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ABSTRACT
In this paper, we are interested in identifying denser and finer
animals joints. The lack of standardized joint definitions across
various APE datasets, e.g., AnimalPose with 20 joints, AP-10k with
17 joints, and TigDog with 19 joints, presents a significant chal-
lenge yet offers an opportunity to fully utilize annotation data. This
paper challenges this new non-standardized annotation problem,
aiming to learn fine-grained (e.g., 24 or more joints) pose estimators
in datasets that lack complete annotations. To combat the unan-
notated joints, we propose FreeNet, comprising a base network
and an adaptation network connected through a circuit feedback
learning paradigm. FreeNet enhances the adaptation network’s
tolerance to unannotated joints via body part-aware learning, opti-
mizing the sampling frequency of joints based on joint detection
difficulty, and improves the base network’s predictions for unanno-
tated joints using feedback learning. This leverages the cognitive
differences of the adaptation network between non-standardized
labeled and large-scale unlabeled data. Experimental results on
three non-standard datasets demonstrate the effectiveness of our
method for fine-grained APE.

CCS CONCEPTS
• Computing methodologies→ Interest point and salient re-
gion detections;Computer vision;Biometrics; Semi-supervised
learning settings.

KEYWORDS
pose estimation, animal biometrics, free labeling, meta learning

1 INTRODUCTION
Animal pose estimation (APE) aims to localize the joint positions
on animal bodies. It has important implications for a range of ap-
plications, including behavior understanding, wildlife conserva-
tion, animal individual identification, and the generation of animal-
related multimedia content [2, 18, 21]. Accurate APE can also con-
tribute to developing more immersive and interactive multimedia
content involving animals, enhancing user engagement. Despite
well-established techniques in human pose estimation for complex
scenes [8, 26], APE is still at its infancy stage [10] due to significant
appearance variance, behavior difference, and joint distribution
shifts. Early studies [7, 17] attempted to train the model on a single-
category APE dataset and transfer the learned knowledge to other
animals. However, these methods are limited in their ability to
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Figure 1: Illustration of animal pose estimation task. Existing
methods depend on full annotating (a) large-scale data or
(b) scarce data, whereas (c) we use zero full annotation. We
aim to learn fine-grained pose estimators from non-standard
datasets, which is a new annotation problem setting in APE.

handle species that do not share certain similarities with trained
animals. Some methods [12, 19] utilize CAD models to generate
synthetic animal images and labeled joints for APE. However, these
models often face a significant domain gap due to the limited varia-
tion in environmental conditions and viewpoints.

Existing studies [20, 29] circumvent this domain gap by utilizing
a general APE dataset with massively increased scale and animal
diversity (in Figure 1(a)). For example, AnimalPose [4] contains
4,666 images, AP-10k [30] contains 10,015 images, and TigDog [6]
contains 14,093 images. However, collecting large-scale datasets
with precise full annotation costs a large effort (e.g., 20 seconds for
one joint even using AI-assisted annotation [16]). Another feasible
way is leveraging large-scale unlabeled data to alleviate the need for
fully annotated labeled data. For example, ScarceNet [13] employs
strategies such as reliable pseudo-label selection and reusable sam-
ple re-labeling to combat the noisy pseudo labels for APE. Although
the annotation effort is getting smaller (in Figure 1(b)), full data
annotation is still mandatory. This raises a question: for achieving
fine-grained animal pose (denser joints), do we need to re-annotate
existing datasets with full annotations? To answer this question, we
focus on how to learn fine-grained animal poses from non-standard
labeled data with zero full annotation as illustrated in Figure 1(c).

This non-standardized annotation problem is a new challenge
in fine-grained APE. Nevertheless, it is significant and valuable
in practical applications as there is no consensus on annotation
standards across existing APE datasets. Specifically, AnimalPose [4]
with 20 joints, AP-10k [30] with 17 joints, and TigDog [6] with 19
joints, presents a unique challenge and opportunity in fully utilizing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Joints relationship

(b) AnimalPose sample

(c) AP-10k sample

Figure 2: (a) The joint relationship across different datasets.
(b-c) Non-standardized annotations in two samples, including
exclusive joints in green and unannotated joints in red. We
use HRNet trained with AnimalPose and AP-10k for testing.

annotation data. However, existing works rely on full annotated
data and neglect to utilize multiple non-standard annotation data
for APE. In this paper, we aim to address the non-standardized
annotation problem. As illustrated in two samples of Figure 2, the
shared joints are grouped into three body parts, namely the head,
frontal body, and back body, and the exclusive joints of each dataset
(marked in green) are grouped as “unshared joints”. We mark the
unannotated joints in red. Figure 2 (a) demonstrates the joint rela-
tionship across different datasets, which provides two key insights.
First, we observe shared joints in different animal body parts exhibit
different learning difficulties due to dataset gaps and considerable
species variation. This accuracy difference between head joints
and back body joints is close to 10%. Second, due to lacking full
annotated data, the unshared joints across different datasets have
the smallest average number and the worst accuracy, aggravating
the skewed joint distribution in the combined training data.

