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ABSTRACT

One of the main barriers to the broader adoption of algorithmic fairness in ma-
chine learning is the trade-off between fairness and performance of ML models:
many practitioners are unwilling to sacrifice the performance of their ML model
for fairness. In this paper, we show that this trade-off may not be necessary. If
the algorithmic biases in an ML model are due to sampling biases in the training
data, then enforcing algorithmic fairness may improve the performance of the ML
model on unbiased test data. We study conditions under which enforcing algorith-
mic fairness helps practitioners learn the Bayes decision rule for (unbiased) test
data from biased training data. We also demonstrate the practical implications of
our theoretical results in real-world ML tasks.

1 INTRODUCTION

Machine learning (ML) models are routinely used to make or support consequential decisions in
hiring, lending, sales etc.(Citron and Pasquale, 2014). This proliferation of ML models in decision
making and decision support roles has led to concerns that ML models may inherit (or even exacer-
bate) social biases in the training data. For example, Pro-Publica’s investigation of Northpointe (now
Equivant)’s COMPAS recidivism prediction tool revealed racial biases against African-Americans
(Angwin et al., 2016).

In response, the ML community has developed many rigorous definitions of algorithmic fairness,
including calibration (Corbett-Davies and Goel, 2018), (statistical) parity (Feldman et al., 2014),
equalized odds (Hardt et al., 2016), and individual fairness (Dwork et al., 2011). Researchers have
also designed many algorithms for enforcing the definitions during training (Agarwal et al., 2018;
Cotter et al., 2019; Yurochkin et al., 2020). Despite this flurry of work, algorithmic fairness practices
remain uncommon in production.

We conjecture that the lack of broader adoption of algorithmic fairness practices is because there
seems to be a trade-off between accuracy and fairness. Many algorithms that enforce fairness solve
optimization problems that maximize how well the model fits the training data subject to fairness
constraints. The trade-off arises because imposing fairness constraints usually leads to a model that
fits the training data less well (compared to a model from maximizing goodness-of-fit without any
extra constraints).

In practice, this trade-off may not be relevant because the training data may be biased. For example,
a resume screening model may reject most female applicants for technical roles because women are
historically underrepresented in STEM fields, so women are underrepresented in the training data.
This is a form of sampling bias, and it causes the model to perform poorly at test time because
women are better represented in STEM fields today. In this example, the trade-off is irrelevant
because we are mostly concerned with out-of-distribution (OOD) performance of the model.

There are many other examples of algorithmic bias arising due to biases in the training data. As
another example, the systemic racism in the US criminal justice system disproportionately affects
African-Americans, leading to higher rates of arrest, conviction, and incarceration. It is no sur-
prise that recidivism prediction instruments trained on such biased data is biased against African-
Americans (Angwin et al., 2016). In 2014, then U.S. Attorney General Eric Holder warned that
recidivism prediction instruments “may exacerbate unwarranted and unjust disparities that are al-
ready far too common in our criminal justice system and in our society”.

1



Under review as a conference paper at ICLR 2021

In this paper, we study whether the common algorithmic fairness practice of enforcing equal ac-
curacy on certain segments of the population improves the OOD performance of the model. Such
algorithmic fairness practices are common enough that there are methods (Agarwal et al., 2018;
2019) and software (e.g. TensorFlow Constrained Optimization (?)) devoted to operationalizing
them. This provides an alternative argument for broader adoption of algorithmic fairness practices.
Instead of viewing fairness as an intrinsically desirable property of ML models, we show that en-
forcing fairness helps ML models overcome biases in the training data. Our main contributions
are:

1. We decompose the bias in the training data into two parts: a recoverable part orthogonal to the
fair constraint and a non-recoverable part. We also derive necessary and sufficient conditions
under which enforcing fairness on the training data leads to the Bayes optimal model at test time
(see Theorem 3.4).

2. We show that it is possible to completely overcome the recoverable part of the bias (hence its
name) by enforcing an appropriate risk-based notion of algorithmic fairness. This is possible
regardless of the magnitude of this part of the bias (see Corollary 3.5).

3. We specialize our results to recidivism prediction task and demonstrate the benefits of enforcing
fairness empirically (see section 4).

2 PROBLEM SETUP

To keep things simple, we consider a standard classification setup. Our results generalize readily to
other supervised learning problems (see Appendix C for details).

Let X ⊂ Rd be the feature space, Y be the set of possible labels, and A be the set of possible
values of the sensitive attribute. In this setup, training and test examples are tuples of the form
(X,A, Y ) ∈ X × A × Y . If the ML task is predicting whether a borrower will default on a
loan, then each training/test example corresponds to a loan. The features in X may include the
borrower’s credit history, income level, and outstanding debts; the label Y ∈ {0, 1} encodes whether
the borrower defaulted on the loan; the sensitive attribute may be the borrower’s gender or race.

Let P ∗ and P̃ be probability distributions onX×A×Y . We consider P ∗ as the unbiased distribution
from which samples at test time come from and P̃ as the biased distribution from which the training
data comes from. Let H = {h : X → Y} be a model class (e.g. neural nets with a particular
architecture) and ` be a loss function. Our goal is to learn the unbiased Bayes decision rule

h∗ ∈ arg minh∈HL
∗(h) , E∗

[
`(h(X), Y )

]
, (2.1)

where E∗ denotes expectation with respect to P ∗, using only the biased training data from P̃ . With-
out further assumptions onP ∗, this goal is impossible. To facilitate our goal, we assume the unbiased
Bayes decision rule is algorithmically fair in some sense and hope that enforcing the correct notion
of fairness allows us to recover h∗ from P̃ . We shall elaborate on the allowable differences between
P ∗ and P̃ in subsection 2.2.

