
Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

SWA-LDM: Toward Stealthy Watermarks for La-
tent Diffusion Models

Zhonghao Yang1, Linye Lyu2, Xuanhang Chang2, Daojing He1,2 & Yu Li2
1Software Engineering Institute, East China Normal University
2School of Computer Science and Technology, Harbin Institute of Technology (Shen Zhen)
{ashzhonghao, yu.li.sallylee}@gmail.com

Abstract

Latent Diffusion Models (LDMs) have established themselves as powerful tools
in the rapidly evolving field of image generation, capable of producing highly re-
alistic images. However, their widespread adoption raises critical concerns about
copyright infringement and the misuse of generated content. Watermarking tech-
niques have emerged as a promising solution, enabling copyright identification
and misuse tracing through imperceptible markers embedded in generated images.
Among these, latent-based watermarking techniques are particularly promising, as
they embed watermarks directly into the latent noise without altering the underly-
ing LDM architecture. In this work, we demonstrate—for the first time—that such
latent-based watermarks are practically vulnerable to detection and compromise
through systematic analysis of output images’ statistical patterns. To counter this,
we propose SWA-LDM (Stealthy Watermark for LDM), a lightweight framework
that enhances stealth by dynamically randomizing the embedded watermarks using
the Gaussian-distributed latent noise inherent to diffusion models. By embedding
unique, pattern-free signatures per image, SWA-LDM eliminates detectable ar-
tifacts while preserving image quality and extraction robustness. Experiments
demonstrate an average of 20% improvement in stealth over state-of-the-art meth-
ods, enabling secure deployment of watermarked generative AI in real-world ap-
plications.

1 Introduction

The Latent Diffusion Models (LDMs) (Rombach et al., 2022) represent a significant advancement in
efficient, high-quality image generation. By leveraging Variational Autoencoders (VAEs) (Kingma &
Welling, 2014), LDMs transfer diffusion model operations from pixel space to latent space, allowing
UNet (Ronneberger et al., 2015) architectures to perform denoising in a lower-dimensional space.
This shift dramatically enhances computational efficiency, enabling companies and individuals with
limited resources to train models for commercial usage. Consequently, popular models such as
DALL-E 2 (Ramesh et al., 2022), and Midjourney (Midjourney) have emerged, facilitating the
generation of high-quality, realistic images via user-accessible APIs.

The rapid advancements of LDMs have introduced critical challenges, particularly concerning copy-
right infringement and the potential misuse of generated content. Copyright violations arise when
malicious actors steal and resell proprietary diffusion models, resulting in substantial financial losses
for original creators. Additionally, the capability to generate hyper-realistic images has been exploited
by individuals disseminating misinformation and fake news, thereby undermining public trust and
social stability. Addressing these issues is paramount for safeguarding intellectual property rights
and maintaining societal integrity.

To alleviate these issues, current LDMs employ watermarking techniques to embed pre-designed
imperceptible watermarks within the generated images. Then, one can extract this watermark using
corresponding methods to identify the image’s origin. Existing watermark methods fall into two
categories: post-processing watermarking (Ó Ruanaidh et al., 1996; O’Ruanaidh & Pun, 2002; Cox
et al., 2007; Zhang et al., 2019) and in-generation-process watermarking (Fernandez et al., 2023;
Wen et al., 2023; Yang et al., 2024b; Lei et al., 2024; Feng et al., 2024). Post-processing methods

1

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Denoising

Inversion

Watermark Embedding in LDM

Watermark Verification in LDM
Attacker

…

Access LDM to
generate images as
a normal user and
infer if there is a

watermark.

Watermark Probe Attack

Diffusion

#

ℰ

…
…

!!,#

"!,!
!!,$Watermark

…
…

!%,#

!%,!
!%,$

…
…

!!,#&

!!,!&
!!,$&Watermark

…
…

!',#&

!',!&
!',$&

Verify Watermarked?

Figure 1: The general framework of the latent-based watermarking method for LDMs. They often
add the same watermark signal to different generated images, which attackers can exploit to detect
the presence of watermark.

add watermarks after the images have been generated by LDMs, but they often compromise image
quality (Fernandez et al., 2023). Alternatively, in-generation-process methods embed watermarks
during the image generation process, which can be further divided into model-based (Fernandez et al.,
2023; Feng et al., 2024) and latent-based methods (Wen et al., 2023; Yang et al., 2024b; Lei et al.,
2024). The former embeds watermarks by modifying LDMs’ parameters (e.g. VAE, UNet), resulting
in training costs. In contrast, the latent-based methods, as shown in Fig. 1, embed a watermark to the
latent noise before the denoising process. This approach eliminates the need for extensive retraining
and incurs minimal computational overhead, making it highly efficient for practical applications.

However, a significant limitation of current latent-based watermarking techniques is their reliance on
constant watermarks across all generated outputs, making them susceptible to detection by malicious
users. This paper highlights this vulnerability for the first time, demonstrating that the stealthiness
of existing methods can be easily compromised using only the generated images. Unlike prior works
that attempt to remove watermarks without first verifying their presence (Saberi et al., 2024; Yang
et al., 2024a), we propose an attack to determine whether an image generated by an LDM contains
a watermark, which can further inform adversarial actions. This attack also serves as an evaluation
metric for the stealthiness of latent-based watermarking techniques. Specifically, we design a feature
extractor to identify constant watermark signals in images generated by the target LDM. Successful
extraction of a constant signal indicates the presence of a watermark. Through this attack, we
emphasize the urgent need to enhance the stealthiness of watermarking techniques to safeguard
against unauthorized use.

To address this vulnerability, we introduce SWA-LDM, a plug-and-play component compatible with
any latent-based watermarking method to create stealthy watermarks. Our approach randomizes the
watermark by embedding image-dependent signals into generated images, effectively preventing the
detection of a constant signal. The closest related work, Gaussian Shading, uses stream ciphers for
randomization but incurs high management costs due to the need to remember a unique nonce for
each image. In contrast, SWA-LDM leverages the inherent randomness of latent noise to generate
image-dependent watermarks without additional management overhead. Specifically, we introduce a
key channel sampled from the latent noise to create a random key that shuffles the watermark, ensur-
ing uniqueness for each image. During watermark verification, SWA-LDM reconstructs the latent
variable via diffusion inversion and extracts the key to retrieve the original watermark. However,
inaccuracies may arise due to diffusion inversion errors and image transmission noises. To mitigate
this, we propose an enhancement algorithm to store redundant keys in the key channel while pre-
serving its distribution. The combination of randomized watermarks and key channel enhancement
facilitates the generation of stealthy and robust watermarks.

Our contributions are summarized as follows: ① We are the first to expose the stealthiness vul-
nerabilities inherent in current latent-based LDM watermarking methods, which generate constant
watermarks that can be easily exploited by malicious users for detection. Our effective watermark
probe attack demonstrates this vulnerability, underscoring the critical need for enhanced watermark-
ing strategies. ② We present SWA-LDM, a versatile plug-and-play component compatible with
any latent-based watermarking method, designed to create stealthy watermarks. By leveraging the
inherent randomness of latent noise, SWA-LDM generates image-dependent watermarks without
incurring additional management costs. Additionally, we propose an enhancement algorithm that
incorporates redundant keys within the key channel, preserving its distribution while significantly

2

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

improving watermark robustness. ③ We conduct comprehensive experiments to evaluate the pro-
posed watermark probe attack and SWA-LDM. Results show that SWA-LDM effectively improves
the stealthiness of latent-based watermarks while achieving competitive visual quality, image-text
similarity, and watermarking robustness.