Intuitively, different classifiers can produce different decision
boundaries and have different learning abilities. To combat the
unannotated joints, we chose bi-model training to leverage the
different abilities of the two models in complementary ways. Specif-
ically, we propose FreeNet, which consists of a base network and
an adaptation network, aiming at fine-grained APE with free full
annotation labels. FreeNet enhances the adaptation network’s tol-
erance to unannotated joints via body part-aware learning and
improves the base network’s predictions for unannotated joints via
feedback learning. Body part-aware learning is proposed to miti-
gate different learning difficulties of animal bodies, and the core is
part-aware sampling, ensuring that easy-to-detect joints (i.e., the
head joints) are sampled less and hard-to-detect joints (i.e., the
back body joints) are sampled more. Our circuit feedback learning
paradigm connects the base network and adaptation network and
informs the base network how good the pseudo labels of unanno-
tated joints are by using the cognitive difference of the adaptation
network between non-standard labeled data (i.e., with unannotated
data) and large-scale unlabeled data. As a result, the training error
caused by those joints is adaptively corrected.

Two training pools, non-standard labeled and unlabeled data, are
utilized to train the two networks. We refer to each fully-trained
base and adaptation mode as a generation. At each generation,

1) FreeNet dynamically selects pseudo-joints from unlabeled data to
facilitate body part-aware learning of the adaptation network. The
joints are divided into three parts based on different animal bodies:
the head, frontal body, and back body. For each part, we rank the
joints based on the confidence scores produced by the base network
and select the most confident joints for learning. Our body part-
aware sampling determines the percentage of joints selected for
each part. 2) FreeNet adopts a circuit feedback mechanism to refine
the base network’s predictions for unannotated joints, leveraging
the cognitive differences of the adaptation network. If the cognitive
difference between non-standard labeled and selected unlabeled
data is significant, the base network is penalized using the adverse
direction of current gradients. The selection of unlabeled data is
guided by the confidence score rankings of pseudo-joints from both
networks to ensure unannotated joints are further improved during
feedback learning.

To sum up, this paper makes the following contributions:
• We address the non-standardized annotation problem, a new
and significant challenge in fine-grained animal pose esti-
mation, which is useful in real-world applications due to the
lack of consensus on APE annotation standards.
• We propose FreeNet, a general framework to combat the
unannotated joints via meta-optimization. FreeNet enhances
the adaptation network’s tolerance to unannotated joints
through body part-aware learning and uses feedback learn-
ing to improve the base network’s predictions of these joints.
• We achieve state-of-the-performance for fine-grained APE
on non-standard datasets. Furthermore, we can learn fine-
grained pose estimators without requiring full annotations.

2 RELATEDWORK
2.1 Datasets for Animal Pose Estimation
Deep architectures have made remarkable progress in human pose
estimation thanks to the availability of large-scale, high-quality
annotated datasets like MPII [1] and COCO [15]. When it comes
to animal pose estimation, early works have established datasets
for specific animals such as horses [4], dogs [3], and tigers [19].
However, models trained on these datasets have poor generaliza-
tion ability. To reduce the need for extensive human labor, some
researchers have explored using CAD models to generate synthetic
animal images for pose estimation [12, 19, 23]. However, these syn-
thetic images have limited variations in environmental conditions
and viewpoints, which leads to a significant performance gap when
adapting to real-world animal images. To bridge this gap, several
large-scale datasets including AP-10k [30], APT-36k [29], Animal-
Pose [4], and Animal Kingdom [20] have been introduced recently.
The AP-10k and APT-36k datasets were established by the same
research group, with APT-36k focusing on video-based animal pose
tracking. The Animal Kingdom dataset provides multiple annotated
tasks to facilitate understanding animal behavior. However, there
is no consensus on the annotation standards, and the definition of
animal joints differs across datasets, as shown in Table 1. For in-
stance, the AP-10k dataset includes 54 animal species with 17 joints,
while the AnimalPose dataset covers only 5 species but with 20
joints. The lack of standardization in defining animal poses brings
a challenge yet opportunity in fully exploiting annotation data.
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Table 1: Analysis of various animal pose datasets.

TigDog AnimalPose AP-10k
Species 2 5 54
Image 14,903 4,666 10,015
Instance NA 6,117 13,028
Joint 19 20 17