2.1 RISK-BASED NOTIONS OF ALGORITHMIC FAIRNESS

In this paper, we study the efficacy of enforces risk-based notions of algorithmic fairness in over-
coming bias in the training data. To fix ideas, we provide two examples of risk-based notions of
algorithmic fairness.

The first notion of algorithmic fairness we consider is risk parity (RP). This definition is motivated
by the notion of demographic parity (DP) in classification. Recall DP requires the output of the
ML model h(X) to be independent of the sensitive attribute A: h(X) ⊥ A. RP imposes a similar
condition on the risk of the ML model.
Definition 2.1 (risk parity). ML model h satisfies risk parity with respect to data distribution P if

EP

[
`(h(X), Y ) | A = a

]
= EP

[
`(h(X), Y ) | A = a′

]
for all a, a′ ∈ A.

RP is widely used in practice to measure algorithmic bias in ML models. For example, the US
National Institute of Standards and Technology (NIST) tested facial recognition systems and found
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that the systems misidentify blacks at rates 5 to 10 times higher than whites Simonite (2019). By
comparing the error rates of the system on blacks and whites, NIST is implicitly adopting RP as its
definition of algorithmic fairness.

The second notion of algorithmic fairness that we consider is conditional risk parity (CRP). This
definition is similar to the notion of equalized odds (EO) (Hardt et al., 2016) in classification. Recall
EO requires the output of the ML model h(X) to be independent of the sensitive attribute A condi-
tioned on the label: h(X) ⊥ A | Y . CRP imposes a similar condition on the risk of the ML model;
i.e. the risk of the ML model must be independent of the sensitive attribute conditioned on the label.
Definition 2.2 (conditional risk parity). An ML model h satisfies conditional risk parity with respect
to data distribution P and label y if

EP

[
`(h(X), Y ) | A = a, Y = y

]
= EP

[
`(h(X), Y ) | A = a′, Y = y

]
for all a, a′ ∈ A, y ∈ Y.

We say an ML model h satisfies CRP with respect to P (without mentioning a label value) iff it
satisfies CRP with respect to P and all label values y ∈ Y .

We observe that EO implies CRP because `(h(X), y) is a function of h(X) after conditioning on A
and Y . CRP is also closely related to error rate balance (Chouldechova, 2017) and overall accuracy
equality (Berk et al., 2017) in classification.

As we shall see, both RP and CRP are instances of risk-based notions of algorithmic fairness. The
general form of such a notion is

EP

[
`(h(X), Y ) | A = a, V = v

]
= EP

[
`(h(X), Y ) | A = a′, V = v

]
for all a, a′ ∈ A, v ∈ V ,

(2.2)
where V is known as the discriminative attribute (Ritov et al., 2017). To keep things simple,
we assume V is finite-valued, but it is possible to generalize our results to risk-based notions of
algorithmic fairness with more general V ’s (see Appendix C). For RP, V is a trivial random variable;
for CRP, V is Y . It is not hard to see that risk-based notions of algorithmic fairness are equivalent
to linear constraints on the risk profiles of ML models:

R(h) ,
[
EP

[
`(h(X), Y ) | A = a, V = v

]]
a∈A,v∈V

The general fairness constraint has the form R(h) ∈ F , where F is a subspace. Figure 1 provides
some examples of risk sets and when it is possible to recover Bayes’ classifier. We wrap up this
subsection by presenting general structure of risk profiles under RP and CRP constraints:

Example 2.3 (risk parity). Define RRP(h) ∈ R|A| as the vector whose entries are

RRP
a (h) , EP

[
`(h(X), Y ) | A = a

]
.

In terms of RRP
a (h), RP with respect to P implies that RRP

a (h) = c1 for some constant c ∈ R. This
is a linear constraint: the set of risk profiles that satisfy the RP constraint is the subspace

FRP , {R ∈ R|A|
∣∣ R = c1,1 ∈ R|A|, c ∈ R}.

Example 2.4 (conditional risk parity). Define RCRP(h) ∈ R|A|×|Y| as the matrix whose entries are

RCRP
a,y (h) , E

[
`(h(X), Y ) | A = a, Y = y

]
.

In terms of RCRP
a,y (h), CRP with respect to P implies RCRP(h) = 1u>. This is again a linear

constraint: the set of risk profiles that satisfy the CRP constraint is the subspace

FCRP , {R ∈ R|A|×|Y| | R = 1u>,1 ∈ R|A|,u ∈ R|Y|}.

2.2 BIAS IN THE TRAINING DATA

In this subsection, we describe the allowable differences between the unbiased distribution P ∗ and
the distribution of the (biased) training data P̃ . To relate the risk of ML models on the training data
and at test time, we assume that the risk profiles of the models with respect to P ∗ and the profiles
with respect to P̃ are identical:

E∗
[
`(h(X), Y ) | A = a, V = v

]
= Ẽ

[
`(h(X), Y ) | A = a, V = v

]
for all a ∈ A, v ∈ V. (2.3)

3



Under review as a conference paper at ICLR 2021

This assumption is similar to the covariate shift and label shift assumptions in transfer learning. It is
(slightly) less restrictive because it only requires the expected value (instead of all moments) of the
loss to be identical in the training data and at test time. In fact, both covariate and label shift imply
instances of (2.3) (with appropriate discriminative attributes).

We also note that this assumption is implicit in enforcing risk-based notions of algorithmic fairness.
If the risk profiles are not identical in the training data and at test time, then enforce risk-based
notions of algorithmic fairness during training is pointless because constraints on the risk profiles in
the training data do not generalize at test time.

