained object-centric network.

4) Reward Design via Pretrained Object-centric Network: At time t0, given the container state
features P 0

c , i.e., a subset of points cropped, we will query it against our object-centric network
pretrained in Section 3.2, obtaining a reward r0 following the steps below and shown in Figure 5.

• Step #1: The subset of points P 0
c is first fed into the pretrained object orientation module fR,

getting its pose R0
c . This subset is then aligned to a canonical pose following P̄ 0

c ←− P 0
c ◦R0

c .
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• Step #2: The aligned point subset P̄ 0
c is fed into the pretrained object generative prior module fG.

By querying these K points through the SDF decoder, we will obtain the corresponding per-point
distance values D̄0

c ∈ RK×1.
• Step #3: We will compute a candidate object mask M0

c ∈ RK×1 by binarizing the absolute
distance values of D̄0

c against a predefined threshold δd. For those points whose absolute distance
values are smaller than δd, they are regarded as a candidate object surface points. The candidate
object points are physically carved out (denoted by an operation *): P̂ 0

c ←− P̄ 0
c ∗M0

c .
• Step #4: Lastly, we will feed this object points P̂ 0

c into our pretrained object generative prior
module fG and reconstruct a full object shape via Marching Cubes on the SDF decoder. If the
Chamfer distance between the input candidate object P̂ 0

c and the recovered full shape (sampled
dense points) is smaller than a threshold δc, the reward r0 is assigned with a positive score, e.g.,
r0 ←− 10, a negative score otherwise, e.g., r0 ←− −1. Notably, for the candidate object with a
positive score, its mask will always be stored in an external list and regarded as a pseudo object
mask to train our object segmentation branch.

5) Training Loss: For the dynamic container, given its initial states: P 0
c and F 0

c obtained from
backbone fbone at time t0, we have its predicted policy and state value: {p1

cxy
,p1

cd
, v0} through

policy network fpol, and a reward r0 via our pretrained object-centric network. By executing actions
according to the predicted policy, we collect a sufficient number of trajectories to optimize both the
backbone and the policy network using an existing PPO loss (Schulman et al., 2017).

(fbone, fpol)←− ℓppo (1)

Thanks to the learned object-centric priors and our creative RL-based formulation of object detec-
tion, this object discovery branch can successfully identify multiple objects from complex scene
point clouds. In implementation, we divide 3D scenes into smaller blocks for the container to search
within them in parallel, thus speeding up the exploration. Details of agent initialization, policy
network, rewards, loss functions, parallelization, and hyperparameters are in Appendix L.

Object Segmentation Branch: Given the input scene point cloud P , during the exploration of
dynamic container, we will have a list of object masks accumulated as pseudo labels. Clearly, these
objects are valuable for us to directly train a segmentation branch, thus similar objects are more
likely to be detected even if they may be missed by our agent of dynamic container. To this end,
as illustrated in the lower block of Figure 4, our object segmentation branch fseg takes per-point
features F as input and then exactly follows Mask3D (Schult et al., 2023) to directly predict a set of
class-agnostic object masks for the entire input point cloud P . The existing supervision loss from
Mask3D (Schult et al., 2023) is applied to optimize both backbone and the segmentation branch.
More details of the neural architecture, loss functions, and training settings are in Appendix M.

(fbone, fseg)←− ℓmask3d (2)

Overall, our framework GOPS first learns an object-centric network for object pose alignment fol-
lowed by generative shape prior learning on existing object-level datasets. With the learned priors as
a foundation, we introduce a novel multi-object estimation network to segment multiple individual
objects from complex 3D scene point clouds without needing human labels to train.

4 EXPERIMENTS

Datasets: We evaluate on three datasets: 1) The challenging real-world ScanNet dataset (Dai et al.,
2017), comprising 1201/312/100 indoor scenes for training/validation/test respectively; 2) The real-
world S3DIS dataset (Armeni, 2017), including 6 areas of indoor scenes; 3) Our own synthetic
dataset with 4000/1000 training/test scenes. Following EFEM (Lai et al., 2023), we first train the
object-centric network on ShapeNet and then conduct object segmentation on scene datasets.

Baselines: We compare with the following recent relevant methods. 1) EFEM (Lei et al., 2023): it
is the closest work to us, which also learns object priors from ShapeNet and then segments objects
without needing scene annotations in training. 2) EFEMmask3d: we further build this baseline by
training a Mask3D model using the discovered pseudo labels from EFEM. This model maintains the
same architecture and train settings as our object segmentation branch. 3) Unscene3D (Rozenberszki
et al., 2024): it is an unsupervised 3D object segmentation method which leverages 2D pre-trained
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Input Point Cloud EFEM Part2Object Unscene3D GOPS (Ours-VAE) Ground TruthGOPS (Ours-Diffusion)

Figure 6: Qualitative results on the ScanNet validation set. Red circles highlight the differences.

DINO features to provide pseudo 3D annotations to train a detector. 4) Part2Object (Shi et al.,
2024): it is an unsupervised method also incorporating DINO features. For reference, we also
include the 3D fully supervised method Mask3D (Schult et al., 2023), and the recent 2D/language
fully supervised models OpenIns3D (Huang et al., 2024) and SAI3D (Yin et al., 2024).

Regarding our pipeline, once the object discovery branch is well-trained by RL, the policy network
alone can discover multiple objects on point clouds by querying the frozen object-centric network
(e.g., our VAE version) in testing. Intuitively, given more trajectories, the object discovery branch
is likely to identify more objects. For a comparison, we directly test our well-trained object discov-
ery branch, given 50/100/300/600 trajectories respectively, denoted as GOPS(Ours-VAE)dis50. Note
that, the original EFEM uses 600 trajectories on each scene when discovering objects.

