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ABSTRACT

Given a labeled training set and a collection of unlabeled data, the goal of active
learning (AL) is to identify the best unlabeled points to label. In this compre-
hensive study, we analyze the performance of a variety of AL algorithms on deep
neural networks trained on 69 real-world tabular classification datasets from the
OpenML-CC18 benchmark. We consider different data regimes and the effect of
self-supervised model pre-training. Surprisingly, we find that the classical margin
sampling technique matches or outperforms all others, including current state-of-
art, in a wide range of experimental settings. To researchers, we hope to encourage
rigorous benchmarking against margin, and to practitioners facing tabular data la-
beling constraints that hyper-parameter-free margin may often be all they need.

1 INTRODUCTION

Active learning (AL), the problem of identifying examples to label, is an important problem in
machine learning since obtaining labels for data is oftentimes a costly manual process. Being able
to efficiently select which points to label can reduce the cost of model learning tremendously. High-
quality data is a key component in any machine learning system and has a very large influence on
the results of that system (Cortes et al., 1994; Gudivada et al., 2017; Willemink et al., 2020); thus,
improving data curation can potentially be fruitful for the entire ML pipeline.

Margin sampling, also referred to as uncertainty sampling (Lewis et al., 1996; MacKay, 1992), is a
classical active learning technique that chooses the classifier’s most uncertain examples to label. In
the context of modern deep neural networks, the margin method scores each example by the differ-
ence between the top two confidence (e.g. softmax) scores of the model’s prediction. In practical and
industrial settings, margin is used extensively in a wide range of areas including computational drug
discovery (Reker & Schneider, 2015; Warmuth et al., 2001), magnetic resonance imaging (Liebgott
et al., 2016), named entity recognition (Shen et al., 2017), as well as predictive models for weather
(Chen et al., 2012), autonomous driving (Hussein et al., 2016), network traffic (Shahraki et al.,
2021), and financial fraud prediction (Karlos et al., 2017).

Since the margin sampling method is very simple, it seems particularly appealing to try to modify
and improve on it, or even develop more complex AL methods to replace it. Indeed, many papers
in the literature have proposed such methods that, at least in the particular settings considered,
consistently outperform margin. In this paper, we put this intuition to the test by doing a head-
to-head comparison of margin with a number of recently proposed state-of-the-art active learning
methods across a variety of tabular datasets. We show that in the end, margin matches or outperforms
all other methods consistently in almost all situations. Thus, our results suggest that practitioners
of active learning working with tabular datasets, similar to the ones we consider here, should keep
things simple and stick to the good old margin method.

In many previous AL studies, the improvements over margin are oftentimes only in settings that are
not representative of all practical use cases. One such scenario is the large-batch case, where the
number of examples to be labeled at once is large. It is often argued that margin is not the optimal
strategy in this situation because it exhausts the labeling budget on a very narrow set of points close
to decision boundary of the model and introducing more diversity would have helped (Huo & Tang,
2014; Sener & Savarese, 2017; Cai et al., 2021). However, some studies find that the number of
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examples to be labeled at once has to be very high before there is advantage over margin (Jiang &
Gupta, 2021) and in practice a large batch of examples usually does not need to be labeled at once,
and it is to the learners’ advantage to use smaller batch sizes so that as datapoints get labeled, such
information can be incorporated to re-train the model and thus choose the next examples in a more
informed way. It is important to point out, however, that in some cases, re-training the model is very
costly (Citovsky et al., 2021). In that case, gathering a larger batch could be beneficial. In this study,
we focus on the practically more common setting of AL that allows frequent retraining of the model.

Many papers also only restrict their study to only a couple of benchmark datasets and while such
proposals may outperform margin, these results don’t necessarily carry over to a broader set of
datasets and thus such studies may have the unintended consequence of overfitting to the dataset.

In the real world live active learning setting, examples are sent to human labelers and thus we
don’t have the luxury of comparing multiple active learning methods or even tuning the hyper-
parameters of a single method, without incurring significantly higher labeling cost. Instead, we have
to commit to a single active learning method oftentimes without much information. Our results on
the OpenML-CC18 benchmark suggest that in almost all cases when training with tabular data, it
is safe for practitioners to commit to margin sampling (which comes with the welcome property of
not having additional hyper-parameters) and have the peace of mind that other alternatives wouldn’t
have performed better in a statistically significant way.

