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Abstract

Translating natural language into formal lan-001
guage such as First-Order Logic (FOL) is002
a foundational challenge in NLP with wide-003
ranging applications in automated reasoning,004
misinformation tracking, and knowledge val-005
idation. In this paper, we introduce Natural006
Language to First-Order Logic (NL2FOL), a007
framework to autoformalize natural language to008
FOL step-by-step using Large Language Mod-009
els (LLMs). Our approach addresses key chal-010
lenges in this translation process, including the011
integration of implicit background knowledge.012
By leveraging structured representations gen-013
erated by NL2FOL, we use Satisfiability Mod-014
ulo Theory (SMT) solvers to reason about the015
logical validity of natural language statements.016
We present logical fallacy detection as a case017
study to evaluate the efficacy of NL2FOL. Be-018
ing neurosymbolic, our approach also provides019
interpretable insights into the reasoning pro-020
cess and demonstrates robustness without re-021
quiring model fine-tuning or labeled training022
data. Our framework achieves strong perfor-023
mance on multiple datasets – on the LOGIC024
dataset, NL2FOL achieves an F1-score of 78%,025
while generalizing effectively to the LOGIC-026
CLIMATE dataset with an F1-score of 80%.027

1 Introduction028

In recent years, Large Language Models (LLMs)029

have shown impressive advancements in under-030

standing and generating natural language (Brown031

et al., 2020). Despite this progress, their ability032

to tackle complex reasoning tasks remains limited033

(Bubeck et al., 2023; Wei et al., 2022). These chal-034

lenges are especially prevalent in multistep logical035

deductions, abstract reasoning, and knowledge in-036

tegration in various domains (Dalvi et al., 2021;037

Chen et al., 2024). Addressing these limitations038

and improving the reasoning capabilities of LLMs039

has become a critical focus in AI research (Halupt-040

zok et al., 2022; Gendron et al., 2024).041

In contrast, formal reasoning tools such as Satis- 042

fiability Modulo Theory (SMT) solvers excel in 043

reasoning, providing rigorous, provable guarantees 044

by leveraging symbolic representations and logi- 045

cal calculus (Barrett et al., 2009; De Moura and 046

Bjørner, 2008). However, a key limitation of for- 047

mal solvers is their reliance on structured logical 048

input, such as First Order Logic (FOL), which must 049

accurately capture the semantics and context of 050

natural language statements (Beltagy et al., 2016). 051

This presents the challenge of translating unstruc- 052

tured natural language into a structured form re- 053

quired for formal reasoning while preserving essen- 054

tial context and meaning. 055

This also brings a unique opportunity: if we can 056

reliably translate natural language into structured 057

logical forms, we can harness the power of formal 058

solvers to reason systematically over natural lan- 059

guage statements. However, achieving this transla- 060

tion is nontrivial, as it involves accurately capturing 061

natural language semantics (Beltagy et al., 2016). 062

Moreover, translating to a formal logical form may 063

cause implicit and external context to be lost, which 064

must be reintroduced to ensure logical accuracy. 065

To address these challenges, we present NL2FOL, 066

a novel framework that bridges the gap be- 067

tween natural language and formal reasoning sys- 068

tems. NL2FOL employs a structured, step-by-step 069

pipeline to translate natural language inputs into 070

first-order logic (FOL) representations, leveraging 071

large language models (LLMs) at each step for en- 072

hanced precision and adaptability. A distinguishing 073

feature of NL2FOL is its seamless integration of 074

background knowledge into the generated logical 075

forms, overcoming a major limitation of traditional 076

formal logic frameworks - the inability to capture 077

implicit information embedded in natural language. 078

In this paper, we demonstrate the effectiveness of 079

NL2FOL through a case study on logical fallacy 080
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Fallacy Name Example Logical Form

Faulty Generalization Sometimes flu vaccines don’t work; therefore
vaccines are useless.

(∃x ∈ FluVaccines(DoesntWork(x)) ∧
(FluVaccines ⊆ Vaccines))⇒
(∀y ∈ Vaccines (DoesntWork(y)))

False Causality Every time I wash my car, it rains. Me washing
my car has a definite effect on the weather.

occuredAfter(washingCar, rain) ⇒
caused(washingCar, rain)

Ad Populum Everyone should like coffee: 95% of teachers do! (like(coffee, 95%Teachers)) ⇒
(like(coffee, everyone))

False Dilemma I don’t want to give up my car, so I don’t think I
can support fighting climate change.

∀(a)(giveUpCar(a) ∨
dontSupportFightingClimateChange(a))

Table 1: Sample logical fallacies from Jin et al. (2022) along with examples and their logical forms. For each type
of fallacy, we show one possible logical form.

