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Joint speech and text machine translation 
for up to 100 languages

SEAMLESS Communication Team*

Creating the Babel Fish, a tool that helps individuals translate speech between any  
two languages, requires advanced technological innovation and linguistic expertise. 
Although conventional speech-to-speech translation systems composed of multiple 
subsystems performing translation in a cascaded fashion exist1–3, scalable and 
high-performing unified systems4,5 remain underexplored. To address this gap, here 
we introduce SEAMLESSM4T–Massively Multilingual and Multimodal Machine 
Translation–a single model that supports speech-to-speech translation (101 to 36 
languages), speech-to-text translation (from 101 to 96 languages), text-to-speech 
translation (from 96 to 36 languages), text-to-text translation (96 languages) and 
automatic speech recognition (96 languages). Built using a new multimodal corpus  
of automatically aligned speech translations and other publicly available data, 
SEAMLESSM4T is one of the first multilingual systems that can translate from and into 
English for both speech and text. Moreover, it outperforms the existing state-of-the-art 
cascaded systems, achieving up to 8% and 23% higher BLEU (Bilingual Evaluation 
Understudy) scores in speech-to-text and speech-to-speech tasks, respectively. 
Beyond quality, when tested for robustness, our system is, on average, approximately 
50% more resilient against background noise and speaker variations in speech-to-text 
tasks than the previous state-of-the-art systems. We evaluated SEAMLESSM4T on 
added toxicity and gender bias to assess translation safety. For the former, we 
included two strategies for added toxicity mitigation working at either training or 
inference time. Finally, all contributions in this work are publicly available for non- 
commercial use to propel further research on inclusive speech translation technologies.

The Babel Fish from The Hitchhiker’s Guide to the Galaxy is a fictional 
tool that translates between two languages. In the contemporary global 
landscape, characterized by increasing interconnectivity and mobile 
sociality, the social imperative to actualize these technologies and 
facilitate on-demand speech-to-speech translation (S2ST) both in the 
digital and in the physical worlds has never been greater. Despite the 
centrality of speech in everyday communication, machine translation 
(MT) systems today remain text-oriented. See Supplementary Informa-
tion section I.1 for more details on why speech should be prioritized in 
MT. Although single, unimodal models such as No Language Left Behind 
(NLLB)6 pushed text-to-text translation (T2TT) coverage to more than 
200 languages, unified S2ST models are far from achieving similar scope 
or performance. This disparity could be attributed to many causes, but 
audio data scarcity and modelling constraints remain key obstacles.

Existing S2ST systems have three main shortcomings. First, these 
systems tend to focus on high-resource languages, leaving many 
low-resource languages behind. Second, these systems mostly ser-
vice translation from a source language into English (X–eng), not the 
reverse (eng–X). Third, most S2ST systems rely heavily on the cascad-
ing of several subsystems; for example, automatic speech recognition 
(ASR) + T2TT + text-to-speech (TTS). Although direct systems exist1,4,5, 
they do not match the performance of their cascaded counterparts7. 

See Supplementary Information section I.2 for more details on the 
current technical landscape.

To address these limitations, we introduce SEAMLESSM4T (Mas-
sively Multilingual and Multimodal Machine Translation), a unified 
system that supports ASR, T2TT, speech-to-text translation (S2TT), 
text-to-speech translation (T2ST) and S2ST. To build this, we created a 
corpus of more than 470,000 h of automatically aligned speech trans-
lations (SEAMLESSALIGN) using a new sentence embedding space 
(Sentence-level Multimodal and Language-Agnostic Representations, 
or SONAR)8. We then combined a filtered subset of this corpus with 
human-labelled and pseudo-labelled data to develop the first mul-
titasking system that performs S2ST from more than 100 languages 
into 36 languages, S2TT and ASR into 96 languages, zero-shot T2ST 
into 36 languages, as well as T2TT for 96 languages (see Table 1 for 
a comparative overview of language coverage and Supplementary 
Information section II for more details). Because of the unified archi-
tecture of SEAMLESSM4T (Fig. 1), the model can perform T2TT, S2TT 
or S2ST for non-English directions (X–X) in a zero-shot manner. It can 
also perform T2ST without being trained explicitly for this task. As a 
result of pretraining the speech encoder of SEAMLESSM4T on large 
amounts of unlabelled speech data (see section ‘Unsupervised speech 
pretraining’), it can handle utterances mixing two or more languages.
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To evaluate the quality of outputs of our model, we used several exist-
ing metrics spanning across tasks and modalities, as well as four main 
evaluation datasets. For example, we used chrF2++9 for T2TT, BLEU10 for 
S2TT, ASR-BLEU5 for S2ST and WER for ASR. See Supplementary Table 2 
for details. We also tested our models for resilience against background 
noise or speaker variation, as well as other fronts for responsible deploy-
ment, such as gender bias, using the MULTILINGUAL HOLISTICBIAS 
datasets, or added toxicity, using new speech-based metrics (ASR-ETOX 
and MuTox). We mitigate added toxicity with a filtering strategy at 
training time and a beam filtering strategy at inference time11.

Apart from building SEAMLESSM4T, we also discuss the social impli-
cations of our work and how it may contribute to greater degrees of 
world-readiness12 in the long run (see section ‘Social impact and conclu-
sion’). To spur future research, we make the data tools, code and two sizes 
of SEAMLESSM4T models publicly available for non-commercial use.

In the subsequent sections, we trace the key results in developing our 
SEAMLESSM4T models. First, we outline our efforts to mine aligned 
speech and text data, starting with speech language identification to 
the mining of aligned speech and text segments using modality-agnostic 
encoders. Next, we report the main results of our direct translation 
systems trained in part with the aforementioned automatically aligned 
speech data. These results highlight the task versatility of SEAMLESSM4T 
models achieving multilingual state-of-the-art performance in ASR, 
T2TT, S2TT and S2ST. Then, we support the reported results with human 

evaluation analysis. Finally, we delineate our efforts to mitigate added 
toxicity and evaluate the robustness of our models to gender variations.

Data
Training speech translation systems requires labelled data; that is, 
speech-to-text and speech-to-speech aligned data. However, those 
resources are very limited for low-resource languages. We build on 
the multilingual and multimodal embedding space of SONAR8 and a 
large collection of raw speech and texts, as described in the Methods, 
to automatically mine aligned resources, complementing existing 
human-labelled and pseudo-labelled data.

Speech language identification
Processing raw speech from the web involves segmenting utterances 
into shorter chunks, followed by language identification. Building on 
an open-source model trained on VoxLingua107 with the ECAPA-TDNN 
architecture13,14, we developed a new speech-based language identifica-
tion (LID) model covering all 100 languages featured in this work (see 
Methods, ‘Audio processing and speech LID’ for more details).

To measure the precision and recall of LID models, we report F1 scores 
on the test data in Extended Data Table 1. The results are given for the 
100 SEAMLESSM4T languages (Overall) and the 79 common languages 
between SEAMLESSM4T and VoxLingua107 (Intersection). Note that 
the macro-F1 on all languages for VL107HF is low because 21 languages 
are not covered by this model. We find that training on the additional 
languages slightly decreases the overall performance for the common 
set of languages, which is a direct consequence of a higher number 
of close languages. For example, Zulu (zul) is very often confused 
with Nyanja (nya), Igbo (ibo) with Yoruba (yor), and Modern Standard  
Arabic (arb) with Moroccan Arabic (ary) and Egyptian Arabic (arz). Our 
model improves classification accuracy (F1 difference greater than 
5%) on 17 languages with an average gain of 14.6% without counting 
newly covered languages, while decreasing classification accuracy 
for 12 (with an average loss of 9.8%). We further filtered the data by 
applying a threshold on the LID score (likelihood). Language-specific 
thresholds have been tuned to maximize F1 score on the development 
data. By filtering out 8% of the data, we were able to further increase 
the F1 score by almost 3%.