2 Background and Related Works

Latent Diffusion Models. Latent diffusion models are a computationally efficient version of diffusion
models (Rombach et al., 2022). LDMs leverage a pretrained autoencoder to compress image x ∈
R3×H×W in RGB space into a lower dimensional latent representation z ∈ Rc×h×w. Training
and sampling LDMs in the latent space significantly reduces the computational complexity. More
specifically, during training, the encoder E encodes the image x into a latent representation by
z = E(x). Next, LDMs conduct diffusion and denoising process in the latent space, which converts
z to a latent noise zT and recovers the image latent z̃ from zT respectively over T timesteps. Then,
the decoderD reconstructs the image x̃ from the recovered latent by x̃ = D(z̃). During sampling, the
LDMs sample a noise latent vector zT from Gaussian distribution N (0, I). Subsequently, the trained
LDM can utilize sampling methods like Denoising Diffusion Implicit Models (DDIM) (Song et al.,
2020; Nichol & Dhariwal, 2021) or DPM-Solver (Lu et al., 2022) to obtain the latent representation
of the sampled image zs from zT over T timesteps. Then, the decoder reconstructs the image from
the latent by xs = D (zs). Besides, one can use methods like DDIM Inversion (Mokady et al., 2023)
to invert the denoising process and recover the initial noise zT from the generated image xs.

Watermarks for Latent Diffusion Models. LDMs enable individuals to customize their own
models for specific styles of image generation via training and fine-tuning, which they can publish
and exchange in the online market space such as Civitai (Inc.) and Tensor.art (Tensor.art). However,
these advancements have also raised concerns about the potential abuse of these models and the
generated images. For instance, unauthorized commercial exploitation of LDM-generated images
lacking inherent copyright protection is a significant risk. Besides, malicious users can generate
realistic images to spread rumors and fake news on social media, potentially manipulating important
social and economic events such as political elections and the stock market. Therefore, enhancing
LDMs with copyright protection and traceability techniques is crucial. Watermarking has a long
history to alleviate these issues via labeling image content (Ó Ruanaidh et al., 1996), which involving
incorporating watermark information into the generated images. Then, one can identify the origin
of the images by verifying the watermark.

Existing watermarking methods for LDMs can be categorized into post-processing and in-generation-
process watermarks. Post-processing methods add watermarks to images after they have been
generated by LDMs. For instance, the Stable Diffusion repository provides methods like DWT-
DCT (Rahman, 2013) and RivaGAN (Zhang et al., 2019). Despite their widespread usage, direct
modification to the images can degrade image quality (Fernandez et al., 2023). Alternatively, recent
research proposes in-generation-process watermarks, which integrate the watermark embedding with
the image generation process. Stable Signature (Fernandez et al., 2023) and AquaLora (Feng et al.,
2024) embed watermarks by fine-tuning the VAE decoder and UNet of the LDMs, respectively.
These model-based methods improve the watermarked image quality but introduce substantial com-
putational costs for training the model parameters. Conversely, recent works propose latent-based
watermarks, which embed the watermarks into the latent space of the diffusion models. Tree-
Ring (Wen et al., 2023) encodes the watermark in the frequency domain of the latent noise, while
Gaussian Shading (Yang et al., 2024b) maps the watermark to the latent variable following Gaussian
distribution. DiffuseTrace (Lei et al., 2024) uses an encoder model to modify the initial latent noise
variable. Latent-based methods are free of model parameter modifications, making them much less
computational and more user-friendly.

While latent-based methods hold great promise for practical usage, our research reveals a critical
issue: even though invisible, these techniques produce a constant signal across generated images.
This uniformity undermines the stealthiness of the watermarks, increasing the risk of copyright
infringement. To address this, we propose a plug-and-play component that integrates with existing
latent-based watermarking methods and enhances their stealthiness.

3

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Watermark
Feature

Extractor

Prompt
Set

……

……

Image Generation Feature Extraction Feature Analysis

MMD

Watermarked?

𝑫𝒕𝒂𝒓

𝑫𝒄𝒍𝒆

𝑰𝒕𝒂𝒓

𝑰𝒄𝒍𝒆

𝑭𝒕𝒂𝒓

𝑭𝒄𝒍𝒆

Figure 2: The overview of watermark probe attack.

3 Watermark Probe Attack

We introduce a promising watermark probe attack to detect the presence of latent-based watermarks
by analyzing a set of images generated by the target LDM.

3.1 Threat Model

The watermark probe attack targets a scenario with two parties: the model owner providing the
image generation service and the watermark probe attacker.

Model Owner. The owner of the LDM deploys it on a platform (e.g. Face; Inc.; Tensor.art) and
provides image generation services through API access. To protect image copyrights and ensure
traceability in cases of misuse, the owner embeds imperceptible watermarks in each generated image
without degrading image quality. For any given image, the owner can verify whether it contains their
watermark and identify the associated user, a process known as watermark verification, which must
remain highly accurate even after image perturbations. The model owner controls the entire LDM,
image generation, and verification process.

Watermark Probe Attacker. The attacker aims to detect the presence of watermarks in images
generated by target LDM Dtar. The attacker generates images using the API and controls only the
prompts, without access to the model’s internals, the initial noise, or any knowledge of the model,
watermark method, or watermark detector. Also, the attacker can utilize open-source models Dcle

to generate watermark-free images with the same prompts.

3.2 Overview

Figure 2 illustrates our watermark probe attack, consisting of three modules: Image Generation,
Feature Extraction, and Feature Analysis.

Image Generation. In this module, we generate two image sets: the target image set Itar from the
target LDM Dtar and the clean image set Icle from the clean LDM Dcle. Both sets share the same
prompt set P to ensure any differences are primarily due to the watermark. These image sets are
then used to train the watermark feature extractor in the next module.

Feature Extraction. The goal of this module is to train a Watermark Feature Extractor WFE,
which tries to extract the constant watermark from the generated images. To achieve this, we design
three loss functions for training WFE based on the extracted features: the first loss Lat encourages
WFE to aggregate target image features to find the constant watermark signal; the second loss Ldtc

motivates the extractor to distinguish between target image and clean image features; and the third
loss Lgc let the clean image features follow a random distribution to prevent extractor from only
detecting the signals caused by model difference instead of watermark. These loss components are
explained in the Sec. 3.4. Thus, the total loss function is:

Ltotal = Lat + αLdtc + βLgc, (1)

where α and β are hyperparameters to control the contribution of each loss.

Feature Analysis. This module determines whether the target diffusion model Dtar contains a
watermark. We use the trained WFE from previous method to extract Fcle and Ftar from Icle and
Itar. Then, we measure the distribution difference between these two features using Maximum Mean

4

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Discrepancy (MMD) (Gretton et al., 2012) metric. If the feature distributions differ significantly,
our method predicts that the target model is watermarked and vice versa.