detection, showcasing its ability to identify and081

explain faulty reasoning in natural language argu-082

ments. Detecting logical fallacies is particularly083

challenging as they often rely on reasoning pat-084

terns that appear plausible yet are fundamentally085

flawed (Jin et al., 2022). To address this, NL2FOL086

translates logical fallacies from natural language087

into FOL representations, enabling formal solvers088

to verify logical validity. These solvers generate089

counterexamples and explanations, which are in-090

terpreted back into natural language to enhance091

human comprehensibility. By incorporating inter-092

mediate natural language outputs, our pipeline im-093

proves interpretability, transparency, and debugga-094

bility (Bai et al., 2020).095

We show that our framework achieves strong perfor-096

mance on the logical fallacy detection benchmarks097

LOGIC and LOGICCLIMATE (Jin et al., 2022), with098

F1 scores of 78% and 80%, respectively - out-099

performing existing models by 22% on the chal-100

lenge set, LOGICCLIMATE. These results highlight101

NL2FOL as a generalizable and interpretable tool102

for reasoning tasks that demand the precision of103

formal reasoning systems.104

By analyzing the strengths and weaknesses of105

LLMs at each step of the NL2FOL pipeline, we106

further identify opportunities for improving logical107

reasoning capabilities. Even though LLMs prove to108

be effective in parsing and generating logical repre-109

sentations for structured inputs, they often struggle110

with ambiguities in natural language and incorpo-111

rating nuanced contextual knowledge. The ability112

to integrate symbolic solvers with language models113

positions NL2FOL as a powerful neurosymbolic114

approach, bridging the gap between formal reason-115

ing and natural language understanding.116

2 Related Work 117

Logical fallacy detection. Existing work on clas- 118

sifying logical fallacies includes argument suffi- 119

ciency classification (Stab and Gurevych, 2017), 120

ad hominem fallacies from Reddit posts (Haber- 121

nal et al., 2018b) and dialogues (Habernal et al., 122

2018a), rule parsers (Nakpih and Santini, 2020), 123

structure-aware Transformers (Jin et al., 2022), 124

multitask instruction based prompting (Alhindi 125

et al., 2022), and instance-based reasoning (Sourati 126

et al., 2022). To our knowledge, our work is the 127

first on few-shot classification of logical fallacies 128

in a step-by-step, explainable manner. By ensuring 129

that the reasoning process is transparent, we allow 130

users to understand and verify the system decision. 131

Natural language to formal logic. While early 132

work on mapping text to formal logic relied heav- 133

ily on grammar-based approaches (Purdy, 1991; 134

Angeli and Manning, 2014; MacCartney and Man- 135

ning, 2014), recent advances in deep learning and 136

foundation models have enabled new data-driven 137

techniques for translating natural language to lin- 138

ear temporal logic (Cosler et al., 2023; Fuggitti and 139

Chakraborti, 2023; Liu et al., 2022) and first-order 140

logic (Singh et al., 2020; Yang et al., 2024; Hahn 141

et al., 2022). Neural models for parsing natural lan- 142

guage to first-order logic (Singh et al., 2020; Yang 143

et al., 2024) and neuro-symbolic approach combin- 144

ing language models with first-order logic provers 145

(Olausson et al., 2023) have since been explored. 146

However, these approaches still face challenges in 147

accurately capturing implicit information or trans- 148

forming complex ambiguous sentences into logical 149

form, mainly attributed to linguistic ambiguity. 150

Aly et al. (2023) integrated LLMs with logical in- 151

ference for fact verification, and while our method 152
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Figure 1: Overview of the proposed framework used for logical fallacy detection. Module A converts natural
language input to a first-order logic formula merged with contextual relationships, Module B compiles the negation
of a given logical formula to an SMT file with well-defined sorts for variables and predicates, and Module C runs
CVC on the SMT file and if the negation is satisfiable, interprets the counter-model in natural language.

shares the fundamental idea of employing LLMs153

to construct proofs and analyze relationships be-154

tween textual spans, our task adds a layer of con-155

textual reasoning by requiring the incorporation156

of background knowledge and maintaining interde-157

pendency between proof steps, which is not present158

in approaches where each proof step is treated as159

an independent, isolated process.160

Theory solvers. Recent work by Hahn et al. (2022)161

demonstrated the potential of integrating symbolic162

solvers with large language models (LLMs), such163

as tool-augmented LLMs, to combine neural and164

symbolic reasoning. While such approaches are165

promising, they often struggle to translate natural166

language into symbolic representations and effec-167

tively capture background knowledge. Other recent168

approaches (Olausson et al., 2023; Pan et al., 2023)169

have used theory solvers to logically reason with170

natural language, which we build on with several171

key advancements. First, we introduce a frame-172

work that handles naturalistic, real-world data and173

tasks with ambiguous premises and conclusions.174

Then, we present a method to incorporate back-175

ground knowledge into logical formulas. Finally,176

we show that our approach introduces interpretabil-177

ity by allowing human verification and modifica-178

tion throughout the intermediate reasoning steps.179

3 Methodology180

Although powerful, LLMs struggle to detect logical181

fallacies in language, as it requires proper logical182

analysis (Jin et al., 2022). On the other hand, SMT183

solvers can reason over logical formulas with the-184

oretical guarantees but require the input to be in a185

structured, logical form. This approach combines186

the strengths of both to classify logical fallacies. 187

Task formulation. The task input is an argument in 188

natural language comprising one or more sentences, 189

which is converted into formal logical form using 190

a chain of LLMs. Following this, an SMT solver 191

processes the logical form and returns whether it is 192

valid. If invalid, the SMT solver provides a coun- 193

terexample explaining why it is a logical fallacy, 194

which is then interpreted with an LLM. 195

First-order logic. In FOL, propositions are rep- 196

resented using predicates that express properties 197

or relations over objects in a domain. These predi- 198

cates can be combined with constants, representing 199

specific objects and variables that represent unspec- 200

ified elements in the domain. An Interpretation 201

assigns meaning to these symbols within a given 202

context, while a Sort categorizes objects into differ- 203

ent types, facilitating precise reasoning about their 204

properties. Logical connectives of FOL, such as im- 205

plication (⇒), universal quantifiers (∀), existential 206

quantifiers (∃), and operators for conjunction/and 207

(∧), disjunction/or (∨), and negation/not (¬), allow 208

for the construction of intricate statements. 209

Module A: Natural language to first-order logic. 210

Our approach for converting given natural lan- 211

guage sentences into a logical form comprises mul- 212

tiple steps involving few-shot prompting of LLMs: 213

(i) decomposing a sentence into multiple smaller 214

parts that can be represented in first-order logic, 215

(ii) identifying relationships between different sub- 216

components to merge them and obtain a resultant 217

logical formula, and (iii) identifying real-world 218

relationships between these sub-components (back- 219

ground knowledge) and augmenting them to ob- 220
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tain a FOL formula by incorporating background221

knowledge in the statement. We demonstrate with222

a Logical Fallacy (LF) and a Valid (V) example.223

1. LF Example: A Logical Fallacy Input
I met a tall man who loved to eat cheese, now I
believe all tall people like cheese.