Table 1 | State-of-the-art task and language coverage

Model Task language coverage

S2TT S2ST ASR T2TT T2ST

AudioPaLM-8B-S2STa,21 113–eng 113–eng 98 – –

NLLB Team et al.6 – – – 202–202 –

WHISPER-LARGE-V220 96–eng – 97 – –

MMS-L1107-CCLM-LSAH23 – – 1107 – –

This work (SEAMLESSM4T) 101–96 101–36 96 96–96 96–36

For each of our core tasks, we provide the language coverage of SEAMLESSM4T and existing 
state-of-the-art models. 
aAlthough other models in this table are open-sourced, AudioPaLM is a proprietary model.
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Fig. 1 | Schematic of the SEAMLESSM4T-V2 model. The three main blocks of 
UNITY2 (S2ST fine-tuning) with its non-autoregressive (NAR) T2U are shown on 
the top left. Multitask-UNITY2 with its additional text encoder are shown on the 

bottom left. Break down of the components of SEAMLESSM4T-V2 (a multitask- 
UNITY2 model) are shown on the right with the side panel showing the teacher 
T2U model used for pseudo-labelling (M4).
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SONAR text embedding space
To mine automatically aligned translation data from language-identified 
segments, we rely on language- and modality-agnostic encoders. To 
this end, we build on the SONAR embedding space developed in ref. 8. 
Currently, we provide a single text encoder and decoder for 200 lan-
guages and speech encoders for 37 languages. The list of 200 languages 
is identical to the language list of the NLLB project6. In multilingual 
similarity search, xsim and xsim++15 are two well-known proxy metrics 
evaluating multilingual embedding spaces for the purpose of mining. 
As shown in Table 2, SONAR substantially outperforms other popular 
approaches such as LASER316 or LaBSE17 with lower xsim and xsim++.

Furthermore, we evaluated the SONAR text encoders and decoders 
on T2TT tasks. The average performance over 200 languages is com-
petitive compared with the medium-sized NLLB dense model, despite 
the replacement of encoder–decoder attention in SONAR with a bot-
tleneck fixed-size embedding (see the T2TT columns of Extended Data 
Table 2). This result proves that the use of attention is not a requisite for 
reasonable translation accuracy. For more details on SONAR, see D2.

Training speech encoders
The speech encoders were trained with a teacher–student approach on 
speech transcriptions only (see Methods, ‘SONAR’). Evaluating itera-
tions of each speech encoder in an end-to-end loop, that is, mining and 
training S2TT or S2ST translation systems, would be compute-intensive. 
Instead, we connected the speech encoder with the SONAR text decoder 
and evaluated this zero-shot S2TT system as a proxy for the quality of 
the encoder. As shown in the S2TT columns of Extended Data Table 2, 
the SONAR speech encoders compare favourably to a model such as 
WHISPER-LARGE-V2 on FLORES6 and FLEURS18 datasets, which was 
trained on massive amounts of supervised data. Gaps in accuracy can 
be observed in some high-resource languages such as German, Rus-
sian or Portuguese, but SONAR outperforms WHISPER-LARGE-V2 in 
several low-resource languages such as Swahili or Bengali (see Sup-
plementary Table 8).

SEAMLESSALIGN
The SONAR text and speech encoders were used to mine for three types 
of aligned data: (1) English speech to non-English texts (Sen2Txx);  
(2) non-English speech to English texts (Sxx2Ten); and (3) non-English 
speech to English speech (Sxx2Sen). SEAMLESSALIGN provides 
202,796 h of audio in Sen2Txx, 239,767 h of audio in Sxx2Ten and 
29,161 h of audio in Sxx2En. These aligned data were mined from a  
total of 2.5M h of raw audio (of which English is nearly 40%). SONAR 
speech encoders were trained on 43,772 h of supervised ASR data.  
For statistics per language, see Supplementary Table 8.

For the text domain, we use the same data consolidated by the NLLB 
project6. The amount varies from 33 million or 55 million sentences 
for low-resource languages such as Maltese or Swahili, respectively, 
to 22,000 million English sentences.

Except for Maltese, for which we only had access to a small amount of 
raw audio, we were able to mine more than 100 h of speech alignments 

with English speech for all languages. The alignments with English texts 
reached a thousand hours for most languages and exceeded 10,000 h 
for high-resource languages. Overall, SEAMLESSALIGN covers 37 lan-
guages for a total of 470,000 h.

Adding such large amounts of data to train a multilingual translation 
system is a substantial computational challenge. As described in the 
Methods, ‘Modelling’, not all of these data were used for modelling, 
but only a subset with the highest SONAR alignment scores. As our 
mined data can help support many different use cases, we open-sourced 
the meta-data needed to guide its recreation (up to a SONAR thresh-
old of 1.15; see Methods, ‘SpeechAlign’) to allow the community to 
rebuild SEAMLESSALIGN and use it for their own purposes. The optimal 
threshold can thus be tuned based on the task, balancing dataset size 
and alignment quality. Our mining code is also open-sourced in the 
STOPES library.

Modelling multitask translation systems
Combining modelling techniques outlined in the Methods, ‘Modelling’, 
with additional data from SEAMLESSALIGN (see Methods, ‘Data’), we 
trained SEAMLESSM4T models in two sizes: large with 2.3B parameters 
and medium with 1.2B parameters. SEAMLESSM4T-MEDIUM is intended 
to be an accessible test bed to either fine-tune, improve on or engage in 
analysis with. We further trained an improved version of the large SEAM-
LESSM4T, dubbed SEAMLESSM4T-V2, with a better speech encoder (see 
Methods, ‘Unsupervised speech pretraining’) and a more powerful unit 
decoder (see section ‘S2ST fine-tuning’). All SEAMLESSM4T models 
support 96 source languages in the text modality and more than 100 
source languages in the speech modality. On the target side, the mod-
els can output 96 languages in text form and 35 in speech form. The 
amount of supervised data per direction and per source (for example, 
M4 or SEAMLESSALIGN) is detailed in Supplementary Tables 12 and 13. 
This shows that, for some translation directions and given the lack of 
supervised data, our models will be evaluated zero-shot.

We evaluated our models on all four supervised tasks (T2TT, ASR, 
S2TT and S2ST) as well as the zero-shot task of text-to-speech transla-
tion (T2ST, also referred to as cross-lingual text-to-speech synthesis19). 
To generate text hypotheses, we decoded with beam-search. We scored 
with chrF2++ for T2TT and BLEU for S2TT. We measure BLEU scores with 
SacreBLEU and provide the signatures in Supplementary Table 2. For 
ASR, we scored with WER (word error rate) on normalized transcrip-
tions and references following ref. 20.

During S2ST and T2ST inference, we performed two-pass beam-search 
decoding; the best hypothesis out of the first-pass decoding is embed-
ded with the text decoder and is sent to a text-to-unit module (T2U; see 
section ‘S2ST fine-tuning’) to search for the best unit sequence hypoth-
esis. We used a beam width of 5 for both searches. We evaluated S2ST 
and T2ST accuracy with ASR-BLEU using WHISPER models. We set the 
decoding temperature of WHISPER at zero and used greedy decoding 
to ensure a deterministic behaviour of the ASR model. The transcribed 
hypotheses, as well as the references, are normalized following ref. 20 
before computing BLEU scores.

Comparison with cascaded approaches for speech translation
On the set of languages supported by both SEAMLESSM4T and WHIS-
PER, we compare in Table 3 (S2TT columns) the performance of our 
direct S2TT model to that of cascaded models, namely, combinations 
of WHISPER ASR models and NLLB T2TT models. SEAMLESSM4T-V2 
surpasses the cascaded models with less than 3B parameters in  
X–eng directions by 4.6 BLEU points (from 22.0 to 26.6) and in eng–X 
directions by 1 BLEU point (from 21.1 to 22.2). We also added to the 
comparison in Table 3 cascaded models with the large NLLB-3.3B T2TT 
model. These models exceed 4B parameters and are largely surpassed 
by SEAMLESSM4T-V2 in X–eng (+3.9); they only marginally outperform 
SEAMLESSM4T-V2 in eng–X directions by 0.2 BLEU points.