3.3 Image Generation

We begin by collecting a prompt set P to create the training dataset, comprising Icle and Itar.
Ideally, a watermark-free version of the target model would be used as the clean model to generate
a corresponding watermark-free image. The only distinction between the two sets is the presence of
the watermark. By analyzing distributional differences, we can infer the watermark’s presence—if
no difference is observed, the image is watermark-free; if differences exist, a watermark is likely
present. In practice, attackers often have access to only an approximate watermark-free model.
Since most LDMs are fine-tuned from open-source models (Zhang et al., 2023; 2024), there is a
similarity between the output distributions of the target and clean LDMs. This similarity amplifies
the differences caused by the watermark, facilitating effective detection of its presence.

3.4 Feature Extraction

In this module we attempt to detect watermark signal in the generated images by training a Watermark
Feature Extractor WFE. The WFE should have the following behaviors for successful watermark
probe attack: when the watermark exists in the target images, the extractor should identify the
watermark signal, causingFtar to converge; besides, the extractor should also identify the distribution
difference between the Fcle and Ftar caused by the watermark: furthermore, the extractor should
only detect the constant signal contributed by the watermark instead of the inherent difference
between Dcle and Dtar. To achieve these behaviors, We design three types of losses to achieve these
properties. To encourage Ftar to converge during training, we introduce aggregating loss for targe
feature Lat, which calculates the variance of the target features as shown in Equation 2:

Lat =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

∥∥∥f i
tar − f j

tar

∥∥∥2 (2)

Besides, we introduce difference Ldtc loss to distinguish the difference between the Fcle and Ftar.
Ldtc calculates the reciprocal of the difference between the matched ftar and fcle as shown in
Equation 3.

Ldtc =
1

1
N2

∑N
i=1

∑N
j=1

∥∥f i
tar − f i

cle

∥∥2 (3)

Even if the target images are watermark-free, Lat and Ldtc may converge due to the model difference
between Dcle and Dtar. WFE can falsely treat the model difference as the watermark difference,
which leads to false positive detection result. To alleviate this , we propose the third loss Lgc to
prevent the WFE model from learning the model-difference features. Lgc is motivated by one
property of watermarking: when the input is a watermark-free image the watermark extractor should
produce a random output. Therefore, Lgc encourages the extracted features from the clean images
to follow a random distribution. Hence, Lgc calculates the KL divergence (Csiszar, 1975) between
the Fcle’s distribution and a Gaussian distribution, as shown in Equation 4 .

Lgc =
1

N

N∑
i=1

KL
(
f i
cle ∥

1

M

)
, (4)

where N is the batch size, M is the feature dimension size.

4 SWA-LDM

We introduce SWA-LDM, a plug-and-play component for existing latent watermarking methods that
generates image-dependent watermarks to counter watermark probe attack.

5

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

&!

Key Channel

Noise Channel

Watermark Channel

Split

Watermark

Insert Merge

!! !" !- !. Redun.

Shuffle Merge !Denoising

#&! #&" #$"

Extract

Extract
Reshuffle

Key Channel

ℰDiffusion

#&"##&!#

Split

(

(#

Split
Verify

Watermark Verification in LDM

Watermark Embedding in LDM

Watermark Channel Inversion

Watermark

!! !" !- !.
!!! !"! !-! !.!

!′! !′" !′- !′. Attacker

#(,(#(,/ #(,0 #(,1

#0,(

#/,(

#1,(

#0,/

#/,/

#1,/

#0,0

#/,0

#1,0

#0,1

#/,1

#1,1

#(,(#(,/ #(,0 #(,1

#0,(

#/,(

#1,(

#0,/

#/,/

#1,/

#0,0

#/,0

#1,0

#0,1

#/,1

#1,1

Channel
Enhancement

Key
Construction

Figure 3: The framework of SWA-LDM. We extract the key k from randomly initialized latent
variables and use it to shuffle the remaining latent variables where the watermark is inserted. This
ensures the watermark information is randomized in each generated image.

4.1 Overview

The framework of SWA-LDM is shown in Fig. 3. During watermark embedding, SWA-LDM
initializes latent noise zT sampled from a standard Gaussian distribution, which it then splits into
key, noise, and watermark channels. The key and noise channels retain random noise, while the
watermark channel is reinitialized with watermark-embedded noise based on the chosen latent-based
watermarking method. To randomize the watermark, SWA-LDM leverages the inherent randomness
of latent noise by extracting a random seed (key) from the noise in the key channel. To ensure
reliable key recovery to counter diffusion inversion errors and image transmission noises, we design
a robust key construction mechanism and enhance the key channel for stronger key information. The
key then seeds the random number generator to shuffle the watermark and noise channels, and the
key channel is merged to produce the watermarked latent noise ẑT . The subsequent denoising and
image generation process follows the standard procedure of LDMs.

During watermark verification, SWA-LDM restores the image to latent space, obtaining ẑ′0, and uses
diffusion inversion method to approximate the original latent noise ẑ′T . SWA-LDM partitions ẑ′T to
extract the key from the key channel, which is used to reshuffle the remaining channels. This process
recovers the latent noise from the watermark channel, from which the watermark is extracted and
verified. The closest work, Gaussian Shading (Yang et al., 2024b), using stream ciphers to encrypt
latent noise, introducing randomness to the watermarked latent distribution. However, stream ciphers
require a unique nonce per latent noise to achieve randomness, meaning each generated image must
be paired with a specific nonce. This nonce must be managed and matched with the corresponding
image during watermark verification, as it is essential for decrypting the latent noise to verify the
watermark. This nonce management complicates practical implementation in LDM applications
that generate high volumes of images. In contrast, SWA-LDM operates without any additional
information management.

4.2 Watermark Embedding

Each step of watermarking embedding in SWA-LDM is illustrated below.

Channel Splitting. SWA-LDM initializes the latent noise zT ∈ Rc×h×w and divide it into key
channels zkT ∈ Rck×h×w, noise channels znT ∈ Rcn×h×w, and watermark channels zwT ∈ Rcw×h×w.
The key and noise channels are filled with randomly sampled noise from a standard Gaussian
distribution N (0, I). Meanwhile, the watermark channel is initialized with a chosen latent-based
watermarking method (e.g., Yang et al. (2024b))

Key Construction. SWA-LDM uses a pseudorandom number generator (PRNG) and shuffle al-
gorithm to randomize the latent noise in the watermark and noise channel. The PRNG seed must
meet three criteria: (1) each seed is randomly generated and unique per image, (2) it can be reliably
reconstructed during watermark verification, and (3) it does not require additional management.

