
Published as a conference paper at ICLR 2024

CLEX: CONTINUOUS LENGTH EXTRAPOLATION FOR
LARGE LANGUAGE MODELS

Guanzheng Chen1,2,3,∗ Xin Li2,3,† Zaiqiao Meng4 Shangsong Liang1,5,† Lidong Bing2,3
1Sun Yat-sen University 2DAMO Academy, Alibaba Group
3Hupan Lab, 310023, Hangzhou, China 4University of Glasgow
5Mohamed bin Zayed University of Artificial Intelligence
guanzzh.chen@gmail.com, {xinting.lx,l.bing}@alibaba-inc.com
zaiqiao.meng@glasgow.ac.uk, liangshangsong@gmail.com

ABSTRACT

Transformer-based Large Language Models (LLMs) are pioneering advances in
many natural language processing tasks, however, their exceptional capabilities
are restricted within the preset context window of Transformer. Position Em-
bedding (PE) scaling methods, while effective in extending the context window
to a specific length, demonstrate either notable limitations in their extrapolation
abilities or sacrificing partial performance within the context window. Length ex-
trapolation methods, although theoretically capable of extending the context win-
dow beyond the training sequence length, often underperform in practical long-
context applications. To address these challenges, we propose Continuous Length
EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to
model the continuous dynamics by ordinary differential equations over the length
scaling factor, thereby overcoming the constraints of current PE scaling methods
designed for specific lengths. Moreover, by extending the dynamics to desired
context lengths beyond the training sequence length, CLEX facilitates the length
extrapolation with impressive performance in practical tasks. We demonstrate that
CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position
Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training
and inference latency. Experimental results reveal that CLEX can effectively ex-
tend the context window to over 4× or almost 8× training length, with no deteri-
oration in performance. Furthermore, when evaluated on the practical LongBench
benchmark, our model trained on a 4k length exhibits competitive performance
against state-of-the-art open-source models trained on context lengths up to 32k.
Our code is available at https://github.com/DAMO-NLP-SG/CLEX.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as GPT-4 (OpenAI, 2023) and
LLaMA (Touvron et al., 2023a;b), have now emerged as the state-of-the-art models in various nat-
ural language processing (NLP) tasks. However, these models grapple with the limitations inher-
ent to the Transformer architecture - mainly, a preset context window, beyond which performance
plummets catastrophically (Press et al., 2022). The quadratic complexity of the attention mecha-
nism renders training LLMs with a larger context window extraordinarily resource-intensive. Prior
works (Dai et al., 2019; Beltagy et al., 2020; Bulatov et al., 2022) have proposed circumventing
full context length access via hierarchical architecture or sparse attention, albeit at the expense of
forfeiting partial context information.

Recently, there have been two lines of methods aimed at efficiently extending the pre-trained con-
text length of LLMs, both centred on position embedding (PE). The first line of methods, known as
PE scaling, are proposed to effectively extend the context window of LLMs integrated with Rotary
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Figure 1: The PPLs of our CLEX and various baselines tested on 64k context length.

Position Embedding (RoPE) (Su et al., 2022). They allow LLMs to access longer context by scal-
ing either position indices (Chen et al., 2023) or frequency basis (Rozière et al., 2023; Peng et al.,
2023) of RoPE, demonstrating remarkable performance in long-context applications. However, such
methods are designed for extending the context length corresponding to a fixed scaling factor, which
either restricts their ability to extrapolate to longer sequences (when using small factors) or impairs
the performance even within the native context window (when using large factors) as shown in Fig-
ure 1. On the other hand, length extrapolation methods (Press et al., 2022; Sun et al., 2023; Chi
et al., 2022; 2023), typified by ALiBi (Press et al., 2022), strive to achieve test-time context length
extension (i.e., “training on short, testing on long”) by substituting position embeddings with addi-
tional biases, where the biases encode positional information to the attention scores. Despite their
impressive capability in language modelling, ALiBi-like methods usually struggle in the practical
tasks requiring long-context dependency (Pal et al., 2023) (also see §4.3).

In this work, we present Continuous Length EXtrapolation (CLEX), a novel approach that effi-
ciently extrapolates the context window of LLMs through continuous PE scaling. Concretely, we
propose a unified view of PE scaling via generalising the PE scaling methods to the transition of
frequency basis. Upon it, we formulate the PE scaling as a continuous dynamical system, which
models the transition of frequency basis through the continuous dynamics over the length scaling
factor. We argue that previous PE scaling methods, training models using fixed (discrete) scaling fac-
tors, overlook the progressively continuous dynamics over the gradually length-extending process.
This ensnares themselves in the aforementioned dilemma between extrapolating the length and pre-
serving the performance within shorter lengths. In contrast, our CLEX exploits a neural ordinary
differential equation (ODE) (Chen et al., 2018), parameterised by an up-and-down projection layer
with lightweight parameters to learn these continuous dynamics, enabling fine-grained extending to
long context. More essentially, by extending the dynamics beyond training length, CLEX empowers
models to progressively extrapolate to longer contexts even when trained with short sequences.