Finally, we note that the choice of discriminative attributes is crucial. The general problem of
learning the (unbiased) Bayes decision rule from biased training data is impossible because the
(biased) training data may be totally uninformative of the risks of ML models at test time. A good
choice of discriminative attributes keeps the training data informative by ensuring the risk profiles
are identical on the training data and at test time. Here are two examples of good discriminative
attributes.
Example 2.5 (label bias). In binary classification, training data may suffer from label bias. This
kind of bias arises when positive examples from disadvantaged groups are under-represented in the
training data. Here is an example of a data generating process that suffers from label bias: (i) sam-
ple training examples (Xi, Yi, Ai) from P ∗, (ii) discard training examples from the disadvantaged
group (Ai = 0) with positive label (Yi = 1) with probability β. This leads to

P̃ (X,Y,A) ∝ P ∗(X,Y,A) · (1− (1− β)1{A = 0, Y = 1}).
Because there are fewer positive examples from the disadvantaged group in the training data (com-
pared to test data), this kind of bias causes the ML model to predict mostly negative outcomes for the
disadvantaged group. In practice, this kind of bias may creep into the training data more subtly. For
example, if human judgements is a crucial part of the data generating process, then implicit biases
may lead to over-representation of negative examples from disadvantaged groups in the training
data (Yeom and Tschantz, 2019).

For training data with label bias, a good choice of discriminative attribute is the label. This is
because the training data is a filtered version of the data at test time, and the filtering process only
depends on the label (and sensitive attribute). Thus the class conditionals at test time are preserved
in the training data; i.e. P̃X|a,y = P ∗X|a,y for all a ∈ A, y ∈ Y .

Example 2.6. In some applications, positive examples of the disadvantaged group are not missing
at random; their missingness may depend on some factor(s). In such cases, it is possible to keep
risk profiles identical in the training data and at test time including the factor(s) as discriminative
attributes. For example, the missingness of female applicants for technical roles may depend on
their qualifications. By including (some measures of) qualification in the discriminative attribute,
the model allows the missingness of female applicants to vary depending on their qualifications.

2.3 ENFORCING ALGORITHMIC FAIRNESS DURING TRAINING

Recall our goal is to learn the (unbiased) Bayes decision rule (2.1). Unfortunately, we cannot solve
(the empirical version of) (2.1) because the training data is biased. Instead, we consider solving (the
empirical version of){

minh∈H Ẽ
[
`(h(X), Y )

]
subject to R(h) ∈ F

}
≡

{
minR∈R 〈P̃A,V , R〉
subject to R ∈ F

}
, (2.4)

where R , {R(h) | h ∈ H} is the set of all possible risk profiles and P̃A,V ∈ [0, 1]|A|×|V| is
the distribution of (A, V ) (so 〈P̃A,V , R〉 = ẼA,V

[
RA,V

]
). We hope that the fair constraint in (2.4)

corrects the bias in the training data. As we shall see, this is possible if (i) the discriminative attribute
is chosen such that the risk profiles on the training data and at test time are identical, and (ii) the bias
is small in certain “directions”.

Before moving on to the main result, we remark that there are efficient algorithms for solving (2.4).
One popular algorithm is a reductions approach by Agarwal et al. (2018). At a high level, the
algorithm solves a sequence of weighted classification problems in which the weights are chosen
so that the resulting classifier satisfies the desired algorithmic fairness constraints. This algorithm
outputs randomized classifiers, which justifies one of the subsequent assumptions on (2.4).
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3 BENEFITS AND DRAWBACKS OF FAIR RISK MINIMIZATION

The main result provides necessary and sufficient conditions for recovering the unbiased Bayes’
classifier with (2.4). Before stating the main result, we state and justify our assumptions.
Assumption 3.1. The unconstrained risk minimizer on unbiased data is algorithmically fair;
i .e. arg minR∈R〈P ∗, R〉 ⊆ F .

This assumption is necessary. If the unbiased Bayes classifier is not algorithmically fair, then there
is no hope for (2.4) to recover the unbiased Bayes classifier; there will always be a bias term. This
assumption is also implicit in large swaths of the algorithmic fairness literature. For example, Buo-
lamwini and Gebru (2018) and Yang et al. (2020) suggest collecting representative training data
to improve the accuracy of computer vision systems on individuals from underrepresented demo-
graphic groups. This suggestion implicitly assumes the Bayes classifier on representative training
data is algorithmically fair. We refer to section 5 for a brief discussion on relaxing this assumption.

At first blush, it is tempting to think that because the unbiased Bayes classifier satisfies a fairness
constraint, then enforcing this constraint always increases accuracy. Unfortunately, this is not the
case: enforcing algorithmic fairness may harm OOD generalization, even if the Bayes classifier at
test time is algorithmically fair. Intuitively, the assumption that R∗ is fair is a constraint on P ∗, R,
and F ; it imposes no constraints on P̃ . By picking P̃ adversarially, it is possible to have

〈P̃ , R̃〉 ≤ 〈P̃ , R̃F 〉.
Such examples are not pathological, and we provide a graphical example in Appendix A.
Assumption 3.2. The risk setR is convex.

This assumption is innocuous because it is possible to convexify the risk set by considering random-
ized decision rules. A randomized decision rule is a distribution on the hypothesis class. To evaluate
a randomized decision rule H , we sample a decision rule h from H and evaluate h. It is not hard to
see that the risk profiles of randomized decision rules are convex combinations of the risk profiles
of (non-randomized) decision rules, so including randomized decision rules convexifies the risk set.