Exclusive
joints:9

neck ✗ neck
✗ nose nose
✗ left ear ✗

✗ right ear ✗

✗ throat ✗

✗ wither ✗

chin ✗ ✗

shoulder-like(L) ✗ ✗

shoulder-like(R) ✗ ✗

Shared
joints:15

left eye, right eye, root of tail,
left shoulder, left elbow, left frontal paw,

right shoulder, right elbow, right frontal paw,
left hip, left knee, left back paw,

right hip, right knee, right back paw

2.2 Animal Pose Estimation
Pose estimation can be viewed as a regression of heatmaps, and
ideas such as bottom-up and top-down approaches for human pose
estimation can also be adapted for animals [10]. However, due to
the significant differences between humans and animals, the devel-
opment of APE methods heavily relies on the availability of APE
datasets. When only specific animal pose data is available, the focus
is on transferring specific domain knowledge to a more general-
ized animal context [12, 19, 23]. However, a considerable gap still
exists, especially when dealing with unseen animal species [14]. To
address cross-species generation for APE, D-Gen [14] enhances an-
imal pose estimation by breaking the inconsistent relations among
joints while preserving the consistent ones. Synthetic animal images
generated from CAD are then used to facilitate APE by reducing
the domain gap. CC-SSL [19] employs three consistency criteria
to constrain both spatial and temporal to general pseudo labels.
To correct noisy pseudo labels, MDAM [12] gradually updates the
pseudo labels to prevent network overfitting. However, synthesiz-
ing realistic images is limited due to environmental and viewpoint
variations. To reduce human labor, ScarceNet [13] learns APE with
scarce but full annotations. In contrast, Our FreeNet focuses on
learning from several non-standard datasets to achieve fine-grained
animal pose estimation with zero full annotation data.

2.3 Learning with Unlabeled Data
Annotating animal images can be labor-intensive, error-prone, and
hard to maintain semantic consistency for joints. To address this
problem, semi-supervised learning with unlabeled data can be feasi-
ble. General image classification methods such as PL [11] and noisy
student [27] generate pseudo labels for unlabeled data from model
predictions. UDA [24] improves semi-supervised learning by incor-
porating data augmentation [5] to limit the invariance of model
predictions to input noise. FixMatch [24] simplifies the learning
process by training the model with high-confidence pseudo labels.

MPL [22] enables the teacher network to adjust based on students’
performance feedback on labeled data, which improves pseudo la-
bels. GPGML [28] proposes inexact supervised meta-learning to
use coarse-grained labels of training samples to reduce the need for
labeled data. To mitigate the negative effect of unannotated joints
while facilitating the learning of shared joints, we combine PL with
body part-aware sampling and feedback learning.

3 OUR METHOD: FREENET
3.1 Overview
3.1.1 Preliminaries. Let’s consider our training set D, comprising
unlabeled data D𝑢 = {(𝑥𝑢 )} and 𝑀 non-standard datasets with
labeled images, denoted asD𝑙 = {D𝑙1 ∪D𝑙2 ...∪D𝑙𝑀 }. The labeled
data D𝑙 forms a joint sample space X𝑙 ×Y∗𝑙 , where X𝑙 is the image
space and Y∗

𝑙
is the corresponding label space with partial annota-

tions (i.e., some joints are missing annotations). Specifically, the 𝑖-th
labeled dataset D𝑙𝑖 =

{(
𝑥𝑙𝑖 , 𝑦

∗
𝑙𝑖

)}
comprises 𝑁𝑖 instance samples.

Here, 𝑁J𝑖 denotes the total number of joints for all samples, and
J𝑖 refers to the definition of joints. By combining these 𝑀 non-
standard datasets, we obtain animal poses characterized by a richer
set of semantic joints, denoted by J𝑙 = {J1∪J2 ...∪J𝑀 }, where J𝑠

𝑖
represents the shared joints, and J𝑒

𝑖
denotes the exclusive joints

unique to the labeled dataset, e.g., chin for TigDog and wither for
AnimalPose. Therefore, the unannotated joints for D𝑙𝑖 can be rep-
resented by J𝑙 \ (J𝑠

𝑖
∪ J𝑒

𝑖
). We propose the FreeNet framework,

which leverages several non-standard datasets and unlabeled data
to address the unannotated joints.

3.1.2 Our framework. FreeNet consists of an adaptation network (A)
and a base network (B), both utilizing the same network architec-
ture (e.g., HRNet [25]) but with independent weights. This bi-model
training helps combat unannotated joints by leveraging the dif-
ferent abilities of the two models. We learn FreeNet by training
the adaptation network and the base network sequentially in each
generation. The training objective for the adaptation network is
denoted by

LA = L𝑢 ,
where L𝑢 guides to learn body part-aware features from pseudo-
labels. Meanwhile, the overall training objective for the base net-
work is:

LB = L𝑠 + L𝑓 ,

where L𝑠 supervises learning of prior features from non-standard
datasets, and the feedback lossL𝑓 refines the base network through
feedback learning. Figure 3 illustrates the FreeNet pipeline, with
non-standard labeled and selected unlabeled data serve as inputs
on the left. We avoid merging non-standard and pseudo labels in a
single training pool to prevent poor performance and convergence
failure due to their label distribution disparity (see Figure 4).