2. V Example: A Valid Input
A boy is jumping on a skateboard in the middle of a
red bridge. Thus the boy does a skateboarding trick.

224

225

Our pipeline begins with a semantic decomposition226

module which decomposes natural language argu-227

ments into respective claims and implications. Gen-228

erally, a sentence can be split into some claims and229

implications based on those claims (see Prompt 2).230

1. LF Example: Claim and Implication Parser
Claim: A tall man loved to eat cheese.
Implication: All tall people like cheese.

2. V Example: Claim and Implication Parser
Claim: A boy is jumping on a skateboard in the
middle of a red bridge.
Implication: The boy does a skateboarding trick.

231

232

The claims and implications are split into further233

sub-components and used to build up the logical234

form of the sentence. The next step is to identify235

entities in the sentence. In our work, we treat noun236

phrases or surrogates for noun phrases as entities237

(see Prompt 3). Then, we find the relationship238

between the different entities using Zero-Shot clas-239

sification via Natural Language Inference (NLI).240

These relationships (e.g., subset, equality, not re-241

lated) are generally helpful in deciding appropriate242

quantifiers in the logical form. For example, if the243

entities are man and people, then it can be inferred244

that man is a subset of people and that the man245

would be bound by an existential quantifier in the246

sentence x (see Prompt 4).247

1. LF Example: Entity Extractor
Referring expressions:

• man: x
• cheese: c
• people: y
• x ⊆ y

2. V Example: Entity Extractor
Referring expressions:

• boy: b
• skateboard: s
• bridge
• skateboardingTrick: y

248

249

The other set of sub-components are properties,250

which describe a trait of a referring expression or251

relationship between multiple referring expressions.252

These properties are predicates in first-order logic.253

We use a single module to extract the properties and254

the relation between properties and entities. (see 255

Prompt 5). We also find the relationships between 256

various properties (see Prompt 6). For instance, 257

in the LF Example, it can be inferred that Like 258

and Love are contextually similar. Similarly, in our 259

valid example, jumping over skateboard implies do- 260

ing a skateboard trick. These relationships provide 261

an additional context that is not directly present in 262

the statement. 263

To identify these contextual relationships, we run 264

NLI between each pair of properties, i.e., by setting 265

one property as the hypothesis and the other as the 266

premise as the input to the NLI model. If we find 267

that any one property entails the other, we add the 268

relationship property1 ⇒ property2 to our con- 269

text. Before running the NLI model between a pair 270

of properties, we replace the variables in each prop- 271

erty with the referring expressions that they repre- 272

sent. This adds additional context that helps the 273

NLI model identify relations. For instance, in the 274

V Example, the NLI model is unable to find the re- 275

lation between JumpsOn(x, s) and Does(x, y), but it 276

can identify the relationship between JumpsOn(boy, 277

skateboard) and Does(boy, skateboardingTrick). 278

1. LF Example: Property Extractor + Background
Knowledge Retriever
Properties: Tall, Love, Like
Property entity relations: Tall(x),Love(x, c)
Background knowledge:

1. ∀x(Like(x, c)⇒ Love(x, c))
2. ∀x(Love(x, c)⇒ Like(x, c))
3. x ⊆ y

2. V Example: Property Extractor + Background
Knowledge Retriever
Properties: JumpsOn, inMiddleOf, Red, Does
Property entity relations: JumpsOn(b, s),
Red(bridge), inMiddleOf(b, bridge),Does(b, y)
Background knowledge:

1. ∀x(JumpsOn(b, s)⇒ Does(b, y))

279

280

Finally, we combine all of this information using 281

the relationships between properties and entities to 282

obtain the FOL form of the sentence with the help 283

of an LLM (see Prompt 7). For a logical fallacy, the 284

negation of the formula is expected to be satisfiable. 285

On the contrary, for a valid statement, the negation 286

of the formula should be unsatisfiable. 287

1. LF Example: NL2FOL Output
First-order logic: ((∀x(Like(x, c) ⇒ Love(x, c)))∧
(∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c))))⇒ (∀y(Tall(y)⇒ Like(y, c)))

2. V Example: NL2FOL Output
First-order logic: (∀x(JumpsOn(x, s) ⇒
Does(x, y))∧Red(bridge)∧ inMiddleOf(b, bridge)∧
JumpsOn(b, s))⇒ Does(b, y)

288
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Module B: First-order logic to SMT. The next289

step involves automatically creating an SMT file290

for the negation of the first-order logical formula291

generated. While one can easily write an SMT292

file for a logical formula manually, generating one293

automatically for an arbitrary formula has not been294

done before. Thus, we develop a compiler that295

parses a given logical formula and converts it into296

an SMT file that can be given to CVC as input, as297

described in Algorithm 1 (See Appendix).298

Module C: Interpreting SMT results. To ver-299

ify the validity of the logical formulas, we utilize300

an SMT solver, CVC4 (Barrett et al., 2011). The301

solver determines whether the formula is valid or302

invalid, hence a logical fallacy. In the case of in-303

validity, the model provides a counterexample to304

the original logical formula, which shows that the305

given claim or implication is a logical fallacy.

Example (Module B Output):
I met a tall man who loved to eat cheese, now I
believe all tall people like cheese.

↓
First-order logic: ((∀x(Like(x, c) ⇒ Love(x, c)))∧
(∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c))))⇒ (∀y(Tall(y)⇒ Like(y, c)))

↓
SMT classification: Logical fallacy
Explanation: Counterexample

↓
• John is tall (Tall(John) is True). John likes

cheese (Likes(John,Cheese) is True).
• Jane is tall (Tall(Jane) is True). No constraint

Jane likes cheese.