Table 2 | Comparison of similarity search error rates on all 
200 FLORES languages and limited to the intersection of  
98 languages on which each model has been trained

Model Overall Intersection

↓xsim ↓xsim++ ↓xsim ↓xsim++

(n = 200) (n = 200) (n = 98) (n = 98)

SONAR 1.4 15.2 0.1 9.3

LASER3 5.1 36.4 1.1 27.5

LaBSE 10.7 36.1 1.5 15.4

The best results are in bold.
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Compared with previous direct S2TT SOTA models that lagged 
behind cascaded systems (for example, AUDIOPALM-2-8B-AST. ref. 21), 
SEAMLESSM4T-V2 improves on FLEURS X–eng S2TT BLEU score by 6.9 
points (from 19.7 to 26.6; that is, an improvement of 35%).

Table 3 (S2ST columns) also compares S2ST between SEAMLESSM4T 
models and cascaded models. For S2ST, we explore two options for 
cascading: (1) three-stage with ASR, T2TT and TTS and (2) two-stage 
with S2TT and TTS. Both types of cascaded systems rely on a TTS 
model to synthesize translated speech, and for this we use YOURTTS22 
when synthesizing English speech and MMS23 when synthesizing 
speech in the 26 non-English languages of comparison (overlap 
between the support of SEAMLESSM4T and the support of TTS sys-
tems of MMS). Our SEAMLESSM4T-LARGE outperforms the two-stage 
cascaded models on FLEURS X–eng directions by 8 ASR-BLEU points 
(17.8–25.8). It also outperforms stronger three-stage cascaded models 
(WHISPER-LARGE-V2 + NLLB-3.3B + YOURTTS) by 2.1 ASR-BLEU points 
(23.7–25.8). The improved SEAMLESSM4T-V2 further strengthen 
this lead on S2ST FLEURS X–eng with an additional +3.9 ASR-BLEU 
points (25.8–29.7). On CVSS, SEAMLESSM4T-V2 outperforms the 
two-stage cascaded model (WHISPER-LARGE-V2 + YOURTTS) by a 
large margin of 9.6 ASR-BLEU points (29.6–39.2). On FLEURS S2ST 
eng–X directions, we reduce the evaluation set to the 26 languages 
supported by both TTS of MMS and SEAMLESSM4T. The medium-size 
model (SEAMLESSM4T-MEDIUM) scores an average ASR-BLEU of 
15.8. SEAMLESSM4T-LARGE achieves an average ASR-BLEU of 20.9 
and with its improved speech encoder and non-autoregressive T2U 
model, SEAMLESSM4T-V2 further gains +5.2 ASR-BLEU points (20.9– 
26.1). By contrast, the best three-stage cascaded system with MMS 
(WHISPER-LARGE-V2 + NLLB-3.3B + MMS) scores an average 22.7 
ASR-BLEU, that is, SEAMLESSM4T-V2 surpasses state-of-the-art  
cascaded models by 15% (22.7–26.1).

We share in Supplementary Information section IV.1 evaluation 
results for the tasks of S2TT and S2ST with additional metrics, includ-
ing our modality-agnostic BLASER 2.0.

Multitasking results
We report in Table 4 results on the FLEURS benchmark for the tasks of 
ASR and zero-shot T2ST (X–eng and eng–X), and the related FLORES 

benchmark for T2TT (X–eng and eng–X). In ASR, SEAMLESSM4T-LARGE 
outperforms WHISPER-LARGE-V220 on the overlapping 77 supported 
languages with a WER reduction of 46% (from 41.7 to 22.6), whereas 
SEAMLESSM4T-V2 improves over WHISPER-LARGE-V2 by 56% (from 41.7 
to 18.5). We also compared in Supplementary Table 9 against MMS23 on 
FLEURS-54, a subset of FLEURS languages that MMS and WHISPER both 
support. SEAMLESSM4T-V2 outperforms the MMS variants evaluated 
with CTC by more than 38% WER (from 31.0 to 19.1), but it is surpassed 
by the variants that leverage monolingual n-gram language models 
(5% better WER with 18.6).

In the T2TT support task, results in Table 4 show that our SEAM-
LESSM4T models are on par with NLLB-3.3B (ref. 6) in both X–eng and 
eng–X directions.

We next evaluated SEAMLESSM4T models on the task of T2ST in a 
zero-shot way. Given that FLEURS collected three recordings by three 
different native speakers for each sample, we randomly selected 
one for the task of T2ST (the input being text). We report in Table 4 
(the T2ST columns) a comparison between SEAMLESSM4T models 
and cascaded models with NLLB and either YOURTTS (English TTS) 
or MMS (non-English TTS) for synthesizing translated text. We aver-
aged ASR-BLEU scores over 88 X–eng directions (the overlap between 
FLEURS and the languages supported by SEAMLESSM4T). We also 
averaged ASR-BLEU over 26 eng–X directions (overlap of SEAM-
LESSM4T with TTS models of MMS). Compared with cascaded models, 
the zero-shot capability of SEAMLESSM4T-LARGE V2 is on par with 
NLLB-3.3B + YOURTTS in X–eng and outperforms NLLB-3.3B + MMS 
by more than +3.9 ASR-BLEU points in eng–X (from 23.7 to 27.6). 
This result demonstrates that (1) the quality of SEAMLESSM4T on 
zero-shot T2ST is on par with the supervised tasks and (2) non-English 
speech source is the most challenging input to translate with our  
model.

To further understand where the improvements in FLEURS S2TT X–
eng directions were coming from, we bucketed languages by resource 
level (see the exact list of languages in Supplementary Table 12) and 
report average BLEU scores per resource level in Table 5. The results 
show that SEAMLESSM4T strongly improves the quality of translating 
from low-resource languages with an improvement of +10.2 BLEU (from 
18.0 to 28.2, that is, 57% improvement over AUDIOPALM-2-8B-AST). 
We also average in column Low* over low-resource directions that are 
supervised in AUDIOPALM-2-8B-AST. The gain of +7.8 BLEU in that sub-
set of directions suggests that this improvement goes beyond sheer 

Table 3 | State-of-the-art S2TT/S2ST models

Model S2TT FLEURS 
(↑BLEU)

S2ST FLEURS 
(↑ASR-BLEU)

S2ST CVSS 
(↑ASR-BLEU)

Size X–eng 
(n = 81)

eng–X 
(n = 88)

X–eng 
(n = 81)

eng–X 
(n = 26)

X–eng 
(n = 21)

WL-V2 (S2TT) 1.5B 17.9 – 17.8 – 29.6

WL-V3 (S2TT) 1.5B 16.9a –

A8B (S2TT) 8B 19.7 –

WM (ASR) + NLLB-1.3B 2B 19.7 20.7 20.7 21.5

WM (ASR) + NLLB-3.3B 4B 20.4 22.0 21.4 22.4

WL-V2 (ASR) + NLLB-1.3B 2.8B 22.0 21.2 22.9 21.8

WL-V2 (ASR) + NLLB-3.3B 4.8B 22.7 22.4 23.7 22.7

SEAMLESSM4T-MEDIUM 1.2B 20.9 19.4 20.2 15.8 30.6

SEAMLESSM4T-LARGE 2.3B 24.1 21.8 25.8 20.9 35.7

SEAMLESSM4T-V2 2.3B 26.6 22.2 29.7 26.1 39.2

Comparison with cascaded ASR + T2TT models on FLEURS S2TT, and with two-stage and 
three-stage cascaded models on FLEURS and CVSS S2ST X–eng. S2ST cascaded systems rely 
on a TTS model as the last subsystem, for this we use YOURTTS22 to synthesize English speech 
and MMS23 to synthesize non-English speech (these models are not factored into the system 
size and are omitted from the nomenclature of the models). We abbreviate WHISPER-LARGE 
as WL, WHISPER-MEDIUM as WM and AUDIOPALM-2-8B-AST as A8B. The results of the cascaded 
models are shown in italic and the best score for each task is shown in bold. 
aWe evaluated WHISPER-LARGE-V3 on S2TT FLEURS X–eng using https://github.com/openai/
whisper/. For WHISPER-LARGE-V2, we used the results from ref. 20.