At each generation, the base network generates pseudo labels for
the unlabeled data D̂𝑢 = {(𝑥𝑢 , 𝑦𝑢 )}. The adaptation network then
uses a selected pseudo-labeled subset Û ⊂ D̂𝑢 (achieved by apply-
ing body part-aware sampling) for training. The base network learns
prior knowledge from several non-standard labeled data. With
feedback learning, the base network uses another selected pseudo-
labeled subset Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ⊂ D̂𝑢 (i.e., using a threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 )
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FreeNet enhances the adaptation network’s tolerance to unannotated joints via (b) body part-aware learning. In the meta-test
phase, FreeNet improves the base network’s ability to accurately predict unannotated joints via (c) feedback learning.
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Figure 4: We utilize (a) pseudo labels and (b) non-standard
labels as training targets. There are substantial difference in
their label distribution. The arrow highlights the generated
unannotated joints.

to generate better pseudo-joints, especially for unannotated joints,
therefore improving the performance of the adaptation network. Ul-
timately, the adaptation network outperforms the base network in
the circuit feedback paradigm. During the inference stage, only the
adaptation network is used to estimate animal poses with denser
joints. The following parts will detail the different learning modules
and loss computation.

3.2 Body Part-aware Learning
Joints in different animal bodies often exhibit varying learning dif-
ficulties and can adversely hurt performance if used directly for
training. To address this, FreeNet dynamically selects pseudo-joints
from unlabeled data to facilitate body part-aware learning in the
adaptation network. We first decompose the joints into three an-
imal body parts: the head, frontal body, and back body. Based on
their confidence scores determined by the base network, we rank
the joints for each part and select the most reliable for learning. We
intentionally avoid using joints with small losses for training, as

relying on a “small loss” criterion [9] can lead to a skewed distribu-
tion of joints, which hinders learning a good adaptation network.
Our body part-aware sampling strategy determines the sampling
frequency of joints based on joint detection difficulty. It prioritizes
hard-to-detect joints by sampling these more frequently than those
easy-to-detect joints, as shown in Figure 3(b).

The proportion of joints to be selected for each body part is
determined by thresholds 𝛾ℎ𝑒𝑎𝑑 , 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 , and 𝛾𝑏𝑎𝑐𝑘 . For instance,
a head joint will be selected if its corresponding confidence score
falls within the 𝛾ℎ𝑒𝑎𝑑 proportion of all sorted confidence scores
for head joints. The selected pseudo-joints corresponding to the
head, frontal body and back body are included in Û to update the
adaptation network using L𝑢 :

L𝑢 =

∑𝑁 𝐽

𝑘=1

{
Ĥk
u ∈ Û

}
1
L𝑘
𝑢∑𝑁 𝐽

𝑘=1
{
Ĥk
u ∈ Û

}
1

,

where L𝑘
𝑢 =

Ĥk
u − (A(xu;𝜃A ))𝑘

2 .
(1)

Ĥk
u represents the pseudo heatmap for the 𝑘-th joint, which can be

derived from soft prediction B(xu;𝜃B) in two steps: 1) extracting
joints from soft prediction with highest confidence; 2) applying 2D
Gaussian centered on each joint location with a standard deviation
of 1 pixel. L𝑘

𝑢 is the corresponding pseudo label based loss for the
𝑘-th joint. {condition}1 is a condition function, which outputs 1
when the condition is true and 0 otherwise.

3.3 Non-standard Datasets Learning
The base network is trained with non-standard labeled datasets. We
apply a joint combination to transform partially annotated labeled
spaces, Y∗

𝑙
, into fully annotated ones, Ỹ𝑙 . In this transformation,

we use 0 to represent joints that lack annotations, resulting in a
comprehensive labeled dataset D̃𝑙 . Specifically, for each joint set 𝐽𝑖 ,
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we define 𝐽
′
𝑖
= (𝐽𝑖 , 0), where 0 signifies the unannotated joints. The

dimension of 0 corresponds to the number of unannotated joints,
denoted as ∥ 𝐽 ′

𝑖
\ (𝐽𝑠

𝑖
∪ 𝐽𝑒

𝑖
) ∥.

We use ground truth heatmaps,𝐻𝑙 , derived from Ỹ𝑙 , as targets for
training the base network. The training process aims to minimize
the mean square error (MSE) between the predicted heatmaps and
these target heatmaps, which can be expressed as:

L𝑠 =
∑𝑀
𝑖=1

Hli − B(xli ;𝜃B)
2 (2)

where𝑀 is the number of non-standard datasets and𝑀 ≥ 2.

3.4 Feedback Learning
To combat the unannotated joints, we propose feedback learning
that aims to improve the base network’s ability to predict pseudo-
joints, especially those that are unannotated. The intuition behind
the base network update is the relationship between the “new”
adaptation network on non-standard labeled data and the “old”
adaptation network on unlabeled data. Essentially, the adaptation
network gauges the cognitive differences between labeled and unla-
beled data to update the base network as feedback. If the gradients
of two networks have the same direction, the base network is up-
dated in the current direction. In contrast, if the gradients of two
networks have different directions, the base network is punished us-
ing the adverse direction of current gradients. As the base network
is improved to produce accurate predictions for unannotated joints,
this strategy can help narrow the gap between non-standard labeled
and large-scale unlabeled data. Using more accurate pseudo labels
will further improve the performance of the adaptation network
for APE.