CLEX can serve as a drop-in component for RoPE-based LLMs, such as LLaMA (Touvron et al.,
2023a;b) and GPT-NeoX (Black et al., 2022), with negligible overhead in computation and param-
eters size. We evaluate the performance of CLEX on two datasets: (1) a subset of RedPajama-
Book (Computer, 2023) for long-context language modelling, and (2) LongBench (Bai et al., 2023)
for long-context practical tasks. Empirically, CLEX demonstrates remarkable length extrapolation
ability in language modelling, which can extend the context window to more than 4× training length
without any performance deterioration. For example, LLaMA-2-7B trained with CLEX on 16k con-
text length achieves comparable perplexities when testing on 16k and 64k tokens, respectively. By
scaling the base model scale from 7B to 13B, CLEX exhibits an expanded extrapolation scope from
4× to almost 8× training length. To be complementary, we also conduct instruction tuning (Wei
et al., 2022) with the proposed CLEX on the sequences of 4k length. The resulting model, when
evaluated on the LongBench benchmark, is on par with current state-of-the-art open-source mod-
els trained on context lengths up to 32k. These findings underscore the effectiveness of CLEX in
extrapolating context length, signifying its efficiency for developing long-context LLMs.
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2 PRELIMINARIES

2.1 ROTARY POSITION EMBEDDING (ROPE)

Rotary Position Embedding (RoPE) (Su et al., 2022) has recently emerged as the most prevailing po-
sitional encoding method in open-source LLMs like LLaMA. It integrates both absolute and relative
positional information for Transformer models. Given a position index m ∈ [1, L], RoPE injects the
absolute positional information into x ∈ Rd via the transformation f : Rd → Rd as:

f(x,m,θ) = Rθ,mx, (1)

where θ ∈ R⌊d/2⌋ is the rotation frequency basis and θi = 10, 000−2i/d; Rθ,m ∈ Rd×d is a block
diagonal matrix formed by the elements

(Rθ,m)i =

[
cosmθi − sinmθi
sinmθi cosmθi

]
, for i = 1, 2, ..., ⌊d/2⌋. (2)

The transformation in Eq. (1) is applied to the query and key vectors during self-attention. When
calculating the attention score for the query vector qm ∈ Rd at position m and the key vector
kn ∈ Rd at position n, we have

(Rθ,mqm)⊤(Rθ,nkn) = qmRθ,n−mkn. (3)

Hence, the relative positional information Rθ,n−m is implicitly incorporated into the attention
scores. However, even given the relative information, LLMs trained with RoPE, e.g., LLaMA,
still cannot achieve reasonable performance beyond the pre-trained context length.

2.2 PE SCALING METHODS

To extend the context length L, several strategies are proposed to adjust the position embedding by
scaling either the position index m or frequency basis θ in Eq. (1). Formally, we define t = L′/L
as the length scaling factor where L′ denotes the desired extended length. While Chen et al. (2023)
introduces scaling the index m by Position Interpolation (PI) as

fPI
t (x,m,θ) = f(x,

m

t
,θ). (4)

This strategy maintains the position indices within the range [1, L], while effectively extending the
processed range to [1, t · L] by minimal fine-tuning steps on t · L sequences. On the other hand,
Peng et al. (2023) proposes Yarn, a.k.a. NTK-Aware Scaled RoPE, extends the context window by
frequency basis scaling (FBS). This strategy is similarly utilised by CodeLLaMA (Rozière et al.,
2023). Formally, the FBS methods are denoted as

fFBS
t (x,m,θ) = f(x,m,θt), (5)

where θt is the scaled frequency basis. Specifically, θt,i = θi · (t)−2i/(d−2) in Yarn and θt,i =

θi · 100−2i/d in CodeLLaMA.

3 METHODOLOGY

This section demonstrates the details of CLEX. We first generalise the PE scaling to a continuous
dynamical system in a unified manner (see §3.1). On top of the continuous dynamical system,
CLEX employs the neural ODE, parameterised by an up-and-down projection layer, to adaptively
learn the continuous dynamics during PE scaling (see §3.2). In §3.3, we introduce the training
strategy of CLEX that distributes the continuous dynamics beyond the training sequence length,
thereby enabling the generalisation of continuous PE scaling to achieve the length extrapolation.

3.1 POSITION EMBEDDING SCALING: A UNIFIED VIEW

Given the various methods that extend models’ context length through position indices scaling and
frequency basis scaling, we first show that the transformations applied to position indices are essen-
tially casting the frequency basis, which is formalised in Theorem 1.
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Figure 2: The graphical model of discrete PE scaling (left) and our continuous PE scaling (right).

Theorem 1. For the transformation T to position index m, there exists an equivalent transforma-
tion T to frequency basis θ in Eq. (1), namely

f(x, T ·m,θ) = f(x,m,T ⊙ θ), (6)

where T = [T ]
d/2
i=1 and ⊙ denotes the element-wise transformation.

Proof. From Eq. (1), we have f(x, T ·m,θ) = Rθ,T mx and f(x,m,T ⊙ θ) = RT ⊙θ,mx. For
any T = [T ]

d/2
i=1,

(Rθ,T m)i =

[
cos T mθi − sin T mθi
sin T mθi cos T mθi

]
=

[
cosm(T ⊙ θi) − sinm(T ⊙ θi)
sinm(T ⊙ θi) cosm(T ⊙ θi)

]
= (RT ⊙θ,m)i .

(7)

Hence, there is a unified form for PE scaling that consistently projects the frequency basis by α(t):

ft(x,m,θ) = f (x,m,α(t)⊙ θ) , (8)

where α(t) is a single-variable transformation defined over the length scaling factor t. Through this
unified formulation, PI (Chen et al., 2023) and Yarn (Peng et al., 2023) can be viewed as the special
cases when plugging αPI(t) = [1/t]

d/2
i=1 and αYarn(t) =

[
t−2i/(d−2)

]d/2
i=1

into Eq. 8, respectively.

