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ABSTRACT

Recent advancements in learning-based Multi-View Stereo (MVS) methods have
prominently featured transformer-based models with attention mechanisms. How-
ever, existing approaches have not thoroughly investigated the profound influence
of transformers on different MVS modules, resulting in limited depth estima-
tion capabilities. In this paper, we introduce MVSFormer++, a method that
prudently maximizes the inherent characteristics of attention to enhance vari-
ous components of the MVS pipeline. Formally, our approach involves infusing
cross-view information into the pre-trained DINOv2 model to facilitate MVS
learning. Furthermore, we employ different attention mechanisms for the feature
encoder and cost volume regularization, focusing on feature and spatial aggre-
gations respectively. Additionally, we uncover that some design details would
substantially impact the performance of transformer modules in MVS, including
normalized 3D positional encoding, adaptive attention scaling, and the position of
layer normalization. Comprehensive experiments on DTU, Tanks-and-Temples,
BlendedMVS, and ETH3D validate the effectiveness of the proposed method. No-
tably, MVSFormer++ achieves state-of-the-art performance on the challenging
DTU and Tanks-and-Temples benchmarks. Codes and models are available at
https://github.com/maybeLx/MVSFormerPlusPlus.

M
V

SF
or

m
er

++
M

V
SF

or
m

er

(a) Point cloud results between MVSFormer and MVSFormer++ on DTU and Tanks-and-Temples.

(b) Comparison on DTU
(Overall error↓)

(c) Comparison on Tanks-and-Temples
(F-score↑)

Figure 1: (a) Point cloud results compared between MVSFormer (Cao et al., 2022) and the proposed
MVSFormer++ on DTU and Tanks-and-Temples. Results of state-of-the-art MVS methods on (b)
DTU and (c) Tanks-and-Temples benchmark.
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1 INTRODUCTION

Multi-View Stereo (MVS) is a crucial task in the field of Computer Vision (CV) with the objective
of recovering highly detailed and dense 3D geometric information from a collection of calibrated
images. MVS primarily involves the extraction of robust features and the precise establishment
of correspondences between reference views and source views along epipolar lines. In contrast to
traditional methods that address instance-level MVS problems through iterative propagation and
matching processes, as in Furukawa & Ponce (2009); Galliani et al. (2015b); Schönberger et al.
(2016), recent learning-based approaches have emerged as compelling alternatives. These innovative
MVS approaches, such as Yao et al. (2018); Gu et al. (2020); Giang et al. (2022); Peng et al. (2022);
Zhang et al. (2023c), have shown the potential to achieve remarkable reconstruction quality through
end-to-end pipelines, particularly in complex scenes.

The essence of MVS learning can be fundamentally grasped as a feature-matching task conducted
along epipolar lines, assuming known camera poses (Ding et al., 2022). Recent studies have
underscored the importance of incorporating long-range attention mechanisms in various matching-
based tasks, including image matching (Sun et al., 2021; Tang et al., 2022; Chen et al., 2022), optical
flow (Huang et al., 2022; Shi et al., 2023a; Dong et al., 2023), and stereo matching (Li et al., 2021).
Moreover, transformer modules (Vaswani et al., 2017; Yu et al., 2022) significantly improved the
capacity for attention, leading to their widespread adoption in CV tasks, as exemplified by Vision
Transformers (ViTs) (Dosovitskiy et al., 2020; He et al., 2022; Oquab et al., 2023). Consequently, the
integration of transformer into MVS learning becomes a burgeoning research area (Ding et al., 2022;
Liao et al., 2022; Chen et al., 2023). Among these methods, the pioneering work of MVSFormer (Cao
et al., 2022) stands out for unifying pre-trained ViTs for feature extraction with integrated architectures
and training strategies, resulting in advancements in the state-of-the-art of MVS1.

While transformer-based MVS approaches have made significant strides, several unaddressed chal-
lenges remain, offering opportunities for further integration of transformers and MVS learning. 1)
Tailored attention mechanisms for different MVS modules. Within the MVS learning framework,
there exist two primary components: the feature encoder and cost volume regularization. These
modules should not rely on identical attention mechanisms due to their distinct feature properties. 2)
Incorporating cross-view information into Pre-trained ViTs. Despite the substantial improvements
that pre-trained ViTs offer in MVSFormer, there remains a need for essential feature interaction
across different views. Existing cross-view pre-trained ViTs have struggled to fully address the
indispensable multi-view correlations. 3) Enhancing Transformer’s Length Extrapolation Capability
in MVS. A noticeable disparity exists between the image sizes during training and testing phases in
MVS. Notably, feature matching at higher resolutions often leads to superior precision. Nevertheless,
enabling transformers to generalize effectively to diverse sequential lengths, akin to Convolutional
Neural Networks (CNNs), poses a substantial challenge.

We have conducted an exhaustive investigation into the transformer design, building upon the
foundation of MVSFormer to address the aforementioned challenges. The approach has resulted in an
enhanced iteration known as MVSFormer++. We begin by summarizing notable transformer-based
MVS methods in Tab. 1, highlighting the innovations introduced by MVSFormer++. In particular,
we have integrated the pre-trained DINOv2 (Oquab et al., 2023) as our powerful feature encoder.
To improve the cross-view learning ability of DINOv2, we incorporate the meticulously designed
Side View Attention (SVA) aside to DINOv2 layers, which incrementally injects cross-view attention
modules employing linear attention mechanisms (Katharopoulos et al., 2020). Notably, our findings
reveal that linear attention, based on feature aggregation, performs exceptionally well across various
image sizes during the feature encoding stage, surpassing other attention mechanisms. Furthermore,
we have identified the subsidiary but critical roles played by normalized 2D Positional Encoding
(PE), Adaptive Layer Scaling (ALS), and the order of Layer Normalization (LN) in feature extraction,
ensuring stable convergence and generalization.

Regarding cost volume regularization, employing linear attention to aggregate the cost volume along
feature channels performs unsatisfactorily. This stems from the inherent characteristics of features
within the cost volume, which heavily rely on group-wise feature dot products and variances, resulting
in fewer feature-level representations. In contrast, vanilla attention excels in aggregating features

1MVSFormer has consistently held the high ranking on the Tanks-and-Temples intermediate bench-
mark (Knapitsch et al., 2017) since May 2022.
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Table 1: Comparison of transformer-based MVS methods, including TransMVSNet (Ding et al., 2022), WT-
MVSNet (Liao et al., 2022), CostFormer (Chen et al., 2023), and MVSFormer (Cao et al., 2022). MVSFormer++
surpasses other competitors with a meticulously designed transformer architecture, including attention with
global receptive fields, transformer learning for both feature encoder and cost volume, cross-view attention,
adaptive scaling for different sequence lengths, and specifically proposed positional encoding for MVS.