6

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Algorithm 1: Key Channel Enhancement
Input: zk

T : Latent noise in key channel, k: Extracted key bits, R: Number of redundancies,M: Mapping function
Output: zk

T : Modified latent noise with robust key information
1 for r ← 1 to R do
2 for m← 1 to len(k) do

/* Find the latent noise corresponding to kr
m */

3 (i, j, q)←M(r ×M + m)

4 kr
m← 1 if zk

T,i,j,q > 0 else 0

5 if kr
m ̸= km then
/* Search for latent noise to swap */

6 p← m + 1
7 while True do
8 (i′, j′, q′)←M(r ×M + p)

9 new_bit← 1 if zk
T,i′,j′,q′ > 0 else 0

10 if new_bit = km then
11 swap(zk

T,i,j,q , zk
T,i′,j′,q′)

12 Break
13 p← p + 1

14 zk
T ← zk

T

15 return zk
T

To achieve this, SWA-LDM derives the key k directly from the latent noise. Given that LDMs trans-
form latent noise zT , sampled from a Gaussian distribution N (0, I), into an image x0, this approach
retains the necessary randomness and ensures compatibility with diffusion inversion, fulfilling the
requirements for k. However, during diffusion inversion, the reconstructed z′T may not perfectly
match the original zT , especially when x0 experiences perturbations. Therefore, SWA-LDM must
reliably construct k even in the presence of these variances. For robustness, SWA-LDM abstracts
specific elements from the latent noise to construct each bit of k. First, we define a mapping function
to consistently sample fixed locations within the latent noise for each bit in k. Specifically, a mapping
function M : {1, 2, . . . , N} → {(i, j, q) | i ∈ [1, ck], j ∈ [1, h], q ∈ [1, w]}, with N = ck × h×w,
allows SWA-LDM to consistently access the same positions in zkT for k-bit construction. For sim-
plicity, M is implemented as a sequential mapping, unfolding zkT linearly to assign each bit of
k.

Next, each bit of k is sampled based on the sign of specific latent variables zkT,i,j,q within zkT . Letting
M denote the bit-length of k, each bit is determined as follows:

k = [k1, . . . , kM] km =

{
1, if zkT,im,jm,qm

> 0

0, if zkT,im,jm,qm
≤ 0

(5)

where (im, jm, qm) = M(m) indicates the index of km in the latent noise zkT .

Key Channel Enhancement. While the key construction accounts for noise variations, it may still
fail to reliably recover k under perturbations. To address this, we propose a method to construct
redundant key information within zkT , ensuring robust key extraction with minimal modification to
zkT . Let R represent the number of redundant key, and define the r-th redundant key as kr, where
r ∈ [1, R] and krm = km for m ∈ [1,M]. For each redundant key kr, we map it to a set of
latent noise using the mapping function M. The latent variable zkT,in,jn,qn

corresponds to krm with
(in, jn, qn) = M(r×M +m). If the relationship between krm (either 0 or 1) and zkT,in,jn,qn

(either
≤ 0 or > 0) does not match, we search for a latent noise element that satisfies the condition and
swap the corresponding values. The key channel enhancement process is detailed in Algorithm 1.
This algorithm takes the latent noise zkT , the key k, and the number of redundant key R as input, and
outputs the enhanced latent noise zkT , which includes the redundant key.

Latent Noise Shuffling. As previously discussed, SWA-LDM embeds the watermark into the latent
noise of the watermark channel, resulting in ẑwT . To randomize this embedded watermark, SWA-
LDM uses k as a seed for the pseudorandom number generator (PCG64) (O’Neill, 2014). The
Fisher-Yates shuffle algorithm (Eberl, 2016) is then applied to permute concat(ẑwT , z

n
T), dispersing

watermark information across the latent space. Finally, we concatenate the enhanced latent noise zkT
with the shuffled watermark channel to form the final watermarked latent noise ẑT .

7

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Image Generation. After constructing the watermarked latent noise ẑT , the image generation
process follows the standard procedure of the LDMs. Specifically, we utilize DDIM (Song et al.,
2020) for denoising of ẑT . Once the denoised latent ẑ0 is obtained, the watermarked image x̂0 is
generated by applying the LDM decoder D: x̂0 = D(ẑ0).

4.3 Watermark Verification

Diffusion Inversion. For watermark verification, we use the LDM encoder E to map the watermarked
image x̂0 back to the latent space, obtaining ẑ′0 = E(x̂0). We then apply diffusion inversion over T
timesteps, estimating the additive noise to recover ẑ′T ≈ ẑT . Here, DDIM inversion (Mokady et al.,
2023) is used to approximate the original latent noise.

Robust Key Extraction. With ẑ′T obtained, we partition it to isolate the key channel zk
′

T containing
the redundant key information and the shuffled channel. Using a fixed mapping function M, we
extract the redundant key information from predetermined positions in zk

′

T to obtain both the key
k′ and its redundant bits {kr′ | r ∈ [1, R]}. Each bit k′m of k′ is determined by a majority voting
mechanism, wherein if more bits are zero than one among k′m and {kr′m|r ∈ [1, R]}, k′m is set to
zero; otherwise, it is set to one.

Reshuffling Watermark Information and Verification. After recovering the key k′, we use it as the
seed for a pseudorandom number generator (PCG64) and reapply the Fisher-Yates shuffle algorithm
to re-shuffle the latent noise, excluding the key channel. This reshuffled latent noise is then split to
isolate ẑw

′

T and zn
′

T . Finally, based on the latent-based watermarking method employed, we extract
and verify the watermark from ẑw

′

T .

5 Experiment

5.1 Setup

Latent Diffusion Models. We employed three widely-used Stable Diffusion models as base models:
Stable Diffusion v1-5 (SD v1-5), Stable Diffusion v2-1 (SD v2-1), and SD-XL 1.0-base (SDXL 1.0).
For customized models, we downloaded 60 checkpoints from Hugging Face (Face), fine-tuned from
three base models (SD v1-5, SD v2-1, and SDXL 1.0), with each base model comprising 20 different
checkpoints. Detailed on these 60 checkpoints is provided in the Appendix. Compared to previous
work, our study covers the largest model set to date (60 models, vs. Tree-ring (Wen et al., 2023) with
1, Gaussian Shading (Yang et al., 2024b) with 3, and DiffuseTrace (Lei et al., 2024) with 2).

Image Generation Details. To generate images, we use prompts from the Stable-Diffusion-Prompts
dataset (Gustavosta). The generated image resolution is 512×512 pixels, with latent noise dimensions
set to 4×64×64 and a guidance scale of 7.5. We use DDIM sampling (Song et al., 2020) with 50
timesteps. In practice, the original prompts of the generated images are often not shared. Hence,
we use an empty prompt for diffusion inversion (Mokady et al., 2023). In this process, we set the
guidance scale to 1 and perform 50 timesteps of DDIM inversion.

Baselines. We evaluate three representative latent-noise-based watermarking methods: Tree-
ring (Wen et al., 2023), Gaussian Shading (Yang et al., 2024b), and DiffuseTrace (Lei et al., 2024).
For Gaussian Shading, we test both implementations, with and without the ChaCha20 (Bernstein
et al., 2008) secure stream cipher, which shuffles the watermark sequence. Detail of these methods
are in the Appendix.

Evaluation Metrics. To evaluate watermark probe attacks, we use the area under the ROC
curve (AUC). Attack results on watermarking methods indicate stealthiness, calculated as (1 -
AUC of watermark probe attack). We benchmark watermark effectiveness by reporting AUC and
TPR at 1% FPR (noted as TPR@1%FPR) and bit accuracy for encoded information. For water-
marked image quality, we use the CLIP score (Radford et al., 2021) between generated images and
prompts, measured using OpenCLIP-ViT/G (Cherti et al., 2023) and the Fréchet Inception Distance
(FID) (Heusel et al., 2017). FID, which evaluates feature similarity between generated and origi-
nal images, is calculated from 5,000 images per base model generated using the MS-COCO-2017
dataset(Lin et al., 2014).