Note that θt = α(t) ⊙ θ denotes the scaled frequency basis at context length of t · L and θ1 = θ
(namely α(1) = 1). As illustrated in Figure 2, this indicates a progressive chain across discrete t
values that

z(t) = z(1) + logα(t) = z(t− 1) + log
α(t)

α(t− 1)
, (9)

where z(t)=log θt.

By continuizing the progressive chain, we can formulate the PE scaling as a continuous dynamical
system, with the continuous dynamics of frequency basis dz(t)/dt as

dz(t)

dt
=

d logα(t)

dt
. (10)

In essence, recent PE scaling methods, concentrating on manually formulating the α(t), are equiva-
lent to applying various dynamics for frequency basis that enable models to adapt to longer contexts.

3.2 CONTINUOUS PE SCALING VIA NEURAL ODE

Even given the continuous dynamics of frequency basis, previous methods are inherently designed
for extending the context length at discrete t values. For example, PI (Chen et al., 2023) fine-tunes
the model on a specific scaling factor t to extend the context window length to t · L. One potential
issue of these methods, as depicted in Figure 1, is that they are susceptible to overfitting to the speci-
fied frequency basis, leading to either poor extrapolation ability to longer lengths beyond training or
performance drops within short lengths, or both in some cases. Therefore, our CLEX aims to build
a continuous PE scaling, which induces the model to adapt the frequency basis corresponding to a
continuous scope of t as illustrated in Figure 2 (right).
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Recall that previous PE scaling, corresponding to a manually defined α(t), implies the constant
dynamics in Eq. (10). In our method, we utilise a variable function g : Rd/2 → Rd/2 to model the
dynamics, hence towards a more general and flexible view as:

dz(t)

dt
= g(z(t), t). (11)

By restricting the function to be associated with the latent states z(t), g is capable of capturing the
fine-grained changes of frequency basis during the length-extending process. However, it is non-
trivial to manually define the z(t)-aware function g. Here, we directly parameterise the function
using the neural network ϕ. Therefore, for any t′ ∈ [1, t], there is a neural ODE modelling the
scaling of frequency basis as

z(t′) = z(1) +

∫ t′

1

gϕ(z(t), t)dt, (12)

where the frequency basis at the length t′ ·L can be derived by θt′ = exp(z(t′)).

More specifically, we adopt an up-and-down projection as the neural network, expressed as:
gϕ(z(t), t) = Wdown · σ (Wup · z(t)) + ξt, (13)

where Wup ∈ R d
2×λd and Wdown ∈ Rλd× d

2 are the transformation matrices, of which the parameters
are determined by the amplification factor λ; σ is the SiLU activation function and ξt is the scalar
embedding typifying the scaling procedure at factor of t. Here, we adopt the constant dynamics of
Yarn as the ξt for speeding up convergence, namely

ξt =
d logαYarn(t)

dt
= −

[
2i

(d− 2) · t

]d/2
i=1

(14)

3.3 CONTINUOUS LENGTH EXTRAPOLATION: TRAIN ON SHORT, TEST ON LONG

Continuous PE scaling can serve as a more adaptive and flexible PE scaling method to extend the
context length to a given training length LTrain. Unlike the previous PE scaling methods built on
a larger scaling factor, which would lead to inferior performance on the lengths corresponding to
smaller counterparts, the continuous PE scaling would enable non-destructively generalisation to
larger scaling factors via adaptive continuous dynamics. Therefore, by simply extending the contin-
uous dynamics beyond the factor t=LTrain/L during training (where we denote the desired scaling
factor as tTrain), we can access the continuous length extrapolation (CLEX) method, which achieves
the capability of “training on short, testing on long”.

Moreover, to learn the neural ODE in Eq. (12) for continuous t, we randomly sample t′ ∈ [1, tTrain]
for each training step, enabling the model to adapt to the broad scope frequency basis without over-
fitting a specific one. Note that the frequency basis is bound with the position index in Eq. (1). This
reveals the aforementioned training involves inconsistency between the frequency basis and position
indices: the frequency basis is varied corresponding to the t′ ∈ [1, tTrain], while the position indices
are fixed as {1, 2, . . . , LTrain}. Here, we propose the position extrapolation strategy to address this
consistency. Contrary to PI, which shrinks the position indices into the context length, we enlarge
the position indices {1, 2, . . . , LTrain} of the trained sequences up to the range [1, t′·L] for each train-
ing step. The position indices can be acquired by uniformly scaling to {1·s, 2·s, . . . , LTrain·s} where
s = t′·L/LTrain, or alternatively, by randomly sampling LTrain of indices from [1, t′·L]. Empirically,
we found that random sampling generally performs better. More discussions can be found in §4.2.

During inference, the ideal scenario is to acquire the frequency basis corresponding to each sequence
length. However, this approach is computationally demanding. To improve efficiency, we first cache
some frequency basis derived from gϕ for K discrete t values as {tk|k ∈ [1,K]}. For each sequence
with a length of LInfer during inference, we employ the frequency basis corresponding to the nearest
upper bound within tk ·L for k = 1, . . . ,K. Through this, our method introduces negligible time
cost compared to naive inference of LLMs.