Therefore, there exists a tall person (John) who likes
cheese, but it does not follow that all tall people like
cheese, since Jane serves as a counterexample.

Figure 2: Example of logical fallacy detection using
NL2FOL. The resulting classification is explained using
a counterexample generated by the SMT solver.

306

The result of the SMT solver is hard to interpret, as307

it uses technical terminology generally only well308

understood by those who are familiar with CVC4309

and SMT. To obtain an explanation in natural lan-310

guage, we prompt an LLM with the claim, impli-311

cation, referring expressions, properties, FOL for-312

mula, and the counterexample generated by CVC4.313

The model then interprets the counterexample with314

natural language, as depicted in Figure 2.315

4 Experiments316

We evaluate our approach on both logical falla-317

cies (positive class) and valid statements (negative318

class). For logical fallacies, we use the LOGIC and 319

LOGICCLIMATE (Jin et al., 2022) datasets, origi- 320

nally designed for training models to identify and 321

classify different fallacies. These datasets contain 322

examples of logical fallacies, each labeled with 323

multiple categories from 13 different categories, 324

including faulty generalization, circular claim, and 325

ad hominem. The LOGIC dataset contains 2,449 326

examples of common logical fallacies collected 327

mostly from quiz websites. The LOGICCLIMATE 328

dataset comprises 1,079 examples of logical falla- 329

cies drawn from climate change news articles on 330

the Climate Feedback platform. It is intended to 331

test the model’s ability to generalize out-of-domain. 332

To test our approach with valid statements, we use 333

the Stanford Natural Language Inference (SNLI) 334

corpus (Bowman et al., 2015), which supports the 335

development of natural language inference sys- 336

tems. This dataset features over 570,000 human- 337

annotated sentence pairs, where each pair consists 338

of a premise and a hypothesis labeled as entailment, 339

contradiction, or neutral. We focus on the entail- 340

ment class in this study, extracting over 170,000 341

sentence pairs where the premise entails the hypoth- 342

esis. We construct valid sentences by combining 343

the premise and hypothesis into a single sentence. 344

The task is set up as a simple binary classification 345

task, where the input consists of sentences drawn 346

from the LOGIC or LOGICCLIMATE datasets la- 347

beled as logical fallacies or from the SNLI dataset 348

labeled as valid sentences. Here, we treat logical 349

fallacies as the positive class. To ensure a balanced 350

evaluation, we select an equal number of fallacies 351

and valid statements, allowing for a fair comparison 352

across both classes. Finally, our model is evaluated 353

on standard binary classification metrics such as 354

precision, recall, f1 score, and accuracy. 355

Models. We compare our method to pretrained 356

language models, including Llama2-7B (Touvron 357

et al., 2023), GPT4o-mini (OpenAI, 2024), GPT4o 358

(OpenAI et al., 2024a) and OpenAI o1-preview 359

(OpenAI et al., 2024b) with few-shot in-context 360

examples (see Prompt 1). We also run NL2FOL 361

with each of the above models used for the LLM 362

prompting stages. Llama2-7B was chosen for our 363

experiments as it had the best performance dur- 364

ing testing over an initial subset of the data, out- 365

performing Llama3.1-8B (Grattafiori et al., 2024), 366

Llama3.2-11B (AI, 2024a), and Ministral-8B (AI, 367

2024b). We evaluate BART (140M parameters) 368
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LOGIC LOGICCLIMATE

Model Method Acc. P. R. F1 Acc. P. R. F1

Llama-7B End-to-end 0.41 0.45 0.82 0.58 0.31 0.38 0.62 0.47
NL2FOL (Ours) 0.63 0.58 0.92 0.71 0.66 0.60 0.94 0.73

GPT-4o-mini End-to-end 0.91 0.94 0.88 0.91 0.64 0.67 0.55 0.60
NL2FOL (Ours) 0.70 0.64 0.91 0.75 0.73 0.66 0.93 0.77

GPT-4o End-to-end 0.96 0.96 0.96 0.96 0.70 0.95 0.42 0.58
NL2FOL (Ours) 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80

OpenAI o1-preview End-to-end 0.93 0.89 0.98 0.93 0.73 0.84 0.56 0.67
NL2FOL (Ours) - - - - - - - -

Table 2: Comparison of few-shot model performance metrics (abbreviations: Acc. = accuracy, P. = precision, R. =
recall, F1 = F1 score) on the LOGIC+SNLI and LOGICCLIMATE+SNLI datasets using End-to-end vs. NL2FOL
(Ours). Results on NL2FOL with o1-preview are omitted as o1-preview failed to complete the pipeline in most
cases, likely due to its poor instruction following capabilities.