Assumption 3.3. The risk profiles of the models inH are identical with respect to P ∗ and P̃ , i.e.

E∗ [`(h(X), Y ) | A = a, V = v] = Ẽ [`(h(X), Y ) | A = a, V = v] for all a ∈ A, v ∈ V .

This assumption is needed to keep the risk profiles on the (biased) training data informative for the
(unbiased) test data. We refer to section 2.2 for a more comprehensive discussion of this assumption.
Theorem 3.4. Under assumptions 3.1, 3.2 and 3.3 the fair risk minimization (2.4) obtains h ∈ H
such that R(h) = R∗ if and only if

ΠF (P ∗A,V − P̃A,V )− P ∗A,V ∈ NR(R∗) + F⊥. (3.1)

where P ∗A,V (resp. P̃A,V ) is the marginal of P ∗ (resp. P̃ ) with respect to (A, V ), NR(R∗) is the
normal cone ofR at R∗ and ΠF is the projection on the fair hyperplane.

Theorem 3.4 characterizes the biases in the training data from which it is possible to totally recover
by enforcing appropriate algorithmic fairness constraints. By totally recover from bias, we mean
recovering the unbiased Bayes decision rule. To keep things simple, we stated our main result only
for finite-valued discriminative attributes. Please see Appendix C for a more general version of
Theorem 3.4 that applies to more general (including continuous-valued) discriminative attributes.

The main insight from Theorem 3.4 (and its counterpart for continuous discriminative attributes
in Appendix C) is a decomposition of the training bias into two parts: a part orthogonal to the
fair constraint and the remaining part in NR(R∗). Enforcing an appropriate risk-based notion of
algorithmic fairness overcomes the first part of the bias. This occurs regardless of the magnitude of
this part of the bias (see Corollary 3.5), and we see this later in our computational results.

The second part of training bias (the part in NR(R∗)) represents the “natural” robustness of R∗ to
changes in P ∗: if P̃ is in NR(R∗), then the unconstrained risk minimizer on training data remains
R∗. The magnitude of the bias in this set cannot be too large, and enforcing algorithmic fairness
constraints does not help overcome this part of the bias.
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Figure 1: Total recovery from training bias by enforcing risk
parity. In this simple example, the training bias P̃ − P ∗ is
always orthogonal to the risk parity constraint (blue line)
because P̃ and P ∗ are probability distributions. Thus if the
training bias does not affect the risk profiles (i.e. P̃ satisfies
Assumption 3.3), then enforcing risk parity allows us to to-
tally overcome the training bias. Unfortunately, to show an
example in which the risk decomposes into recoverable and
non-recoverable parts, we need (at least) two more dimen-
sions.

Corollary 3.5. A sufficient condition for (3.1) is P̃A,V − P ∗A,V ∈ F⊥.

Proof of Corollary 3.5. If P̃A,V − P ∗A,V ∈ F⊥, then ΠF (P ∗A,V − P̃A,V ) = 0, so we need to check
that −P ∗A,V ∈ NR(R∗) + F⊥. For any R ∈ R,

〈−P ∗A,V , R−R∗〉 = 〈P ∗A,V , R
∗ −R〉 ≤ 0

as R∗ is the minimum value of 〈P ∗A,V , R〉 overR. This shows −P ∗A,V ∈ NR(R∗) as desired.

Corollary 3.5 allows large differences between P̃A,V and its unbiased counterpart P ∗A,V , as long
as the differences are confined to F⊥. Intuitively, (2.4) enables practitioners to recover from large
biases in F⊥ because the algorithmic fairness constraint “soaks up” any component of P̃A,V in F⊥.
We explore the implications of Corollary 3.5 for risk parity and CRP.

Risk Parity: For RP, V is trivial random variable, hence P̃A − P ∗A ∈ F⊥RP means that it has
mean 0. This is true for any P̃A as 〈P ∗A, 1〉 = 〈P̃A, 1〉 = 1. Hence, the Bayes’ classifier can
be recovered under any perturbation. More specifically, recall the example of women historically
underrepresented in STEM fields mentioned in the introduction. Such train data is biased in its
gender representation which differs at test time where women are better represented. Classifiers
trained on biased data with the risk Parity fairness constraint will generalize better at test time.

Conditional risk parity: In this case V = Y and the condition P̃A,Y −P ∗A,Y ∈ F⊥CRP implies that
the sum of each column of P̃A,Y − P ∗A,Y must be 0. Hence, to recover the Bayes classifier under
equalized odds fairness constraints, we are allowed to perturb P ∗A,Y in such a way, that they have
the same column sums: i.e. for any label, we are allowed to perturb the distribution of protected
attributes for that label, but we have to keep the marginal distribution of the label to be same for both
P̃A,Y and P ∗A,Y . We investigate this scenario empirically in Section 4.

In practice, it is unlikely that the training bias is exactly orthogonal to the fair constraint, so Theorem
3.4 is a more general recovery result that characterizes conditions under which fair risk minimization
recovers the Bayes classifier. For this to happen, the remaining part of the bias must be small enough.
Theorem 3.4 provides a precise characterization of “small enough”.