4 EXPERIMENTS

In this section, we conduct a thorough evaluation of CLEX’s performance in terms of handling long
contexts and its extrapolation capabilities. We compare our approach against other methods covering

5



Published as a conference paper at ICLR 2024

Train Evaluation Length
Length 4096 (4k) 8192 (8k) 16,384 (16k) 32,768 (32k) 65,536 (64k)Methods

PPL ACC. PPL ACC. PPL ACC. PPL ACC. PPL ACC.
LLaMA-2 4k 6.04 58.18 20.54 44.50 >100 22.43 >1000 12.70 >1000 10.64
CodeLLaMA 16k 7.60 54.88 7.40 55.19 7.33 55.30 15.12 44.70 52.02 31.16
Naive FT 16k 5.98 58.83 5.93 58.91 5.91 58.58 18.31 43.04 >100 26.05
PI 16k 5.90 59.05 5.71 59.44 5.72 59.87 6.05 58.5 8.75 52.02
Yarn (t=16) 16k 6.50 57.28 5.71 59.57 5.73 59.87 5.99 58.13 8.51 52.62
Yarn (t=32) 16k 6.61 57.12 5.94 58.27 5.96 58.04 6.08 57.73 6.22 57.98
CL-Scaling 16k 24.99 37.84 5.86 59.08 5.87 59.05 10.56 50.47 41.09 34.16
ALiBi 4k 6.34 58.01 6.39 57.8 6.41 57.78 6.50 57.47 6.51 56.44
RandomPos 4k 5.88 58.49 >100 34.23 >1000 18.27 >1000 9.31 >1000 7.44

4k 5.86 59.21 5.70 59.62 5.87 58.93 14.53 47.55 30.51 35.33
CLEX 8k 5.98 58.75 5.78 59.44 5.71 59.64 5.99 58.66 11.74 47.50

16k 5.88 59.21 5.68 59.73 5.52 60.28 5.55 60.06 5.64 59.94

Table 1: Perplexity (PPL) and next-token-prediction accuracy (ACC.) on language modeling with
evaluation lengths from 4k to 64k. We train the LLaMA-2-7B using length extrapolation methods on
4k length and PE scaling methods on 16k length, while reporting the results of CLEX trained across
4k, 8k and 16k. CL-Scaling denotes training LLaMA-2-7B with the scaling method of CodeLLaMA
but using our training data. The training loss curves are depicted in Figure 9.

both length extrapolation (i.e., ALiBi (Press et al., 2022) and random positions (denoted as Random-
Pos) (Ruoss et al., 2023)) and PE scaling methods (i.e., PI (Chen et al., 2023) and Yarn (Peng et al.,
2023)). We primarily conduct experiments on the LLaMA-2-7B model. For the language mod-
elling, we train our model and the baselines on 2B tokens extracted from Redpajama-Book (Com-
puter, 2023), which is collected from Pile-Books3 (Gao et al., 2020) and PG-19 (Rae et al., 2019)
datasets. The performance of the models is assessed based on perplexity and next-token-prediction
accuracy, with evaluation sequence lengths up to 64k. Furthermore, we conduct instruction tun-
ing for LLaMA-2-7B using CLEX on the UltraChat dataset (Ding et al., 2023b). The evaluation
is performed on the LongBench benchmark (Bai et al., 2023), where we compare our model with
GPT-3.5-turbo and other LLaMA-2-based open-source models designed for handling long context.
Further details about baselines and training configuration will be discussed in Appx. §A, as well as
more experimental results and ablations in Appx. §B.

4.1 LONG-CONTEXT LANGUAGE MODELLING

CLEX achieves length extrapolation. We first report the experimental results of baselines and
CLEX on language modelling, with the evaluation length from 4k to 64k. As shown in Table 1,
our CLEX consistently demonstrates remarkable performance in length extrapolation, being able
to extrapolate the context length to more than 4× training length without any performance drops.
Taking CLEX-4k as an example, its PPL on 4k sequence (training length) is comparable to that on
16k sequence (5.86 vs. 5.87). When evaluated on the sequences within 16k, CLEX-4k is on par
with or even better than all of the compared methods trained on lengths up to 16k. Moreover, with
the increase in training length, our CLEX not only exhibits promising generalisation capability to
very long contexts (up to 64k) but also guarantees performance on short sequences.

We also found that discrete PE scaling methods (i.e., PI and Yarn) have self-extending property:
training with scaled frequency basis equips the model with the ability to extrapolate to further-
scaled counterparts (see Appx. §B.2 for more discussions.). As depicted in Figure 1, however,
the extrapolation capability of these methods is limited, accompanied by a significant performance
decline even within the naive context length. This indicates the inherent challenge of achieving a
delicate balance between extrapolation to longer lengths and performance maintenance within short
lengths when using the discrete scaling factor. In contrast, CLEX tackles this issue via learnable
continuous dynamics, providing a more fine-grained extrapolation while preserving the performance
for the internal context.

Note that ALiBi may extend further than CLEX trained on 4k sequences (though typically pro-
ducing inferior results), our experiments reveal that these gains may come at the cost of long-term
information, leading to underperformance in long-context practical tasks (see §4.3 for more details).
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Figure 4: The ablation studies for continuous dynamics, sampling strategies and λ factor in Eq. (13).

The scaling law for the extrapolation ability of CLEX. To investigate the effectiveness of CLEX
over the scale of the base model and training data size, we further port our method to LLaMA-2-
13B. As depicted in Figure 3, when trivially extending the base model scale from 7B to 13B, our
CLEX demonstrates an increased capacity to extrapolate to longer context lengths. Specifically, the
extrapolation ability of CLEX-13B trained on 4k length approaches that of CLEX-7B trained on
8k. While the training data scale, more surprisingly, does not significantly impact the extrapolation
capability of CLEX. Models trained with 0.25B or 2B tokens with 4k sequence length achieve
comparable PPLs when evaluating on 16k or 32k lengths in Figure 3, indicating the negligible
margins from the larger training data size. This also implies that CLEX can efficiently extend the
context length of LLMs through minimal training steps resembling PI and Yarn.