Metrics: Evaluation metrics include the standard average precision (AP), recall (RC), and precision
(PR) scores at different IoU thresholds.

4.1 EVALUATION ON SCANNET

Following the settings of EFEM (Lei et al., 2023) for a fair comparison, we train an object-centric
network on the chair category of ShapeNet and subsequently train a multi-object estimation network
in an unsupervised manner on the training set of ScanNet. We evaluate the performance exclusively
on chairs in both validation and the online hidden test sets, treating all our predicted masks as chairs.

Results & Analysis: Table 1 and Figure 6 present the quantitative and qualitative results. We can
see that: 1) Our method significantly outperforms the closest work EFEM (Lai et al., 2023). 2) For
the other two unsupervised methods Unscene3D (Rozenberszki et al., 2024) and Part2Object (Shi
et al., 2024), we assign ground truth class labels to their predicted masks and exclude all non-chair
predictions. We clearly surpass them on all metrics, demonstrating the superiority of our method.

Table 2 compares the results on the hidden test set of ScanNet. It can be see that our method is
significantly better than EFEM and achieves closing scores to an early 3D fully-supervised method
3D-BoNet (Yang et al., 2019), showing great potential of our unsupervised learning scheme. Nev-
ertheless, we also notice that our method has a performance gap between validation and hidden test
sets. We hypothesize that this is likely caused by a distribution gap between two sets, because the
fully supervised method Mask3D also shows a clear performance gap on two sets. With more 3D
object and scene datasets collected in the future, we believe the domain gap can be narrowed down.
More qualitative results are provided in Appendix O.

4.2 EVALUATION ON S3DIS

Similar to the ScanNet dataset, we only evaluate on the chair category. For a fair comparison, we
exactly follow the existing two unsupervised methods Unscene3D (Rozenberszki et al., 2024) and
Part2Object (Shi et al., 2024) to conduct cross dataset validation on S3DIS. In particular, we directly
use our multi-object estimation network pretrained on the ScanNet dataset in Section 4.1 to evaluate
on the test set of S3DIS. Note that, the baseline EFEM does not have a training stage and it is directly
applied on the test set of S3DIS according to its own design.
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Table 1: Quantitative results of our method and baselines on the validation set of ScanNet.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

3D Supervised Mask3D (Schult et al., 2023) 82.9 94.4 97.0 - - - - - -
2D Foundation
Model Supervised

OpenIns3D (Huang et al., 2024) 66.7 82.4 85.7 - - - - - -
SAI3D (Yin et al., 2024) 38.5 62.5 81.2 54.3 79.9 95.4 38.1 56.4 70.1

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 37.2 62.4 79.2 51.7 70.4 84.1 18.7 26.3 29.7
Part2Object (Shi et al., 2024) 34.4 56.8 73.9 46.4 65.5 78.5 45.5 65.4 76.7

EFEM (Lei et al., 2023) 24.6 50.8 61.3 - - - - - -
EFEMmask3d 38.8 55.1 63.8 52.4 68.7 80.8 18.8 27.1 29.1

GOPS (Ours-VAE)dis50 26.3 50.7 56.9 36.0 54.3 60.6 55.3 85.3 93.3
GOPS (Ours-VAE)dis100 26.9 51.2 59.1 35.6 53.9 60.3 53.6 82.8 91.3
GOPS (Ours-VAE)dis300 28.5 55.2 66.8 39.3 60.8 69.5 46.5 73.9 82.5
GOPS (Ours-VAE)dis600 28.7 56.2 66.9 39.5 61.6 69.5 45.9 73.7 81.5

GOPS (Ours-VAE) 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
GOPS (Ours-Diffusion) 47.1 70.6 81.1 52.9 73.3 82.9 54.9 79.2 85.7

Table 2: Quantitative results of our method and baselines on the hidden test set of ScanNet.
AP(%) AP50(%) AP25(%)

3D Supervised
3D-BoNet (Yang et al., 2019) 34.5 48.4 64.3

SoftGroup (Vu et al., 2022) 69.4 86.2 91.3
Mask3D (Schult et al., 2023) 73.7 88.5 93.8

Unsupervised
EFEM (Lei et al., 2023) 20.2 39.0 48.3

GOPS (Ours-VAE) 29.0 45.1 57.7
GOPS (Ours-Diffusion) 28.5 43.1 58.1

Results & Analysis: As shown in Tables 3&4, our method significantly outperforms all unsuper-
vised baselines overall, though both Unscene3D and Part2Object distill particularly strong visual
features from the well-trained and powerful DINO model. Upon a closer look at the qualitative
results shown in Figure 7, we can find that: 1) EFEM is likely to miss detecting objects, primarily
because its object discovery stage relies on heuristics instead of learning a general detector like ours.
2) Both Unscene3D and Part2Object are struggling to separate similar objects near each other, or
likely to oversegment objects into parts. This is mainly because the pretrained 2D DINO features
do not capture nuanced object-centric representations, though those features have hints of object
locations and rough shapes. By contrast, our method learns discriminative and robust 3D object-
centric priors which give the multi-object estimation network precise signals to identify objects.
More quantitative and qualitative results are in Appendix P.