2 RELATED WORK

There have been a number of works in the literature providing an empirical analysis of active learn-
ing procedures in the context of tabular data. Schein & Ungar (2007) studies active learning pro-
cedures for logistic regression and show that margin sampling performs most favorably. Ramirez-
Loaiza et al. (2017) show that with simple datasets and models, margin sampling performs better
compared to random and Query-by-Committee if accuracy is the metric, while they found random
performs best under the AUC metric. Pereira-Santos et al. (2019) provides a investigation of the
performance of active learning strategies with various models including SVMs, random forests, and
nearest neighbors. They find that using margin with random forests was the strongest combination.
Our study focuses on the accuracy metric and also shows that margin is the strongest baseline, but
is much more relevant to the modern deep learning setting and with a comparison to a much more
expanded set of baselines and datasets. Our focus on neural networks is timely as recent work (Bahri
et al., 2021) showed that neural networks often outperform traditional approaches for modeling tab-
ular data, like Gradient Boosted Decision Trees (Chen & Guestrin, 2016), particularly when they
are pre-trained in the way we explore here. To our knowledge we provide the most comprehensive
and practically relevant empirical study of active learning baselines on neural networks thus far.

There have also been empirical evaluations of active learning procedures in the non-tabular case.
Hu et al. (2021) showed that margin attained the best average performance of the baselines tested
on two image and three text classification tasks across a variety of neural network architectures and
labeling budgets. Munjal et al. (2022) showed that on the image classification benchmarks CIFAR-
10, CIFAR-100, and ImageNet, under strong regularization, none of the numerous active learning
baselines they tested had a meaningful advantage over random sampling. We hypothesize that this
may be due to the initial network having too little information (i.e. no pre-training and small initial
seed set) for active learning to be effective and conclusions may be different otherwise. It is also
worth noting that many active learning studies in computer vision only present results on a few
benchmark datasets (Munjal et al., 2022; Sener & Savarese, 2017; Beluch et al., 2018; Emam et al.,
2021; Mottaghi & Yeung, 2019; Hu et al., 2018), and while they may have promising results on
such datasets, it’s unclear how they translate to a wider set of computer vision datasets. We show
that many of these ideas do not perform well when put to the test on our extensive tabular dataset
setting. Dor et al. (2020) evaluated various active learning baselines for BERT and showed in most
cases, margin provided the most statistically significant advantage over passive learning. One useful
direction for future work is establishing an extensive empirical study for computer vision and NLP.

While our study is empirical, it is worth mentioning that despite being such a simple and classical
baseline, margin is difficult to analyze theoretically and there remains little theoretical understanding
of the method. Balcan et al. (2007) provides learning bounds for a modification of margin where ex-
amples are labeled in batches where the batch sizes depend on predetermined thresholds and assume
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that the data is drawn on the unit ball and the set of classifiers are the linear separators on the ball
that pass through the center of the ball (i.e. no bias term). Wang & Singh (2016) provide a noise-
adaptive extension under this style of analysis. Recently, Raj & Bach (2022) proposed a general
family of margin-based active learning procedures for SGD-based learners that comes with theoret-
ical guarantees; however these algorithm require a predetermined sampling function and hence, like
the previous works, does not provide any guarantees for the classical margin procedure with a fixed
batch size. Without such theoretical understanding of popular active learning procedures, having
comprehensive and robust empirical studies become even more important for our understanding of
active learning.

3 PROBLEM STATEMENT

We begin with a brief overview of pool-based active learning. One has an initial sample of S labeled
training examples I0 = {(xi, yi)}Si=1 where xi ∈ RD and yi ∈ N. We also assume a pool of
unlabeled examples Z := {z ∈ RD} that can be selected for labeling, for a grand total of Ntotal
points. The goal is for rounds t = 1, 2, ..., T , to select B examples (active learning batch size) in
each round from Z to be labeled and added to the train set It−1 (and removed from Z) to produce
the new labeled set It .