Based on these findings, we propose a scaling law for CLEX: to scale the context length of LLMs
to moderately desired lengths (e.g., 16k → 64k), one should proportionally enlarge the training
sequence lengths (e.g., 4k → 16k). For scaling the context length up to considerably long lengths
(e.g., >200k), the parameter size of the base model should be correspondingly increased while
maintaining the training length, since the contexts may take more footprints than model parameters.
Note that scaling the training data does not directly affect the extrapolation ability of CLEX, but
may be implicitly incorporated when scaling the base pre-trained LLMs.

4.2 ABLATION STUDY

We now conduct three types of ablations to investigate the efficacy of the components in CLEX:

Continuous dynamics. To learn the continuous dynamics using neural ODE, we adopt a distinct
training approach that involves sampling the scaling factor t for each data batch. Here we seek to
explore if the exceptional extrapolation ability of CLEX is solely derived from the variable t rather
than the continuous dynamics. We employ the discrete Yarn method with t = 16, that undergoes the
same training procedure of CLEX but removes the ODE parameters, serving as a discrete baseline.
In Figure 4 (left), we discover that the discrete approach equipped with the random-sampled t signif-
icantly underperforms our CLEX, indicating the essentiality of the learnable continuous dynamics
in CLEX for accessing the extrapolation ability.
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Figure 5: Left: the average scores for each domain of tasks in LongBench. Right: the average
scores of all tasks corresponding to the training length of each model. Note that CLEX is trained on
4k sequence length but directly tested on 16k context length without truncation.

Position extrapolation. We adopt the position extrapolation strategy, which extends the scope of
position indices in training sequences by sampling from a broader range, to reconcile the inconsis-
tency between frequency basis and position indices during the training process. In this study, we
examine the impact of various sampling strategies (uniform or random) and contrast them with the
naive position indices. The results in Figure 4 underscore the efficacy of position extrapolation in
CLEX, without which the extrapolation ability of models declines significantly. Furthermore, ran-
dom sampling slightly performs better than uniform sampling, so we adopt it across all experiments.

The parameter scale of ODE. We also study the impact of parameter size of the neural ODE
in CLEX. The parameter size is determined by the λ, namely the amplification factor in Eq. (13).
In Figure 4, we plot the results of CLEX with λ = 1, 2, 4, where they achieve similar performance.
Note that the parameter size of neural ODE in CLEX is quite small even when λ = 4, as the
dimension d in Eq. (13) is usually equal to 128. Although it is possible to enhance CLEX with
larger λ (e.g., 32), we set the λ=1 in all experiments for the minimal effect on inference latency.

4.3 EVALUATION ON LONG-CONTEXT BENCHMARK

To ascertain the comprehensive performance of CLEX in real-world scenarios, we further conduct
an evaluation on the zero-shot LongBench benchmark. This benchmark encompasses a broad range
of tasks, such as question-answering, summarization, and code completion, where the evaluation
length ranges from 5k to 15k. We perform a pilot instruction tuning for LLaMA-2-7B by employing
CLEX on the UltraChat dataset, with a sequence length of 4k. During inference, we harness all
models to tackle the context length of 16k, thereby ensuring the comprehensive exploitation of
contextual information in the tasks. As depicted in Figure 5, we present the average scores of each
domain in LongBench for CLEX, in comparison to the GPT-3.5-Turbo-16k model and strong open-
source LLMs like LongChat-v1.5-7B-32k and CodeLLaMA-7B-16k.

Generally, when trained with sequences of 4k length, CLEX holds its own against any open-source
LLMs that are trained on lengths up to 32k. In the specific domains of Summarization, Few-shot
Learning, and Code Completion, CLEX on LLaMA-2-7B remains competitive with or even sur-
passes the GPT-3.5-Turbo-16k. We note that the Baichuan-13B-4k, pre-trained with ALiBi (Press
et al., 2022), demonstrates marked underperformance on the LongBench although with a larger
parameter size. Additionally, similar poor results are achieved by ALiBi when applying it upon
LLaMA-2-7B using the same training procedure as CLEX (see Appx. §B.5). This could likely be
attributed to ALiBi’s overemphasis on local context through the attention bias, which, while advan-
tageous for language modelling, restricts access to long-context information in practical tasks. In
contrast, CLEX directly extends the context length of LLMs without imposing any constraints on
context, which consistently achieves superior extrapolation ability on both language modelling and
the LongBench. This substantiates the considerable potential of CLEX to serve as the state-of-the-art
approach for extrapolating the context length of LLMs to excel in long-context applications.
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In addition, we highlight that our CLEX merely introduces minuscule inference latency. Given a
context length of 16k in LongBench with a generation length of 512, the generation throughput
between our CLEX-7B and LLaMA-2-7B is comparable (27.8 tokens/s vs 28.3 tokens/s, in a single
A100), when using the cache mechanism introduced in §3.3.

5 RELATED WORK

Hierarchical Architecture / Sparse Attention. To overcome the quadratic complexity of atten-
tion, Dai et al. (2019) proposes the Transformer-XL that handles the long sequence at segment level
by Transformer, with these segments interacting through a recurrence mechanism. The Recurrent
Memory Transformer (Bulatov et al., 2022) refines this mechanism by incorporating special memory
tokens into the recurrence, which is capable of scaling the context length to the millions (Bulatov
et al., 2023). On the other hand, Child et al. (2019); Beltagy et al. (2020) proposed using the sparse
attention to circumvent the full access to the long sequences, hence reducing the complexity. The
sparse attention has been adopted by Ding et al. (2023a) to scale the context length of transformers
into the billions. However, these methods sacrifice the utilisation of the entire sequence during at-
tention, resulting in an inevitable loss of some contextual information. Additionally, modifications
to the model architecture make these methods challenging to apply to existing pre-trained LLMs.
Conversely, our CLEX serves as a drop-in component for LLMs, can efficiently extend the capacity
of models to tack the entire long sequences without explicit drops of context information.