(Lewis et al., 2020) finetuned on MNLI (Williams369

et al., 2018) to analyze the relationships between370

properties and referring expressions. We ran the371

experiments on a V100 GPU, with one run costing372

around 2 GPU hours.373

Prompt tuning. For prompt tuning, 20 samples374

from the LOGIC dataset were selected and manu-375

ally annotated with intermediate and final results.376

They were then split into 10 train and 10 valida-377

tion examples. For each prompt, we start with a378

simple description of the task. 4-6 examples were379

randomly selected from the train set as in-context380

examples, with the relevant intermediate outputs381

depending on the stage. Results were tested on the382

validation examples, and the prompt was updated383

to address common mistakes. To ensure fairness, a384

fixed number of 5 improvement iterations was used385

for each prompt, and the one showing best perfor-386

mance over the validation examples was chosen.387

5 Results and Discussion388

As shown in Table 2, our method achieves an389

F1 score of 78% when used with GPT-4o on the390

LOGIC dataset. When run end-to-end, the Llama-391

7B model reached an F1 score of only 58%, but392

when used with the NL2FOL pipeline, reached393

a score of 71%. Although end-to-end classifica-394

tion has shown better performance in other models,395

comparisons can be skewed because they may have396

been exposed to the LOGIC dataset and its labels397

during training because this dataset was compiled398

from publicly accessible web sources. On average,399

NL2FOL demonstrated high recall, whereas end-400

to-end classification demonstrated high precision.401

Our challenge set LOGICCLIMATE+SNLI contains402

real-world logical fallacies from climate change403

news. Since this dataset was used to test gener- 404

alization, the in-context examples we provide to 405

all models are from the LOGIC dataset. NL2FOL 406

yields results that are highly similar to the results 407

from LOGIC, whereas end-to-end classification saw 408

a drop in performance. This demonstrates that 409

our system is also robust and adapts well to real- 410

world texts, including texts with significant domain- 411

specific context. This makes it effective in detect- 412

ing and mitigating misinformation. Specifically, 413

on this dataset, we find that NL2FOL outperforms 414

direct translation with all LLMs that we tested. 415

5.1 Quantitative Analysis 416

Error analysis and interpretability. The pro- 417

posed method is interpretable due to the use of 418

natural language inputs and outputs at each step 419

of the pipeline. This structure allows for precise 420

identification of the specific module responsible 421

for a failure by examining intermediate results. To 422

evaluate this aspect, we performed an in-depth er- 423

ror analysis by annotating the module responsible 424

for failure in 100 incorrect predictions made by the 425

model. The results are summarized in Table 4. 426

Our analysis reveals that the majority of errors oc- 427

cur in the ‘Background Knowledge Retriever’, in- 428

volving missed or incorrectly added contextual in- 429

formation in the logical form. Other errors typically 430

pertain to incorrect identification of claims, impli- 431

cations, or properties. In contrast, inaccuracies in 432

the generation of logical forms are relatively infre- 433

quent, suggesting that the model performs well in 434

constructing accurate logical representations when 435

provided with reliable information about the con- 436

stituent entities and properties within a sentence. 437

This finding underscores the importance of improv- 438

ing the background knowledge retriever module to 439
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Type Sentence Logical Form Prediction
1 LF X has been around

for years now. Y is
new. Therefore, Y
is better than X.

(IsNew(a) ∧ ∼ IsNew(b))⇒ (IsBetterThan(a,b)) LF: Correct prediction

2 LF Everyone is doing
the Low-Carb Diet.

(∃ b (∃ a (IsDoing(b,a)))) ⇒ (∃ c (∃ a (IsDo-
ing(c,a)))).

V: Incorrect prediction - Wrong
translation given when no claim
given

3 V Two dogs are fight-
ing in a field. Con-
sequently, the two
dogs are outside.

(∃ b (∃ a (IsFighting(a, b) ∧ IsInField(b) ∧ IsIn-
Field(b))))⇒ (∃ a (IsOutside(a)))

LF: Incorrect prediction - Missing
semantic ground truth claim: ∀ a
(IsInField(a)⇒ IsOutside(a))

4 V A baseball player
gets ready to catch
a fly ball near
the outfield fence.
Therefore, a person
is playing baseball
outdoors.

(∃ a (IsGettingReady(a) ∧ (IsABaseballPlayer(a)
∧ IsCatchingFlyBall(a) ∧ IsNearOutfield-
Fence(a))) ∧ (∀ e ( IsABaseballPlayer(e) ⇒
IsPlayingBaseball(e))) ∧ (∀ f ( IsPlayingBase-
ball(f) ⇒ IsABaseballPlayer(f))) ∧ (∀ g (
IsNearOutfieldFence(g) ⇒ IsOutdoors(g))))
⇒ (∃ c (∃ a (IsPlayingBaseball(a) ∧ IsOut-
doors(c))))

V: Correct Prediction - The method
identifies additional context by es-
tablishing relationships such as Is-
BaseballPlayer implying IsPlaying-
Baseball, and IsNearOutfieldFence
implying IsOutdoors.

5 V A woman sits alone
on a park bench in
the sun. Hence, a
woman is in a park.

(IsSittingOn(a, b) ∧ isParkBench(b) ∧ IsIn-
Sun(a))⇒ (IsInPark(a)).

LF: Incorrect prediction - Miss-
ing semantic ground truth claim:
∀a∀b (IsSittingOn(a, b) ∧ isPark-
Bench(b)⇒ IsInPark(a))

6 V A woman is stand-
ing at a podium.
Thus, a person is at
a podium.

(∃a∃b (IsStandingAt(b, a))∧ ∀f∀e∀d (IsStandin-
gAt(d,e)⇒ IsAt(f,e))⇒ ∃c∃a (IsAt(c, a))

V: Correct prediction - The method
identifies additional context by
establishing the relationship Is-
StandingAt implying IsAt.

Table 3: Some example outputs of our model (abbreviations: LF = Logical Fallacy, V = Valid statement)

Sub-Module with Error Error Proportion

Claim and Implication Parser 0.19
Incorrect Label 0.01
Property Extractor 0.13
Background Knowledge Retriever 0.54
FOL Formulation Engine 0.13