The base network is trained on non-standard labeled data that
includes unannotated joints, whereas the adaptation network is
trained using unlabeled data with fully pseudo-labels. In view of
this, we use the confidence score rankings of pseudo-joints from
both networks as the selection criterion. The threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 =

(𝑎%, 𝑏%) determines the proportion of pseudo-joints selected for
Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 . The criteria are as follows,

(1) Pseudo-joints ranked between 𝑎% and 𝑏% by either the base
network or the adaptation network are included in Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 .

(2) Pseudo-joints with conflicting ranking between the two net-
works are also selected in Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 . Specifically, we focus
on those with ranking falling smaller than 𝑎% or greater than
𝑏% in either network.

This selection process is rational because pseudo-joints confirmed
as high-confidence by two networks do not require further updates.
Conversely, pseudo-joints identified as low-confidence by both
networks are excluded from feedback learning to avoid performance
degradation. Once Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is established, the feedback loss is
calculated as the dot product of two terms:

L𝑓 =𝑓 ·

∑𝑁 𝐽

𝑘=1

{
Ĥk
u ∈ Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘

}
1
L𝑘
𝑓∑𝑁 𝐽

𝑘=1

{
Ĥk
u ∈ Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘

}
1

,

where L𝑘
𝑓
=

Ĥk
u − (B(Iu;𝜃B))𝑘

2 .
(3)

The first term 𝑓 is the feedback coefficient that determines the
direction and strength of the update; the second term is the loss

of the base network on selected unlabeled data Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 . L𝑘
𝑓
is

the corresponding loss for the 𝑘-th joint. Specifically, the feedback
coefficient 𝑓 is defined as:

𝑓 = 𝜂A · (∇𝜃 (𝑡+1)A
MSE(𝐻𝑙 ,A(xl ;𝜃

(𝑡+1)
A ))⊤·

∇𝜃AMSE(Ĥu,A(xu;𝜃 (𝑡 )A ))),
(4)

where 𝑓 is calculated as a dot product of two terms: the gradients of
the “new” adaptation network on non-standard labeled data and the
gradients of the “old” adaptation network on large-scale unlabeled
data. The sign of 𝑓 will determine the direction of the update, while
the absolute value of 𝑓 will determine its strength. The adaptation
network uses selected pseudo-joints data to update the parameters
to A (𝑡+1) . In particular, we approximate it with the parameters
obtained from A (𝑡 ) by updating the base network parameters on
(xu, Ĥu), i.e., 𝜃 (𝑡+1)A = 𝜃

(𝑡 )
A − 𝜂A∇𝜃AMSE(Ĥu,A(xu;𝜃A )).

3.5 Algorithm for FreeNet
We listed detailed step-by-step pseudo-code for FreeNet in Algo-
rithm 1. FreeNet learns fine-grained pose estimators by extracting
rich APE knowledge from non-standard labeled and large-scale
unlabeled data. This is achieved by body part-aware learning and a
circuit feedback paradigm. Each generation of FreeNet involves the
following steps: 1) Select unlabeled images from Û based onwhether
the pseudo-joint confidence score ranking of a specific animal body
part meets the sampling thresholds: (𝛾ℎ𝑒𝑎𝑑 ,𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 ,𝛾𝑏𝑎𝑐𝑘 ). 2) The
adaptation network is first updated in line 10 by minimizing the
unsupervised loss L𝑢 , on selected unlabeled data Û. This facilitates
knowledge transfer from the base network B to the adaptation
networkA through the generation of pseudo ground truths, condi-
tioned on body part-aware sampling. 3) The base network is then
updated in line 22 with two losses: the supervised loss L𝑠 (line 13)
and the feedback loss L𝑓 (line 18). The two losses guide the learn-
ing process of the base network, as illustrated in line 15 and line
20, respectively. Specifically, an unlabeled image is selected from
Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 to trigger the feedback loss L𝑓 when a pseudo-joint is
moderately ranked based on the confidence score of entire joints
in the batch. This selection process improves the base network’s
predictions for unannotated joints. By this design, FreeNet enables
the base network and adaptation network to continuously enhance
and complement each other.

4 EXPERIMENTS
4.1 Datasets and Implementation Details
4.1.1 Datasets. Our experiments are conducted on three widely
used benchmark datasets for fine-grained APE. AP-10k [30] is a
large-scale benchmark that contains 10,015 labeled images across
54 species, each annotated with 17 joints. These images are divided
into train, validation, and test sets with a ratio of 7:1:2 for each
species. AnimalPose [4] contains 4,666 labeled images from 5
animal species: cat, dog, sheep, cow, and horse, annotated with 20
joints. TigDog includes 6,523 tiger images and 8,380 horse images,
each annotated with 19 joints. We provide a detailed joint definition
for each dataset in Table 1.
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Algorithm 1 Training Procedure of FreeNet

Input: Non-standard labeled data D𝑙 =

{(
X𝑙 ,Y∗𝑙

)}
and unlabeled

data D𝑢 ;
Body part-aware sampling thresholds: 𝛾ℎ𝑒𝑎𝑑 ,𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 ,𝛾𝑏𝑎𝑐𝑘 ;
Feedback learning threshold: 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ;
Outputs: Θ(𝑇 )A
Initialize: 𝜃 (0)B and 𝜃 (0)A
1: Apply joint combination: Ỹ𝑙 ← Y∗𝑙
2: Get combined labeled data: D̃𝑙 ← D𝑙