Methods Attention Transformers work in
Cross-view Adaptive scaling

Positional Encoding (PE)
global/window Feature encoder Cost volume Abs./Rel. Normalized 3D-PE

TransMVSNet global ✓ × ✓ × absolute × ×
WT-MVSNet window ✓ ✓ ✓ × relative × ×
CostFormer window × ✓ × × relative × ×
MVSFormer global ✓ × × × absolute ✓ ×

MVSFormer++ global ✓ ✓ ✓ ✓ absolute ✓ ✓

along spatial dimensions, making it better suited for denoising the cost volume. However, integrating
vanilla attention into an extensive 3D sequence presents significant challenges. While computational
constraints can be alleviated through efficient attention implementations (Dao, 2023), vanilla attention
still suffers from limited length extrapolation and attention dilution. To this end, we propose an
innovative solution in the form of 3D Frustoconical Positional Encoding (FPE). FPE provides globally
normalized 3D positional cues, enhancing the capacity to process diverse 3D sequences of extended
length. Furthermore, we revisit the role of attention scaling and re-propose Adaptive Attention Scaling
(AAS) to mitigate attention dilution. Our proposed Cost Volume Transformer (CVT) has proven to
be remarkably effective with a simple design. It substantially elevates the final reconstruction quality,
notably reducing the number of outliers, as depicted in Fig. 1(a).

In summary, our contributions can be highlighted as follows: 1) Customized attention mechanisms:
We analyzed the components of MVS and strategically assigned distinct attention mechanisms based
on their unique feature characteristics for different components. The tailored mechanism improves
the performance of each component for the MVS processing. 2) Introducing SVA, a novel approach
to progressively integrating cross-view information into the pre-trained DINOv2. This innovation
significantly strengthens depth estimation accuracy, resulting in substantially improved MVS results
based on pre-trained ViTs. 3) In-depth transformer design: Our research delves deep into the
intricacies of transformer module design. We present novel elements like 2D and 3D-based PE and
AAS. These innovations address challenges of length extrapolation and attention dilution. 4) Setting
new performance standards: MVSFormer++ attains state-of-the-art results across multiple benchmark
datasets, including DTU, Tanks-and-Temples, BlendedMVS, and ETH3D. Our model’s outstanding
performance demonstrates effectiveness and competitiveness in the field of MVS research.

2 RELATED WORKS

Learning-based MVS Methods (Yao et al., 2018; Gu et al., 2020; Wang et al., 2021a; Peng et al.,
2022) strengthened by Deep Neural Networks (DNNs) have achieved prominent improvements
recently. Yao et al. (2018) proposed an end-to-end network MVSNet to address the MVS issue
through three key stages, including feature extraction, cost volume formulation, and regularization.
A 3D CNN is further used to regress the depth map. Yao et al. (2019); Yan et al. (2020); Wei et al.
(2021); Cai et al. (2023); Xu et al. (2023) iteratively estimate depth residuals to overcome the heavy
computation from 3DCNN learned for the cost volume regularization. On the other hand, coarse-to-
fine learning strategies (Gu et al., 2020; Cheng et al., 2020; Mi et al., 2022) are proposed to refine the
multi-scale depth maps, enjoying both proper performance and efficient memory cost, which is widely
used in the MVS pipeline. Moreover, many researchers try to learn reliable cost volume formulation
according to the visibility of each view (Zhang et al., 2020b; Wang et al., 2022) and adaptive depth
ranges (Li et al., 2023; Zhang et al., 2023a; Cheng et al., 2020). Besides, auxiliary losses based on
SDF (Zhang et al., 2023b), monocular depth (Wang et al., 2022), and neural rendering (Xi et al.,
2022; Shi et al., 2023b) also improve the MVS performance.

Transformers for Feature Correlation. Due to the ability to capture long-range contextual informa-
tion, transformers are widely used in feature matching (Sun et al., 2021; Tang et al., 2022; Cao &
Fu, 2023), optical flow (Dong et al., 2023), and stereo matching (Li et al., 2021). These manners
stack self and cross-attention blocks to learn feature correlations between two frames. Inspired by
them, TransMVSNet (Ding et al., 2022) incorporate feature matching transformers into the MVS to
aggregate features between source and reference views. Other works like Liao et al. (2022); Chen
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et al. (2023) apply shifted-window attention along the epipolar lines and cost volumes to improve
the performance. However, note that many nuanced facets of transformer models, especially in the
context of low-level tasks like MVS, remain relatively underexplored in comprehensive research.

Attention in Transformers. The conventional attention mechanism (Vaswani et al., 2017) aggregates
value features based on the correlation of queries and keys. However, this vanilla attention scheme is
notorious for its quadratic computational complexity. Fortunately, recent pioneering advancements
in IO-Awareness optimizations largely alleviate this problem by FlashAttention (Dao et al., 2022;
Dao, 2023). Consequently, vanilla attention remains the prevailing choice for large-scale models
CV (Rombach et al., 2022) and NLP (Brown et al., 2020; Touvron et al., 2023). In pursuit of enhanced
efficiency, ViTs have embarked on an exploration of diverse attention mechanisms. These include
linear attention (Katharopoulos et al., 2020; Shen et al., 2021), shifted window attention (Liu et al.,
2021), Pyramid ViT (PVT) (Wang et al., 2021b; Chu et al., 2021), and Top-K attention (Tang et al.,
2022; Zhu et al., 2023). It is important to note that all these attention variants exhibit unique strengths
and weaknesses, which are primarily discussed within the context of classification and segmentation
tasks, rather than in the realm of low-level tasks.

LN and PE in Transformers. Dong et al. (2021) have demonstrated that utilizing pure attention
modules can lead to a phenomenon known as rank collapse. In practice, a complete transformer
block typically consists of not only the attention module but also skip connections, a Feed Forward
Network (FFN), and Layer Normalization (LN), as discussed in Metaformer (Yu et al., 2022). Notably,
while LN alone may not effectively prevent rank collapse, its various usage patterns play pivotal
roles in balancing the trade-off between model convergence and generalization (Dong et al., 2021).
Specifically, Post-LN (Vaswani et al., 2017) tends to enhance generalization, whereas Pre-LN, as
explored in Wang et al. (2019), offers greater stability during convergence. Additionally, the concept
of zero-initialized learnable residual connections in Bachlechner et al. (2021) can be employed as
an alternative to LN within the transformer architecture. Furthermore, PE serves a crucial role in
providing positional information to unordered sequences processed by transformers. These encodings
come in various forms, including absolute (Vaswani et al., 2017), relative (Raffel et al., 2020), and
rotary (Su et al., 2021) positional encodings, each offering unique advantages. While convolutional
layers with padding can implicitly capture the distance from the image boundary (Islam et al., 2020),
our experimental findings corroborate that PE significantly influences the performance of MVS tasks.