Table 4 | Multitasking results

Model ASR 
(↓WER)

T2TT  
(↑chrF2++)

T2ST  
(↑ASR-BLEU)

Size FLEURS 
(n = 77)

FLORES 
X–eng 
(n = 95)

FLORES 
eng–X 
(n = 95)

FLEURS 
X–eng 
(n = 88)

FLEURS 
eng–X 
(n = 26)

NLLB-3.3B 3.3B – 60.7 49.6

NLLB-3.3B +  
YOURTTS/MMS

3.4B – – – 36.4 23.7

WHISPER-LARGE-V2 1.5B 41.7

SEAMLESSM4T- 
MEDIUM

1.2B 21.9 55.4 48.4 26.3 18.4

SEAMLESSM4T- 
LARGE

2.3B 22.6 60.8 50.9 34.1 21.8

SEAMLESSM4T- 
LARGE V2

2.3B 18.5 59.2 49.3 35.9 27.6

Performance of SEAMLESSM4T-LARGE on the auxiliary tasks of ASR and T2TT and the 
zero-shot task of T2ST compared with SOTA single-task models. The results of cascaded 
models are shown in italics and the best result in each task is shown in bold. Scoring 
WHISPER-LARGE-V2, using https://github.com/openai/whisper with the recommended 
decoding options, results in BLEU scores lower by 0.3 BLEU points on average than what is 
reported in ref. 20.

https://github.com/openai/whisper/
https://github.com/openai/whisper/
https://github.com/openai/whisper
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supervision but instead should be attributed to the quality of super-
vised data and the training recipes.

Automatic and human evaluation
Semantic accuracy in speech translation is generally evaluated with the 
automatic metric BLEU10 for S2TT or its extension ASR-BLEU for S2ST. 
Moreover, we use BLASER 2.0 (ref. 24), an extension of BLASER25, which 
now enables modality-agnostic evaluation and quality estimation for 
both speech and text.

To complement the utility of automatic metrics, we also relied on 
extensive human evaluation of our models. In the following, we provide 
human evaluation for S2TT and S2ST tasks with the XSTS (cross-lingual 
semantic textual similarity) protocol26 and MOS (mean opinion score) 
protocol for speech outputs (see Methods, ‘Human evaluation’) on 
the FLEURS test set. However, we cover a limited number of models 
(SEAMLESSM4T-LARGE, SEAMLESSM4T-LARGE V2 and a cascaded 
baseline composed of WHISPER-LARGE-V2 for ASR, NLLB 3.3B for trans-
lation and YOURTTS or MMS for TTS for the S2ST task) and translation 
directions (23 languages from and into English, 10 languages X–eng for 
MOS) because of resource restrictions.

XSTS scores show that SEAMLESSM4T-LARGE V2 outperforms both 
the cascaded baseline systems and SEAMLESSM4T-LARGE in terms of 
both average language-level XSTS score and win rate (the fraction of 
evaluated languages for which XSTS performance is superior), for all 
tasks and language directions with high confidence. For the S2ST task, 
where relative performance of SEAMLESSM4T-V2 was the strongest, 
win rate of SEAMLESSM4T-V2 approaches 100% compared with both 
cascaded baseline and SEAMLESSM4T-LARGE for both X–eng and 
eng–X directions, with average language XSTS scores about 0.5 points 
higher than the cascaded baseline and 0.36–0.51 points higher com-
pared with SEAMLESSM4T-LARGE for eng–X and X–eng, respectively.  
See Supplementary Tables 22 and  24 for full language-level and sum-
marized XSTS results, respectively.

We also measure the quality of speech output for the S2ST using a 
Mean Opinion Score protocol that assesses (1) sound quality, (2) clarity 
of speech and (3) naturalness. We find that generally, across all MOS 
aspects, SEAMLESSM4T-LARGE V2 tends to be preferred to SEAM-
LESSM4T-LARGE, which tends to be preferred to the cascaded model 
baselines, with the exception of X–eng, for which SEAMLESSM4T-LARGE 
generations are strongly preferred (+1 point average difference between 
SEAMLESSM4T-LARGE and SEAMLESSM4T-LARGE V2 generations), an 
unexpected result that may be a consequence of differences in model 
architectures that otherwise have improved generation quality. See 
Supplementary Tables 23 and  24 for full language-level and summa-
rized MOS results, respectively.

Using the XSTS evaluations of the S2ST task, BLASER 2.0 (averaged 
over all evaluation items in a given language direction) achieves supe-
rior Spearman correlations with calibrated language-level XSTS scores 
in both X–eng direction (0.845 for BLASER 2.0 compared with 0.74 for 

ASR-BLEU) and in particular for the eng–X direction (0.81 for BLASER 
2.0 compared with 0.246 for ASR-BLEU). Similar results hold for the 
S2TT task (see Supplementary Table 21 for full results).

Finally, we tested our models for robustness in terms of noise and 
speaker variations by creating open robustness benchmarks based on 
FLEURS (see Methods, ‘Robustness’). To that end, we find that SEAM-
LESSM4T-V2 is, on average, approximately 42% and 66% more resilient 
against background noise and speaker variation, respectively, when 
compared with WHISPER-LARGE-V2 (see full results in Supplementary 
Information section V.2).

Responsible AI
Toxicity
Toxicity can be defined as instances of profanity or language that may 
incite hate, violence or abuse against an individual or a group (such as 
a religion, race or gender). When it comes to massively multilingual 
toxicity classifiers for text, the ETOX toolkit seems to be the only openly 
accessible option with the largest language coverage27. In the context of 
speech translation, we were primarily worried about added toxicity— 
the introduction in translations of toxic elements not present in source 
utterances. Speech toxicity has been evaluated for English in ref. 28 
and, recently, for tens of languages with MuTox29.

Therefore, for speech and text multilingual toxicity detection, we 
used ETOX (or ASR-ETOX for S2ST) and MuTox (both for speech and 
text) as metrics to detect and evaluate added toxicity. For toxicity miti-
gation, we implemented two techniques to deal with added toxicity. 
Before training, we filtered out training pairs with imbalanced toxicity. 
Moreover, we used Mintox11 at inference time (see Methods, ‘Toxicity 
detection’).

We computed added toxicity in two datasets (FLEURS and HOLIS-
TICBIAS27) across 24 translation directions with English (arb, ben, cat, 
ces, dan, deu, est, fin, fra, hin, ind, ita, nld, pes, pol, por, rus, slk, spa, 
swh, tgl, tur, urd, vie), using the languages at the intersection of the 
coverage of systems and MuTox having been benchmarked (note that 
MuTox has wider language coverage, similar to SONAR, but it has only 
been benchmarked in 30 languages29). See results with more transla-
tion directions evaluated with ETOX in Supplementary Information 
section VI.1. Table 6 shows that although levels and types of added toxic-
ity vary significantly as a function of language and dataset, the added 

Table 5 | FLEURS S2TT X–eng by resource level

Model FLEURS S2TT X–eng (↑BLEU)

High 
(n = 15)

Medium 
(n = 25)

Low 
(n = 34)

Low* 
(n = 23)

WHISPER-LARGE-V2 24.2 19.4 16.1 18.1

AUDIOPALM-2-8B-AST 27.9 20.9 18.0 22.0

SEAMLESSM4T-MEDIUM 23.9 21.8 22.2 23.5

SEAMLESSM4T-LARGE 27.0 25.3 25.6 27.1

SEAMLESSM4T-LARGE V2 28.8 28.3 28.2 29.8

In each resource level (that is, high, medium and low), we averaged over languages that are 
covered by all three models. In low*, we excluded low-resource languages that are evaluated 
as zero-shot by AUDIOPALM-2-8B-AST. In each subset, the highest BLEU score is shown in bold.