Length Extrapolation. Building on the foundation laid by ALiBi (Press et al., 2022), a series of
works (Sun et al., 2023; Chi et al., 2022; 2023) seek to train the Transformer-based models on a
short length, while directly testing on longer counterparts. These methods substitute the position
embedding with bias introduced into attention scores, thereby incorporating positional information.
Notably, the bias typically gives higher profits to closer tokens. This mechanism intuitively am-
plifies the local context for each token at the expense of distant information. Consequently, these
length-extrapolation methods encounter challenges in effectively handling long contexts in practi-
cal applications (Pal et al., 2023). However, our CLEX demonstrates remarkable effectiveness in
practical tasks such as summarization, indicating the de facto extrapolation ability for applications.

Position Embedding (PE) Scaling. Recent research has sought to extend the context length of
Transformers through the scaling of the extensively employed RoPE. Specifically, Chen et al. (2023)
proposed position interpolation, a method that efficiently extends the context window by scaling the
position index within RoPE. In a similar vein, Peng et al. (2023); Rozière et al. (2023) opted to scale
the frequency basis, achieving superior performance. However, these methods necessitate training
(or fine-tuning) on the desired extended length. As a result, they exhibit a limited ability to extrapo-
late beyond the trained length and even suffer from performance drops within the shorter lengths. In
CLEX, we generalise the discrete PE scaling to a continuous counterpart, hence uniformly extrapo-
lating the context length of LLMs while preserving the performance within short lengths.

6 CONCLUSION

We have presented the Continuous Length EXtrapolation (CLEX), a novel approach that efficiently
extrapolates the context length of Large Language Models (LLMs) to over 4x the training (fine-
tuning) length without any decline in performance. CLEX utilises the neural ODE to learn the
continuous dynamics over the length scaling factor during PE scaling, hence enabling fine-grained
extension for the frequency basis in the RoPE. We conduct thorough experiments to investigate the
effectiveness of CLEX compared to a variety of strong LLMs, covering the language modelling task
and LongBench benchmark. The experimental results have demonstrated the exceptional extrapola-
tion ability of CLEX, where our CLEX trained with a sequence length of 4k holds the potential to
remain competitive to any open-source long-context LLMs (e.g., CodeLLaMA) trained on lengths
up to 32k. These results highlight the potential of CLEX as a state-of-the-art approach for effi-
ciently extrapolating the context length of LLMs, paving the way for advancements in long-context
applications. By scaling the base model size up, we found CLEX can be correspondingly enhanced
and subsequently is capable of extrapolating the model to a longer context length. This property
indicates the tempting effectiveness of CLEX in the era of LLMs.
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A EXPERIMENTAL DETAILS

A.1 BASELINES

We compare our CLEX with a variety of baselines in language modelling, all of which are trained
with the subset of 2B tokens from Pile-Books3 and PG-19 except LLaMA-2 and CodeLLaMA
that are evaluated by the open-source pre-trained checkpoints. We train the PE scaling and length
extrapolation methods with 16k and 4k sequence lengths, respectively. Specifically, we use the
scaling factor t = 4 to train models using 16k sequence length for PI following Chen et al. (2023).
While for Yarn, we train models with the scaling factor of 16 and 32 (but also using the 16k sequence
length), respectively, following the settings in Peng et al. (2023). For the ALiBi, we directly remove
the RoPE in LLaMA-2 and train models with the attention bias. For the random positions, we sample
the position indices from [1, 16k] while train models with 4k sequence length. We also utilise the PE
scaling method from CodeLLaMA to train LLaMA-2-7B using our training data, which is denoted
as CL-Scaling.

A.2 TRAINING DETAILS

We use a subset from the Redpajama-Book (Computer, 2023) as the training data for language
modelling, which is collected from Pile-Books3 and PG-19 datasets and the subset comprises ap-
proximately 2B tokens. We set the learning rate of 2e-5 for all models, which are optimised by Adam
optimiser (Kingma & Ba, 2015). The batch size is set to 64k tokens for 7B models and 16k tokens
for 13B models. The maximum desired t during training in CLEX (namely tTrain in §3.3) is set as
16 for LLaMA-2. We utilise the Flash Attention (Dao et al., 2022; Dao, 2023) to support efficient
training. The amplification factor of ODE layer λ is set as 1 for all 7B models and 2 for 13B models.
For the instruction tuning, we train our model using the UltraChat dataset for 1 epoch, starting with
the checkpoint after the training of language modelling. The training procedure of CLEX is shown
in Alg. 1.