3.1 SCARF

Recently, Bahri et al. (2021) proposed a technique for pre-training deep networks on tabular datasets
they term SCARF. Leveraging self-supervised contrastive learning in a spirit similar to vision-
oriented SimCLR (Chen et al., 2020), the method teaches the model to embed an example xi and its
corrupted view x̃i closer together in space than xi and x̃j , the corrupted view of a different point xj .
They show that pre-training boosts test accuracy on the same benchmark datasets we consider here
even when the labels are noisy, and even when labeled data is limited and semi-supervised methods
are used. We investigate the effect of SCARF pre-training on AL methods.

3.2 ACTIVE LEARNING BASELINES

Margin, Entropy, Least Confident. These three popular methods score candidates using the un-
certainty of a single model, p. It is assumed that at round t, p is trained on the labeled set thus far
to select the next batch of examples with highest uncertainty scores in Z . We seek points with the
smallest margin, largest entropy, or largest least confident (LC) scores, defined as follows:

Margin(x) := p(y = y1(x)|x)− p(y = y2(x)|x), where
y1(x) := argmax

c
p(y = c|x), y2(x) := argmax

c|c6=y1(x)
p(y = c|x).

Entropy(x) := −
∑
c

p(y = c|x) log p(y = c|x).

LC(x) := 1−max
c
p(y = c|x).

Random-Margin. A 50-50 mix of random and margin; a common way to enhance diversity. Half
of the batch is chosen based on margin, and the other half of the examples are randomly selected.

Min-Margin (Jiang & Gupta, 2021). An extension of margin that uses bootstrapped models to
increase the diversity of the chosen batch. K = 25 models are trained on bootstrap samples drawn
from the active set (where the bootstrap is done on a per-class basis with the sample size the same
as the original training dataset size), and the minimum margin across the K models is used as the
score.

Typical Clustering (TypiClust) (Hacohen et al., 2022). A method that uses self-supervised em-
beddings to balance selection of “typical” or representative points with diverse ones as follows. At
round t, all Ntotal pre-trained embeddings are clustered into |It−1| + B clusters using K-means
and then the most typical examples from the B largest uncovered clusters (i.e. clusters containing
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no points from Ii−1) are selected. Given that cosine similarity is the distance used when learning
SCARF embeddings, we use spherical K-means and define the typicality score as:

Typicality(x) =

 1

k

∑
xi∈k-NN(x)

1− CosSim(x, xi)

2

−1

.

k is chosen as min{Ntotal,max{20, |C(x)|}}, where |C(x)| is the size of the cluster containing x.

Maximum Entropy (MaxEnt) and BALD. These Bayesian-based approaches use M models
drawn from a posterior. Oftentimes, Monte-Carlo dropout (MC-dropout) is used, wherein a single
model is trained with dropout and then M different dropout masks are sampled and applied during
inference (Gal et al., 2017). This can be seen as model inference using different models with weights
{wm}Mi=1. For maximum entropy, we score using the model’s entropy H:

H[y|x] := −
∑
c

(
1

M

M∑
m=1

p(y = c|x,wm)

)
log

(
1

M

M∑
m=1

p(y = c|x,wm))

)
.

BALD (Houlsby et al., 2011) estimates the mutual information (MI) between the datapoints and the
model weights, the idea being that points with large MI between the predicted label and weights
have a larger impact on the trained model’s performance. The measure, denoted I , is approximated
as:

I[y|x] := H[y|x]− 1

M

M∑
m=1

∑
c

−p(y = c|x,wm) log p(y = c|x,wm)

We use M = 25 and a dropout rate of 0.5 as done in prior work (Beluch et al., 2018). For consis-
tency, dropout is not applied during pre-training, only fine-tuning.

BADGE (Ash et al., 2019). Batch Active learning by Diverse Gradient Embeddings (BADGE)
uses the loss gradient of the neural network’s final dense layer for each unlabeled sample, where the
loss is computed using the model’s most likely label for the sample. The gradient embeddings are
clustered using the K-means++ seeding algorithm (Arthur & Vassilvitskii, 2006) and the centroids
are the samples added to the labeled set. The gradient embedding for a sample captures how uncer-
tain the model is about the sample’s label while the clustering provides diversity in sample selection.
We use the sklearn.cluster.kmeans plusplus function with the default settings.