Table 6 | Results for S2TT and S2ST averaged across 28 
directions that add toxicity

Model FLEURS X–eng FLEURS eng–X HOLISTICBIAS

ETOX% 
(↓)

MuTox 
(↓)

ETOX% 
(↓)

Mutox 
(↓)

ETOX% 
(↓)

MuTox 
(↓)

S2TT

Baseline 0.21 0.05 0.23 0.08 0.32 0.39

SEAMLESSM4T- 
LARGE

0.20 0.02 0.24 0.07 0.32 0.37

SEAMLESSM4T-V2 0.22 0.01 0.16 0.08 0.15 0.39

SEAMLESSM4T-V2 +  
MinTox

0.22 0.01 0.07 0.01 0.03 0.37

S2ST

Baseline 0.05 0.05 0.30 0.02 0.32 0.32

SEAMLESSM4T- 
LARGE

0.05 0.01 0.15 0.04 0.26 0.29

SEAMLESSM4T-V2 0.04 0.01 0.11 0.02 0.15 0.26

SEAMLESSM4T-V2 +  
MinTox

0.04 0.01 0.05 0.02 0.03 0.25

ETOX is ASR-ETOX in the case of speech outputs. The baseline corresponds to 
WHISPER-LARGE-V2 for S2TT X–eng; WHISPER-LARGE-V2 + NLLB-3.3B for S2TT X–eng; 
WHISPER-LARGE-V2 + YOURTTS for S2ST X–eng.
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toxicity in our systems has a relatively low prevalence consistent across 
our two toxicity detection metrics (<0.4%). Table 6 shows that MinTox 
is capable of mitigating added toxicity consistently. The lowest toxicity 
for all modalities, directions and datasets is consistently obtained with 
SEAMLESSM4T-V2 + MinTox, achieving reductions of toxicity up to 5% 
in terms of MuTox (and up to 80% in terms of ETOX) when comparing 
with the same model without using MinTox, and up to 20% in terms of 
MuTox (up to 90% in terms of ETOX) when comparing with the baseline 
(see complete results in Supplementary Information section VI.1).

Gender bias
Gender bias in the context of MT can be defined as errors in grammatical 
gender determination. This bias may manifest explicitly as an overgen-
eralization to one gender when translating non-gendered to gendered 
forms (for example, outputs favouring masculine representations) or 
as a lack of robustness when varying the quality of the translation for 
sentences that differ only in gender inflection.

Previous work on this matter is mostly in the text modality30–32 and 
tends to be English-centric, with few demographic axes and multilingual 
references. Similar efforts for the speech modality remain sparse33,34.

We used MULTILINGUAL HOLISTICBIAS35 and its speech extension to 
compare the performance of S2TT and S2ST. The eng–X direction ena-
bles comparing performance in the presence of masculine or feminine 
references, and the X–eng direction enables robustness comparisons 
in translations when we alter gender inflection. A typical example of 
the English–Spanish language pair would be ‘I’m a homemaker’ and the 
corresponding translations ‘Soy amo de casa’ and ‘Soy ama de casa’ in  
Spanish. When translating from English to Spanish, we can measure if the 
system overgeneralizes to one gender, whereas in the other direction, 
we can evaluate the robustness of the translation to gender inflection 
(see Methods, ‘Speech extension of MULTILINGUAL HOLISTICBIAS’).

We conducted a set of comprehensive evaluations on translation 
biases for S2TT and S2ST (see Extended Data Table 3 for average results 
and Supplementary Information section VI.2 for detailed results). SEAM-
LESSM4T-V2 consistently improves robustness in gender variations 
across metrics and tasks. When compared with the previous model, 
SEAMLESSM4T-V2 improves over SEAMLESSM4T-LARGE by 0.4% in 
S2TT and by 0.1% BLASER 2.0 in S2ST, and it beats the external baseline 
system of WHISPER-LARGE-V2 (+YOURTTS) by 0.1% in S2TT and by 0.9% 
BLASER 2.0 for S2ST. However, SEAMLESSM4T-V2 is not able to consist-
ently improve in terms of gender overgeneralization compared with the 
previous model. SEAMLESSM4T-V2 is comparable in terms of BLASER 
2.0 to SEAMLESSM4T-LARGE, but it lags far behind in terms of ASRchrf 
(by 2.2%), and overgeneralization is increased by 0.2% when it comes to 
S2TT. Although we can increase bias robustness by improving the overall 
quality of the model, it seems that we need specific techniques to coun-
teract the overgeneralization of the model towards a specific gender.

Social impact and conclusion
The world we live in has never been more interconnected—the global 
proliferation of the internet, mobile devices, communicative platforms 
and social media exposes individuals to more multilingual content 
than ever before36. The current social order places a demand on the 
world-readiness of a person12, a measure of how competent a person 
is to take on the polyglot world. Initially developed in the context of 
language learning, world-readiness underscores the importance of 
being able to communicate in languages beyond our mother tongue 
for both instrumental (that is, employment or schooling) and cultural 
reasons (that is, to become a global citizen). That said, although we 
believe that language acquisition should remain a key mechanism for 
boosting our world-readiness, we acknowledge that doing so requires 
resources many people may not possess.

The downstream applications that SEAMLESSM4T supports could 
allow on-demand access to world-readiness by streamlining multilingual 

exchange across various contexts. SEAMLESSM4T-supported applica-
tions could act as a co-piloting mechanism that supports users in mul-
tilingual conversations and boosts their confidence in speech-heavy 
interactions. As speech-based interfaces (for example, audio assis-
tants, voice memos and live transcriptions) and auditory content (for 
example, podcasts, audiobooks and short-form videos) become ever 
more present, SEAMLESSM4T-enabled downstream applications could 
unlock a greater variety of multilingual experiences.

From an inclusion standpoint, the focus of SEAMLESSM4T on mul-
timodality could make a meaningful difference in augmenting the 
world-readiness of those with accessibility needs and those whose 
languages can be transcribed with multiple writing systems. For many 
who lack reading or writing skills, or cannot rely on sight (that is, people 
who are blind or with visual impairment), voice-assisted technologies 
are essential to how they communicate and stay connected37. The ability 
to translate speech gives these groups more comprehensive access to 
information not only beyond their native languages but also in a man-
ner that is better suited for their communicative needs.

As with most technologies, the distribution of benefits varies based 
on user demographics and social situation38. Although we make the 
case that SEAMLESSM4T could augment world-readiness by lowering 
the barriers in cross-lingual communication, some users may expe-
rience more difficulties using our work than others. For instance, 
similar to many other speech technologies, the ASR performance of 
SEAMLESSM4T may vary based on gender, race, accent or language39,40. 
Moreover, the performance of our system in translating slang or proper 
nouns may also be inconsistent across high and low-resource languages.

Another challenge for S2ST is that speech tends to hinge on immedi-
ate reception and feedback more than written language does. In other 
words, speakers are limited in their ability to ascertain the quality of 
an output or make edits in a live conversation. Without the ability to 
plan and revise with the help of back-translation or a native speaker, 
S2ST may carry higher degrees of interactional risk when it comes to 
mistranslations or toxicity. We urge researchers and developers who 
fine-tune or build artefacts using SEAMLESSM4T to think critically 
about design features that could help users circumvent these potential 
obstacles. Importantly, we believe that SEAMLESSM4T-fueled applica-
tions should best be viewed as an augmentation device that assists in 
translation rather than a tool that replaces the need for language learn-
ing or reliable human interpreters. This reminder is especially pertinent 
in high-stakes situations involving legal or medical decision-making.