Algorithm 1 Training Procedure of CLEX
1: repeat
2: Given a batch of sequences B with length of LTrain;
3: sample t′ ∼ [1, tTrain];
4: calculate z(t′) by Eq. (12);
5: θt′ = exp(z(t′));
6: sample (randomly or uniformly) t′ · LTrain position indices from [1, tTrain · LTrain];
7: calculate RoPE with θt′ and sampled position indices;
8: train the model with RoPE on B with language modelling objective.
9: until converged

A.3 EVALUATION DETAILS

For language modelling, we evaluate all models with a similar subset to the training set but con-
taining 20 million tokens. For different evaluation lengths, we group the test set into corresponding
lengths of sequences. We found fixing the scaling factor as the training one would hamper the
general performance and extrapolation ability of baselines, therefore, we proportionally enlarge the
scaling factor when the evaluation length is beyond the training length. For example, when evaluat-
ing on 32k length, we set the scaling factor of PI as 8 rather than the training factor of 4. We also
adopt the log scaling trick1 for all baselines and our model, where we scale the attention scores by
the max{1, logLTrain LTest}. We found it can improve the performance when evaluating on lengths
beyond training length as shown in Figure 8. For the LongBench, we follow the setups from Bai
et al. (2023), where the decoding method is set to greedy search. We set the tk in §3.3 as {1, 2, 3, 4},
to cache the frequency basis corresponding to {4k, 8k, 12k, 16k}.

1https://spaces.ac.cn/archives/8823
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Figure 6: The sinusoidal frequency over the dimension of the frequency basis. The lower dimension
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Figure 7: The results of PI-16k (trained with t = 4) on 64k sequence length, while evaluating with
t = 4 and t = 16.

B ADDITIONAL RESULTS

B.1 VISUALISATION OF LEARNED FREQUENCY BASIS

In Figure 6, we show the frequency basis according to different sequence lengths after the training
of CLEX on LLaMA-2 with a 4k sequence length. The plot reveals that CLEX tends to upscale
the high frequencies at certain dimensions while simultaneously downscaling some others. More
surprisingly, we have observed that the frequency bases associated with different t values in CLEX
exhibit an isotropic behaviour, that the dimensions where downscaling and upscaling occur are sim-
ilar across different t values, with larger t values resulting in further scaling. This finding may
contribute to the design of heuristics PE scaling methods without training.

B.2 THE SELF-EXTENDING PROPERTY OF PE SCALING METHODS

Previous PE scaling methods usually evaluate models with a specified scaling factor during training.
We found this would significantly hamper the performance evaluation beyond the training length.
Hence, we adjust the scaling factor of the previous PE scaling method corresponding to the evalu-
ation lengths. In Figure 7, PI-16k (trained with t = 4) achieves non-trivial results when evaluating

14



Published as a conference paper at ICLR 2024

Models
Train Evaluation Length

Length 32K 64K 128K 256K
CLEX-Phi-2 32K 5.11 5.17 6.55 >10
CLEX-Mixtral-8x7B 32K 2.56 2.53 2.57 3.78

Table 2: Perplexity (PPL) of CLEX-Phi-2 and CLEX-Mixtral-8x7B on language modelling with
evaluation lengths from 32k to 256k.

Figure 8: The ablation of log scaling (left) and constant dynamic ξt (right) for CLEX trained on 4k
sequence length.

with t = 16 on 64k length, which significantly outperforms the naive evaluation using t = 4.
Note that Yarn is naively trained with larger t, so it is not necessary to adjust the scaling factor
for Yarn during evaluation. When the evaluation lengths become longer, however, we believe the
self-extending property would benefit the Yarn as well. Regarding these, the extrapolation ability
from the self-extend in previous PE scaling methods is still far weaker than CLEX as illustrated
in Figure 1.

B.3 RESULTS OF MORE MODELS

We also extend CLEX to more models beyond LLaMA-2, i.e., Phi-22 and Mixtral-8x7B (Jiang et al.,
2024). The results in Table 2 further support the general effectiveness of CLEX, where the context
lengths are extrapolated to 4x∼8x training length across various LLMs.

B.4 ABLATION ON SCALAR EMBEDDING

The learnable dynamic in Eq. (13) is based on the constant dynamic ξt from Yarn. To conduct an
ablation on the impact of ξt, we remove ξt in Eq. (13) and train the LLaMA-2-7B on 4k sequence
length that undergoes the same training procedure. From Figure 8, we found the training of CLEX
without ξt would not hamper the extrapolation ability (or even better). However, as depicted in Fig-
ure 10, training with ξt can speed up the convergence and produce a more stable loss curve. This
is essential for training larger LLMs on longer sequence lengths, so we integrate the ξt into the
learnable dynamics.

B.5 RESULTS OF LONGBENCH

We list the numerical results of our CLEX trained on 4k compared with a variety of baselines trained
on up to 32k, covering single-document question answering (Table 3), multi-document question an-
swering (Table 4), summarization (Table 5), few-shot learning (Table 6), synthetic (Table 7), and

2https://huggingface.co/microsoft/phi-2
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Figure 9: The training loss curves of various baselines and our CLEX models in Table 1. We train
all models upon LLaMA-2-7B on 2B tokens for one epoch.
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Figure 10: The training loss curves of our CLEX-4k trained on LLaMA-2-7B with or without the
constant dynamics (ξt) in Eq. (14).

code completion (Table 8) tasks. Note that the average sequence length of most tasks in Long-
Bench ranges from 5k to 15k, so the samples would be truncated into the sequence length within
the supported context length (if necessary) for baselines, except Baichuan-13B-4k, ALiBi-7B-4k
and CLEX-7B-4k which enables length extrapolation are evaluated with a context window of 16k.
Baichuan-13B-4k is a model pre-trained with ALiBi on a sequence length of 4k, while ALiBi-7B-
4k is the model trained with ALiBi that undergoes the same training procedure as our CLEX. We
found that both ALiBi-based models significantly underperform in the LongBench benchmark when
evaluated with sequence length (16k) beyond their training length, indicating the challenges of their
extrapolation ability in practical tasks. Our CLEX, however, achieves well-performing results across
most tasks even trained with 4k but tested with 16k length, which further reveals the superior length
extrapolation ability of our method.
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Models NarrativeQA Qasper MultiFieldQA-en MultiFieldQA-zh AVG.