3 REVEALING THE DEVIL IN TRANSFORMERS FOR MVS

Preliminary. MVSFormer (Cao et al., 2022) introduces a pioneering approach by harnessing pre-
trained ViTs to enhance the learning process for MVS. It capitalizes on the synergies between features
extracted from pre-trained ViTs and those obtained through the Feature Pyramid Network (FPN).
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Figure 2: The Overview of MVSFormer++. (a) Fea-
ture extraction enhanced with SVA module, normalized
2D-PE, and Norm&ALS. (b) Multi-scale cost volume
formation and regularization, where CVT is strengthed
by FPE and AAS resulting in solid depth estimation.

This unique combination proves invaluable for
effectively modeling reflective and texture-less
regions. Furthermore, MVSFormer addresses
the challenge posed by varying image resolu-
tions between training and testing data through
the implementation of a multi-scale training
strategy. In addition to this, MVSFormer lever-
ages the strengths of both regression and clas-
sification techniques for depth estimation. It
optimizes the model using a cross-entropy loss
while incorporating a temperature-based depth
expectation mechanism for predicting depth dur-
ing inference. This holistic approach enhances
the accuracy and robustness of depth estimation.

Building upon the MVSFormer, MVSFormer++
adopts the latest DINOv2 (Oquab et al., 2023) as
the frozen ViT backbone, which enjoys promi-
nent zero-shot cross-domain feature matching
ability. We verify the efficacy of DINOv2 on
MVS in the pilot study (Tab. 8). More details
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about DINOv2 are discussed in Appendix A.1. Moreover, MVSFormer++ takes transformer-based
learning a step further. It enhances both the feature encoder and cost volume regularization, consoli-
dating the strengths of transformers in MVS for improved performance and versatility.

Overview. The overview of MVSFormer++ is presented in Fig. 2. Given N calibrated images
containing a reference image I0, and source view images {Ii}N−1

i=1 , MVSFormer++ operates as a
cascade MVS model, producing depth estimations that span from 1/8 to 1/1 of the original image
size. Specifically, for the feature extraction, we employ FPN to extract multi-scale features {F̂i}N−1

i=0 .
Subsequently, both the reference and source view images are downsampled by half and fed into the
frozen DINOv2-base to extract high-quality visual features. To enrich the DINOv2 model with cross-
view information, we propose Side View Attention (SVA) mechanism, enhanced with normalized
2D PE and adaptive layer scaling (Sec. 3.1). For the cost volume regularization, we apply the Cost
Volume Transformer (CVT) strengthened by Frustoconical Positional Encoding (FPE) and Adaptive
Attention Scaling module (AAS) to achieve solid depth initialization in the 1/8 coarse stage (Sec. 3.2).

3.1 TRANSFORMERS FOR FEATURE ENCODER

Side View Attention (SVA). To effectively capture extensive global contextual information across
features from different views, we leverage SVA to further enhance the multi-layer DINOv2
features, denoted as {F l

i }
N−1
i=0 . SVA functions as a side-tuning module (Zhang et al., 2020a),

i.e., it can be independently trained without any gradients passing through the frozen DINOv2.
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Figure 3: Illustration of SVA. Self and cross-view at-
tention are separately used to learn reference and source
features respectively.

To learn cross-view information through atten-
tion modules, the interlaced self and cross-view
attentions (Ding et al., 2022) are primarily bene-
ficial for source features {F l

i }
N−1
i=1 , which learn

to aggregate reference ones for better feature
representations. In contrast, reference features
just need to be encoded by self-attention mod-
ules. Our further investigation revealed that self-
attention modules are unnecessary for source
features from DINOv2. Thus, in SVA for DI-
NOv2, we separately encode features of ref-
erence and source views by self and cross-
attention as depicted in Fig. 3, which saves
half of the computation without obvious per-
formance degradation. Subsequently, after the
feature aggregation from cross-attention, we add new DINOv2 features from level l+1 with adaptive
layer scaling to the next SVA block’s inputs. As shown in Fig. 2, after the upsampling to the 1/8 scale,
we further incorporate two additional SVA blocks to high-resolution features with normalized 2D-PE.
Note that we systematically validate several attention mechanisms for SVA. Remarkably, linear
attention (Katharopoulos et al., 2020) outperforms others in Tab. 5(b). This underscores the efficacy
of linear attention when coupled with feature-level aggregation for DINOv2 features. Moreover,
linear attention’s inherent robustness allows it to gracefully accommodate diverse sequence lengths,
effectively overcoming the limitations associated with vanilla attention in the context of MVS.

Normalized 2D Positional Encoding (PE). While DINOv2 already includes positional encodings
(PE) for features at the 1/32 scale, we have taken it upon ourselves to further enrich the positional
cues tailored for SVA. This enhancement facilitates the learning of high-resolution features at the
1/8 scale, as depicted in Fig. 2(a). In alignment with the principles in Chen et al. (2022), we have
implemented a linear normalizing approach to ensure that the testing maximum values of height and
width positions are equal to a consistent scale used in the training phase, specifically set at (128, 128).
Such simple yet effective normalized 2D-PE has demonstrated its remarkable ability to yield robust
depth estimation results when subjected to high-resolution image testing, as empirically validated in
our preliminary investigation in Tab. 7 and Tab. 11.

Normalization and Adaptive Layer Scaling (Norm&ALS). In response to the substantial variance
observed in DINOv2 multi-layer features (Fig. 6), we apply the LNs to normalize all the DINOv2
features before the SVA module. Moreover, all SVA blocks are based on the Pre-LN (Wang et al.,
2019), which normalizes features before the attention and FFN blocks rather than after the residual
addition as Post-LN. Pre-LN enjoys more significant gradient updates, especially when being trained
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for multi-layer attention blocks (Wang et al., 2019). In Tab. 6, Pre-LN achieves superior performance,
while we find that Post-LN usually struggles for slower convergence. Furthermore, we introduce the
learnable ALS multiplied to normalized DINOv2 features, which adaptively adjust the significance of
features from unstable frozen DINOv2 layers. The combination of Norm&ALS significantly enhances
the training stability and convergence when stacking multi-layer transformer blocks, as shown in
Fig. 7. Notably, the learnable coefficients Sl are all initialized with 0.5 within MVSFormer++,
emphasizing the impact for the latter layers as empirically verified in DINOv2 (Oquab et al., 2023).

SVA vs Intra, Inter-Attention. Despite some similarities in using self and cross-attention, our SVA
differs from Intra, Inter-attention (Ding et al., 2022) in both purpose and implementation. The most
critical difference is that SVA performs cross-view learning for both DINOv2 (1/32) and coarse MVS
(1/8) features (Fig. 2), while Intra, Inter-attention only considers coarse MVS features. For DINOv2
features, SVA is specifically designed as a side-tuning module without gradient propagation through
the frozen DINOv2, which efficiently incorporates cross-view information to monocular pre-trained
ViT. ALS is further proposed to adaptively learn the importance of various DINOv2 layers, while
Pre-LN is adopted to improve the training convergence. For coarse MVS features, we emphasize that
normalized 2D-PE improves the generalization in high-resolution MVS. We also omit self-attention
for features from DINOv2 source views to simplify the model with competitive performance.