Finally, speech is not spoken text—it encompasses a suite of prosodic 
(for example, rhythm, stress, intonation or tone) and emotional com-
ponents that deserve further research41. To create S2ST systems that 
feel organic and natural, more research should be directed at output 
generation that preserves expressivity42. Moreover, the consummate 
realization of the Babel Fish requires deeper investments into research 
on low-latency speech translation. Developing systems that enable 
streaming (that is, incrementally translating an input sentence as it is 
being presented) may increase the adoption of these systems across 
institutional contexts43,44. We hope that SEAMLESSM4T opens up new 
possibilities for both these research areas.
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Methods

Data
Developing an effective multilingual and multimodal translation sys-
tem such as SEAMLESSM4T requires sizeable resources across lan-
guages and modalities. Some human-labelled resources for translation 
are freely available, but often limited to a small set of languages or 
in very specific domains. Well-known examples are parallel text col-
lections such as Europarl45 and the United Nations Corpus46. A few 
human-created collections also involve the speech modality, such as 
CoVoST47,48 and mTEDx49. Yet no open dataset currently matches the 
size of those used in initiatives such as WHISPER20 or USM50, which 
proved to unlock unprecedented performance.

Parallel data mining emerges as an alternative to using closed data, 
in terms of both language coverage and corpus size. The dominant 
approach today is to encode sentences from various languages and 
modalities into a joint fixed-size embedding space and find parallel 
instances based on a similarity metric. Mining is then performed by 
pairwise comparison over massive monolingual corpora, in which 
sentences with similarity above a certain threshold are considered 
mutual translations51,52. This approach was first introduced using the 
multilingual LASER space53. Teacher–student training was then used to 
scale this approach to 200 languages6,16 and, subsequently, the speech 
modality54,55.

Audio processing and speech LID. We started with 4 million hours of 
raw audio originating from a publicly available repository of crawled 
web data on which we applied several cleaning and filtering opera-
tions. To maximize the recall of mining, it is important that all segments 
have a similar granularity. For the text domain, a sentence is generally 
well-defined. This is less obvious for raw speech because pauses are 
not necessarily used at sentence boundaries. First, we used an open 
Voice Activity Detection model56 to split audio files into shorter seg-
ments. Second, a newly developed speech LID model was applied to 
each segment. Our model follows the ECAPA-TDNN architecture13 and 
extends the open-source model trained on VoxLingua10714 by 15 new 
languages. Finally, we applied an over-segmentation approach that 
simultaneously proposed multiple, potentially overlapping speech 
segmentations. We relied on the mining approach to align the most 
likely ones. Supplementary Fig. 1 shows this pipeline.

SONAR. The SONAR text and speech encoders were developed in 
ref. 8 using a two-step approach (Supplementary Fig. 2). First, a mas-
sively multilingual representation was learnt for the text modality 
only. Then, teacher–student training was used to extend the embed-
ding space to the speech modality. The text embedding space was 
trained with an encoder–decoder approach using a combination of 
multiple objectives: translation, denoising auto-encoding and mean 
squared error (MSE) loss objective in the sentence embedding space. 
The training data were identical to those used to train the NLLB model6, 
that is, parallel data to translation from 200 to 200 languages. Speech  
encoders were trained only on ASR data and by grouping languages 
into linguistic genealogical groups following ref. 16, for example, Italic, 
Common Turkic or Indo-Iranian languages. To obtain optimal perfor-
mance, we determined the optimal convergence separately for each 
language (that is, when to stop training). This yielded a separate speech 
encoder for each language. The amount of available ASR data for each 
language is provided in Supplementary Table 8. The speech encoders 
were initialized with w3v-best 2.0 speech front end. Preceding work per-
formed max pooling or mean pooling of the output states of the speech 
front end to obtain a fixed-size embedding of the speech signal54,57.  
An ablation study has shown that better results can be obtained by 
using a three-layer transformer decoder8. Teacher–student training 
consisted of minimizing the MSE loss with respect to the embedding 
of the ASR text transcriptions. These embeddings were obtained by 

the SONAR text encoder, which was kept constant. No translations 
(into English) were used.

SpeechAlign. We first calculated the embeddings of all over-segmented 
speech segments. For the text domain, we used exactly the same texts 
as the NLLB project6 and embedded them with the SONAR encoder. 
Exhaustive pairwise comparison can be efficiently performed with 
the FAISS toolkit58. Similarity is measured with a margin criterium as 
first introduced in ref. 52:
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where x and y are the source and target sentences, and NNk(x) denotes 
the k nearest neighbours of x in the other language. We set k to 16.

As an example, this amounts to comparing a hundred thousand hours 
of speech with more than 20,000 million English sentences, which 
yielded about eight thousand hours of aligned Arabic speech.

Modelling
The SEAMLESSM4T models rely on our multitask UNITY architecture. 
Our proposed unified translation model builds on vanilla UNITY59, 
a two-pass decoding framework that first generates text and subse-
quently generates speech by predicting discrete acoustic units (see  
section ‘Multilingual discrete acoustic units’). Compared with the 
vanilla UNITY model59, (1) the core S2TT model, initialized from scratch 
in UNITY, is replaced with an X2T model that supports text as input and 
is pretrained to jointly optimize the tasks of ASR, S2TT and T2TT (see 
section ‘X2T fine-tuning’), and (2) the shallow T2U model (referred to 
as T2U unit encoder and second-pass unit decoder in ref. 59) is replaced 
with a deeper transformer-based encoder–decoder model with six 
transformer layers that are pretrained on ASR data (see section ‘S2ST 
fine-tuning’). An improved version of UNITY, dubbed UNITY2, replaces 
the autoregressive T2U with a new non-autoregressive (NAR) T2U 
decoder. This NAR T2U model delivers stronger accuracy because of its 
hierarchical upsampling from subwords to characters and then to units.

The pretraining of X2T yielded a stronger speech encoder and a 
higher quality first-pass text decoder, whereas the scaling and pre-
training of the T2U model allowed us to better handle multilingual 
unit generation without interference. Furthermore, the switch to 
non-autoregressive T2U decoding improved S2ST inference speed 
by three times.

Multilingual discrete acoustic units. Recent works have achieved 
state-of-the-art translation performance by using self-supervised 
discrete acoustic units as targets for building direct speech transla-
tion models5,60. This consists of decomposing the S2ST problem into a 
speech-to-unit translation step and a unit-to-speech conversion step. 
We extracted continuous speech representations using XLS-R61 and 
mapped these representations to discrete tokens. The set of discrete  
tokens (also referred to as unit vocabulary) is learnt by applying a 
k-means algorithm to a set of multilingual audio samples. The k-means 
centroids resemble a codebook that is used to map a sequence of XLS-R 
speech representations into a sequence of centroid indices or acoustic 
units. We used a unit vocabulary size K = 10,000 with features from the 
35th layer of XLS-R-1B to represent the 35 supported target languages.

For the unit-to-speech conversion step, we followed ref. 62 and built 
a multilingual vocoder for speech synthesis from the learnt multilin-
gual units. This model is responsible for synthesizing audios from a 
sequence of units that SEAMLESSM4T models will predict.