Table 4: Categorization of model errors by type on
NL2FOL (GPT-4o), based on a review by domain ex-
perts in the logic of 100 randomly sampled examples

improve overall model performance.440

Impact of adding background knowledge to441

NL2FOL. Based on the error analysis, missing or442

incorrect background knowledge was a significant443

contributor to incorrect predictions of our method.444

To quantitatively assess the impact of grounding445

on model performance, we evaluated several ap-446

proaches for NLI in the Background Relation Ex-447

tractor. These included: (a) a pipeline without any448

background knowledge as a baseline, (b) a model449

without context where the LLM (GPT4o) only pro-450

cesses the input properties, (c) an LLM that incor-451

porates both the input sentence and properties and452

(d) a smaller model specifically fine-tuned for NLI453

(BART-MNLI). Results are presented in Table 5.454

We see that precision and recall both improve sig-455

nificantly with better grounding techniques. The 456

LLM model with sentence context achieves the 457

highest overall performance. This is likely due to 458

the sentence context providing information about 459

clauses that are omitted due to the choice of rep- 460

resentation in FOL. This indicates that integrating 461

robust grounding mechanisms is critical to enhanc- 462

ing the accuracy and reliability of the method. 463

LOGIC+SNLI LOGICCLIMATE+SNLI

Method Acc. P. R. F1 Acc. P. R. F1

(a) No Grounding 0.54 0.52 0.88 0.66 0.57 0.54 0.94 0.69
(b) LLM 0.76 0.78 0.74 0.75 0.79 0.80 0.78 0.79
(c) LLM w/ context 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80
(d) BART-MNLI 0.71 0.71 0.70 0.70 0.77 0.81 0.71 0.77

Table 5: Comparison of different grounding methods on
NL2FOL (GPT4o-mini) across the LOGIC+SNLI and
LogicClimate+SNLI datasets

Impact of using an SMT solver. To assess the 464

impact of using an SMT solver in our pipeline, we 465

compared its performance against an LLM as a 466

baseline for classifying the logical forms as valid 467

or fallacies. The results, summarized in Table 6, 468

demonstrate a significant improvement in perfor- 469

mance metrics with the integration of the SMT 470

solver. Results reveal the SMT-based approach sig- 471

nificantly outperforms the LLM-based approach 472

in all metrics across both the LOGIC and LOGIC- 473

7



CLIMATE datasets. This underscores the advantage474

of formal reasoning systems like SMT solvers for475

tasks requiring precise logical inference and struc-476

tured reasoning compared to LLMs, which may477

lack systematic consistency in such contexts.478

5.2 Qualitative Analysis479

5.2.1 Success Modes of NL2FOL480

S1: Captures implicit information not men-481

tioned in premises. Previous works that directly482

translate natural language to logical forms suffer483

from an inability to capture implicit information484

not mentioned in the premises (Olausson et al.,485

2023). Our ’Background Knowledge Retriever’486

step allows us to capture this information in the487

final logical form. An illustration of this can be488

found in Example 4 of Table 3.489

S2: Captures explicit information that is missed490

in the representation. Our pipeline is also able to491

capture information that is explicitly mentioned in492

the premises but missed due to the choice of repre-493

sentation in logical form. In Example 6, in Table 3,494

the fact that the woman is both standing and is at495

the podium is lost due to the choice representation496

IsStandingAt. However, the fact that the woman497

is at the podium is recovered in the final logical498

form due to the identified background knowledge499

IsStandingAt implies IsAt.500

S3: Comparison to direct translation. To evalu-501

ate the efficacy of the multi-step LLM pipeline, we502

compared it against a direct translation approach,503

where natural language inputs were converted into504

logical forms with a single LLM call using a few-505

shot prompt. However, this task proved to be exces-506

sively complex for LLMs. Llama failed to generate507

any output, citing an inability to comprehend the508

prompt. Larger LLMs exhibited significant limi-509

tations, with over 95% of their outputs containing510

syntax errors. These findings highlight the inad-511

equacy of direct translation for complex logical512

reasoning tasks and underscore the necessity of a513

structured, multi-step approach to ensure the accu-514

racy and syntactic correctness of the logical form.515

5.2.2 Failure Modes of NL2FOL516

F1: Misses some background knowledge. As can517

be observed in Table 4, incorrect identification of518

background knowledge is the most common cause519

for incorrect classifications. This is because any520

gaps in background knowledge can cause a valid521

statement to be identified as a logical fallacy, and522

LOGIC LOGICCLIMATE

Classifier Acc. P. R. F1 Acc. P. R. F1
SMT 0.78 0.76 0.82 0.78 0.80 0.80 0.80 0.80
GPT-4o 0.69 0.71 0.62 0.66 0.73 0.72 0.74 0.73

Table 6: Comparison of classification methods used with
NL2FOL (GPT4o) on LOGIC and LOGICCLIMATE

an incorrectly added clause can cause a fallacy to 523

be identified as valid. One such case is present in 524

example 3 of the Table 3. In this case, the model 525

is not able to identify the extra context statement 526

because the NLI model does not identify a required 527

ground-truth relation. If this context were to be 528

added to the claim of the logical formula, then the 529

statement would have been predicted to be valid. 530

F2: Limitations of NLI. Our current approach 531

is limited to discerning relationships between two 532

properties at a time rather than handling multiple 533

relationships concurrently. For reference, consider 534

Example 5 in Table 3. Here, the semantic claim 535

involves the conjunction of two properties entail- 536

ing the third, while the ‘Background Knowledge 537

Retriever’ only checks whether one property en- 538

tails the other. Finding such complex extra context 539

requires more advanced techniques or additional 540

human intervention. Including them could further 541

improve the precision of the model overall. 542

F3: Imprecision of LLMs. Among the logical 543

fallacies that our model incorrectly predicted to 544

be a valid statement, most of these predictions 545

failed due to the imprecision of the LLM, leading to 546

false translations and incorrect results. Example 2 547

demonstrates a case where the input does not have 548

any claim but instead jumps straight to an implica- 549

tion. However, the model is not able to identify that 550

the example has no claim. As a result, we obtain 551

an incorrect translation with our technique. 552

6 Conclusion 553

We present an effective and automatic solution to 554

detect fallacies and tackle misinformation. We 555

developed a strategy to distinguish logical falla- 556

cies from valid statements, involving a chaining 557

approach to convert a sentence to first-order logic 558

using LLMs, followed by using SMT solvers to 559

identify whether the first-order logical statement is 560

valid or not. If not, we interpret the counter-model 561

generated by the SMT solver in natural language. 562

Our proposed technique shows promising results 563

in identifying logical fallacies and valid statements, 564

as well as good generalizability across domains. 565
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Ethics Statement566