Table 3: Quantitative results of cross dataset validation on the Area-5 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 42.6 63.4 80.3 51.9 68.6 83.3 17.4 23.5 27.7
Part2Object (Shi et al., 2024) 30.0 50.5 76.4 45.2 64.7 82.6 43.5 62.5 80.1

EFEM (Lei et al., 2023) 14.9 35.7 45.3 18.6 36.0 45.3 43.6 92.1 100.0
GOPS (Ours-VAE) 46.4 66.2 73.8 51.0 67.1 74.0 68.5 91.5 97.0

GOPS (Ours-Diffusion) 44.2 58.0 62.6 45.7 58.9 63.2 70.8 91.6 96.4

4.3 EVALUATION ON A SYNTHETIC DATASET

Although we conduct experiments only on the chair category in Sections 4.1&4.2 for fair compar-
isons with baselines, the design of our method is agnostic to any object categories. To further eval-
uate the effectiveness of our method on discovering multiple classes of objects by a single network,
we choose to create a synthetic room dataset using objects from ShapeNet.

In particular, we create 4000/1000 3D indoor rooms (scenes) for training/test respectively. To avoid
data leakage, for each training scene, we select 3D objects only from the validation set of ShapeNet,
whereas for each test scene, we select 3D objects only from the test set of ShapeNet. In each
training/test room (scene), we randomly place 4∼8 objects belonging to 6 classes of ShapeNet
{chair, sofa, telephone, airplane, rifle, cabinet}. Note that, we only use 3D objects of the above 6
classes in the training set of ShapeNet to train a single object-centric network. More details about
our synthetic dataset are provided in Appendix N, and we will release it for future studies.

To conduct class-agnostic object segmentation on our synthetic dataset, we include the classic al-
gorithm HDBSCAN (McInnes & Healy, 2017) as an unsupervised baseline in addition to EFEM.
For Unscene3D and Part2Object, both require paired RGB images to extract 2D features via pre-
trained DINO/v2 for training their own detection networks, so it is unable to directly train them on
our synthetic dataset due to the lack of paired RGB images. For reference, we directly reuse their
models well-trained on the training set of ScanNet in Section 4.1, and then test on our synthetic
dataset. Since such a setting is not strictly fair to them, we group them as the category “Unsuper-
vised&Real2Syn”. For reference, we also train a fully supervised Mask3D (Schult et al., 2023).
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Input Point Cloud EFEM Part2Object Unscene3D GOPS (Ours-VAE) Ground TruthGOPS (Ours-Diffusion)

Figure 7: Qualitative results on the S3DIS dataset. Red circles highlight the differences.

Table 4: Quantitative results of cross dataset validation on all 6 Areas of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 30.3 51.9 70.4 40.0 58.6 73.9 13.8 19.7 24.5
Part2Object (Shi et al., 2024) 25.3 48.4 67.0 36.5 57.3 72.3 37.8 60.5 76.4

EFEM (Lei et al., 2023) 16.2 37.8 45.9 20.5 40.4 45.5 41.5 76.1 99.6
GOPS (Ours-VAE) 41.8 61.7 67.0 45.9 63.0 67.9 60.0 84.0 90.7

GOPS (Ours-Diffusion) 39.2 57.2 62.6 42.2 58.2 63.0 60.0 73.7 79.7

Results & Analysis: As shown in Table 5 and Figure 8, our method clearly outperforms HDBSCAN
and EFEM by a large margin, because HDBSCAN can hardly group points into complex 3D shapes
and EFEM can only detect limited objects based on its heuristics. More results are in Appendix Q.

Table 5: Quantitative results on the test set of our synthetic dataset.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

3D Supervised Mask3D (Schult et al., 2023) 84.1 96.0 96.7 87.1 96.2 96.9 89.5 98.9 99.5

Unsupervised
& Real2Syn

Unscene3D (Rozenberszki et al., 2024) 37.7 59.7 76.2 50.5 70.4 83.9 8.2 14.8 15.4
Part2Object (Shi et al., 2024) 46.1 69.3 81.5 53.1 70.9 83.4 10.2 15.0 19.1

Unsupervised

HDBSCAN (McInnes & Healy, 2017) 7.6 12.5 23.4 10.8 15.8 24.7 36.6 58.5 90.0
EFEM (Lei et al., 2023) 20.7 34.1 46.6 23.3 34.7 46.7 53.3 90.6 98.7

GOPS (Ours-VAE) 58.7 85.0 90.6 71.6 87.9 91.1 76.0 93.7 96.3
GOPS (Ours-Diffusion) 58.5 85.9 91.5 72.4 88.7 91.7 77.9 95.7 98.5

4.4 ABLATION STUDY

To evaluate the effectiveness of each component of our pipeline and the choices of hyperparameters,
we conducted the following extensive ablation experiments on the validation set of ScanNet. We
choose the VAE version of object-centric network as our full framework for reference.

(1) Using a deterministic object-centric network. This is to assess the advantages of learning
generative object-centric priors. In particular, we simply replace the probabilistic latent distributions
of VAE by a deterministic latent vector (AE), keeping other layers of our object-centric network
unchanged. After training such a deterministic network, we then use it to optimize our multi-object
estimation network on 3D scenes as the same as our full framework.

(2) Removing the Object Orientation Estimation Module. This is to evaluate the importance of
aligning an input object point cloud with respect to a canonical pose. Without it, the chaotic object
orientations in complex 3D scenes may cause the performance drop of object segmentation.

(3) Removing the Object Discovery Branch. This is to evaluate the effectiveness of using RL to
aid object discovery. Without it, we randomly select 50 positions in each scene and randomly set a
radius ranging from 0 ∼ 2 meters as the container for discovering objects as pseudo labels.

(4) Removing the Object Segmentation Branch. This is to evaluate the effectiveness of the Object
Segmentation Branch. Without it, we only use the Object Discovery Branch to collect object masks
by querying against the frozen object-centric network.