Unsupervised speech pretraining. Self-supervised pretraining with 
unlabelled speech audio data is a practical approach for leveraging 



unlabelled data. With pretraining, we can bootstrap the quality of trans-
lation models and make the most out of our supervised paired data. We 
pretrained a speech encoder following our improved W2V-BERT 2.0. 
It follows w2v-BERT63 in combining contrastive learning with masked 
prediction learning. W2V-BERT 2.0 uses more codebooks and an  
additional masked prediction task using random projection quantiz-
ers64 (RPQ). Our W2V-BERT 2.0 model is first trained on 1 million hours 
of open speech audio data that covers over 143 languages. It follows 
the w2v-BERT XL architecture63, which has 24 Conformer layers65 and  
approximately 600 million model parameters. For the v2 version, we 
scaled up the amount of unlabelled data from 1 million to 4.5 million 
hours of audio. The most recent and publicly available multilingual 
speech pretrained model is MMS23. It is trained on only 0.5 million hours, 
spanning over 1,400 languages. The largest model in scale is USM50. It 
is a proprietary multilingual speech pretrained model with 12 million 
hours of data and more than 300 languages in coverage.

Text-to-text translation models. The text processing components of 
our SEAMLESSM4T models were pretrained on the task of text-to-text 
translation, a much more resourced task than speech translation. Con-
sider, for instance, the English–Italian direction, one of the highly  
resourced pairs in T2TT with more than 128 million parallel sentences—
only 2 million pairs of English text paired with Italian audio are available 
for S2TT.

A key step in training multilingual text-to-text translation models 
is learning a shared vocabulary with a text tokenizer. Following ref. 6, 
we used SentencePiece66 with the BPE algorithm67 for this purpose. 
The tokenizer used in NLLB-2006 suffers from missing key Chinese 
characters because of artefacts of sampling. This sampling does not 
favour logo-graphic writing systems with a large number of unique 
symbols. To fix this issue, we forced the inclusion of these characters. 
Our new tokenizer improves the coverage of the MTSU top 5K Chinese 
characters from 54% to 84%.

To train our multilingual text-to-text model, we followed the same 
data preparation and training pipelines in ref. 6 using STOPES68. Having 
a smaller language coverage allowed us to significantly decrease the 
size of the model to 1.3B parameters and only use NLLB-200 training 
data in the 95 SEAMLESSM4T languages.

Data augmentation with pseudo-labelling. As with any sequence- 
to-sequence task, speech translation performance is dependent on 
the availability of high-quality training data. However, the amount 
of human-labelled data is scarce compared with its T2TT or ASR 
counterparts. To address this shortage of labelled data, we resort to 
pseudo-labelling69,70 the ASR data with a multilingual T2TT model (for 
example, NLLB models) to generate pseudo-labelled S2TT data.

To augment S2ST data, it is common practice to use TTS models to 
convert text from speech-to-text data sets into synthetic speech4,5. This 
synthetic speech is, in turn, converted into discrete units for training. 
This two-step unit extraction process is a slow process and is harder 
to scale given the dependencies on TTS models. We circumvented the 
need for synthesizing speech and trained multilingual text-to-unit 
(T2U) models on all 36 target speech languages. These models can 
directly convert the text into target discrete units and can be trained 
on ASR data sets that are readily available.

X2T fine-tuning. The first key part of our multitask UNITY frame-
work is the X2T model, a multi-encoder sequence-to-sequence model  
with a conformer-based encoder65 for speech input and another 
transformer-based encoder71 for text input. Both encoders were joined 
with the same text decoder and fine-tuned jointly to optimize the tasks 
of ASR, S2TT and T2TT.

Our X2T model consists of joining the speech encoder, W2V-BERT 2.0 
from M2, post-fixed with a length adapter to downsample long audio 
sequences, with the text encoder–decoder from M3 (Supplementary 

Fig. 4). For the length adapter, we used a modified version of M-adapter72, 
in which we replaced the three independent pooling modules for Q, K 
and V with a shared pooling module to improve efficiency.

X2T was fine-tuned on S2TT data triplets with speech audio (xspeech) 
in a source language ⟨ℓs⟩, paired with its transcription (xtext) and text 
translation ( ytext) in a target language ⟨ℓt⟩. To enable meaning transfer 
across modalities, X2T model was fine-tuned to jointly optimize the 
following objective functions:

∣
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We additionally optimized an auxiliary objective function in the form 
of token-level knowledge distillation ( KDL ) to further transfer knowl-
edge from the strong MT model to the student speech translation task 
(S2TT).
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The final loss is a weighted sum of all three losses: L Lα= +S2TT  
L Lβ γ+ ,T2TT KD  where α, β and γ are scalar hyper-parameters tuned on 

the development data.

S2ST fine-tuning. In the last stage of fine-tuning multitask UNITY, 
we initialized the model with the pretrained X2T model (see section 
‘X2T fine-tuning’) and a pretrained T2U model, similar to the one 
used for pseudo-labelling S2ST data in M4. The T2U model used for 
pseudo-labelling is referred to as the teacher T2U model with 12 trans-
former layers encoder–decoder. For initialization, we used a smaller 
student T2U model with only six layers to optimize inference and distill 
the labels of the stronger T2U. In the second version of SEAMLESSM4T, 
UNITY2 replaces the second-pass autoregressive unit decoder in UNITY 
with a NAR unit decoder. We adopted the decoder architecture of Fast-
Speech273 and extended it to discrete unit generation. UNITY2 starts 
with hierarchically upsampling the T2U encoder output from subword 
length to character length and then to unit length. The unit duration 
predictor, the key to the hierarchical upsampling, is supervised during 
training by a multilingual aligner based on RAD-TTS74. The architecture 
is shown in detail in Supplementary Information section IV.8.

We fine-tuned the S2ST task with a combination of X–eng and eng–X 
S2ST translation data totalling 121,000 h. We froze the model weights 
corresponding to the X2T model and only fine-tuned the T2U compo-
nent. This is to ensure that the performance of the model on tasks from 
the previous stages of fine-tuning remains unchanged.

Automatic and human evaluation
BLASER 2.0. BLASER 2.0 (ref. 24) is the new version of BLASER75, 
which works with both speech and text modalities, and hence being 
modality-agnostic. Like the first version, our approach leverages the 
similarity between input and output sentence embeddings. The new 
version uses SONAR embeddings Supplementary Information sec-
tion III.3.1, supports 57 languages in speech and 202 in text (coverage 
of languages by SONAR at the moment of submission of this paper) 
and is extendable to future encoders for new languages or modalities 
that share the same embedding spaces. For the purposes of evaluating 
speech outputs (and unlike ASR-based metrics), BLASER 2.0 offers the 
advantage of being text-free.

More specifically, in BLASER 2.0, we take the source input, the trans-
lated output from any S2ST, S2TT or T2TT model, and the reference 
speech segment or text, and convert them into SONAR embedding 
vectors. For the supervised version of BLASER 2.0, these embeddings 
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are combined and fed into a small, dense neural network that predicts 
an XSTS score for each translation output.

Human evaluation. Apart from automatic metrics such as (ASR) BLEU 
and BLASER 2.0, we used human metrics such as XSTS26, which meas-
ures semantic similarity between a source and target translation, and 
a standard Mean Opinion Score (as standardized in Recommenda-
tion ITU-T P.800, henceforth MOS), which measures (1) naturalness,  
(2) sound quality and (3) clarity of audio generations to evaluate our 
models. To obtain more robust language-level scores, we also incorpo-
rate a calibration set and calibration methodology, the same used to 
evaluate the NLLB models6. Apart from XSTS, we also obtained MOS 
evaluations to understand other aspects of audio quality in the target 
speech. For additional information about human evaluation protocols 
and analysis, see Supplementary Information section V.1.

Robustness. We built a replicable noise-robustness evaluation bench-
mark based on FLEURS (noisy FLEURS), which covers 102 languages, 
two speech tasks (S2TT and ASR), and various noise types (natural 
noises and music). To create simulated noisy audios, we sampled 
audio clips from MUSAN76 on the ‘noise’ and ‘music’ categories and 
mixed them with the original FLEURS speech audios under different 
signal-to-noise ratio (SNR): 10, 5, 0, −5, −10, −15 and −20. We compared 
models by BLEU-SNR curves (for S2TT) or WER-SNR curves (for ASR), 
which illustrate the degree of model performance degradation when 
the noise level of speech inputs increases (that is, when SNR decreases). 
For low-resource languages, the clean speech setup is already chal-
lenging, let alone a noisy one. Thus, we focused on four high-resource 
languages (French, Spanish, Modern Standard Arabic and Russian) 
belonging to three different language families for our noise-robustness 
analysis.