3.1 RELATED WORK

Most of the prior works on algorithmic fairness assume fairness is an intrinsically desirable property
of an ML model, but this assumption is unrealistic in practice (Agarwal et al., 2018; Cotter et al.,
2019; Yurochkin et al., 2020). There is a small but growing line of work on how enforcing fairness
helps ML models recover from bias in the training data. Kleinberg and Raghavan (2018); Celis
et al. (2020) consider strategies for correcting biases in hiring processes. They show that correcting
the biases not only increases the fraction of successful applicants from the minority group but also
boosts the quality of successful applicants. Dutta et al. (2019) study the accuracy-fairness trade-off
in binary classification in terms of the separation of the classes within the protected groups. They
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Figure 2: Decision heatmaps for (left) baseline on train data from P̃ ; (center left) fair classifier on
train data from P̃ ; (center right) baseline on test data from P ∗; (right) fair classifier on test data from
P ∗. Decision boundary of the fair classifier has larger slope better accounting for the group a = 1
underrepresented in the train data. Consequently its performance is better on the unbiased test data.

explain the accuracy-fairness trade-off in terms of this separation and propose a way of achieving
fairness without compromising separation by collecting more features.

Blum and Stangl (2019) study how common group fairness criteria help binary classification models
recover from bias in the training data. In particular, they show that the equal opportunity criteria
(Hardt et al., 2016) recovers the Bayes classifier despite under-representation and labeling biases
in the training data. Our results complement theirs. Instead of comparing the effects of enforcing
various fairness criteria on training data with two types of biases, we characterize the types of biases
that the fairness criteria help overcome. Our results also reveal the geometric underpinnings of the
constants that arise in Blum and Stangl’s results. Three other differences between our results and
theirs are: (i) they only consider binary classification, while we consider all ML tasks that boil down
to risk minimization, (ii) they allow some form of posterior drift (so the risk profiles of the models
inH with respect to P ∗ and P̃ may differ in some ways), but only permit marginal drift in the label
(V = Y ), (iii) their conditions are sufficient for recovery of the fair Bayes decision rule (in their
setting), while our conditions are also necessary (in our setting).

4 COMPUTATIONAL RESULTS

We verify the theoretical findings of the paper empirically. Our goal is to show that an algorithm
trained with fairness constraints on the biased train data P̃ achieves superior performance on the true
data generating P ∗ at test time in comparison to an algorithm trained without fairness considerations.

There are several algorithms in the literature that offer the functionality of empirical risk minimiza-
tion subject to various fairness constraints, e.g. Cotter et al. (2019) and Agarwal et al. (2018). Any
such algorithm will suffice to verify our theory. In our experiments we use Reductions fair clas-
sification algorithm (Agarwal et al., 2018) with logistic regression as the base classifier. For the
fairness constraint we consider Equalized Odds (Hardt et al., 2016) (EO) — one of the major and
more nuanced fairness definitions. We refer to Reductions algorithm trained with loose EO viola-
tion constraint as baseline and Reductions trained with tight EO violation constraint as fair classifier
(please see Appendix D for additional details and supplementary material for the code).

Simulations. We first verify the implications of Corollary 3.5 using simulation studies. We follow
the Conditional risk parity scenario from Section 3. Specifically, consider a binary classification
problem with two protected groups, i.e. Y ∈ {0, 1} and A ∈ {0, 1}. We set P ∗ to have equal
representation of protected groups conditioned on the label and biased data P̃ to have one of the
protected groups underrepresented. Specifically, let pay = PA=a,Y=y , i.e. the a, y indexed element
of PA,Y ; pay = 0.25 ∀a, y for P ∗ and p1y = pminor, p0y = pmajor = 0.5 − pminor for P̃ . For
both P ∗ and P̃ we fix class marginals p·0 = p·1 = 0.5 and generate Gaussian features X|A =
a, Y = y ∼ N (µay,Σay) in 2-dimensions (see additional data generating details in Appendix D).
In Figure 2 we show a qualitative example of simulated train data from P̃ with pminor = 0.1 and
test data from P ∗, and the corresponding decision boundaries of a baseline classifier and a classifier
trained with the Equalized Odds fairness constraint (irregularities in the decision heatmaps are due
to stochasticity in the Reductions prediction rule). In this example fair classifier is 3% more accurate
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on the test data and 1% less accurate on a biased test data sampled from P̃ (latter not shown in the
figure).
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Baseline on P

Figure 3: Test accuracy on P ∗ and P̃ when trained
on the (biased) data from P̃ .

We proceed with a quantitative study by vary-
ing degree of bias in P̃ via changing pminor in
[0.01, 0.25] and comparing performance of the
baseline and fair classifier on test data from P ∗

and P̃ . We present results over 100 runs of the
experiment in Figure 3. Notice that the sum of
each column of P̃A,Y −P ∗A,Y is 0 for any value
of pminor and we observe that the fair classifier
has almost constant accuracy on P ∗ (consis-
tently outperforming the baseline), as predicted
by Corollary 3.5. The largest bias in the train-
ing data corresponds to pminor = 0.01, where
baseline is erroneous on the whole a = 1, y = 0
subgroup (cf. Figure 2) resulting in close to
75% accuracy corresponding to the remaining
3 (out of 4) subgroups. For pminor = 0.05 mi-
nority group acts as outliers causing additional
errors at test time resulting in the worst performance overall. When pminor = 0.25, P̃ = P ∗ and all
methods perform the same as expected. Results on P̃ correspond to the case where test data follows
same distribution as train data, often assumed in the literature: here baseline can outperform fair
classifier under the more extreme sampling bias conditions, i.e. pminor ≤ 0.1. We note that as the
society moves towards eliminating injustice, we expect test data in practice to be closer to P ∗ rather
then replicating biases of the historical train data P̃ .