CoreSet (Sener & Savarese, 2017). Selects points to optimally cover the samples in embedding
space. Specifically, at each acquisition round, it grows the active set one sample at a time for B
iterations. In each iteration, the candidate point xi that maximizes the distance between itself and its
closest neighbor xj in the current active set is added. We use Euclidean distance on the activations
of the penultimate layer (the layer immediately before the classification head), as done in Citovsky
et al. (2021).

Margin-Density (Nguyen & Smeulders, 2004). Scores candidates by the product of their margin
and their density estimates, so as to increase diversity. The density is computed by first clustering the
penultimate layer activations of the current model on all |Z| candidate points via K-means. Then,
the density score of candidate xi is computed as: |C(xi)|/|Z|, where C(xi) is the cluster containing
xi. We use min{20, |Z|} clusters.

Cluster-Margin (Citovsky et al., 2021). Designed as a way to increase diversity in the extremely
large batch size (100K-1M) setting where continuously model retraining can be expensive, Cluster-
Margin prescribes a two step procedure. First, after the model is trained on the seed set, penultimate
layer activations for all points are extracted and clustered using agglomerative clustering. This
clustering is done only once. During each acquisition round, candidates with the m × B lowest
margin scores (denoted M ) along with their clusters CM are retrieved. CM is sorted ascendingly
by cluster size and cycled through in order, selecting a single example at random from each cluster.
After sampling from the final (i.e. largest) cluster, points are repeatedly sampled from the smallest
unsaturated cluster until a total ofB points have been acquired. We explore the same settings as they
do: m = 1.25 as well as m = 10. We use Scikit-Learn’s (Pedregosa et al., 2011) agglomerative
clustering API with Euclidean distance, average linkage, and number of clusters set to bNtotal/mc.
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Query-by-Committee (QBC) Beluch et al. (2018). Uses the disagreement among models in an
ensemble, or committee, of K models trained on the active set at each iteration. Like Munjal et al.
(2022), we use the variance ratio v which was shown to give superior results. It is computed as
v = 1 − fm/K, where fm is the number of predictions in the modal class. We set K = 25. As
noted in prior work, differences among the committee members largely stem from differences in
random initialization of the model than from random mini-batch ordering. Thus, when evaluating
with pre-training, we use randomly initialized non-pre-trained members.

PowerMargin and PowerBALD. Like many other AL methods, both margin and BALD were
designed for the case when points are acquired one at a time (i.e. batch size 1). Recently, Kirsch et al.
(2021) proposed a simple and efficient technique for extending any single sample acquisition method
to the batch setting. Letting {si} represent the scores for the candidate points Z , instead of selecting
topk {si}, they propose selecting topk {si + εi} (softmax variant) or topk {log(si) + εi} (power
variant), where εi ∼ Gumbel(0, β−1). The driving insight, derived from the popular Softmax-
Gumbel trick (Maddison et al., 2014; Gumbel, 1954; Kool et al., 2019), is that topk {si + εi} is
the same as sampling stochastically without replacement from Z where the sampling distribution
is Categorical

(
exp(βsi)∑
j exp(βsj)

, i ∈ {1, . . . , |Z|}
)

. As they recommend, we use the power variant with

β = 1 for both BALD and margin with 1−Margin(·) used for the latter.

4 EXPERIMENTS

4.1 SETUP

Active Learning Setting. We consider batch-based AL in this work. Starting with a seed set
I0 of labeled points drawn from the training split, we select the best B points—according to the
examined AL method—from the remainder of training to be labeled and added to our active set at
each acquisition round. We do this iteratively for T rounds or until the training dataset is exhausted,
whichever happens first.

In order to get a clear picture into the performance of AL algorithms across active learning settings of
practical interest, we construct the following scenarios, fixing T = 20. Small: |I0| = 30, B = 10.
Medium: |I0| = 100, B = 50. Large: |I0| = 300, B = 200.