We followed ref. 47 to evaluate model robustness against speaker 
variations by calculating the average by-group mean score and by-group 
coefficient of variation using an utterance-level quality metric. Instead 
of using BLEU as the quality metric, we used chrF, which has better 
stability at the utterance level. The calculation of both robustness met-
rics does not require explicit speaker subgroup labels. We grouped 
evaluation samples and corresponding utterance-level chrF scores by 
content (transcript) and then calculated the average by-group mean 
score chrFMS and average by-group coefficient of variation CoefVarMS, 
defined as follows:
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where G is the set of sentence-level chrF scores grouped by content 
(transcript) and ∣ ∣ ∣G g g G g g′ = { ∈ , > 1, Mean( ) > 0}. The two metrics are 
complementary: chrFMS provides a normalized quality metric that, 
unlike conventional corpus-level metrics, takes speaker variations into 
consideration, whereas CoefVarMS provides a standardized measure 
of quality variance under speaker variations. For robustness analysis, 
we conducted an out-of-domain evaluation on FLEURS on all languages 
that have at least 40 content groups in the test sets.

Responsible AI
Toxicity detection. Inspired by ASR-BLEU, this work proposes using 
ASR-ETOX as a new metric to detect added toxicity in speech and evalu-
ate added toxicity for S2ST ability of SEAMLESSM4T. Essentially, this 
metric follows a cascaded framework by first deploying a standard 
ASR module (that is, the same that is used for ASR-BLEU as defined in 
Supplementary Table 2), then the toxicity detection module, ETOX27, 
which uses the Toxicity-200 word lists6. For S2TT, the translated output 

can be directly evaluated with ETOX. In both cases (S2ST and S2TT), we 
measured added toxicity at the utterance or sentence level. We first 
computed toxicity detection for each input in the evaluation dataset 
and the corresponding output. Then, we compared them and counted 
a case as containing added toxicity only when the output value exceeds 
that of the input. Moreover, we used the recently proposed MuTox met-
ric that can be applied to text or speech output with no need for ASR. 
This classifier has been trained on both speech and text toxicity labelled 
data for 30 languages. As MuTox relies on SONAR embeddings29, MuTox 
the same number of languages by the zero-shot property. However, 
accounting for validated quality, we report MuTox only the languages 
that have been benchmarked29. Again in both cases (S2ST and S2TT), 
we measured added toxicity at the utterance or sentence level. In this 
case, a sentence contains added toxicity if MuTox scores is >0.9 in the 
output and <0.5 in the input. We have experimentally validated these 
thresholds for several languages with human bilingual speakers for 
several pairs of languages. For S2TT, we computed MuTox in transcribed 
speech and target text. For S2ST, we computed MuTox in source and 
target speech.

For toxicity mitigation, we implement two techniques for the mitiga-
tion of added toxicity. Before training, we filter out training pairs with 
imbalanced toxicity. Furthermore, we use Mintox11 at inference time. 
In particular, the main workflow generates a translation hypothesis 
with an unconstrained search. Then, the toxicity classifier is run on 
this hypothesis. If no toxicity is detected, we provide the translation 
hypothesis as it is. However, if toxicity is detected in the output, we 
run the classifier on the input. If the toxicity is unbalanced (that is, no 
toxicity is detected in the input), we re-run the translation with mitiga-
tion, which is the BEAMFILTERING step. This BEAMFILTERING consists 
of taking as input the multi-token expressions that should not appear 
in the output and excluding them from the beam-search hypotheses. 
Note that we do not apply mitigation in cases in which there is toxicity 
in the input (in other words, we do not deal with cases in which there is 
toxicity in the input but more toxicity in the output).

We used two datasets to analyse added toxicity. First, we deployed 
FLEURS to better align with our human evaluation effort and other 
evaluative components of this work. Furthermore, we used the 
English-only HOLISTICBIAS framework77, which has been shown to 
trigger true added toxicity in previous studies27. In this work, we extend 
HOLISTICBIAS to speech by applying the default English TTS model 
from MMS23.

Speech extension of MULTILINGUAL HOLISTICBIAS. To compare 
the performances across modalities (S2ST and S2TT), we extended 
MULTILINGUAL HOLISTICBIAS to speech23 (https://github.com/ 
facebookresearch/fairseq/tree/main/examples/mms#tts-1). We used 
this generated TTS data as input for S2TT and S2ST and as a reference 
for S2ST. We conducted the translations in two directions: eng–X 
and X–eng. Concretely, in X–eng, we translated both masculine and 
feminine versions of the speech. It is worth noting that some target 
languages are not available in the SEAMLESSM4T S2ST model, so we 
performed translations on only 17 languages for the S2ST task in the 
eng–X direction. For S2TT in eng–X, we have all languages included 
in the MULTILINGUAL HOLISTICBIAS dataset (n = 25). For reference, 
the complete language list used in our experiments can be found in 
Supplementary Table 26.

In terms of evaluation metrics for S2TT, we used chrF. For S2ST, 
we used ASRchrf (the transcription is done by WHISPER-LARGE and 
WHISPER-MEDIUM20 for eng–X and X–eng, respectively, and chrF has 
been calculated the same way as S2TT except that in S2ST, the text from 
both prediction and reference were normalized) and BLASER 2.0. It is 
worth noting that when evaluating on BLASER 2.0, we only included 
14 languages (arb, cat, deu, eng, fra, nld, por, ron, rus, spa, swe, tha, 
ukr and urd) for the eng–X direction (overlapping languages from the 
generated TTS data and the languages available in our S2ST model).

https://github.com/facebookresearch/fairseq/tree/main/examples/mms#tts-1
https://github.com/facebookresearch/fairseq/tree/main/examples/mms#tts-1


Data availability
To make our work available to the community, we provide open source 
of the following data sets, models and code at GitHub (https://github.
com/facebookresearch/seamless_communication): (1) SEAMLESSM4T 
models, including model weights for SEAMLESSM4T-LARGE (2.3B 
parameters) and SEAMLESSM4T-MEDIUM (1.2B parameters), as well 
as their inference code and fine-tuning recipes powered by our new 
modelling toolkit FAIRSEQ2 (https://github.com/facebookresearch/
fairseq2); (2) tools for creating aligned speech data, including metadata 
to recreate the unfiltered 470,000 h of SEAMLESSALIGN, STOPES-based 
pipelines (https://github.com/facebookresearch/stopes) to create 
alignments similar to SEAMLESSALIGN and SONAR for speech encod-
ers in 37 languages and text encoders in 200 languages (https://github.
com/facebookresearch/SONAR) and (3) a text-free S2ST automatic 
evaluation model, BLASER 2.0, inclusive of model weights and infer-
ence scripts.
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Extended Data Table 1 | F1 micro and macro averages over all SEAMLESSM4T languages and the intersection of supported 
languages across models



Extended Data Table 2 | Average T2TT and S2TT performance on FLORES devtest and FLEURS’s test set



Article
Extended Data Table 3 | The averaged points across modalities and genders for assessing the overgeneralization (eng–X) 
and the robustness (X–eng)

Δ represents the relative difference between masculine and feminine (Δ = ω(M − F)/ω(min(M, F)), ω ∈ {chrF, ASRchrf, BLASER 2.0}). Baseline corresponds to WHISPER-LARGE-V2 for S2TT X–eng; 
WHISPER-LARGE-V2 + NLLB-3.3B for S2TT X–eng; WHISPER-LARGE-V2 + YOURTTS for S2ST X–eng.
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