8

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 1: Comparison of SWA-LDM and baselines. The watermark effectiveness is evaluated with
AUC, TPR@1%FPR, and bit accuracy. The quality of the generated images is assessed using FID
and CLIP scores. The stealthiness represents the failure rate of the proposed watermark presence
attacks. Left to right are LDMs fine-tuned from SD v1-5/SD v2-1/SDXL 1.0.

Methods Nonce
Management

Metrics
AUC TPR@1%FPR Bit Acc. FID ↓ CLIP-Score ↑ Stealthiness ↑

No watermark % - - - 29.77/27.01/75.83 0.324/0.291/0.304 -

Tree-Ring % 0.999/0.999/0.999 0.987/0.996/0.998 - 30.53/28.32/78.97 0.325/0.296/0.305 0.208/0.212/0.227
DiffuseTrace % 0.999/0.983/0.840 0.989/0.944/0.434 0.978/0.951/0.692 30.15/26.83/83.68 0.324/0.296/0.302 0.204/0.218/0.296

Gaussian Shading % 1.000/1.000/1.000 1.000/1.000/1.000 0.999/0.999/0.999 31.58/29.82/70.39 0.325/0.297/0.305 0.005/0.019/0.084
G-SChaCha20 ! 1.000/1.000/1.000 1.000/1.000/1.000 0.999/0.999/0.999 29.69/27.21/75.83 0.324/0.297/0.304 0.427/0.505/0.478

SWA-LDM (T-R) % 0.999/0.997/0.996 0.999/0.991/0.993 - 30.24/27.43/70.21 0.324/0.297/0.305 0.475/0.495/0.474
SWA-LDM (D-T) % 0.999/0.978/0.810 0.983/0.942/0.354 0.974/0.945/0.666 29.80/26.90/76.89 0.323/0.295/0.301 0.496/0.497/0.504
SWA-LDM (G-S) % 0.999/0.997/0.998 0.999/0.995/0.998 0.999/0.997/0.998 30.53/27.28/75.29 0.324/0.297/0.304 0.469/0.513/0.508

Setup of Watermark probe Attack. The attacker generates 1,000 clean images using three base
models (SD v1-5, SD v2-1, SDXL 1.0) and evaluates performance by averaging results across
models. For the watermark feature extractor, we use a 12-layer CNN with convolutional and fully
connected layers, ReLU activations, and layer normalization, outputting a 100-dimensional feature
vector. Training uses SGD optimizer with a learning rate of 0.01, momentum of 0.9, and a scheduler
with a 0.5 decay factor every 50 steps. Detailed architecture is in the Appendix.

Setup of SWA-LDM. We integrate SWA-LDM with three baseline methods: SWA-LDM with Tree-
Ring (SWA-LDM(T-R)), SWA-LDM with DiffuseTrace (SWA-LDM(D-T)), and SWA-LDM with
Gaussian Shading (SWA-LDM(G-S)). Each method uses a key channel count of 1 to construct an
8-bit key with 64 redundant bits. The number of watermark channels is set to 1 for SWA-LDM(T-R)
and 3 for both SWA-LDM(D-T) and SWA-LDM(G-S).

5.2 Comparison to Baseline Methods

Stealthiness Comparison. We conduct watermark probe attack experiments across SWA-LDM and
baselines. The attack performance, summarized in the "Stealthiness" column of Tab. 1, shows the
average stealthiness achieved by each method against an attacker using different base models.

The results show that watermark probe attacks effectively detect watermarks in baseline methods.
SWA-LDM improves stealthiness and provides defense against these attacks. Among baseline meth-
ods, Gaussian Shading is the most detectable, with the lowest stealthiness, while DiffuseTrace and
Tree-Ring offer slight improvements but remain vulnerable. Gaussian Shading with ChaCha20
increases stealthiness but requires costly per-image nonce management. In contrast, SWA-LDM
achieves ChaCha20-level stealthiness without nonce dependency, integrating smoothly with Diffuse-
Trace, Tree-Ring, and Gaussian Shading. Further analysis on the base model’s impact on detection
is in Appendix C.

Watermarking Effectiveness Comparison. For the evaluation of watermark effectiveness, As
detailed in Sec. 5.1, each base model (SD v1-5, SD v2-1, SDXL 1.0) is fine-tuned to produce
20 checkpoints, each generating 1,000 images, resulting in 60,000 watermarked and 60,000 clean
images per method. As shown in Tab. 1, SWA-LDM maintains AUC, TPR@1%FPR, and bit
accuracy comparable to original methods, with slight metric decreases due to key construction from
latent noise for enhanced stealthiness. SWA-LDM also has minimal impact on FID and CLIP scores,
preserving LDM-generated image quality.

6 Conclusion

In conclusion, we address critical vulnerabilities in latent-based watermarking methods for Latent
Diffusion Models (LDMs) by exposing their susceptibility to detection through constant watermarks.
We introduce a novel watermark probe attack that operates solely on generated images, setting a
new standard in the field and highlighting the urgent need for enhanced watermarking strategies.
To counter these vulnerabilities, we present SWA-LDM, a plug-and-play component that enables
the creation of stealthy, image-dependent watermarks without incurring additional management
costs. Comprehensive experiments validate the effectiveness of SWA-LDM in improving watermark
stealthiness without compromising other watermark metrics.

9

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

References
Daniel J Bernstein et al. Chacha, a variant of salsa20. In Workshop record of SASC, volume 8, pp.

3–5. Citeseer, 2008.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2829, June 2023.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermarking
and steganography. Morgan kaufmann, 2007.

I. Csiszar. I-Divergence Geometry of Probability Distributions and Minimization Problems. The
Annals of Probability, 3(1):146 – 158, 1975. doi: 10.1214/aop/1176996454. URL https:
//doi.org/10.1214/aop/1176996454.

Manuel Eberl. Fisher–yates shuffle. Archive of Formal Proofs, September 2016. ISSN 2150-914x.
https://isa-afp.org/entries/Fisher_Yates.html, Formal proof development.

Hugging Face. Huggingface: The ai community building the future. https://huggingface.
co/.

Weitao Feng, Wenbo Zhou, Jiyan He, Jie Zhang, Tianyi Wei, Guanlin Li, Tianwei Zhang, Weiming
Zhang, and Nenghai Yu. AquaLoRA: Toward white-box protection for customized stable diffusion
models via watermark LoRA. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 13423–13444. PMLR, 21–27 Jul 2024.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable
signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 22466–22477, October 2023.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL
http://jmlr.org/papers/v13/gretton12a.html.