Table 1: Accuracy on COMPAS data

Test on P ∗ Test on P̃

Fair 0.652±0.013 0.660±0.009
Baseline 0.634±0.011 0.668±0.010

Recidivism prediction on COMPAS data.
We verify that our theoretical findings continue
to apply on real data. We train baseline and
fair classifier on COMPAS dataset (Angwin
et al., 2016). There are two binary protected
attributes, Gender (male and female) and Race
(white and non-white), resulting in 4 protected groups A ∈ {0, 1, 2, 3, 4}. The task is to predict if a
defendant will re-offend, i.e. Y ∈ {0, 1}. We repeat the experiment 100 times, each time splitting
the data into identically distributed 70-30 train-test split, i.e. P̃ for train and test, and obtaining test
set from P ∗ by subsampling test data to preserve Y marginals and enforcing equal representation
at each of the 4 levels of the protected attribute A. We present results in Table 1. We see that our
theory holds in practice: accuracy of the fair classifier is 1.8% higher on P ∗. Baseline is expectedly
more accurate on the biased test data from P̃ , but only by 0.8%.

We present results for the same experimental setup on the Adult dataset (Bache and Lichman, 2013)
in Table 2 in Appendix D. We observe same pattern: in comparison to the baseline, fair classifier
increases accuracy on P ∗, but is slightly worse on the biased test data from P̃ .

5 SUMMARY AND DISCUSSION

We showed that enforcing algorithmic fairness allows practitioners to recover from certain biases
in the training data. The main insight from our theoretical results is enforcing risk-based fairness
constraints mitigates bias in the training data that is orthogonal to the fairness constraints. In other
words, regardless of the magnitude of the training bias, the fairness constraints just “soaks it up”.
On the other hand, fairness constraints play no part in mitigating the remaining parts of the bias.

Our results depend on the assumption that the Bayes decision on test data satisfies a risk-based notion
of algorithmic fairness. This assumption is strong, but it is necessary to recover the Bayes classifier.
To remove this assumption, we must weaken the goal to merely improving upon the risk minimizer
on the biased data. The set of P ∗’s for which enforcing the fair constraint improves accuracy is easy
to characterize. Let F be a fairness constraint and R̃ and R̃F be the (unconstrained) and fairness
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constrained risk minimizers with respect to P̃ :

R̃ , arg minR∈R〈P̃A,V , R〉, R̃F , arg minR∈R∩F 〈P̃A,V , R〉.

The set of P ’s for which enforcing the fairness constraint improves accuracy is {P : 〈P, R̃F − R̃〉 ≤
0}. In other words, as long as P ∗ is in the preceding set, then enforcing the fairness constraint
improves accuracy. Studying the structure of this set is a promising area of future work.

We also note that there is another family of algorithmic fairness practices based on robust optimiza-
tion (Hashimoto et al., 2018; Sagawa et al., 2019; Yurochkin et al., 2020) that are also widely used
in practice. Although there are empirical results that demonstrate the efficacy of such practices,
there are no theoretical results justifying their use when the training data is biased. This is another
promising area of future work.

Taking a step back, the main takeaway for ML practitioners is possibility to encourage fairness
and improve accuracy by enforcing risk-based fairness constraints during training. As long as they
choose the discriminative attribute carefully so that the risk profiles are identical in the training data
and at test time, then it is possible to learn the Bayes decision rule on the test data from (biased)
training data. This departs from most prior work on algorithmic fairness that starts with the premise
that fairness is an intrinsically desirable property of an ML model. Unfortunately, although most ML
practitioners agree that algorithmic fairness is desirable, they are generally unwilling to sacrifice
accuracy of the model for fairness. This is a gap between ML practice and algorithmic fairness
research, and our work is one way to close this gap. By aligning algorithmic fairness with the usual
goal of ML practitioners, we hope that this argument enlists the “invisible hand” of accuracy to
promote algorithmic fairness practices.
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Figure 4: Example in which enforcing algorithmic fairness harms OOD generalization. The triangle
is the set of risk profiles, and the dotted left side of the triangle intersects the fair constraint (i.e.
the risk profiles on the dotted line are algorithmically fair). The training objective P̃ is chosen so
that the (unconstrained) risk minimizer on biased training data R̃ is the vertex on the right and the
fair risk minimizer (also on biased training data) R̃F is the vertext on top. The test objective points
downward, so points close to the bottom of the triangle have the smallest risk at test time. We see
that R̃ is closer to the bottom of the triangle than R̃F , so it has better OOD generalization.

A ENFORCING ALGORITHMIC FAIRNESS MAY HARD OOD GENERALIZATION

In this section, we provide an example in which enforcing algorithmic fairness harms OOD gener-
alization performance. Formally, we provide choices of P̃ , P ∗, F , and R such that (i) R∗ ∈ F and
(ii) 〈P ∗, R̃〉 ≤ 〈P ∗, R̃F 〉. Figre 4 shows our example. Inspecting the figure reveals such examples
are hardly pathological. Just in this figure, there are a range of choice for P ∗ and P̃ that lead to
enforcing algorithmic fairness harming OOD generalization.

B PROOF OF THEOREM 3.4

In this section, we provide a proof of Theorem 3.4 under the additional assumption thatA and V are
finite sets. Although less general, we feel that this proof is more instructive because it suggests the
origin of (3.1).

Proof. “if” direction: Let Z̃ = −P̃A,V . If (3.1), then it is not hard to check that (R∗, Z̃) satisfies
the optimality conditions of (2.4):

0 = P̃A,V + Z̃, (stationarity)
R∗ ∈ F , (primal feasibility)

Z̃ ∈ NR(R∗) + F⊥ (dual feasibility).