(5)∼ (8) Sensitivity to the container position moving step ∆s. This aims to evaluate the influence
of different choices of moving step ∆s when the dynamic container is exploring the 3D space.

(9) ∼ (11) Sensitivity to the container size changing ratio α. This aims to evaluate the influence
of different choices of container size varying speed α when it is exploring the 3D space.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Input Point Cloud HDBSCAN EFEM GOPS (Ours-VAE) Ground TruthGOPS (Ours-Diffusion)

Figure 8: Qualitative results on the test set of our synthetic dataset.

(12) ∼ (15) Sensitivity to the binary threshold δd. The threshold δd helps to convert SDF values
of surface points into a binary object mask, which mainly influences the quality of a pseudo mask.

(16) ∼ (18) Sensitivity to the reward threshold δc. Since the rewards are critical for RL, we
therefore conduct four ablations on the threshold δc, which verifies whether the input point cloud is
matched with its reconstructed 3D shape and then assigns positive or negative rewards.

Table 6: Results of all ablated models of our GOPS on the ScanNet validation set. The bold settings
are chosen in our full framework.

AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)
(1) Replace VAE by AE 32.0 57.1 76.7 46.2 73.7 90.6 26.2 45.9 52.6
(2) Remove orientation estimator 35.3 56.3 69.7 42.9 61.5 72.0 52.4 77.6 87.5
(3) Remove Object Discovery Branch 34.2 56.7 69.4 41.6 61.4 73.1 50.7 78.1 89.0
(4) Remove Object Segmentation Branch 25.7 47.9 55.3 33.5 50.2 56.0 57.1 87.1 95.5
(5) ∆s = 0.2 43.6 61.3 72.0 48.0 63.1 71.6 62.3 84.1 91.3
(6) ∆s = 0.3 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
(7) ∆s = 0.4 40.1 58.1 67.4 44.9 60.8 69.6 57.1 79.5 87.3
(8) ∆s = 0.5 38.1 56.5 66.9 43.4 59.8 69.9 51.8 73.7 82.6
(9) α = 1/3 40.8 61.4 72.9 48.0 66.4 77.3 48.8 71.6 77.7
(10) α = 1/4 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
(11) α = 1/5 43.3 61.9 69.5 48.4 64.5 71.7 59.9 81.8 87.2
(12) δd = 0.01 40.1 59.3 67.8 45.5 61.7 69.1 61.2 85.1 91.9
(13) δd = 0.02 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
(14) δd = 0.05 43.4 62.8 69.3 47.8 64.0 69.8 64.9 88.4 94.0
(15) δd = 0.10 42.9 61.4 69.5 47.2 62.4 70.1 63.2 86.0 93.7
(16) δc = 0.12 42.6 60.8 67.6 47.6 63.7 69.9 63.1 85.7 91.2
(17) δc = 0.14 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
(18) δc = 0.16 43.8 68.8 81.0 52.1 75.8 86.9 41.3 63.7 68.6

Analysis: From Table 6, we can see that: 1) The choice of learning generative object-centric priors
has the greatest impact on our framework. Without it, the AP score drops significantly. This is be-
cause the deterministic shape priors are not robust and continuous in latent space, thus being unable
to generalize to real-world 3D scenes where objects are vastly different from ShapeNet objects. 2)
The removal of the Object Orientation Estimation module shows the next greatest impact on per-
formance, demonstrating that this module is necessary to align orientations of real-world objects.
3) For the four hyperparameters in our multi-object estimation network, the overall performance is
not easily affected too much by different choices, showing the robustness of our framework. More
ablations about δc on S3DIS are in Appendix E. During discovering objects by the RL algorithm,
we create multiple trajectories in parallel by dividing a 3D scene into smaller blocks. We further
conduct ablation experiments on the number of parallel trajectories in Appendix C.

5 CONCLUSION

In this paper, we have shown that multiple 3D objects can be effectively discovered from complex
real-world point clouds without needing human labels of 3D scenes in training. This is achieved
by our new two-stage learning pipeline, where the first stage learns generative object priors via our
object-centric network on large-scale object datasets. By querying against the learned priors and
receiving rewards of objectness, the second stage learns to discover similar 3D objects via a newly
formulated reinforcement learning strategy in our multi-object estimation network. Extensive exper-
iments on multiple real-world datasets and our newly created synthetic dataset have demonstrated
the excellent segmentation performance of our approach on single or multiple object categories.
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Appendix

A DETAILS OF ARCHITECTURE AND DATE PREPARATION OF
OBJECT-CENTRIC NETWORK

The object-centric network of our GOPS framework comprises an orientation estimation network,
a Variational Autoencoder (VAE), and a Diffusion Network. These components share a common
encoder architecture, which is based on PointNet++ followed by self-attention blocks. As depicted
in Figure 9 (a), the encoder consists of four Set Abstraction (SA) blocks, each followed by a self-
attention mechanism. The SA blocks are characterized by K local regions with a ball radius r,
followed by three Multi-Layer Perceptron (MLP) layers.

After extracting shape features from the encoder, the orientation estimation network employs a sin-
gle MLP layer with 128 hidden neurons to regress the three rotation angles. The VAE utilizes one
layer to output the mean and variance of a Gaussian distribution, from which a sample feature is
drawn. The VAE’s decoder comprises ten MLP layers, with input, output, and hidden dimensions of
259, 1, and 256, respectively, to regress the Signed Distance Function (SDF) for query points.