3.2 TRANSFORMERS FOR COST VOLUME REGULARIZATION

In this section, we first analyze the feasibility of using transformer modules in the cost volume
regularization. Then, we introduce how to tackle the limited length extrapolation capability for 3D
features and the attention dilution issue with FPE and AAS respectively.

Could Pure Transformer Blocks (CVT) Outperforms 3DCNN? The cost volume regularization
works as a denoiser to filter noisy feature correlations from the encoder. Most previous works
leverage 3DCNN to denoise such cost volume features (Yao et al., 2018), while some transformer-
based manners (Liao et al., 2022; Chen et al., 2023) are also built upon locally window-based attention.
Contrarily, in this work, we embark on a comprehensive investigation that regards the whole noisy
cost volume as a global sequential feature and then processes it through the pure transformer based on
vanilla attention. Specifically, we first downsample the 4D group-wise cost volume correlation (Xu
& Tao, 2020) through one layer of non-overlapping patch-wise convolution with stride [2, 4, 4] to
Ĉ ∈ RC×D×H×W , where D,H,W indicate the dimension along depth, height, and width; C = 64
is the cost volume channel. Then the cost volume feature is rearranged to the shape of (C ×DHW ),
while DHW can be seen as the global sequence learned by transformer blocks. Thanks to the efficient
FlashAttention (Dao, 2023), CVT eliminates the quadratic complexity of the vanilla attention as in
Fig. 1(b). We stack 6-layer standard Post-LN-based transformer blocks with competitive computation
compared to 3DCNN. Finally, output features are upsampled with another non-overlapping transposed
convolution layer to the original size for achieving depth logits along all hypotheses.

We should clarify some details about CVT. First, we found that linear attention performs very
poorly in CVT as in Tab. 5, which indicates that feature-level aggregation is unsuitable for learning
correlation features after the dot product. Moreover, we only apply the CVT in the first coarse stage,
while using CVT in other fine-grained stages would cause obviously inferior performance. In the
cascade model, only the first stage enjoys a complete and continuous 3D scene, while all pixels within
the same di in D share the same depth hypothesis plane. Therefore, we think that the integrality and
continuity of the cost volume are key factors in unlocking the capacity of CVT.

Frustoconical Positional Encoding (FPE). To enhance the model’s ability to generalize across a
variety of image resolutions, we first normalize the 3D position P ∈ R3×DHW of the cost volume
into the range [0, 1]3 through the frustum-shaped space built upon the nearest and farthest depth
planes pre-defined for each scene as shown in Fig. 4(a). Then we separately apply 1D sinusoidal
PE along the x, y, z dimensions, and encode them into C channels for each axis. Subsequently, we
concatenate all these three PE dimensions into FPE shaped as (3C × DHW ), and apply a 1 × 1
convolutional layer to project them to the same channel of cost volume feature as (C × DHW ).
This projected FPE is then added to the cost volume feature. FPE helps the model in capturing both
absolute and relative positions in 3D scenes, which is crucial for improving CVT’s depth estimation.
Note that FPE is only applied to the first stage’s cost volume for CVT, while the zero padding-based
3DCNN has already captured sufficient positional clues for other stages (Islam et al., 2020).
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Figure 4: Illustration of 3D FPE and attention dilution. (a) We normalize all points in the cost
volume within the nearest and farthest depth plane. (b) The attention score would be diluted when the
sequence increases, making it challenging to correctly focus on related target values.

Adaptive Attention Scaling (AAS). We should clarify that FPE is insufficient to make CVT gen-
eralize to various cost volume lengths. As shown in Fig. 4(b), we analyze the phenomenon called
attention dilution that primarily occurred in NLP (Chiang & Cholak, 2022). In CVT, the training
sequential lengths of cost volume are around 6,000, while testing lengths are remarkably increased,
varying from 27,648 to 32,640. Therefore, the attention score after the softmax operation is obviously
diluted, which makes aggregated features fail to focus on correct target values. So attention dilution
would hinder the performance of CVT for MVS with high-resolution images. One trivial solution is
to train CVT on high-resolution images directly, but it would cause prohibitive computation and still
lack generalization for larger test images. Su (2021) provided a perspective that we should keep the
invariant entropy for the attention score as:

Hi = −
n∑
j

ai,j log ai,j , ai,j =
eλqi·kj∑n
j e

λqi·kj
, (1)

where qi, kj is query and key features; ai,j is the attention score of query i and key j; Hi is the
entropy of query i; n is the sequential length; λ is the attention scaling. To make Hi independent
of n, we could achieve λ = κ logn

d as proven by Su (2021), where κ is a constant. Thus we could
formulate the attention as:

Attenion(Q,K,V) = Softmax(
κ log n

d
QKT )V, (2)

where d is the feature channel. Note that the default attention scale is λ = 1√
d

. We empirically set

κ =
√
d

logn , where n is the mean sequential length of features during the multi-scale training (Cao et al.,
2022). Thus, the training of CVT enhanced by AAS approaches to the normal transformer training
with default attention scaling, while it could adaptively adjust the scaling for various sequential lengths
to retain the invariant entropy during the inference as shown in Fig. 4(b). The newly repurposed AAS
enjoys good generalization as verified in Sec. 4.1 even with 2k images from Tanks-and-Temples.

4 EXPERIMENT

Implementation Details. We train and test our MVSFormer++ on the DTU dataset (Aanæs et al.,
2016) with five-view images as input. Following MVSFormer (Cao et al., 2022), our network applies
4 coarse-to-fine stages of 32-16-8-4 inverse depth hypotheses. We adopt the same multi-scale training
strategy with the resolution scaling from 512 to 1280. Since the DTU dataset primarily consists of
indoor objects with identical camera poses, in order to enhance the model’s generalization capability
for outdoor scenes such as Tanks-and-Temples (Knapitsch et al., 2017) and ETH3D dataset (Schops
et al., 2017), we perform fine-tuning on a mixed dataset that combines DTU and BlendedMVS (Yao
et al., 2020). Specifically, we train MVSFormer++ using Adam for 10 epochs at a learning rate of
1e-3 on the DTU dataset. Then we perform further fine-tuning of MVSFormer++ for 10 additional
epochs with a reduced learning rate of 2e-4 on the mixed DTU and BlendedMVS dataset.
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Table 2: Quantitative point cloud results (mm) on DTU (lower is better). The best results are in bold,
and the second ones are underlined. All scenes share the same threshold for the post-processing.