Datasets. We consider the same 69 tabular datasets used in Bahri et al. (2021) and perform the
same pre-processing steps. Concretely, these are all the datasets from the public OpenML-CC18
classification benchmark1 under the CC-BY licence, less MNIST, Fashion-MNIST, and CIFAR10
as they are vision-centric. We pre-process as follows: if a feature column is always missing, we
drop it. Otherwise, if the feature is categorical, we fill in missing entries with the mode, or most
frequent, category computed over the full dataset. For numerical features, we impute it with the
mean. We represent categorical features by a one-hot encoding. We z-score normalize (i.e. subtract
the mean and divide by the standard deviation) all numerical features of every dataset except three
(OpenML dataset ids 4134, 28, and 1468), which are left unscaled. For each OpenML dataset, we
form 80%/20% train/test splits where a different split is generated for each of the 20 trials and
all methods use the same splits. Unsupervised SCARF pre-training uses the features (and not the
labels) of the entire train split – 70% for training and the remaining 10% as a validation set for early
stopping.

Model Architectures and Training. Our model consists of a backbone followed by a classification
head (a single affine projection down to number of classes). The backbone is a 5-layer ReLU deep
net with 256 units per layer. When the model is SCARF pre-trained, a pre-training head, a 2-layer
ReLU net with 256 units per layer, is attached to the output of the backbone. After pre-training the
backbone with the pre-training head, the head is discarded; both the backbone and the classification
head are updated during supervised fine-tuning. We use the recommended settings for SCARF –
60% of the feature indices are corrupted and no temperature scaling (i.e. τ = 1). We pre-train for
a maximum of 1000 epochs, early stopping with patience 3 on a static validation set built from 20
epochs of the validation data. We train all models with the Adam optimizer using default learning

1https://docs.openml.org/benchmark/
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Figure 1: Medium scale win and box plots. The box plots shown are unfiltered (those filtered by
p-value are shown in the Appendix). We see with and without pre-training, margin matches or out-
performs alternatives on nearly all datasets for which there was a statistically significant difference.
For example, without pre-training, it outperforms random all 41 of 41 times, CoreSet 41 of 41 times,
and BALD 37 of 37 times. The relative gain over random is about 1-3%. See §4.2 for details on the
statistical computation.

rate 0.001 and a batch size of 128. For supervised training, we minimize the cross-entropy loss for
30 epochs.

Implementation and Infrastructure. Methods were implemented using the Keras API of Tensor-
flow 2.0. Experiments were run on a cloud cluster of CPUs, and we used on the order of one million
CPU core hours in total for the experiments.
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Figure 2: Medium scale AL curves. Margin has strong, stable performance across rounds for its
best (top) and worst (bottom) datasets alike, with and without pre-training. Average dataset is in the
Appendix.

4.2 EVALUATION METHODS

We largely follow the evaluation methodologies of Bahri et al. (2021), which we briefly review.

Win matrix. Given M methods, we compute a “win” matrix W of size M ×M , where the (i, j)
entry is defined as:

Wi,j =

∑69
d=1 1[method i beats j on dataset d]∑69

d=1 1[method i beats j on dataset d] + 1[method i loses to j on dataset d]
.

“Beats” and “loses” are only defined when the means are not a statistical tie (using Welch’s t-test
with unequal variance and a p-value of 0.01). A win ratio of 0/1 means that out of the 69 (pairwise)
comparisons, only one was significant and it was a loss. Since 0/1 and 0/69 have the same value
but the latter is more confident indication that i is worse than j, we present the values in fractional
form and use a heat map.

Box plots. The win matrix effectively conveys how often one method beats another but does not
capture the degree by which. To that end, for each method, we compute the relative percent im-
provement over the random sampling baseline on each dataset. We then build box-plots depicting
the distribution of the relative improvement across datasets. We show relative gains on all datasets
as well as gains only on statistically significant datasets where the means of the method and the ref-
erence are different with p-value 0.1 (we use a larger p-value here than with the win ratio to capture
more points).

We show win ratio and box plots for the Area Under the Budget Curve (AUBC) metric, where the
x-axis is “number of batches acquired” and the y-axis is test accuracy. The trapezoidal rule is used
to calculate the area.