For the Diffusion model, the latent feature is obtained from the well-trained VAE, and the condition
is embedded from the input shape using the encoder architecture shown in Figure 9(a). The denois-
ing network is a three-layer MLP with dimensions of {256 × 3 − 256 × 2 − 256}. The input to
the denoising MLP is the concatenation of the condition, noisy feature, and time embedding. The
timestamp is normalized to the range [0, 1] and its embedding is computed using sine and cosine
functions.

For the data preparation in training the object-centric network, we utilize the same data for orien-
tation estimation, VAE, and Diffusion models. During the segmentation of real-world scenes, the
training data for the object-centric network is derived from the ShapeNet (Chang et al., 2015) chairs
with occlusions provided by EFEM (Lai et al., 2023). These occlusions are generated by projected
depth images. Additionally, we follow them to randomly incorporate ground, walls, and fragments
of other objects to simulate real-world background conditions.

For synthetic scenes, we employ six classes from ShapeNet without introducing occlusions while
still retaining the background data augmentation to mimic scene environments.

(a) Point Cloud Encoder

MLP=[3-16]

Point Cloud: [N, 3]

SA(K=512, r=0.2, [16-64-64])

self-attention=[64-64]

SA(K=16, r=1.2, [256-256-256])

self-attention=[256-256]

SA(K=32, r=0.8, [128-256-256])

self-attention=[256-256]

SA(K=128, r=0.4, [64-128-128])

self-attention=[128-128]

Average
Global Feature: [1, 256]

Query: [K, 128]

Multi-Head Attention
(H=8,  hidden_dim=128)

State Value

Point Feature: [N, 128]
QVK

Multi-Head Attention
(H=8,  hidden_dim=128)

QK V

FFN (hidden_dim=128)

MLP [K×128-128]

MLP (128-128-1)

Action Probabilities

Flatten

MLP (128-128)

(b) Policy Network

MLP (128-5) MLP (128-3)

Figure 9: Details of (a) Point Cloud encoder used in orientation estimation network, VAE, and
Diffusion; (b) Policy Newtork.
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B ABLATION STUDY ON ATTENTION BLOCKS IN GOPS

Global information is important for learning the interior/exterior of the surface, as discussed in
(Li et al., 2024; 2023b). Following their approach, we incorporate attention blocks in the encoder of
our object-centric network. In this section, we conduct an ablation study on them. Table 7 shows the
necessity of attention blocks

Table 7: Ablation study of attention blocks in the object-centric network.
AP(%) AP50(%) AP25(%)

Remove attention blocks 42.9 66.3 76.9
Full GOPS 46.7 71.5 82.9

C ABLATION STUDY OF THE NUMBER OF PARALLEL TRAJECTORIES

We further conduct an ablation study about the number of trajectories created in parallel for object
discovery branch. Here we choose 25/50/75/100 trajectories respectively, whereas we choose 50 in
our main experiments.

Table 8 shows the results. We can see that, 1) the number of trajectories is not crucial once it is
more than a certain number, e.g., 50. 2) Too few trajectories can lead to a slight decrease in the final
performance due to an insufficient number of object masks discovered.

Table 8: Ablation results on ScanNet validation set for different numbers of parallel trajectories.
no. of trajectories AP(%) AP50(%) AP25(%)

25 42.0 64.1 74.4
50 46.7 71.5 82.9
75 46.9 69.5 80.8

100 47.1 69.7 81.3

D ABLATION STUDY ON DIFFERENT TYPES OF SUPERPOINTS

When training Mask3D on ScanNet, it uses the superpoints provided by ScanNet in the cross-atten-
tion block to group voxel features into superpoint features. These superpoint features then interact
with query features through cross-attention. This process primarily aims to reduce the computational
load and GPU memory usage, enhancing training and inference efficiency.

We further conduct experiments to assess the impact of superpoints provided by ScanNet dataset.
In particular, we choose to use the following two new strategies: 1) using superpoints generated by
SPG (Landrieu & Simonovsky, 2018) in an unsupervised manner, and 2) directly extracting features
on voxels instead of superpoints.

Table 9 shows results on the validation set of ScanNet. We can see that directly using voxels without
any superpoints can achieve comparable performance with that of ScanNet superpoints, though the
latter is slightly better.

Table 9: Ablation results of different types of superpoints on the validation set of ScanNet.

AP(%) AP50(%) AP25(%)
ScanNet superpoints 46.7 71.5 82.9

SPG superpoints 43.7 61.9 69.1
without superpoints 45.1 65.2 72.3
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E SENSITIVITY OF δc ON DIFFERENT DATASETS.

We further conduct a comprehensive ablation study on ScanNet and S3DIS to assess the sensitivity
of the parameter δc. From Table 10, we can see that δc should be typically set as 0.14 or 0.16 on two
datasets. Nevertheless, since S3DIS has more occluded or distorted shapes than ScanNet, it is more
challenging for our object-centric network to identify 3D objects in S3DIS. Therefore, δc is slightly
larger (more relaxed) in S3DIS than in ScanNet.

Table 10: Ablation results of different δc on ScanNet validation set and S3DIS Area5.
AP(%) AP50(%) AP25(%)

ScanNet

δc = 0.12 42.6 60.8 67.6
δc = 0.14 46.7 71.5 82.9
δc = 0.16 43.8 68.8 81.0
δc = 0.18 43.8 70.1 85.0
δc = 0.20 42.5 69.9 84.2

S3DIS Area5

δc = 0.12 46.2 65.7 71.7
δc = 0.14 46.4 66.2 73.8
δc = 0.16 51.3 81.8 86.0
δc = 0.18 48.3 83.1 90.5
δc = 0.20 44.9 79.1 88.7

F VISUALIZATIONS OF FAILURE CASES

The failure cases in our GOPS mainly include two types as shown in Figure 10. The first type is that
our model mistakenly segments objects whose shapes are similar to the target shape (e.g., , chairs).
For instance, it may incorrectly segment parts of a wall with a plane as a chair. The second type
is missing some occluded chairs, primarily because those severely occluded chairs are hard to be
reconstructed by the object-centric network.