Methods Accuracy↓ Completeness ↓ Overall↓
Gipuma (Galliani et al., 2015a) 0.283 0.873 0.578

COLMAP (Schönberger et al., 2016) 0.400 0.664 0.532

CasMVSNet (Gu et al., 2020) 0.325 0.385 0.355
AA-RMVSNet (Wei et al., 2021) 0.376 0.339 0.357
UniMVSNet (Peng et al., 2022) 0.352 0.278 0.315

TransMVSNet (Ding et al., 2022) 0.321 0.289 0.305
WT-MVSNet (Liao et al., 2022) 0.309 0.281 0.295
CostFormer (Chen et al., 2023) 0.301 0.322 0.312

RA-MVSNet (Zhang et al., 2023b) 0.326 0.268 0.297
GeoMVSNet (Zhang et al., 2023c) 0.331 0.259 0.295

MVSFormer (Cao et al., 2022) 0.327 0.251 0.289

MVSFormer++ (ours) 0.3090 0.2521 0.2805

UniMVSNet TransMVSNet MVSFormerGeoMVSNet MVSFormer++ GroundTruth

Overall: 0.381Overall: 0.500Overall: 0.525 Overall: 0.493 Overall: 0.513

Figure 5: Qualitative results compared with state-of-the-art models on scan77 in DTU.

4.1 EXPERIMENTAL PERFORMANCE

Evaluation on DTU Dataset. We first resize the test image to 1152× 1536 and set view number N
to 5. Then we use off-the-shelf Gipuma (Galliani et al., 2016) fusing depth maps to generate dense
3D point clouds for all the scans with identical hyper-parameters. The final results are evaluated
on the official metrics as accuracy, completeness, and overall errors. In Tab. 2 we can observe that
MVSFormer++ outperforms both traditional methods and learning-based methods at overall error by
a large margin. As the extension of MVSFormer, our MVSFormer++ achieves more accurate and
fewer outliers results as shown in Fig. 1(a) and Fig. 5.

Evaluation on Tanks-and-Temples and ETH3D. To evaluate the efficacy in terms of generalization
to outdoor scenes, we evaluate our MVSFormer++ on Tanks-and-Temples online benchmark with
2k image sizes. Quantitative results are shown in Tab. 3, which showcases that our MVSFormer++
surpasses all other state-of-the-art methods with mean F-scores of 67.03 and 41.70 on the Intermediate
and Advanced sets, respectively. More qualitative results are shown in Fig. 13 of the Appendix, which
denotes the good generalization and impressive performance of MVSFormer++. Note that our AAS
and FPE perform well under extremely high-resolution images. More results and discussions about
ETH3D (Schops et al., 2017) are listed in Tab. 12 of Appendix Sec. A.4.

Table 3: Quantitative results of F-score on Tanks-and-Temples. A higher F-score means a better
reconstruction quality. The best results are in bold, while the second ones are underlined.

Methods
Intermediate Advanced

Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.
COLMAP (Schönberger et al., 2016) 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94

CasMVSNet (Gu et al., 2020) 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
CostFormer (Chen et al., 2023) 64.51 81.31 65.65 55.57 63.46 66.24 65.39 61.27 57.30 39.43 29.18 45.21 39.88 53.38 34.07 34.87

TransMVSNet (Ding et al., 2022) 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62
WT-MVSNet (Liao et al., 2022) 65.34 81.87 67.33 57.76 64.77 65.68 64.61 62.35 58.38 39.91 29.20 44.48 39.55 53.49 34.57 38.15

RA-MVSNet (Zhang et al., 2023b) 65.72 82.44 66.61 58.40 64.78 67.14 65.60 62.74 58.08 39.93 29.17 46.05 40.23 53.22 34.62 36.30
D-MVSNet (Ye et al., 2023) 64.66 81.27 67.54 59.10 63.12 64.64 64.80 59.83 56.97 41.17 30.08 46.10 40.65 53.53 35.08 41.60

MVSFormer (Cao et al., 2022) 66.37 82.06 69.34 60.49 68.61 65.67 64.08 61.23 59.53 40.87 28.22 46.75 39.30 52.88 35.16 42.95
MVSFormer++ (ours) 67.03 82.87 68.90 64.21 68.65 65.00 66.43 60.07 60.12 41.70 30.39 45.85 39.35 53.62 35.34 45.66
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Table 4: Ablation results with different components on DTU test dataset, Metrics are depth error
ratios of 2mm (e2), 4mm (e4), 8mm (e8).

CVT FPE AAS SVA Norm&ALS e2 ↓ e4 ↓ e8 ↓ Accuracy↓ Completeness↓ Overall↓
16.38 11.16 7.79 0.3198 0.2549 0.2875

✓ 17.95 12.93 9.27 0.3122 0.2588 0.2855
✓ ✓ 13.89 8.92 6.35 0.3168 0.2575 0.2871
✓ ✓ ✓ 13.76 8.71 6.17 0.3146 0.2549 0.2847
✓ ✓ ✓ ✓ 12.41 7.90 5.69 0.3109 0.2521 0.2815
✓ ✓ ✓ ✓ ✓ 13.03 8.29 5.35 0.3090 0.2521 0.2805

4.2 ABLATION STUDY

Effects of Proposed Components. As shown in Tab. 4, we apply CVT without FPE and AAS
to replace 3DCNN at stage-1. We observe that the depth errors are increased. Enhanced with
FPE, CVT outperforms 3DCNN in the depth estimation with a large margin which showcases the
significance of 3D-PE. Besides, our model benefits from the AAS, allowing our model to generalize
for high-resolution images and consequently produce more accurate depth maps. Furthermore, we
attribute the performance enhancements to the SVA module, which captures long-range global context
information across different views to strengthen the DINOv2. Note that Norm&ALS could slightly
improve the accuracy with more precise prediction. We further verify the effectiveness of these
components under different image sizes in Tab. 11 of Appendix A.3 and upon other baselines in
Tab. 13 of Appendix A.5. More experiment results about detailed transformer settings, qualitative
visualizations, and the selection of DINOv2 layers are discussed in Appendix A.1.

Different Attention Mechanisms for Cost Volume Regularization. As in Tab. 5(a), linear attention
suffers from terrible performance, this surprising outcome can be attributed to the nature of features
within the cost volume, primarily relying on group-wise feature dot product and variance, which lacks
informative representations. In contrast, even though window-based attention permits shifted-window
interactions (Liu et al., 2021), it struggles to outperform vanilla attention. This indicates the crucial
importance of capturing global contextual information in cost volume regularization. Besides, vanilla
attention enhanced by AAS mitigates attention dilution for large image scales, leading to more
accurate depth estimations and superior robustness.