3: for 𝑡 = 0...𝑇 − 1 do
4: 𝑥𝑙 , 𝐻𝑙 ← SampleMiniBatch(D̃𝑙 )
5: xu ← SampleMiniBatch(D𝑢 )
6: Ĥu ← Forward(xu, 𝜃 (𝑡 )B )
7: Obtain Û by using thresholds (𝛾ℎ𝑒𝑎𝑑 ,𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 ,𝛾𝑏𝑎𝑐𝑘 )
8: if 𝑥𝑢 ∈ Û then
9: Compute the loss L𝑢 according to Eqn. (1)
10: Update the adaptation network by pseudo label
11: 𝜃

(𝑡+1)
A ←𝜃

(𝑡 )
A − 𝜂A∇𝜃AMSE(Ĥu,A(xu;𝜃A ))

12: end if
13: Compute the loss L𝑠 according to Eqn. (2)
14: Compute the base network’s gradient on combined labeled

data
15: 𝑔

(𝑡 )
B,𝑠 ← ∇𝜃BMSE(𝐻𝑙 ,B(𝑥𝑙 ;𝜃B))

16: Obtain Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 by using threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘
17: if 𝑥𝑢 ∈ Ŝ𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 then
18: Compute the loss L𝑓 according to Eqn. (3-4)
19: Compute the base network’s gradient via feedback
20: 𝑔

(𝑡 )
B,𝑓 ←𝑓 · ∇𝜃BMSE(Ĥu,B(xu;𝜃B))

21: end if
22: Update the base network:
23: 𝜃

(𝑡+1)
B ← 𝜃

(𝑡 )
B − 𝜂B · (𝑔

(𝑡 )
B,𝑠 + 𝑔

(𝑡 )
B,𝑓 )

24: end for
25: return Θ

(𝑇 )
A

4.1.2 Evaluation metrics. We adopt the Object Keypoint Similar-
ity (OKS) as the evaluation metric and represent the mean Average
Precision (mAP) across OKS=0.50,0.55,...0.90,0.95 following [25].
Additionally, we include the Percentage of Correct Keypoints (PCK)
metric [19], which quantifies the percentage of joints accurately
predicted within a normalized distance from the ground truths.

4.1.3 Experimental protocols. To evaluate the precision of addi-
tional learned joints in fine-grained animal poses, we consider two
settings: 1) using synthetic datasets derived from AP-10k and 2) em-
ploying a combination of real datasets. The synthetic datasets are
generated by segmenting AP-10k into subsets, each containing an
equal number of images but varying joint definitions to mimic the
non-standard annotation problem in real-world scenarios. During
testing, we utilize AP-10k’s ground-truth joints to independently
evaluate the accuracy of the unannotated and shared joints, as well
as their accuracy gap. In the case of the real dataset combination,
we report results for 10% of the two combined datasets (AP-10k and

Table 2: Comparing with SOTA methods on scarce and non-
standard datasets. ips means images per species.

Settings Full Annot. Methods mAP↑ PCK@0.05↑

5 ips ✓ ScarceNet 53.3 65.2
25 ips ✓ ScarceNet 68.1 78.2

3 synthetic
datasets
from 25 ips

✗ ScarceNet 55.04 66.26
✗ UDA 50.8 64.06
✗ FixMatch 43.8 57.56
✗ MPL 50.7 63.51
✗ Ours 57.9 68.31

AnimalPose) and 10% of the three combined datasets (AP-10k, Ani-
malPose, and TigDog) to demonstrate the efficacy of our FreeNet
in terms of body part-aware learning and feedback learning. The
combination of real datasets is used as the experimental protocol
in the ablation study.

4.1.4 Training details. All images are augmented using random
scaling, rotation, horizontal flip, and a half-body mask and then
resized to 256×256 pixels. More details are provided in the sup-
plementary material. The size of output heatmaps is 64×64 pixels.
We use HRNet-w32, trained on non-standard labeled data for 210
epochs, as the default backbone for both the base and adaptation
networks. The learning rates are first initialized (i.e., 1e-5 for the
base network and 1e-3 for the adaptation network) and further
decayed with a cosine annealing strategy. Our batch size is 64, com-
prising 8 labeled and 56 unlabeled samples. Unless otherwise stated,
the default thresholds (𝛾ℎ𝑒𝑎𝑑 , 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 , 𝛾𝑏𝑎𝑐𝑘 ) for body part-aware
sampling are set at (0.9, 0.75, 0.6). The default feedback learning
threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is (20%, 80%). We set different training steps
for different settings to fully train the model: 30,000 for AP-10k,
60,000 for the 10% combination of two datasets, and 60,000 for the
10% combination of three datasets. It is trained end-to-end with
two NVIDIA V100 GPUs.