Gustavosta. Stable diffusion dataset. https://huggingface.co/datasets/
Gustavosta/Stable-Diffusion-Prompts.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URLhttps://proceedings.neurips.cc/paper_files/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

Civit AI Inc. Civitai: The home of open-source generative ai. https://civitai.com/.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Liangqi Lei, Keke Gai, Jing Yu, and Liehuang Zhu. Diffusetrace: A transparent and flexible
watermarking scheme for latent diffusion model, 2024. URL https://arxiv.org/abs/
2405.02696.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

10

https://doi.org/10.1214/aop/1176996454
https://doi.org/10.1214/aop/1176996454
https://isa-afp.org/entries/Fisher_Yates.html
https://huggingface.co/
https://huggingface.co/
http://jmlr.org/papers/v13/gretton12a.html
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://civitai.com/
https://arxiv.org/abs/2405.02696
https://arxiv.org/abs/2405.02696

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=PlKWVd2yBkY.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Midjourney. Midjourney. https://www.midjourney.com/.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text Inversion
for Editing Real Images using Guided Diffusion Models . In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6038–6047, Los Alamitos, CA, USA,
June 2023. IEEE Computer Society. doi: 10.1109/CVPR52729.2023.00585. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.00585.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

J.J.K. Ó Ruanaidh, W.J. Dowling, and F.M. Boland. Watermarking digital images for copyright
protection. IEE Proceedings - Vision, Image, and Signal Processing, pp. 250, Jan 1996. doi:
10.1049/ip-vis:19960711. URL http://dx.doi.org/10.1049/ip-vis:19960711.

Melissa E. O’Neill. Pcg: A family of simple fast space-efficient statistically good algorithms
for random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College,
Claremont, CA, September 2014.

J.J.K. O’Ruanaidh and T. Pun. Rotation, scale and translation invariant digital image watermarking.
In Proceedings of International Conference on Image Processing, Nov 2002. doi: 10.1109/icip.
1997.647968. URL http://dx.doi.org/10.1109/icip.1997.647968.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Md Maklachur Rahman. A dwt, dct and svd based watermarking technique to protect the image piracy.
International Journal of Managing Public Sector Information and Communication Technologies,
4(2):21, 2013.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao
Wang, and Soheil Feizi. Robustness of ai-image detectors: Fundamental limits and practical
attacks. In ICLR, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020.

Tensor.art. Tensor.art. https://tensor.art/.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings watermarks: invisible
fingerprints for diffusion images. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

11

https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY
https://www.midjourney.com/
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.00585
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.00585
http://dx.doi.org/10.1049/ip-vis:19960711
http://dx.doi.org/10.1109/icip.1997.647968
https://tensor.art/

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Pei Yang, Hai Ci, Yiren Song, and Mike Zheng Shou. Can simple averaging defeat modern wa-
termarks? In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024a.

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:
Provable performance-lossless image watermarking for diffusion models. In 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12162–12171, 2024b. doi:
10.1109/CVPR52733.2024.01156.

Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Robust invisible
video watermarking with attention. arXiv preprint arXiv:1909.01285, 2019.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3813–3824, 2023. doi: 10.1109/ICCV51070.2023.00355.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator,
2023. URL https://arxiv.org/abs/2204.13902.

Yuqing Zhang, Yuan Liu, Zhiyu Xie, Lei Yang, Zhongyuan Liu, Mengzhou Yang, Runze Zhang,
Qilong Kou, Cheng Lin, Wenping Wang, and Xiaogang Jin. Dreammat: High-quality pbr material
generation with geometry- and light-aware diffusion models. ACM Trans. Graph., 43(4), jul 2024.
ISSN 0730-0301. doi: 10.1145/3658170. URL https://doi.org/10.1145/3658170.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: a unified predictor-
corrector framework for fast sampling of diffusion models. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024.
Curran Associates Inc.

A Experimental Details

All experiments are implemented using PyTorch 2.0.1 and the Diffusers 0.24.0 library, running on a
single NVIDIA A800 GPU.

A.1 Baseline Methods

We detail the specific configurations of different baseline watermarking methods used in our exper-
iments.

• For Tree-Ring (Wen et al., 2023), it embeds a carefully constructed watermark pattern
in the Fourier space of the initial latent noise. Following the original paper, we set the
watermark pattern to multiple concentric rings, where each ring maintains a constant value
drawn from a Gaussian distribution. This design ensures rotation invariance and resilience
against various image transformations while minimally deviating from an isotropic Gaussian
distribution. The radius of the watermark pattern is set to 16 to balance generation quality
and verification performance. We embed the watermark into one latent channel and vary
the constant values along the rings to generate distinct watermarks.

• For Gaussian Shading (Yang et al., 2024b), we adopt the parameters recommended in the
original paper to balance watermark capacity and robustness. Specifically, the watermark
size is 1/8 of the latent height, 1/8 of the latent width, and one channel. For generated
images with resolution 3 × 512 × 512, the corresponding latent noise dimensions are
4 × 64 × 64, resulting in watermark dimensions of 1 × 8 × 8. During embedding, the
watermark is redundantly replicated and inserted into three latent noise channels to enhance
robustness.

• For DiffuseTrace (Lei et al., 2024), We use the publicly available code to obtain the
DiffuseTrace Encoder-Decoder architecture, and pre-train the Encoder-Decoder to generate
3-channel latent noise (dimensions 3 × 64 × 64) containing the DiffuseTrace watermark.
To meet the input requirement of 4×64×64 latent noise for Stable Diffusion (SD) models,
we concatenate the 3-channel watermarked latent noise with a 1 × 64 × 64 lantent noise

12

https://arxiv.org/abs/2204.13902
https://doi.org/10.1145/3658170

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 2: Detailed architecture of the Watermark Feature Extractor. The table lists the parameters for
each layer, including input channels, output channels, kernel size, stride, and activation function.

Layer Type Input Channels Output Channels Kernel Size Stride
1 Conv2D 3 32 3× 3 2
2 ReLU - - - -
3 Conv2D 32 32 3× 3 1
4 ReLU - - - -
5 Conv2D 32 64 3× 3 2
6 ReLU - - - -
7 Conv2D 64 64 3× 3 1
8 ReLU - - - -
9 Conv2D 64 64 3× 3 2
10 ReLU - - - -
11 Conv2D 64 128 3× 3 2
12 ReLU - - - -
13 Conv2D 128 128 3× 3 2
14 ReLU - - - -
15 Flatten - - - -
16 Dense - 512 - -
17 ReLU - - - -
18 LayerNorm - 512 - -
19 Dense - 100 - -
20 Sigmoid - - - -

sampled from a Gaussian distribution. To ensure compatibility with different SD models, we
fine-tune the Encoder-Decoder for each specific SD model to initialize latent noise tailored
to the model. Following the original implementation, the bit length of the watermark is set
to 48 during both training and testing.

A.2 The Architecture of WFE

In Sec. 3.4, we have introduced the Watermark Feature Extractor (WFE). Here, we provide details of
its architecture, as shown in Tab. 2. The WFE processes input images with a resolution of 256× 256
through a series of 3 × 3 convolutional layers with stride 2, progressively reducing the spatial
dimensions to an 8 × 8 feature map. Each convolutional layer is followed by a ReLU activation to
introduce non-linearity. The resulting feature map is flattened and passed through two dense layers:
the first projects it to a hidden dimension of 512, stabilized by LayerNorm, and the second produces
a 100-dimensional watermark feature vector. A sigmoid activation function is applied to the output,
ensuring that the values are in the range [0, 1], suitable for representing watermark features.