Different Attention Mechanisms for Feature Encoder. We conduct several experiments with
different types of attention during the feature extraction in Tab. 5(b). Different from the results
of Tab. 5(a), linear attention outperforms other attention mechanisms in the overall error of point
cloud, while the advantage of depth-related metrics is not prominent compared with vanilla attention,
except for the large depth error e8. We should clarify that linear attention is naturally robust for
high-resolution images without attention dilution, thus it can be seen as a more reasonable and
efficient choice to be applied for cross-view feature learning in SVA. For the Top-k (Zhu et al., 2023)
and shifted window-based attention, they failed to achieve proper results because of a lack of global
receptive fields during the feature extraction.
Table 5: We evaluate the performance of different attention mechanisms in feature encoder and cost
volume regularization, including vanilla attention (with/without AAS), linear attention (Katharopoulos
et al., 2020), top-k attention (Zhu et al., 2023), and shifted window attention (Liu et al., 2021).

Cost volume attention e2 ↓ e4 ↓ e8 ↓ Overall↓
Shifted Window 15.03 9.93 6.90 0.2862

Linear 15.94 10.64 7.80 0.2980
Vanilla 13.89 8.91 6.34 0.2871

Vanilla + AAS 13.76 8.71 6.17 0.2847

Feature encoder attention e2 ↓ e4 ↓ e8 ↓ Overall↓
Shifted Window 12.80 8.05 5.64 0.2862

Top-K 13.04 8.43 6.12 0.2854
Vanilla 12.65 7.88 5.60 0.2835

Vanilla + AAS 12.63 7.88 5.60 0.2824
Linear 13.03 8.29 5.35 0.2805

5 CONCLUSION

In this paper, we delve into the attention mechanisms within the feature encoder and cost volume
regularization of the MVS pipeline. Our model seamlessly incorporates cross-view information to
pre-trained DINOv2 features through SVA. Moreover, we propose specially designed FPE and AAS
to strengthen the ability of CVT to generalize high-resolution images. The proposed MVSFormer++
can achieve state-of-the-art results in DTU and rank top-1 on Tanks-and-Temples.
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A APPENDIX

A.1 MORE DETAILS AND EXPERIMENTS OF TRANSFORMERS IN MVS

Sequential Length of CVT. The sequential lengths of CVT’s feature are downsampled to
[H0/32,W0/32, D = 16], where H0,W0 mean the original image height and width respectively.
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DTU images are tested in 1152×1536, resulting in the sequential length of 36*48*16 = 27,648
to CVT. Tanks-and-Temple images are tested in 1088×1920, resulting in the sequential length of
34*60*16 = 32,640. Our multi-scale training is based on Cao et al. (2022), i.e., from 512 to 1280,
resulting in sequential length from 5,120 to 20,480. We set the average length n =12,185.

Multi-layer Features of DINOv2 and SVA. Fig. 6(a) shows the logarithmic absolute mean and
maximum values of DINOv2 features from different layers, while Fig. 6(b) illustrates the zero-shot
depth estimation based on Winner-Take-All (WTA) feature correlation (Collins, 1996) of different
layers’ DINOv2 features2. Generally, middle layers enjoy better zero-shot performance. We also
provide ablation studies about the usage of different feature layers in Tab. 6. To efficiently explore the
layer-selecting strategy, we empirically adopt the last layer (11) of DINOv2. Because dense vision
tasks in Oquab et al. (2023) ensure the robust performance of the last layer of DINOv2. Subsequently,
we abandon shallow layers in DINOv2 (0,1) which contains more positional information rather than
meaningful features (Amir et al., 2021; Walmer et al., 2023). Thus we uniformly sample among
mid-layer and last-layer features from DINOv2 in Tab. 6, and find a relatively good combination, i.e.,
(3,7,11). Though the 5th layer shows better zero-shot WTA feature correlations in Fig. 6(b), the gap
between (3,5,11) and (3,7,11) is not obvious. As shown in Fig. 6(a), layers from 8 to 10 are unstable,
which would cause inferior results to the 4-layer setting.

(a) Feature absolute values of all 12 DINOv2 layers. (b) Absolute depth errors of all 12 DINOv2 layers with WTA.

Figure 6: Detailed analysis of DINOv2 features: (a) absolute mean and maximum values of DINOv2
features; (b) absolute depth errors achieved from different DINOv2 layers with WTA (Collins, 1996).

Pre-LN vs Post-LN. As shown in Tab. 6, for the feature encoder, we compare the placement of LN
between Pre-LN and Post-LN (Wang et al., 2019), which can be formulated as:

Pre-LN(x) :x = x+Attn(LN(x)), x = x+ FFN(LN(x)),

Post-LN(x) :x = LN(x+Attn(x)), x = LN(x+ FFN(x)),
(3)

where LN(·), Attn(·), FFN(·) indicate layer normalization, Attention and FFN blocks respectively.
We find that Pre-LN achieves smaller depth errors than Post-LN, which is different from many NLP
tasks that Post-LN reaches better performance than Pre-LN. This is due to the large variance of
DINOv2 features and faster convergence of Pre-LN. While in cost volume regularization, Post-LN
outperforms the Pre-LN.

Validation Logs with/without Norm&ALS. We compare the validation logs during the training
phase of MVSFormer++ with/without Pre-LN and ALS in Fig. 7. Two models are trained for 15
epochs at all. The model with the combination of Pre-LN and ALS enjoys better convergence and
achieves the best checkpoint in epoch 10, which is 4 epochs earlier than the one with Post-LN and no
ALS. Note that the former also enjoys better performance in the point cloud reconstruction.

Different Variants of MLP in Transformer. Although the transformer with GLU (Shazeer, 2020)
leads to smaller depth errors, it still struggles to outperform the original FFN in Tab. 6. For a more
general architecture, we still use FFN in our final design.

2WTA used in DINOv2 means directly calculating feature correlations from a certain layer of DINOv2 along
the epipolar line and deciding the depth estimation according to the highest feature similarity.
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mean depth error (2, 4, 8, 14mm) depth error 2mm depth error 4mm depth error 8mm

with Norm (Pre-LN) and ALS without Norm and ALS (Post-LN only)

Best in epoch10
Best in epoch14

Figure 7: Validation logs with/without Norm&ALS during the training phase. MVSFormer++
achieves the best checkpoint in epoch 10 with Pre-LN and ALS, which is 4 epochs earlier than the
one with Post-LN and no ALS.

Qualitative Ablation Study. We show qualitative ablation studies in Fig. 8. From the visualization,
CVT and AAS could effectively eliminate the outliers (Fig. 8(c)). SVA with normalized 2D-PE is
also critical for precise point clouds (Fig. 8(e)).

(a) Baseline (b) CVT+FPE (c) CVT+FPE+AAS (d) SVA w.o. Norm 2D-PE (e) Full Model

Overall:0.476 Overall: 0.399Overall: 0.4047 Overall: 0.4670 Overall: 0.3812

Figure 8: Qualitative comparisons for the ablation studies of MVSFormer++.