4.2 Comparison with State-of-the-Art Methods
We compare our method with four state-of-the-art semi-supervised
learning methods, including UDA [24], FixMatch [24], MPL [22]
and ScarceNet [13]. We re-implemented UDA, FixMatch, and MPL
using open-source repositories originally developed for classifica-
tion tasks. These methods are selected as they align well with our
aim of leveraging unlabeled data to improve performance when
labeled data is limited. Additionally, we include ScarceNet, a SOTA
method for APE with scarce annotations, using its available source
code for training and evaluation.

Given the recent success of ScarceNet in APE with limited data,
we evaluate our method in the ScarceNet setting on the synthetic
dataset of AP-10k. The 𝛾ℎ𝑒𝑎𝑑 , 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 , and 𝛾𝑏𝑎𝑐𝑘 thresholds for the
body part-aware sampling are 0.5, 0.6, and 0.65, respectively. The
feedback learning threshold 𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is (20%, 80%). Table 2 shows
the comparison results with state-of-art methods. We focus on esti-
mating animal poses from datasets with scarce, non-standardized
annotations, specifically under the “25 images per species” set-
ting (including 1250 images and 1710 instances), where ScarceNet
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Table 3: Results comparison on synthetic datasets derived
from AP-10k when varying the size of shared joints.

Methods Shared Joint Size

5 9 17 (full annot.)

mAP/PCK@0.05 on entire 17 joints
SL 71.39/79.87 72.71/81.39 74.47/82.72
Ours 72.70/80.57 74.20/82.50 NA

PCK@0.05 and accuracy gap on shared/unannotated joints

SL 87.90/77.50 86.24/77.78 82.72/NA
10.4 8.46 NA

Ours 87.90/79.20 87.00/79.50 NA
8.7 7.5 NA

achieves the best accuracy. However, this setting remains unfair
to other comparison methods and our approach, since we do not
assume scarce labels in the problem set, and these images are tai-
lored to favor the performance of ScarceNet. Our three synthesized
non-standard datasets contain the head, frontal body, and back
body as exclusive joints, respectively, with “neck” and “root of tail”
as shared joints. The total number of joints is equals to that in
the “5 images per species” setting used by ScarceNet. All compared
methods have the same inference time of 0.023 seconds per image
as they have the same backbone model with 28.5M parameters. In
Table 2, The results present two findings: 1) Non-standard datasets
pose more significant challenges than scarce data with complete
annotations, as most methods underperform the “5 images per
species” setting. 2) Our method outperforms all other methods,
demonstrating the effectiveness of FreeNet in handling both scarce
and non-standardized annotations.

4.3 Evaluation on non-standardized annotation
To verify the effectiveness of our FreeNet for non-standardized
annotations, we report mAP and PCK@0.05 accuracy on two syn-
thetic datasets from AP-10k in Table 3. Specifically, we use the
accuracy as a function of the size of the shared joints, ranging from
5, 9 to 17. The two synthetic datasets, AP-10k-subA and AP-10k-
subB, have different exclusive joints. AP-10k-subA has exclusive
joints from the frontal body of animals, while AP-10k-subB has
exclusive joints from the back body of animals. 1) “5” shared joints
include the left/right eye, nose, neck, and root of the tail, which
coarsely reflect the animal’s length. 2) “9” shared joints expand this
by adding the left/right frontal paw and left/right back paw, which
coarsely constrains the bounding box of the animal. 3) “17” shared
joints represent the full annotation of AP-10k for supervised learn-
ing, setting an upper bound performance. The results demonstrate
that FreeNet consistently outperforms SL in mAP and PCK@0.05
metrics. Moreover, FreeNet achieves more balanced results between
shared and unannotated joints, leading to a smaller accuracy gap.
Specifically, in the “5” shared joint setting, FreeNet shows a smaller
accuracy gap of 8.7 compared to the SL method’s 10.4. Similarly, in
the “9” shared joint setting, FreeNet maintains a smaller accuracy
gap of 7.5 compared to the SL method’s 8.46.

Model 1

Ls

Model 2

+ Lu

Ours

+ Lf
Ground Truth

Figure 5: Qualitative examples for FreeNet with different loss
functions. Compared to the left column, the baseline model
in the right column adds a new loss by using ‘+’.

Table 4: Performance evaluation of FreeNet on 10% combined
AP-10k and AnimalPose using different loss functions.

Models Loss mAP↑ PCK@0.05↑
L𝑠 L𝑢 L𝑓

1 ✓ ✗ ✗ 52.2 67.6
2 ✓ ✓ ✗ 56.2 70.63

Ours ✓ ✓ ✓ 57.26 71.36

Table 5: Performance of the body part-aware learning with
different sampling ratios.