GPT-3.5-Turbo-16k 23.6 43.3 52.3 61.2 45.1
Llama2-7B-chat-4k 18.7 19.2 36.8 11.9 21.65
LongChat-v1.5-7B-32k 16.9 27.7 41.4 29.1 28.78
CodeLLaMA-7B-16k 22.93 30.69 43.37 31.76 32.19
XGen-7B-8k 18 18.1 37.7 14.8 22.15
InternLM-7B-8k 12.1 16.7 23.4 33.6 21.45
Vicuna-v1.5-7B-16k 19.4 26.1 38.5 43 31.75
Baichuan-13B-4k 0.07 17.55 17.28 38.55 18.36
ALiBi-7B-4k 0.04 8.13 17.87 2.89 7.23
CLEX-7B-4k 18.05 23.68 44.62 31.15 29.38

Table 3: Single-document question answering tasks in LongBench.

Model HotpotQA 2WikiMQA Musique DuReader AVG.

GPT-3.5-Turbo-16k 51.6 37.7 26.9 28.7 36.23
Llama2-7B-chat-4k 25.4 32.8 9.4 5.2 18.2
LongChat-v1.5-7B-32k 31.5 20.6 9.7 19.5 20.33
CodeLLaMA-7B-16k 33.05 27.93 14.2 10.78 21.49
XGen-7B-8k 29.7 21.1 10.3 11 18.02
InternLM-7B-8k 28.7 22.8 9 11.1 17.9
Vicuna-v1.5-7B-16k 25.3 20.8 9.8 19.3 18.8
Baichuan-13B-4k 3.29 15 0.1 8.77 6.79
ALiBi-7B-4k 2.73 8 1.33 11.87 5.98
CLEX-7B-4k 28.44 19.53 9.15 23.21 20.08

Table 4: Multi-document question answering tasks in LongBench.

Model GovReport QMSum MultiNews VCSUM AVG.

GPT-3.5-Turbo-16k 29.5 23.4 26.7 16 23.9
Llama2-7B-chat-4k 27.3 20.8 25.8 0.2 18.525
LongChat-v1.5-7B-32k 30.8 22.7 26.4 9.9 22.45
CodeLLaMA-7B-16k 28.43 24.18 26.84 0.79 20.06
XGen-7B-8k 27.3 20.5 26.2 2.2 19.05
InternLM-7B-8k 9.7 15.9 22.8 12.4 15.2
Vicuna-v1.5-7B-16k 27.9 22.8 27.2 15.1 23.25
Baichuan-13B-4k 6.8 1.71 23.1 8.09 9.925
ALiBi-7B-4k 5.31 1.64 19.38 3.25 7.395
CLEX-7B-4k 32.52 22.9 25.55 12.03 23.25

Table 5: Summarization tasks in LongBench.
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Model TREC TriviaQA SAMSum LSHT AVG.

GPT-3.5-Turbo-16k 68 91.4 41.7 29.2 57.575
Llama2-7B-chat-4k 61.5 77.8 40.7 19.8 49.95
LongChat-v1.5-7B-32k 63.5 82.3 34.2 23.2 50.8
XGen-7B-8k 65.5 77.8 25.3 20.5 47.275
CodeLLaMA-7B-16k 70 84.97 43.43 32.5 57.725
InternLM-7B-8k 52 77.8 21.2 15.2 41.55
Vicuna-v1.5-7B-16k 71.5 86.2 40.8 28.8 56.825
Baichuan-13B-4k 20.05 20.06 5.77 1 11.72
ALiBi-7B-4k 9.25 8.83 4.67 0 5.6875
CLEX-7B-4k 68 84.92 42.82 28.35 56.0225

Table 6: Few-shot learning tasks in LongBench.

Passage Count PassageRetrieval-en PassageRetrieval-zh AVG.

GPT-3.5-Turbo-16k 4.5 71 77.5 51
Llama2-7B-chat-4k 2.1 9.8 0.5 4.13
LongChat-v1.5-7B-32k 1 30.5 7.6 13.03
CodeLLaMA-7B-16k 2 13.5 11.25 8.92
XGen-7B-8k 2.1 8.5 3.5 4.7
InternLM-7B-8k 3 6 0.9 3.3
Vicuna-v1.5-7B-16k 6.5 4.5 5 5.33
Baichuan-13B-4k 0.06 0.5 5 1.85
ALiBi-7B-4k 0 1.27 0.75 0.67
CLEX-7B-4k 0 11.5 17.5 9.67

Table 7: Synthetic tasks in LongBench.

LCC RepoBench-P AVG

GPT-3.5-Turbo-16k 54.7 53.6 54.15
Llama2-7B-chat-4k 52.4 43.8 48.1
LongChat-v1.5-7B-32k 53 55.3 54.15
CodeLLaMA-7B-16k 64.35 55.87 60.11
XGen-7B-8k 38.6 38.6 38.6
InternLM-7B-8k 44.1 28.8 36.45
Vicuna-v1.5-7B-16k 51 43.5 47.25
Baichuan-13B-4k 47.98 16.58 32.28
ALiBi-7B-4k 46.69 18.54 32.61
CLEX-7B-4k 59.01 56.87 57.94

Table 8: Code completion tasks in LongBench.
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