Ablations about Normalized 2D-PE. We use normalized 2D-PE to replace the vanilla PE in the
baseline model (Ding et al., 2022). Tab. 7 shows that the baseline with normalized 2D-PE outperforms
the one with standard 2D-PE.

The Selection of DINOv2. Our choice of DINOv2 (Oquab et al., 2023) as the backbone of MVS-
Former++ is attributed to its robust zero-shot feature-matching capability and impressive performance
in dense vision downstream tasks. Compared to other ViTs, DINOv2 was trained on large-scale
curated data, unifying both image-level (contrastive learning (Caron et al., 2021)) and patch-level
(masked image prediction (He et al., 2022)) objectives, as well as high-resolution adaption. Hence
DINOv2 enjoys remarkably stable feature correlation across different domains. Moreover, DINOv2
achieves better performance in dense vision benchmarks, such as semantic image segmentation
and monocular depth estimation. Our experiments in Tab. 8 show the efficacy of DINOv2 in MVS.
Note that the frozen DINOv2 even achieves slightly better performance compared to the trainable
Twins (Chu et al., 2021). We further explore the low-rank fine-tuning version (LoRA (Hu et al., 2021),
rank 16) of DINOv2, but the improvements are not very significant with expanded computation.
Besides, the full-model fine-tuned DINOv2 performs worse than the frozen one, which also makes
sense. Since DINOv2 is a robust model pre-trained on large-scale curated data, the MVS fine-tuning
is based on the limited DTU, which degrades the generalization of DINOv2’s features. Thus, we use
frozen DINOv2-base as a strong and robust baseline of MVSFormer++ in Tab. 4.

A.2 INFERENCE MEMORY AND TIME COSTS

We evaluate the memory and time costs for inference when using images with a resolution of
1152 × 1536 as input. All comparisons are based on NVIDIA RTX A6000 GPU, From Tab. 9,
MVSFormer++ is slightly faster than MVSFormer (Cao et al., 2022), owing to the efficiency of
FlashAttention during the inference. For other learning-based methods, TransMVSNet (Ding et al.,
2022) suffers from long inference time. GeoMVSNet (Zhang et al., 2023c) have large parameters due
to the heavy architecture of heavy cost volume regularization and feature fusion module. We also
evaluate the memory cost compared to CasMVSNet (Gu et al., 2020) with different image resolutions
and depth intervals in Tab. 10. Besides the FlashAttention (Dao, 2023), MVSFormer++ enjoys a more

16



Published as a conference paper at ICLR 2024

Table 6: We evaluate some detailed designs including the number of cross-view layers in SVA, the
usage of different DINOv2’s feature layers (0∼11), the placement of LN in the attention mechanism,
and different variants of MLP after the attention in feature encoder and cost volume regularization.

Feature Encoder Cost Volume Metric

Layer nums DINOv2 layers Norm MLP Norm MLP e2 ↓ e4 ↓ e8 ↓ Overall↓
2 (5,11) Pre-LN FFN Post-LN FFN 13.84 8.99 5.14 0.2836
3 (3,5,11) Pre-LN FFN Post-LN FFN 12.94 8.08 5.59 0.2806
3 (3,7,11) Pre-LN FFN Post-LN FFN 13.03 8.29 5.35 0.2805
4 (2,5,8,11) Pre-LN FFN Post-LN FFN 13.20 8.50 6.97 0.2832

3 (3,7,11) Pre-LN FFN Pre-LN FFN 13.46 8.74 6.14 0.2827

3 (3,7,11) Post-LN FFN Post-LN FFN 13.30 8.99 5.14 0.2850
3 (3,7,11) Pre-LN GLU Post-LN GLU 11.95 7.81 5.79 0.2809

Table 7: Ablation results of normalized 2D PE in FMT module of TransMVSNet.

Normalized 2D-PE e2 ↓ e4 ↓ e8 ↓
× 23.92 19.54 16.36
✓ 23.15 18.68 15.35

Table 8: Quantitative comparisons of MVSFormer (Cao et al., 2022) based on different ViT backbones
on DTU dataset. Results of DINO and Twins are from Cao et al. (2022).

ViT backbone Frozen backbone Accuracy↓ Completeness↓ Overall↓
DINO-small ✓ 0.327 0.265 0.296
DINO-base ✓ 0.334 0.268 0.301
Twins-small × 0.327 0.251 0.289
Twins-base × 0.326 0.252 0.289

DINOv2-base ✓ 0.3198 0.2549 0.2875
DINOv2-base LoRA (rank=16) 0.3239 0.2501 0.2870
DINOv2-base × 0.3244 0.2566 0.2905

reasonable depth hypothesis setting (32-16-8-4 vs 48-16-8) compared with CasMVSNet, which leads
to lower memory cost. Hence MVSFormer++ contains sufficient scalability for dense and precise
depth estimations.

A.3 ABLATION STUDY ABOUT DIFFERENT IMAGE SIZES

To confirm the robustness of transformer blocks in MVSFormer++ across different image sizes, we
further expand the ablation studies in Tab. 4 to Tab. 11. These ablations demonstrate the effectiveness
of FPE, AAS, and normalized 2D-PE. Generally, both high-resolution depth and point cloud results
outperform the low-resolution ones. This conclusion is the same as most MVS methods (Giang
et al., 2022; Cao et al., 2022), which proves the importance of adaptability for high-resolution
images. Moreover, FPE and AAS improve the results under both 576× 768 and 1152× 1536 images.
However, AAS is more effective for depth estimation in high-resolution cases, while the depth gap
in low-resolution ones is not pronounced. Most importantly, the normalized 2D-PE plays a very
important role in high-resolution feature encoding, contributing substantial improvements in both
depth and point clouds.

A.4 QUANTITATIVE RESULTS ON ETH3D DATASETS.

To demonstrate MVSFormer++’s good generalization on large-scale scenes with high-resolution
images, we evaluate MVSFormer++ on the test set of ETH3D which is trained on a mixed DTU
and BlendedMVS dataset. We resize images to 2k, following the setting of Tanks-and-Temple,
while 10 views are involved. Quantitative comparisons on ETH3D are shown in Tab. 12, compared
with other state-of-the-art learning-based methods and traditional ones, our method achieves the
best performance in the ETH3D dataset. Note that our ETH3D results are all achieved with the
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Table 9: Illustration of model memory and time costs during the inference phase of 1152 × 1536
images and model parameters (Params.).

Memory (MB) Time (s/img) Params. (all) Params. (trainable)

MVSFormer (Cao et al., 2022) 4970 0.373 28.01M 28.01M
MVSFormer++ (Ours) 5964 0.354 126.95M 39.48M

CasMVSNet (Gu et al., 2020) 6672 0.4747 0.93M 0.93M
TransMVSnet (Ding et al., 2022) 6320 1.49 1.15M 1.15M

GeoMVSNet (Zhang et al., 2023c) 9189 0.369 15.31M 15.31M

Table 10: Comparison of GPU memory between MVSFormer++ and CasMVSNet with different
resolutions and depth intervals.