GOPS (Ours)

Ground Truth

Figure 10: Failure cases of our method on ScanNet validation set.
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G THE INFLUENCE OF DISCOVERED MASKS ON POLICY NETWORK
LEARNING

To further explore the influence of previously discovered masks on the training of policy networks,
we analyze the quality and accuracy of discovered candidate masks from the object discovery branch
(RL) at various epochs. In particular, we conduct the analysis on the training set of ScanNet. A dis-
covered mask is considered as accurate if it has an IoU greater than 50% with any ground truth
mask. We track the number of newly discovered masks, defined as those have never been identified
in all previous epochs.

Table 11 shows the number and accuracy of discovered masks over a certain number of training
epochs. We can see that: 1) Over training, the total number of discovered masks increases, and the
accuracy improves. However, the number of newly discovered masks decreases over time, suggest-
ing that the network becomes more consistent in identifying relevant masks as training advances. 2)
The accuracy of newly discovered masks declines, primarily because these objects that are easier to
reconstruct can be identified in early epochs. As training progresses, the model likely attempts to
discover objects that are harder to represent, which is risky and error-prone.

Table 11: The number and accuracy of discovered objects over a certain number of epochs. Note
that, some newly discovered masks may overlap with each other. All the numbers in this table are
the counts after removing overlapping masks.

Epoch 0 50 100 150 200 250 300 350 400
Mask Number 920 5630 6981 7421 7457 7696 8133 7922 7931
Mask Accuracy (%) 16.5 36.2 41.0 43.5 42.0 42.2 44.0 44.7 45.5
New Mask Number 920 5257 4336 2404 1982 1716 1576 1277 870
New Mask Accuracy (%) 16.5 26.7 15.3 10.2 7.4 6.0 5.1 4.3 4.3

H EVALUATION OF THE OBJECT-CENTRIC NETWORK

Our object-centric network aims to provide shape priors to the multi-object estimation network, so it
is not required to be exceptionally skilled at full shape reconstruction. Nevertheless, we still evaluate
its performance. In particular, we compute the Chamfer distance on the chair class in the val set of
ShapeNet. Following ONet(Mescheder et al., 2019) and ConvOcc (Peng et al., 2020), we randomly
sample 1024 points from a complete object point cloud or a partial object point cloud (converted
from a single depth view) as input, and then randomly sample 100k points from both the recovered
mesh and ground truth mesh to compute the Chamfer-L1 score. Table 12 shows the quantitative re-
sults and Figure 11 illustrates the qualitative results. Overall, our object-centric network achieves a
similar reconstruction performance to ConvOcc.

Table 12: Evaluation of our object-centric network for shape reconstruction.
ONet(Mescheder et al., 2019) ConvOcc(Peng et al., 2020) Ours (complete) Ours (partial)

Chamfer-L1 0.228 0.046 0.042 0.052

I CLASS-AGNOSTIC EVALUATION ON SCANNET AND S3DIS

Following Unscene3D and Part2Object, we also evaluate class-agnostic object segmentation on
ScanNet and S3DIS. In particular, we directly use our object-centric network trained on the six
classes of ShapeNet in Section 4.3, and then train our multi-object estimation network on the train-
ing set of ScanNet. Lastly, our object detection model is evaluated on the validation set of ScanNet,
and also Area 5 of S3DIS as a cross-dataset evaluation. All baselines are trained and tested using the
same datasets to ensure fairness in evaluation.
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Complete Input Recovered Mesh Ground TruthSingle View Input Recovered Mesh

Figure 11: Qualitative results of object reconstruction by our object-centric network.

Table 13 shows the quantitative results. Note that, the baseline Part2Object (2D only) uses pre-
trained DINOv2 (Oquab et al., 2024) to provide object priors, Unscene3D (2D+3D) uses both DINO
(Caron et al., 2021) and CSC (Hou et al., 2021) to provide object priors, and Unscene3D (3D only)
uses CSC only to provide object priors. We can see that our model outperforms Unscene3D (3D
only) but falls short of Unscene3D (2D+3D) and Part2Object (2D only), primarily because they
leverage extremely rich object priors from large 2D models like DINO and DINOv2, whereas we
only use object priors from limited six classes of ShapeNet dataset. We leave the use of larger scale
2D or 3D priors as our future exploration.

Table 13: Class agnostic segmentation results on ScanNet validation set and S3DIS Area5.
AP(%) AP50(%) AP25(%)

ScanNet

Part2Object (Shi et al., 2024) (2D only) 16.9 36.0 64.9
Unscene3D (Rozenberszki et al., 2024) (2D+3D) 15.9 32.2 58.5
Unscene3D (Rozenberszki et al., 2024) (3D only) 13.3 26.2 52.7

EFEM (Lei et al., 2023) 6.4 13.7 21.5
GOPS(Ours-VAE) 14.3 27.2 41.4

S3DIS Area5

Part2Object (Shi et al., 2024) (2D only) 8.7 19.4 40.8
Unscene3D (Rozenberszki et al., 2024) (2D+3D) 8.5 16.7 35.5
Unscene3D (Rozenberszki et al., 2024) (3D only) 8.3 15.3 32.2

EFEM (Lei et al., 2023) 4.6 7.3 12.3
GOPS(Ours-VAE) 8.5 13.2 20.5

J VISUALIZATIONS OF AGENT TRAJECTORIES

Figure 12 shows three trajectories of the agent, along with the candidate mask and the recovered full
shape within each container.