(B.1)

Indeed, we have stationarity by the definition of Z̃. We have primal feasibility because the uncon-
strained risk minimizer on unbiased data is algorithmically fair: R∗ ∈ F . We have dual feasibility
because

Z̃ = ΠF (P ∗A,V − P̃A,V )− P ∗A,V + ΠF⊥(P ∗A,V − P̃A,V )

∈ NR(R∗) + F⊥ + F⊥

= NR(R∗) + F⊥,
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where we appealed to (3.1) in the second step and recalled F⊥ is a subspace in the third step. The
FRM problem (2.4) is convex, so (B.1) implies R∗ is an optimal point of (2.4).

“only if” direction: Assume R∗ solves (2.4). This implies there is Z̃ ∈ NR(R∗) + F⊥ such that
(R∗, Z̃) satisfies (B.1). By the stationary and dual feasibility conditions,

Z̃ = −P̃A,V ∈ NR(R∗) + F⊥.

We write P̃A,V as ΠF (P ∗A,V − P̃A,V )− P ∗A,V + ΠF⊥(P ∗A,V − P̃A,V ) and rearrange to obtain

ΠF (P ∗A,V − P̃A,V )− P ∗A,V ∈ ΠF⊥(P ∗A,V − P̃A,V ) +NR(R∗) + F⊥

= NR(R∗) + F⊥,

where we recalled F is a subspace in the second step.

C CONTINUOUS DISCRIMINATIVE ATTRIBUTES

In this section, we state and prove a more general verion of Theorem 3.4 that permits continuous
discriminative attributes. In this more general setting, risk profiles are (integrable) functions on
Z , A×V , so the fair risk minimization problem (B.1) and its unconstrained counterpart are infinite
dimensional optimization problems. We start by setting up the problem and reviewing relevant
results from optimization theory.

Let (Z,Σ) be a measurable space and S be the set of bounded measurable functions on (Z,Σ). We
equip S with the sup norm. The risk set R and the fair constraint set F are generally subsets of
S. The (topological) dual of S (denoted by S ′) is the set of finitely additive measures on equipped
with the total variation norm Dunford et al. (1958). This result allows us to represent continuous
linear functionals on such spaces with (finitely additive) measures, so it is a generalization of the
more familiar Riesz–Markov–Kakutani representation theorem to spaces of (possibly discontinuous)
measurable functions. We observe that the more familiar set of countably additive measures is a
closed subset of Z ′.
Definition C.1 (Complemented subspace). Let B be a Banach space and A ⊂ B be a subspace.
We say A is complemented subspace of B, if there exists another subspace AC ⊂ B such that
B = A⊕AC .

Henceforth, for if A is a complemented subset of a Banach space B, (i.e., A ⊕ Ac = B) then we
define ΠA,AC

(x) (resp. ΠAC ,A(x)) is the component of x in A (resp. AC), i.e. ΠA,AC
(x) = x1

(resp. ΠAC ,A(x) = x2) where x = x1 + x2 with x1 ∈ A, x2 ∈ AC . Recall that, we define F as the
fair hyperplane. Previously it was a subspace of the risk set, now it becomes a subspace of S. We
have the following assumption on the fair hyperplane:

Definition C.2 (Annihilator). For any A ⊂ B we define its annihilator A⊥ ⊂ B′ as the set of
bounded linear functions f : B→ R such f(x) = 0 for all x ∈ A.

Lemma C.3. Let A be a complemented subspace in B. Then A⊥ is complemented in B′.

Proof. Since, A is complemented in B, there exists a subspace G ⊂ B such that A ⊕ G = B. This
implies, each x ∈ B has the unique decomposition x = x1 + x2, where x1 ∈ A and x2 ∈ G. We
consider the projection ma p ΠA,G : B → B such that ΠA,G(x) = x1. Let us define two following
subspaces in B′ :

HA,G = {f ◦ΠA,G | f ∈ B′}
H̄A,G = {f − f ◦ΠA,G | f ∈ B′} .

Note that, H̄A,G ⊂ A⊥. Also, for any f ∈ A⊥ we have f ◦ΠA,G = 0B′ =⇒ f = f − f ◦ΠA,G ∈
H̄A,G. This implies H̄A,G = A⊥. Furthermore, B′ = HA,G + H̄A,G and for any f ∈ HA,G ∩H̄A,G

we have f(A) = f(G) = {0}. Hence, f = 0B′ . This implies B′ = HA,G ⊕ H̄A,G = HA,G ⊕
A⊥.
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Finally, we review some relevant background on infinite dimensional optimization. Since we are
mostly concerned with convex optimization problems with linear cost functions, the theory simpli-
fies considerably.

Definition C.4 (tangent cone). The tangent cone of a closed convex set C ⊂ B at a point x ∈ C is
the closure of the cone of feasible directions at x:

TC(x) , cl{d ∈ B | there is t̄ > 0 such that x+ td ∈ C for all t ∈ [0, t̄]}.

There are many notions of tangent cone in variational analysis (e.g. Clarke tangent cone, contingent
cone, inner tangent cone etc.), but they all coincide for closed convex sets Bonnans and Shapiro
(2000). Notably, this definition is identical to the definition (for convex sets) in finite dimensions.

Definition C.5 (normal cone). The normal cone of a closed convex set C ⊂ B at a point x ∈ C is
the polar cone of the tangent cone of C at x:

NC(x) , {d′ ∈ B′ | 〈d′, d〉 ≤ 0 for all d ∈ TC(x)}.

Proposition C.6. Let C be a closed convex subset of a Banach space B. Consider the convex
optimization problem

minx∈C〈c, x〉.

A point x∗ ∈ C is an optimal point iff

〈c, d〉 ≥ 0 for any d ∈ TC(x∗),

where 〈c, ·〉 is the linear cost function and TC(x∗) is the tangent cone of C at x∗. Equivalently, x∗ is
optimal if and only if c ∈ NC(x∗).