Methods Resolution Depth Interval Memory (MB)

CasMVSNet
864× 1152

48-32-8
4769

1152× 1536 6672
1088× 1920 7659

MVSFormer++

864× 1152
32-16-8-4 4873
64-32-8-4 5025

1152× 1536
32-16-8-4 5964
64-32-8-4 6753

1088× 1920
32-16-8-4 6613
64-32-8-4 7373

Table 11: Ablation studies of MVSFormer++ under different image scales on DTU.

Resolution FPE AAS SVA
e2 ↓ e4 ↓ e8 ↓ Accuracy↓ Completeness↓ Overall↓2D-PE Norm 2D-PE

576×768

20.85 14.03 9.28 0.3783 0.3060 0.3422
✓ 17.99 11.06 7.49 0.3649 0.3116 0.3383
✓ ✓ 17.97 11.13 7.54 0.3571 0.3126 0.3348
✓ ✓ ✓ 17.28 11.01 7.56 0.3512 0.3112 0.3312
✓ ✓ ✓ 17.21 10.94 7.47 0.3504 0.3098 0.3301

1152×1536

16.38 11.16 7.79 0.3198 0.2549 0.2875
✓ 13.89 8.92 6.35 0.3168 0.2575 0.2871
✓ ✓ 13.76 8.71 6.17 0.3146 0.2549 0.2847
✓ ✓ ✓ 15.00 9.74 6.50 0.3330 0.2514 0.2922
✓ ✓ ✓ 13.03 8.29 5.35 0.3090 0.2521 0.2805

same threshold (0.5) of depth confidence filter and default settings of dynamic point cloud fusion
(DPCD) (Yan et al., 2020), without any cherry-pick hyper-parameter adjusting. This robust and
impressive performance can be attributed to the effectiveness of our meticulously designed positional
components for transformers, such as normalized 2D-PE, FPE, and AAS. These techniques enable
our method to effectively generalize to various image scales.

Table 12: Quantitative results on ETH3D datasets.

Methods Precision↑ Recall↑ F1-Score↑
Gipuma (Galliani et al., 2015a) 86.47 24.91 45.18

PMVS (Furukawa & Ponce, 2009) 90.08 31.84 44.16
COLMAP (Schönberger et al., 2016) 91.97 62.98 73.01

CostFormer (Chen et al., 2023) - - 77.36
MVSFormer (Cao et al., 2022) 82.23 83.75 82.85

MVSFormer++ (Ours) 81.88 83.88 82.99
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A.5 EFFECT OF PROPOSED COMPONENTS BASED ON OTHER BASELINES

We present quantitative ablation studies in Tab. 13 for other baselines enhanced by our compo-
nents. These previous MVS methods include CasMVSNet (Gu et al., 2020) and MVSFormer +
DINOv1 (Caron et al., 2021) (MVSFormer-P (Cao et al., 2022)). Specifically, we re-train CasMVS-
Net (CasMVSNet*) as an intermediate baseline for a fair comparison, which contains a 4-stage depth
hypothesis setting (32-16-8-4) and cross-entropy loss, sharing the same setting with MVSFormer and
MVSFormer++. Since the proposed SVA is a side-tuning module specifically designed for pre-trained
models, we only evaluate the effect of SVA on MVSFormer-P. From Tab. 13, our CVT demonstrates
substantial improvements for both CasMVSNet* and MVSFormer-P, and our SVA further enhances
the results of MVSFormer-P with CVT.

Table 13: Quantitative ablation studies of CasMVSNet (Gu et al., 2020) and MVSFormer + DI-
NOv1 (Caron et al., 2021) (MVSFormer-P) based on our proposed components including CVT and
SVA. * indicates that CasMVSNet is re-trained with the 4-stage depth hypothesis setting (32-16-8-4)
and cross-entropy loss as MVSFormer (Cao et al., 2022) and MVSFormer++.

Methods e2 ↓ e4 ↓ e8 ↓ Accuracy↓ Completeness↓ Overall↓
CasMVSNet 30.21 24.63 21.14 0.325 0.385 0.355
CasMVSNet* 23.15 18.68 15.35 0.353 0.286 0.320
CasMVSNet* + CVT 15.70 10.13 7.14 0.332 0.278 0.305
MVSFormer-P 17.18 11.96 8.53 0.327 0.265 0.296
MVSFormer-P + CVT 14.25 9.13 6.51 0.327 0.261 0.294
MVSFormer-P + CVT + SVA 13.55 8.67 6.31 0.322 0.254 0.288

A.6 MORE RESULTS ON DTU DATASET

We show the qualitative depth comparisons between MVSFormer and MVSFormer++ in Fig. 9. Our
method estimates more precise depth maps even in challenging scenes. Fig. 12 shows all predicted
point clouds on the DTU test set. These point clouds are accurate and complete, especially in the
textureless regions.

Reference
Image

GT
Depth

MVSFormer

MVSFormer++

Figure 9: Qualitative depth comparisons on DTU between MVSFormer (Cao et al., 2022) and
MVSFormer++.

A.7 MORE RESULTS ON TANKS-AND-TEMPLES

We show some qualitative comparisons between MVSFormer and MVSFormer++ in Fig. 10. MVS-
Former++ achieves geometric reconstructions with better precision, while MVSFormer shows more
complete results in some scenes, such as the “Recall” of “Playground”. For the trading-off between
precision and recall, MVSFormer++ obviously enjoys a superior balance. Point cloud results of the
Intermediate and Advanced set are shown in Fig. 13.
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Figure 10: Qualitative results of Tanks-and-Temples (Horse, Panther, Train, and Playground) com-
pared between MVSFormer and MVSFormer++. τ is the threshold to measure errors which are set
officially to 3mm, 5mm, 5mm, and 10mm for these scenes respectively.

(a) Reference Image (b) Low Resolution Depth Map (c) High Resolution Depth Map

Figure 11: Depth map of “Train” in Tanks-and-Temples with half and full resolution images as
inputs. For the low-resolution depth, some railings are missed because of the error accumulation of
multi-stage architecture.

A.8 LIMITATION AND FUTURE WORKS.

Though MVSFormer++ enjoys powerful MVS capability as well verified in our experiments, it still
suffers from similar limitations as other coarse-to-fine MVS models. Specifically, the coarse stage
struggles for inevitable error estimations for tiny foregrounds, resulting in error accumulations for the
following stages as shown in Fig. 11. Designing a novel dynamic depth interval selection strategy
would be a potential solution to handle this problem. Since some work (Yang et al., 2022) have
investigated this issue, combining them with our work could be seen as interesting future work.
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Figure 12: Point cloud results of DTU (Aanæs et al., 2016).
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Figure 13: Point cloud results of Tanks-and-Temples (Knapitsch et al., 2017).
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