K MEMORY AND TIME COSTS

The first stage of our pipeline involves training an orientation estimator and a generative model. It
takes 8 and 21 hours respectively, with GPU memory of 4GB and 8GB. The second stage takes 62
hours and GPU memory of 20GB to train the whole network.

Although our training process is more time-consuming than baselines, our inference speed and mem-
ory cost are the same as Unscene3D and Part2Object. It takes 0.092 seconds per scene and 5GB
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memory on average. This is significantly faster than EFEM which requires iterative inference with
2.3 minutes per scene and 8GB memory on average. The hardware for testing is a single RTX 3090
GPU with an AMD R9 5900X CPU.

We will release our code in the next version.

L DETAILS OF POLICY LEARNING

The policy network is designed to derive actions from input point features, functioning similarly to
a target object detection mechanism within a block of point cloud. To achieve this, we emulate the
segmentation head of Mask3D (Schult et al., 2023) in constructing our policy network. Specifically,
as depicted in Figure 9 (b), we employ a transformer decoder to embed the information of target ob-
jects within the container, the initial query number is set as 32 in all our experimnets. Subsequently,
we utilize three MLP layers to regress state values and an additional three MLP layers to predict
actions.

We use Proximal Policy Optimization (PPO) algorithm to train the agent. The details of parameters
in PPO, agent initialization, and reward computation are as follows.

For initialization, since the input to the policy network consists of points within a container, we
initialize the cylinder container with a large radius, specifically Cd = 2.0m. This large radius
provides the policy network with a substantial receptive field, ensuring it has sufficient information
to determine subsequent actions.

Regarding the reward computation, if the points within the identified masks can be reconstructed,
which is indicated by their Chamfer distance to the extracted meshes being less than the threshold
δc, we assign a reward score of 10 to this state and terminate the trajectory. Otherwise, a score of -1
is assigned. The maximum step length in our approach is set to be 8.

In PPO, we constrain the maximum change ratio between previous and current action distributions to
20% to ensure that policy distributions do not change too rapidly. We employ generalized advantage
estimation rather than regressing the vanilla advantage. The balance parameter λ is set as 0.5, and
the discount weight of future return is set as 0.9. To encourage the exploration of actions, we apply
an entropy loss to the action distribution. Therefore, there are three loss functions: the vanilla state
value regression loss and PPO-Clip loss, together with an additional entropy loss whose coefficients
are 1, 1, and 0.1. The optimizer is Adam with a learning rate of 0.0001 in all training epochs.

The parameters of PPO are set to be the same on all scene datasets. In implementation, we split the
whole 3D scene into 50 blocks and initialize an agent in each block for parallel searching. The block
size is set as 2.0m. We provide ablation experiments in Table 14 for the choice of block sizes.

M DETAILS OF TRAINING SEGMENTATION BRANCH

To train the segmentation branch of our object estimation network. We basically follow Mask3D
(Schult et al., 2023), while for more efficient training, we use a 5cm voxel size. The optimizer is
AdamW with a learning rate of 0.0001 in all training epochs.

The Unet of Res16UNet34C (Choy et al., 2019) with a transformer decoder is chosen as the segmen-
tation head. We simply use one transformer decoder block for efficient training. In the transformer
decoder, each initial query feature will be updated after the attention layers and then act as the center
feature for each mask.

Mask3D incorporates three loss functions: binary cross-entropy and dice loss for mask supervision,
and cross-entropy loss for mask classification. This classification is actually applied to the mask
center features. we adopt these three loss functions directly. For the classification loss, we take the
masks that can match with pseudo masks as foreground and others as background, so it is a binary
classification loss in our setting. We take the original weighted combination of three losses as our
segmentation loss, i.e., 2/5/2. These loss functions and networks keep the same on all datasets.
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Table 14: Results of ablated models of our GOPS on the ScanNet validation set. The bold settings
are chosen in our full framework.

AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)
(1) block radius = 1.0m 42.2 61.5 73.2 47.6 65.5 76.9 50.9 74.3 82.1
(2) block radius = 2.0m 46.7 71.5 82.9 53.2 74.5 85.2 52.1 76.4 83.0
(2) block radius = 3.0m 41.1 60.4 70.9 45.8 62.5 72.5 58.0 81.4 90.7

Table 15: Cross dataset evaluation of our method and baselines on the Area-1 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 33.6 63.8 85.4 44.8 70.3 88.3 13.3 21.4 26.1
Part2Object (Shi et al., 2024) 27.1 55.4 77.5 38.8 66.4 83.2 37.8 65.2 80.6

EFEM (Lei et al., 2023) 19.1 48.6 54.7 23.8 49.7 54.8 43.7 93.9 98.8
GOPS (Ours-VAE) 45.5 68.6 73.2 51.3 71.0 75.5 62.7 88.0 90.7

GOPS (Ours-Diffusion) 47.8 70.9 75.7 52.5 72.3 76.8 64.6 91.1 92.2

N DETAILS OF SYNTHETIC DATASET

Following (Song & Yang, 2022), we generate 5000 static scenes with 4∼ 8 objects. The aspect ratio
of the ground plane in each scene is uniformly sampled between 0.6 and 1.0. For each object in a
scene, its scale is set as 1. Each object is scaled to be a unit size, and its rotation around the vertical
z-axis is randomly sampled from −180◦ ∼ 180◦ . To simulate realistic indoor environments, walls
and ground planes are created in the scenes. The resulting point clouds contain only coordinates
without color information. Each scene has 20000 points.