Recall that in a normed vector space 〈f, x〉 means the value of the linear functional f at x. In our
problem setting, points in the normed space S are integrable functions/random variables and linear
functionals on S are (finitely additive) measures, so 〈f, x〉means expectation of the random variable
x with respect to probability measure f .)

We are ready to state the extension of our main result to continuous discriminative attributes. As-
sumptions 3.1, 3.2, 3.3 from the main paper remain in effect. For continuous discriminative at-
tributes, we impose an additional assumption.

Assumption C.7. The fair subspace F is complemented in S.

This assumption is usually satisfied by common algorithmic fairness constraints: when RP is con-
sidered, F is the set of all constant functions fromA to R. For CPR,F ⊆ S is the set of all functions
f : A × Y → R such that f is constant on the first co-ordinate, i.e. f(x1, y) = f(x2, y) for all
x1 6= x2 ∈ A and y ∈ Y . We now argue that, in both the cases F is a complemented subset of S
under mild assumptions. For RP, we use the fact that any subspace A ⊆ S with dim(A) < ∞ or
codim(A) < ∞ is complemented. As FRP is the set of all constant functions, it has dimension 1
and hence complemented. For CRP, assume that there exists some base measure µ such that f ∈ S
is integrable with respect to µ. Then one can write: f = f1 + f2 where f1 ∈ F which is defined
as: f1(a, v) = g(v) where g(v) is the marginal of f(·, v) with respect to the base measure µ. The
function f2 is analogously defined as f − f1 ≡ f(a, v)− g(v).

Theorem C.8. If the unconstrained risk minimizer on unbiased data is algorithmically fair (i.e. its
risk profile R∗ satisfy the fairness constraints), then fair risk minimization (2.4) learns h ∈ H such
that R(h) = R∗ under assumptions C.7 and 3.2 if and only if

ΠF⊥
C ,F⊥(P ∗A,V − P̃A,V )− P ∗A,V ∈ NR(R∗) + F⊥. (C.1)

where P ∗A,V (resp.P̃A,V ) is the marginal of P ∗ (resp. P̃ ) with respect to (A, V ), NR(R∗) is the
normal cone ofR at R∗ and ΠF⊥

C ,F⊥(·) is the projection as defined previously.
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Table 2: Accuracy on Adult data

P ∗ P̃

Fair 0.852±0.004 0.843±0.003
Base 0.848±0.005 0.847±0.003

Proof. For notation simplicity define X , ΠF⊥
C ,F⊥(P ∗A,V − P̃A,V ) − P ∗A,V . We show that

minR∈F 〈P̃ , R〉 = 〈P̃ , R∗〉 holds if and only if X ∈ NR(R∗). Towards that end, fix R ∈ F :

〈P̃ , R〉 = 〈P̃ − P ∗, R〉+ 〈P ∗, R〉
= 〈ΠF⊥

C ,F⊥(P̃ − P ∗), R〉+ 〈P ∗, R〉
= 〈−P ∗ −X,R〉+ 〈P ∗, R〉
= 〈−X,R〉 (C.2)
= 〈−X,R∗〉+ 〈−X,R−R∗〉
= 〈P̃ , R∗〉+ 〈−X,R−R∗〉 [From equation (C.2)]

Hence we have: minR∈F 〈P̃ , R〉 = 〈P̃ , R∗〉 if and only if 〈−X,R − R∗〉 ≥ 0 for all R ∈ F which
holds if and only if X ∈ NR∩F (R∗) = NR(R∗) + F⊥. This completes the proof.

D EXPERIMENTAL DETAILS

We provide additional details to help reproduce our results. Please also see the code provided
with the submission. Code for the Reductions classifier (Agarwal et al., 2018) is available here:
https://github.com/fairlearn/fairlearn. We modified the source code to prevent
it from early stopping, so the baseline classifier runs for same number of iterations as the fair classi-
fier. The idea behind the Reductions approach is to translate the problem of learning a fair classifier
into a constraint optimization problem, where constraints depend on the fairness definition of choice.
Reductions method requires a base classifier: it learns an ensemble of the base classifiers to optimize
performance subject to the fairness constraints. We used logistic regression as the base classifier in
all experiments. The other important parameter is the tolerance ε that controls the amount of permis-
sible constraint violation. Smaller tolerance implies tighter fairness constraints. In all experiments
we used Equalized Odds fairness constraint (Hardt et al., 2016) with ε = 10 for the baseline classi-
fier (i.e. fairness can be arbitrarily violated) and ε = 0.1 (for the Adult experiment ε = 0.02) for the
fair classifier.1

Simulations Simulated data is generated from X|A = a, Y = y ∼ N (µay,Σay) in 2-dimensions
with prescribedA, Y joint distribution. We fixed Y marginals p·0 = p·1 = 0.5 and varied joint PA,Y

to study different degrees of label bias. Reductions was trained for 25 iterations for both baseline
and fair classifiers. We provide code reproducing Figure 2 of the main text in simulations.py.
Please also refer to the code for concrete values of {µay,Σay} and other minor details.

COMPAS experiment Reductions was trained for 50 iterations for both baseline and fair classi-
fiers. We provide code reproducing one run of the experiment for Table 1 of the main text (results in
the table summarize 100 runs) in compas.py. Please also refer to the code for data pre-processing
and other minor details.

Adult experiment We ran experiment on the Adult dataset 2.

1We could use a simple logistic regression as the baseline classifier, however this would mean that baseline
classifier and fair classifier are in different hypothesis classes. To avoid this, we used Reductions method for
both with same number of iterations, however with loose fairness constraint for the baseline.
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