𝛾ℎ𝑒𝑎𝑑 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 𝛾𝑏𝑎𝑐𝑘 mAP↑ PCK@0.05↑ std PCK↓

100% 100% 100% 56.9 71.4 6.6
90% 75% 60% 56.2 70.63 7.8
50% 60% 65% 57.5 71.28 6

4.4 Ablation Study
4.4.1 Effect of FreeNet design. Table 4 presents the performance of
FreeNet using different losses on combined real datasets, which in-
cludes 10% of AP-10k and AnimalPose. The results indicate that (1)
FreeNet achieves the best performance using three losses together,
compared to the first two models, demonstrating its effectiveness
in addressing the non-standardized annotation problem. (2) The
unsupervised loss L𝑢 enhances animal pose estimation by a large
margin, verifying the effectiveness of body part-aware learning.
(3) Incorporating the feedback learning loss L𝑓 updates the base
network to generate better heatmaps on pseudo-joints, especially
for unannotated joints, further improving the results. Figure 5 pro-
vides some quantitative examples of predicted samples generated
by different baselines, which align with the quantitative results.

4.4.2 Effect of body part-aware learning. As illustrated in Table 5,
using all pseudo-joints of unlabeled data, i.e., 𝛾ℎ𝑒𝑎𝑑 = 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 =

𝛾𝑏𝑎𝑐𝑘 = 100%, does not lead to optimal accuracy as different animal



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Prediction Ground Truth24 Joints21 Joints20 Joints19 Joints17 Joints Ground Truth

(a) (b)

Figure 6: (a) FreeNet’s potential for generating denser joints. (b) Failure cases, red crosses mark undetected unannotated joints.

Figure 7: Feedback learningwith (20%,80%) proportion largely
improves the prediction confidence for unannotated joints.

Table 6: Performance of our feedback learning with different
thresholds to address unannotated joints estimation.

𝛼 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 (0,100%) (0,80%) (20%,80%)

mAP↑ 56.47 56.30 57.26
PCK@0.05↑ 70.60 70.80 71.36

body parts exhibit different learning difficulties. Moreover, using the
traditional “small loss” criterion in our method is also inappropriate
as it tends to exaggerate the imbalanced number of joints, resulting
in decreased mAP and PCK@0.05 accuracy. For instance, settings
of 𝛾ℎ𝑒𝑎𝑑 = 90%, 𝛾𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 = 75%, and 𝛾𝑏𝑎𝑐𝑘 = 60% underperform
compared to the setting using all pseudo-joints. In contrast, our
body part-aware learning module effectively balances the learning
difficulty of joints in different parts. Table 5 shows that we achieve
more balanced accuracy (6% std in PCK@0.05) across different
animal body parts and also yield higher APE accuracy by sampling
50% of head joints, 60% of frontal body joints, and 65% of back
body joints. It’s worth noting that further tuning these empirical
sampling thresholds could lead to even higher accuracy.

4.4.3 Insights of feedback learning. Proper learning of unanno-
tated joints is essential to improve fine-grained APE. Table 6 shows
the impact of using different proportions of pseudo-joints in feed-
back learning. Notably, employing pseudo-joints with confidence
scores ranking from 20% to 80% yields the highest accuracy. An-
other interesting finding is that excluding joints with the lowest
confidence scores does not affect the performance, as (0,100%) and
(0,80%) thresholds produce similar results. However, discarding

joints with the highest confidence scores, from (0,80%) to (20%,80%),
can enhance network learning and increase performance. This is
because these excluded joints are already well-detected and do
not need further feedback learning, as illustrated in Figure 7(a). In
contrast, our feedback learning at (20%,80%) significantly improves
the prediction confidence for unannotated joints by training more
steps as illustrated in Figure 7(b). These results are consistent with
the quantitative results in Table 6 and demonstrate our feedback
learning under (20%,80%) can better learn unannotated joints.

4.5 Qualitative Results on Real-World
Applications

We use our FreeNet to identity denser and finer joints in real-world
applications where there is no consensus on APE annotation stan-
dards. Specifically, we expanded two non-standard datasets by
adding a 10% TigDog dataset for training. As illustrated in Fig-
ure 6(a), FreeNet increases the number of joints from 17, 19, and 20
to 21, 24 without manual annotating. This is particularly useful, as
it saves up to 140 seconds per animal by eliminating the need for
additional joint labeling. By adding more non-standard datasets,
FreeNet has the potential to identify more than 24 animal joints.
We believe that FreeNet provides a general framework that can
leverage arbitrary nonstandard annotation data for other pose es-
timation related tasks (e.g., human/hand pose estimation) where
consistent high-quality data are lacking.

5 LIMITATIONS & CONCLUSION
Our approach achieves impressive performance in identifying denser
joints even when only a few non-standard annotations are avail-
able. However, there are still several challenges remaining for fine-
grained APE. The network sometimes has difficulty generalizing
well to some unannotated joints for certain species (e.g., tigers) that
only appear in one dataset, since animal species vary greatly across
datasets (see Figure 6(b)). We leave this for further research.

In conclusion, this paper tackles the emerging and significant
challenge of non-standardized annotations in APE. Our solution,
FreeNet, aims to fully utilize these annotations from multiple non-
standard datasets to learn denser joints at no additional labeling
cost. Specifically, we address the dilemma of unannotated joints and
facilitate the learning of joints shared across datasets. Experimental
results on synthetic and combined real datasets demonstrate the
effectiveness of FreeNet, which is useful in real-world applications.
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