A.3 Evaluated Models

We utilized three widely-used Stable Diffusion models as base models: Stable Diffusion v1-5 (SD v1-
5), Stable Diffusion v2-1 (SD v2-1), and SDXL 1.0-base (SDXL 1.0). Additionally, we downloaded
60 checkpoints from Hugging Face (Face), which include models fine-tuned from these base models
or equipped with adapters. These customized models, comprising either fine-tuned versions or base
models enhanced with adapters, were used in our experiments. A list of the adapters and fine-tuned
models can be found in Tab. 3.

A.4 Image Perturbation Settings

In Appendix B, we evaluate the robustness of SWA-LDM against seven common image perturbations,
which simulate potential attacks. The types of perturbations and their respective parameter ranges
are detailed as follows:

13

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 3: The names of the 60 checkpoints used in our experiment

Type base on runwayml/stable-diffusion-v1-5 base on stabilityai/stable-diffusion-2-1 base on stabilityai/stable-diffusion-xl-base-1.0

Adapters

latent-consistency/lcm-lora-sdv1-5 sahibnanda/anime-night-vis-sd alvdansen/BandW-Manga
Melonie/text_to_image_finetuned sahibnanda/anime-real-vis-night nerijs/pixel-art-xl
Kvikontent/midjourney-v6 dlcvproj/cartoon_sd_lora latent-consistency/lcm-lora-sdxl
h1t/TCD-SD15-LoRA jainr3/sd-diffusiondb-pixelart-v2-model-lora alvdansen/littletinies
ostris/depth-of-field-slider-lora dlcvproj/retro_sd_lora Pclanglais/Mickey-1928
Norod78/sd15-megaphone-lora lora-library/lora-dreambooth-sample-dog artificialguybr/ColoringBookRedmond-V2
rocifier/painterly lora-library/artdecodsgn fofr/sdxl-emoji
artificialguybr/pixelartredmond-1-5v-pixel-art-loras-for-sd-1-5 nakkati/output_dreambooth_model_preservation alimama-creative/slam-lora-sdxl
patrickvonplaten/lora_dreambooth_dog_example Mousewrites/charturnerhn Adrenex/chamana
artificialguybr/stickers-redmond-1-5-version-stickers-lora-for-sd-1-5 lora-library/alf alvdansen/midsommarcartoon

Finetunes

mhdang/dpo-sd1.5-text2image-v1 ptx0/pseudo-flex-v2 mhdang/dpo-sdxl-text2image-v1
iamkaikai/amazing-logos-v2 Vishnou/sd-laion-art Bakanayatsu/Pony-Diffusion-V6-XL-for-Anime
stablediffusionapi/counterfeit-v30 n6ai/graphic-art Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO
Bakanayatsu/cuteyukimix-Adorable-kemiaomiao artificialguybr/freedom Lykon/dreamshaper-xl-lightning
iamanaiart/meinamix_meinaV11 bguisard/stable-diffusion-nano-2-1 Lykon/dreamshaper-xl-v2-turbo
stablediffusionapi/maturemalemix-v14 cloudwithraj/dogbooth Lykon/AAM_XL_AnimeMix
Lykon/DreamShaper bghira/pseudo-flex-v2 Linaqruf/animagine-xl-2.0
Lykon/AnyLoRA WildPress/simba_model fluently/Fluently-XL-v4
simbolo-ai/bagan nishant-glance/model-sd-2-1-priorp-unet-2000-lr2e-ab Eugeoter/artiwaifu-diffusion-1.0
Lykon/AbsoluteReality yuanbit/max-15-1e-6-1500 ehristoforu/Visionix-alpha

(a) SWA-LDM(G-S). (b) SWA-LDM(T-R). (c) SWA-LDM(D-T).
Figure 4: Performance of SWA-LDM with varying bit number of key. The effectiveness is demon-
strated through AUC and stealthiness metrics, where (a) compares SWA-LDM (G-S) with Gaussian
Shading and (b) compares SWA-LDM (T-R) with Tree-Ring. (c) compares SWA-LDM (D-T) with
DiffuseTrace.

• JPEG Compression, where the image is compressed using quality factors (QF) set to {100,
90, 80, 70, 60, 50, 40, 30, 20, 10};

• Random Crop, which retains a randomly selected region covering {80%, 90%} of the
original image area, discarding the rest;

• Random Drop, where randomly selected regions covering {10%, 20%, 30%, 40%, 50%}
of the image area are replaced with black pixels;

• Resize and Restore (Resize), where the image is resized to {20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%} of its original dimensions and then restored to the original size;

• Gaussian Blur (GauBlur), applied with blur radii r set to {1, 2, 3, 4};
• Median Filter (MedFilter), using kernel sizes k of {1, 3, 5, 7, 9, 11};
• Brightness Adjustment, which modifies the image brightness using brightness factors {0,

2, 4, 6}.

B Benchmarking Watermark Robustness

To evaluate the robustness of SWA-LDM, we assess its performance under seven common image
perturbations as potential attacks: JPEG compression, random crop, random drop, resize and re-
store(Resize), Gaussian blur (GauBlur), median filter (MedFilter), brightness adjustments. The
parameter ranges are shown in the Appendix. For each parameter setting of every perturbation,
we used 2,000 images generated by the SD v1-5 to evaluate performance. The average verifica-
tion AUC for each perturbation is reported in Tab. 4, which compares the robustness of various

14

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 4: Watermark Verification AUC under each image perturbation. Cr. & Dr. refers to random
crop and random drop.

Methods JPEG Cr. & Dr. Resize GauBlur MedFilter Brightness Avg
Tree-Ring 0.987 0.993 0.992 0.985 0.988 0.991 0.990

DiffuseTrace 0.962 0.993 0.985 0.966 0.969 0.922 0.968
Gaussian Shading 0.999 1.000 1.000 1.000 1.000 0.999 0.999

G-SChaCha20 0.999 1.000 1.000 1.000 1.000 0.999 0.999
SWA-LDM (T-R) 0.952 0.955 0.983 0.951 0.969 0.946 0.957
SWA-LDM (D-T) 0.939 0.974 0.977 0.939 0.950 0.965 0.959
SWA-LDM (G-S) 0.965 0.982 0.988 0.973 0.978 0.937 0.972

Table 5: Impact of different clean SD models on the watermark probe attacks. Left to right are target
LDMs fine-tuned from SD v1-5/SD v2-1/SDXL 1.0.

Methods SD version used to generate the clean images
SD v1-5 SD v2-1 SD-XL v1.0

Tree-ring 0.240/0.255/0.275 0.163/0.158/0.255 0.223/0.223/0.153
DiffuseTrace 0.183/0.229/0.303 0.207/0.213/0.303 0.223/0.213/0.284

Gaussian Shading 0.010/0.015/0.100 0.000/0.030/0.085 0.005/0.012/0.068
G-SChaCha20 0.445/0.546/0.500 0.383/0.400/0.435 0.453/0.570/0.500

SWA-LDM (T-R) 0.481/0.518/0.485 0.478/0.498/0.468 0.465/0.470/0.470
SWA-LDM (D-T) 0.478/0.528/0.520 0.491/0.484/0.463 0.520/0.479/0.530
SWA-LDM (G-S) 0.438/0.475/0.528 0.500/0.515/0.495 0.468/0.548/0.503

watermarking methods, both with and without the integration of SWA-LDM. Results indicate that
SWA-LDM maintains robust watermark verification under moderate image perturbations, demon-
strating its robustness. However, incorporating SWA-LDM impacts the original robustness of these
watermarking methods, especially under high-intensity distortions. This occurs because SWA-LDM
requires complete recovery of each bit in the key to retrieve the watermark, which can reduce ro-
bustness. Nevertheless, unless the image undergoes quality-compromising levels of perturbation,
watermark remains practical.