While the intended outcome of this research is to567

help fight misinformation and promote rational dis-568

course, there are several ethical challenges that we569

must consider. First, dependence on AI to identify570

logical fallacies could influence how individuals571

engage in debates and discussions. There is a risk572

that people may over-rely on AI judgments, po-573

tentially stifling complex statements or dissenting574

opinions that are essential for a healthy democratic575

process. Moreover, the use of AI in moderating dis-576

cussions, especially in identifying logical fallacies,577

raises ethical questions about the automation of578

content moderation. While it can enhance the qual-579

ity of public discourse by filtering out fallacious580

statements, it also risks automating censorship and581

impacting the dynamics of online communities. In582

the wrong hands, logical fallacy detection tools583

could be exploited to silence speech or suppress584

viewpoints under the pretext of promoting rational585

discourse. This potentially allows governments or586

organizations to stifle opposition or critique.587

To address these issues, we advocate for the devel-588

opment of ethical guidelines for AI use that empha-589

size transparency, accountability, and active user590

engagement. These measures are crucial in encour-591

aging public literacy in AI and logical fallacies, ulti-592

mately empowering individuals to critically assess593

both AI output and arguments they may encounter.594

Limitations595

Scope of logical reasoning tasks. Correct iden-596

tification of background knowledge is crucial for597

our method. While we have shown its potential in598

detecting logical fallacies for short and structured599

premises, it is important to note that this approach600

may miss complex relational constructs (for exam-601

ple, (a ∧ b) ⇒ (c ∨ d))), in which richer logical602

patterns may often be required in real-world reason-603

ing tasks such as those present in multi-paragraph604

contexts or Question-Answering (QA) datasets.605

Generalizability to other tasks and domains. We606

have demonstrated promising results of our ap-607

proach to logical fallacy detection, but whether608

the findings generalize to other logical tasks and609

domains remains unexplored. The performance of610

our approach in other languages is untested and611

may introduce unforeseen challenges.612

Going beyond first-order logic. It is unknown613

whether our approach would be sufficiently expres- 614

sive for reasoning tasks requiring higher-order or 615

non-classical logic, as we limit our exploration 616

to first-order logic. Conceptually, extending our 617

method to the aforementioned domains is feasible 618

but would require modification to the SMT integra- 619

tion and LLM-driven logic translation processes. 620

Thus, further testing may include translating to 621

logic beyond FOL, such as temporal and higher- 622

order logic. 623

Computational cost. Using LLMs and SMT 624

solvers can incur high computational costs, such as 625

high-performance GPUs for LLM inference, CPUs 626

optimized for SMT solvers, and high API usage, 627

particularly for models like GPT-o1 and Llama-7B. 628

References 629

Meta AI. 2024a. Llama 3.2-11b model card. Accessed: 630
2025-02-15. 631

Mistral AI. 2024b. Ministral-8b-instruct-2410 model 632
card. Accessed: 2025-02-15. 633

Tariq Alhindi, Tuhin Chakrabarty, Elena Musi, and 634
Smaranda Muresan. 2022. Multitask instruction-based 635
prompting for fallacy recognition. In Proceedings of 636
the 2022 Conference on Empirical Methods in Natural 637
Language Processing, pages 8172–8187, Abu Dhabi, 638
United Arab Emirates. Association for Computational 639
Linguistics. 640

Rami Aly, Marek Strong, and Andreas Vlachos. 2023. 641
QA-natver: Question answering for natural logic-based 642
fact verification. In The 2023 Conference on Empirical 643
Methods in Natural Language Processing. 644

Gabor Angeli and Christopher D Manning. 2014. Natu- 645
ralli: Natural logic inference for common sense reason- 646
ing. In Proceedings of the 2014 Conference on Empiri- 647
cal Methods in Natural Language Processing (EMNLP), 648
pages 534–545. 649

Bing Bai, Jian Liang, Guanhua Zhang, Hao Li, Kun 650
Bai, and Fei Wang. 2020. Why attentions may not be 651
interpretable? Proceedings of the 27th ACM SIGKDD 652
Conference on Knowledge Discovery & Data Mining. 653

Clark Barrett, Christopher L. Conway, Morgan Deters, 654
Liana Hadarean, Dejan Jovanović, Tim King, Andrew 655
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Appendix1207

A Algorithms1208

Algorithm 1: Compiling Logical Formula to
SMT
Input: Logical formula L in natural language or

First-Order Logic (FOL)
Output: SMT file S formatted for formal solvers

1 Step 1: Tokenize Formula
2 T ← Tokenize(L) // Split L into tokens based

on operators, parentheses, and commas

3 Step 2: Process Tokens
4 P ← ∅ // Initialize processed tokens set
5 foreach token t ∈ T do
6 if t is a predicate then
7 Identify arguments of t
8 Recursively ProcessTokens() for arguments
9 else if t is an operator or variable then

10 Add t to P

11 Step 3: Convert Formula to Prefix Notation
12 Fprefix ← InfixToPrefix(P) // Transform logical

formula from infix to prefix notation
13 Recursively apply InfixToPrefix() for predicate

arguments

14 Step 4: Determine Sorts
15 Ssorts ← UnifySort(Fprefix) // Assign sorts for

variables and predicates

16 Step 5: Format Formula for SMT
17 FSMT ← Parenthesize Fprefix according to SMT-LIB

syntax

18 Step 6: Generate SMT File
19 S ← GenerateSMT(Ssorts,FSMT)
20 Include

• (declare-sort) statements for sorts.
• (declare-fun) statements for variables and

predicates.
• Negation of FSMT.
• (check-sat) and (get-model) commands.

return S // Return the SMT file for use in
formal solvers

B Prompt Examples1209

Note: Additional in-context examples were re-1210

moved for brevity and denoted ‘[...]’ in the fol-1211

lowing prompts.1212

B.1 End-to-end LLM Prompts1213

Prompt 1. Classifying with in-context ex-
amples (Few-shot)

Logical fallacies are common errors in
reasoning that undermine the logic of an
argument.