To avoid object overlap, objects are placed sequentially within each scene. The bounding box of each
newly placed object is checked against those of previously placed objects. If overlap is detected, the
object’s position is adjusted until a non-overlapping location is found or the maximum number of
placement attempts is reached. If a non-overlapping location cannot be found until the maximum
attempt, we will drop this room. The maximum placement attempt is 1000.

O TRAINING AND EVALUATION ON SCANNET

We train our model on the ScanNet training set for 450 epochs with a batch size of 8. The number
of queries in the transformer decoder is set as 50 in this dataset. Figure 13 provides additional
qualitative comparisons with baseline methods on ScanNet validation set.

P EVALUATION ON S3DIS

Tabs. 15 to 20 show the results of cross dataset validation on each area of S3DIS. Figure 14 gives
more qualitative comparisons.

Q TRAINING AND EVALUATION ON OUR SYNTHETIC DATASET

Training hyperparameters are the same as used in ScanNet. The query number in Mask3D is set as
10 because there are up to 8 objects in each scene. We train our model for 150 epochs on this dataset
with a batch size of 10. More visualizations are listed in Figure 15

Table 16: Cross dataset evaluation of our method and baselines on the Area-2 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 3.2 6.0 10.5 5.0 8.0 13.2 7.0 11.5 18.4
Part2Object (Shi et al., 2024) 2.8 6.2 8.8 4.9 7.9 10.6 30.4 50.0 69.0

EFEM (Lei et al., 2023) 1.1 2.9 9.2 1.6 3.5 9.2 17.7 40.4 100.0
GOPS (Ours-VAE) 6.4 10.2 17.2 8.0 11.7 18.5 35.2 53.8 78.9

GOPS (Ours-Diffusion) 5.3 8.1 13.3 6.2 8.8 14.5 28.9 43.6 67.5
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Table 17: Cross dataset evaluation of our method and baselines on the Area-3 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 37.6 58.2 83.6 51.0 68.6 88.0 16.2 22.3 26.4
Part2Object (Shi et al., 2024) 38.9 63.5 81.4 49.9 73.1 86.5 43.6 65.3 78.4

EFEM (Lei et al., 2023) 29.0 58.3 64.2 35.8 59.7 64.2 55.4 95.2 100.0
GOPS (Ours-VAE) 59.5 78.8 80.2 62.9 79.1 80.6 73.4 93.0 94.7

GOPS (Ours-Diffusion) 51.4 67.0 67.0 52.7 67.2 67.2 76.7 97.8 97.8

Table 18: Cross dataset evaluation of our method and baselines on the Area-4 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 23.9 49.1 70.8 35.8 60.3 76.7 11.6 19.9 24.9
Part2Object (Shi et al., 2024) 26.8 57.4 75.3 38.7 67.3 79.8 38.2 66.5 80.3

EFEM (Lei et al., 2023) 15.1 36.5 49.1 19.9 37.7 49.1 42.7 90.9 100.0
GOPS (Ours-VAE) 39.2 66.4 73.4 45.1 67.9 74.8 53.9 81.8 86.2

GOPS (Ours-Diffusion) 39.4 64.8 68.0 46.1 66.0 69.2 63.9 92.9 94.8

Table 19: Cross dataset evaluation of our method and baselines on the Area-5 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 42.6 63.4 80.3 51.9 68.6 83.3 17.4 23.5 27.7
Part2Object (Shi et al., 2024) 30.0 50.5 76.4 45.2 64.7 82.6 43.5 62.5 80.1

EFEM (Lei et al., 2023) 14.9 35.7 45.3 18.6 36.0 45.3 43.6 92.1 100.0
GOPS (Ours-VAE) 46.4 66.2 73.8 51.0 67.1 74.0 68.5 91.5 97.0

GOPS (Ours-Diffusion) 44.2 58.0 62.6 45.7 58.9 63.2 70.8 91.6 96.4

Table 20: Cross dataset evaluation of our method and baselines on the Area-6 of S3DIS.
AP(%) AP50(%) AP25(%) RC(%) RC50(%) RC25(%) PR(%) PR50(%) PR25(%)

Unsupervised

Unscene3D (Rozenberszki et al., 2024) 41.3 70.9 92.3 51.6 75.9 94.4 12.8 19.6 23.6
Part2Object (Shi et al., 2024) 26.5 57.4 83.0 43.0 74.9 91.1 33.6 58.8 71.5

EFEM (Lei et al., 2023) 18.3 45.2 53.1 23.6 45.8 53.1 46.1 94.3 99.0
GOPS (Ours-VAE) 52.1 80.4 84.3 57.3 80.4 84.4 66.6 96.0 96.8

GOPS (Ours-Diffusion) 47.1 74.5 76.2 52.2 76.0 77.7 65.6 96.5 97.9

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Dynamic
Container

Container
inside

Candidate
Masks

Recovered
Full Shape

Trajectory #1
Dynamic
Container

Container
inside

Candidate
Masks

Recovered
Full Shape

Trajectory #2

Dynamic
Container

Container
inside

Candidate
Masks

Recovered
Full Shape

Trajectory #3
Figure 12: Sample trajectories of the agent.
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Figure 13: More qualitive results on ScanNet validation set.

Input Point Cloud EFEM Part2Object Unscene3D GOPS (Ours-VAE) Ground TruthGOPS (Ours-Diffusion)

Figure 14: More qualitive results on S3DIS.
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Input Point Cloud HDBSCAN EFEM GOPS (Ours-VAE) Ground TruthGOPS (Ours-Diffusion)

Figure 15: More qualitive results on the test set of our synthetic dataset.
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