C Ablation Studies

Impact of the clean SD model on watermark probe attack. We evaluated whether the effectiveness
of the watermark probe attack is influenced by the base model used by the attacker to generate clean
images. Results shown in Tab. 5 indicate that the choice of base model has minimal impact on attack
performance, demonstrating that the watermark detection attack remains effective without requiring
knowledge related to the target model.

Impact of image quantity on watermark probe attack. Following the setup in Sec. 5.1, we
varied the number of images generated by the watermark probe attacker to assess its effect on attack
performance. Results shown in Tab. 6, indicate that within our sampled range, the watermark probe
attack’s effectiveness remains stable regardless of image quantity.

Impact of key redundancy on stealthiness and verification performance. Following the setup
in Section 5.1, we evaluate how varying key redundancy levels affects watermark stealthiness and
verification AUC. Results in Fig. 5 show that with minimal redundancy (4 redundancies), SWA-
LDM achieves a verification AUC around 0.8, compared to a near-perfect verification AUC of 1
for watermarking methods without SWA-LDM, indicating an 80% key recovery success rate. As
redundancy increases to 8, the recovery probability improves to 90%, and with redundancy over 40,
SWA-LDM achieves near-complete key recovery without compromising verification AUC. Across
all redundancy levels, SWA-LDM maintains consistently high stealthiness.

Impact of bit number of key on stealthiness and verification performance. In Sec. 4.2, we
have introduced how SWA-LDM employs a pseudorandom number generator (PRNG) and a shuffle

15

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 6: Impact of image quantities on the watermark probe attacks. Results are shown as stealthiness.

Methods Clean Image Quantity
500 1,000 1,500 2,000

Tree-ring 0.256/0.331/0.194 0.208/0.212/0.227 0.212/0.172/0.214 0.224/0.172/0.186
DiffuseTrace 0.220/0.208/0.325 0.204/0.218/0.296 0.244/0.204/0.288 0.221/0.214/0.300

Gaussian Shading 0.039/0.014/0.081 0.005/0.019/0.084 0.011/0.004/0.071 0.049/0.008/0.076
G-SChaCha20 0.423/0.468/0.438 0.427/0.505/0.478 0.438/0.486/0.533 0.423/0.478/0.546

SWA-LDM (T-R) 0.440/0.459/0.521 0.475/0.495/0.474 0.413/0.480/0.515 0.509/0.483/0.454
SWA-LDM (D-T) 0.491/0.530/0.470 0.496/0.497/0.504 0.525/0.475/0.500 0.498/0.516/0.479
SWA-LDM (G-S) 0.428/0.480/0.527 0.469/0.513/0.508 0.410/0.485/0.520 0.500/0.456/0.528

(a) SWA-LDM(G-S). (b) SWA-LDM(T-R). (c) SWA-LDM(D-T).
Figure 5: Performance of SWA-LDM with varying numbers of redundancies. The effectiveness is
demonstrated through AUC and stealthiness metrics, where (a) compares SWA-LDM (G-S) with
Gaussian Shading and (b) compares SWA-LDM (T-R) with Tree-Ring. (c) compares SWA-LDM
(D-T) with DiffuseTrace.

algorithm to randomize the watermarked latent noise. The key is derived from the latent noise
and serves as the seed for the PRNG. To analyze the impact of key bit number on watermark
stealthiness and verification performance, we have further evaluated SWA-LDM across a range of
key lengths from 4 to 32 bits, based on the setup described in Sec. 5.1. Results in Fig. 4, indicate
that both watermark stealthiness and verification AUC remain consistent regardless of the key’s bit
number within this range. These findings suggest that the choice of key length does not compromise
the effectiveness or concealment of the watermark, providing flexibility in the design of the key
construction process.

Impact of key construction. As described in Sec. 4.2, the key is constructed by sampling each bit
from the sign of specific latent variables. To assess its importance, we have replaced this mechanism
with fixed latent variables as the key. Following the experimental setup in Sec. 5.1, the results in
Tab. 7 show that removing the key construction significantly degrades performance. As analyzed
in Sec. 4.2, during diffusion inversion, the reconstructed latent noise may not perfectly match the
original latent noise, especially when the image experiences perturbations. These mismatches prevent
accurate key reconstruction, making watermark verification infeasible. This underscores the critical
role of key construction in maintaining robust watermarking.

Impact of sampling methods. We tested five commonly used sampling methods. As shown
in Tab. 8, our method demonstrates stable watermark verification AUC across different sampling
methods.

Impact of inversion step. In practice, the specific denoising step used in generation is often
unknown, which can result in a mismatch with the inversion step. However, as shown in Tab. 9, this
step mismatch does not affect the performance of our watermarking approach.

16

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 7: Impact of key construction on watermark verification AUC. The table compares results with
(!) and without (%) the proposed key construction mechanism. Left to right are LDMs fine-tuned
from SD v1-5/SD v2-1/SDXL 1.0.

Key
Construction

Watermark Methods
SWA-LDM (T-R) SWA-LDM (D-T) SWA-LDM (G-S)

% 0.517/0.532/0.521 0.482/0.495/0.500 0.491/0.502/0.496
! 0.999/0.997/0.996 0.999/0.978/0.810 0.999/0.997/0.998

Table 8: Verification AUC with different sampling methods, including DDIM Song et al. (2020),
UniPC Zhao et al. (2024), PNDM Liu et al. (2022), DEIS Zhang & Chen (2023), and DPMSolver
Lu et al. (2022); Song et al. (2020).

Watermark
Methods

Sampling Methods
DDIM UniPC PNDM DEIS DPMSolver

SWA-LDM (T-R) 1.000 0.972 1.000 1.000 1.000
SWA-LDM (D-T) 0.999 0.999 0.999 1.000 0.999
SWA-LDM (G-S) 1.000 1.000 1.000 1.000 1.000

Table 9: Verification AUC of SWA-LDM (T-R)/SWA-LDM (D-T)/SWA-LDM (G-S) with different
denoising and inversion step.

Denoising
Step

Inversion Step
10 25 50 100

10 0.999/0.999/1.000 1.000/1.000/1.000 1.000/1.000/0.999 1.000/1.000/0.999
25 1.000/0.999/1.000 1.000/0.999/1.000 1.000/1.000/1.000 1.000/1.000/1.000
50 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000
100 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000

17

	Introduction
	Background and Related Works
	Watermark Probe Attack
	Threat Model
	Overview
	Image Generation
	Feature Extraction

	SWA-LDM
	Overview
	Watermark Embedding
	Watermark Verification

	Experiment
	Setup
	Comparison to Baseline Methods

	Conclusion
	Experimental Details
	Baseline Methods
	The Architecture of WFE
	Evaluated Models
	Image Perturbation Settings

	Benchmarking Watermark Robustness
	Ablation Studies