Probability of Improvement. Following the methodology of Agarwal et al. (2021), we estimate the
probability that a method will outperform Margin when the dataset is unknown and we use stratified
bootstrapping to estimate confidence intervals of this statistic. See the Appendix for details.
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Figure 3: Small scale win and box plots. The box plots shown are unfiltered (those filtered by p-
value are shown in the Appendix). We see that even here margin matches or outperforms alternatives,
with and without pre-training, on nearly all datasets for which there was a difference. Without pre-
training, it outperforms random all 39 of 40 times, CoreSet 36 of 36 times, and BALD 44 of 44
times. The relative gain over random is about 1-4%.

4.3 MEDIUM SETTING RESULTS

Figure 1 shows results for our medium scale active learning setup. Firstly, all baselines except for
CoreSet, Max-Entropy, BALD, and PowerBALD methods are able to outperform the random sam-
pling baseline on roughly half of all the datasets. Thus, actively selecting which points to label does
in fact help model performance in this regime. We find that with and without pre-training, margin
slightly outperforms Least Confident and Entropy (the other uncertainty baselines) along with QBC,
Margin-Density and Min-Margin. It significantly outperforms clustering-centric baselines TypiClust
and Cluster-Margin, if the latter uses an average cluster size of 10. When Cluster-Margin uses an
average cluster size of 1.25, performance is similar to margin. This makes sense, since in this case,
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Figure 4: Small scale AL curves. Like the medium setting, margin has strong, stable performance
across rounds for its best, average, and worst datasets alike, with and without pre-training. See
Appendix for best and worst datasets.

the algorithm first selects the roughly B lowest margin points, and each point will more or less have
its own cluster (except perhaps if two datapoints are near duplicates), so sampling from these clus-
ters will just return the same lowest margin points. From the box plots we see that margin beats
random by a relative 1-3% on average. Methods that tied or slightly underperformed margin on the
win plots have a comparable relative gain over random, whereas the gains for others are near zero
or negative (in the case of BALD). For each pre-training setting, Figure 2 shows AL curves for the
datasets margin performs best, average, and worst on, compared to random (filtering using a p-value
of 0.1). We clearly see margin near or at the top of the pack in all cases and across all acquisition
rounds.

4.4 SMALL SETUP RESULTS

Somewhat to our surprise, the trends in the small setup are similar to those for the medium scale
setup. A priori it seemed that with a seed set size of merely 30, embeddings or uncertainties derived
from the current model would be untrustworthy and that random sampling would often be optimal.
However, we find that even in this regime, margin and other uncertainty-based baselines provide
a boost. Observing performance after the 7th acquisition round, we see that as before, CoreSet,
TypiClust, PowerBALD, and Max-Entropy perform similar to random while BALD underperforms
substantially.

4.5 LARGE SETUP RESULTS

In this setting we use a larger seed set and a larger batch, to test whether starting with a more accurate
underlying model will benefit alternatives more than margin and whether margin’s naive top-k batch
acquisition approach would be overshadowed by the other baselines’ diversity-promoting ones. With
the caveat that what sizes are considered small or large is subjective and application specific, we
observe no differences in high level trends in this setting. Results are presented in Figures 6, 7, and
8, shown in the Appendix.

5 CONCLUSION

In this work, we question whether many active learning strategies, new and old alike, can really
outperform simple margin sampling when deep neural networks are trained on small to medium-
sized tabular datasets. We analyzed a diverse set of methods on 69 real-world datasets with and
without pre-training under different seed set and batch sizes, and we found that no method was
able to outperform margin sampling in any statistically remarkable way. Margin has no hyper-
parameters and is consistently strong across all settings explored. We cannot recommend a single
better method for practitioners faced with data labeling constraints, especially in the case of tabular
data, or baseline to be benchmarked against by researchers in the field.
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classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Peiyun Hu, Zachary C Lipton, Anima Anandkumar, and Deva Ramanan. Active learning with partial
feedback. arXiv preprint arXiv:1802.07427, 2018.

Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Wei Ma, Mike Papadakis, and Yves Le Traon.
Towards exploring the limitations of active learning: An empirical study. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 917–929. IEEE, 2021.

Lian-Zhi Huo and Ping Tang. A batch-mode active learning algorithm using region-partitioning
diversity for svm classifier. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 7(4):1036–1046, 2014.