A sentence is logically valid if and only if it
is not possible for it to be false.

1214

Algorithm 2: UnifySort for Predicate A(x, y)

Input: Predicate A(x, y) with arguments and potential
instances

Output: Unified sort for predicate A or an error if sorts
are incompatible

1 Step 1: Declare the Current Sort
2 Initialize the current sort of A: (NULL,NULL,Bool)

3 Step 2: Process Each Instance of Predicate A
4 foreach instance of predicate A do
5 Step 2.1: Determine Instance Sorts
6 foreach argument xi in the instance do
7 if xi is a formula then
8 Set sort(xi) = Bool
9 else if xi is a variable then

10 Set sort(xi) = sort(variable) // May be
NULL

11 Step 2.2: Unify Current Sort with Instance Sort
12 foreach statement sort in current and instance sorts

do
13 if sorts are not NULL and different then
14 Raise an error: Incompatible sorts
15 else if current sort is NULL and instance sort is

not NULL then
16 Update current sort:

current_sort← instance_sort
17 else if instance sort is NULL and current sort is

not NULL then
18 Update variable sort to match current sort

19 return Unified sort of predicate A or error if sorts are
incompatible

Here are some examples of classifying sen-
tences as logical fallacies or valid sentences:

Example 1:

Input: "I met a tall man who loved to eat
cheese, now I believe all tall people like
cheese"
Answer: Logical Fallacy

[...]

Now, classify the following sentence.
Answer with either "Logical Fallacy" or
"Valid" at the start of your answer.

Input:
1215
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B.2 Intermediate NL2FOL Prompts1216

1217

Prompt 2. Extracting claim and implication

Here are some examples of extracting
claims and implications from an input
paragraph. There can be multiple claims
but only one implication.

Input: "I met a tall man who loved to eat
cheese, now I believe all tall people like
cheese."
Output:
Claim: "A tall man loves cheese."
Implication: "All tall people like cheese."

[...]

Do not use any subordinating conjunctions
in the implication. Replace pronouns with
the appropriate nouns so that there are
no pronouns. Now extract the claim and
implication for the following input.

Input:
1218

Prompt 3. Getting referring expressions

You are given a sentence. Referring
expressions are noun phrases, pronouns,
and proper names that refer to some
individual objects that have some properties
associated with them. Here are some
examples of finding referring expressions
in a sentence:

Input: "A tall man loved cheese"
Referring expressions: A tall man

[...]

Now, find the referring expressions for the
following input:

1219

Prompt 4. Getting entity relations

Please determine the relationship between
the two entities provided below. Choose the
number corresponding to the statement that
best describes their relationship:

1. "[Entity A]" is equal to "[Entity B]".
1220

2. "[Entity A]" is a subset of "[Entity B]".
3. "[Entity B]" is a subset of "[Entity A]".
4. "[Entity A]" is not related to "[Entity B]".

Instructions:
- Equality check: If the two entities are equal
(case-insensitive after stripping whitespace),
select statement 1.
- Subset determination: If they are not equal,
assess whether one entity is a subset of the
other based on general knowledge and logi-
cal reasoning.

- If "[Entity A]" is a subset of "[Entity
B]", select statement 2.
- If "[Entity B]" is a subset of "[Entity
A]", select statement 3.

- Unrelated entities: If none of the above
statements accurately describes the relation-
ship.

Here are some examples:

Example 1:

Entity A: "dogs"
Entity B: "animals"
Analysis: All dogs are animals, so "dogs"
is a subset of "animals".
Answer: 2

[...]

Entities:
- Entity A:
- Entity B:

Your Task:
- Analyze the relationship between "Entity
A" and "Entity B" based on the instructions.
- Provide only the number (1, 2, 3, or 4)
that corresponds to the statement you have
selected.

1221

Prompt 5. Getting properties (claim)

Given a sentence, and the referring
expressions of that sentence. Properties
are anything that describes a relationship
between two referring expressions, or
they may describe a trait of a referring

1222
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expression. These properties are essentially
predicates in first-order logic.

Here are some examples of finding proper-
ties in a sentence:

Example 1:

Input sentence: A tall man loves cheese
Referring expressions: tall man: a, cheese:
b
Properties: IsTall(x), LovesCheese(x)

[...]

Now extract the properties for the following
input:

1223

Prompt 6. Getting property relations

You are given two logical clauses. Your
task is to identify whether or not the
first clause entails the second clause,
taking into account external knowl-
edge or ’common sense’. Also, take into
account the context from the input sentence.

Here are some examples:

Example 1:

Input sentence: A boy is jumping on skate-
board in the middle of a red bridge. Thus,
the boy does a skateboarding trick.
Clause 1: JumpsOn(boy,skateboard)
Clause 2: Does(boy, skateboarding_trick)
Answer: ENTAILMENT

[...]

Now given the following clauses. identify
whether the first clause entails the second
clause.

1224

Prompt 7. Retrieving FOL expression

Given a sentence, the referring expressions
of that sentence, and properties which are
associated with the referring expressions.
Use the given properties to convert the

1225

sentence into a first-order logical form. Use
-> to represent implies, & to represent and, |
to represent or and to represent negations.

Example 1:

Input Sentence: A tall man loves cheese
Referring Expressions: A tall man: x
Properties: IsTall(x), LovesCheese(x)
Logical Form: IsTall(x) & LovesCheese(x)

[...]
1226
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