Ahmed Hussein, Mohamed Medhat Gaber, and Eyad Elyan. Deep active learning for autonomous
navigation. In International Conference on Engineering Applications of Neural Networks, pp.
3–17. Springer, 2016.

Heinrich Jiang and Maya R Gupta. Bootstrapping for batch active sampling. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3086–3096, 2021.

Stamatis Karlos, Georgios Kostopoulos, Sotiris Kotsiantis, and Vassilis Tampakas. Using active
learning methods for predicting fraudulent financial statements. In International Conference on
Engineering Applications of Neural Networks, pp. 351–362. Springer, 2017.

Andreas Kirsch, Sebastian Farquhar, and Yarin Gal. A simple baseline for batch active learning with
stochastic acquisition functions. arXiv preprint arXiv:2106.12059, 2021.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning, pp. 3499–3508. PMLR, 2019.

David D Lewis, Robert E Schapire, James P Callan, and Ron Papka. Training algorithms for lin-
ear text classifiers. In Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 298–306, 1996.

Annika Liebgott, Thomas Küstner, Sergios Gatidis, Fritz Schick, and Bin Yang. Active learning
for magnetic resonance image quality assessment. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 922–926. IEEE, 2016.

David JC MacKay. The evidence framework applied to classification networks. Neural computation,
4(5):720–736, 1992.

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. Advances in neural information
processing systems, 27, 2014.

Ali Mottaghi and Serena Yeung. Adversarial representation active learning. arXiv preprint
arXiv:1912.09720, 2019.

Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards ro-
bust and reproducible active learning using neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 223–232, 2022.

Hieu T Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Proceedings of the
twenty-first international conference on Machine learning, pp. 79, 2004.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

11



Under review as a conference paper at ICLR 2023

Davi Pereira-Santos, Ricardo Bastos Cavalcante Prudêncio, and André CPLF de Carvalho. Empiri-
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A APPENDIX

We present results that were omitted from the main text.

A.1 PROBABILITY IMPROVEMENT: AN ALTERNATIVE TO WIN RATIO PLOTS

Agarwal et al. (2021) suggests various statistically sound strategies for comparing the performance
of methods across tasks (or datasets) in the presence of stochastic factors. One such strategy is prob-
ability of improvement, which we briefly review for completeness (see the paper for more details).

Let X and Y be the scalar performance metric (higher is better) of algorithms X and Y , and Xm

(Ym) be the performance of X (Y ) on dataset m. Suppose we observe N samples of Xm and K
samples of Ym. We use the Mann-Whitney U-statistic:

P (Xm > Ym) =
1

NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j) where S(x, y) =


1, if y < x,
1
2 , if y = x,

0, if y > x.

P (X > Y ) =
1

M

M∑
i=1

P (Xm > Ym),

where xm,i represents the performance of X on trial i on dataset m. We perform stratified bootstrap
sampling (re-sampling 200 times fromXm,1:N and Ym,1:K for each datasetm) and then show violin
plots of the bootstrap sampling distribution of the U-statistic (i.e. probability of improvement). If
the upper CI is higher than a threshold of 0.75, then the results are said to be statistically meaningful
as per the Neyman-Pearson statistical testing criterion.

In Figure 5 we plot the probability that a method beats Margin on the AUBC metric. We find that
this probability is less than around 0.50 and the quantiles are well below 0.75 so we can say that
when the dataset / task is unknown, no method outperforms Margin in any reasonably statistically
meaningful way.

Figure 5: Probability of Improvement charts for small (top) and medium (bottom) settings. We see
that the alternatives to Margin do not beat Margin in a statistically meaningful way.

A.2 LARGE SETTING RESULTS
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Figure 6: Win and unfiltered box plots for the large setting.
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Figure 7: Box plots for the large setting filtered using a p-value of 0.1.

Figure 8: AL curves for the large setting.

15



Under review as a conference paper at ICLR 2023

A.3 REMAINING SMALL AND MEDIUM SCALE RESULTS

Figure 9: Top: Box plots for the medium setting filtered using p-value 0.1. Bottom: Same plots for
the small setting.
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Figure 10: AL curves: middle curves for medium setting (top), top and bottom curves for the small
setting (bottom two).
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