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Abstract

Active Learning (AL) is a user-interactive approach aimed at reducing annotation costs by
selecting the most crucial examples to label. Although AL has been extensively studied
for image classification tasks, the specific scenario of interactive image retrieval has re-
ceived relatively little attention. This scenario presents unique characteristics, including an
open-set and class-imbalanced binary classification, starting with very few labeled samples.
To address this specific scenario, we introduce a novel batch-mode Active Learning frame-
work named GAL (Greedy Active Learning) that incorporates a new objective function for
sample selection that measures the impact of each unlabeled sample on the classifier. We
further embed this strategy in a greedy selection approach. We evaluate our framework
with both linear (SVM) and non-linear (Gaussian Process) classifiers. For the linear case,
our method considers a pseudo-label strategy for each sample while ensuring tractability
through a greedy approach. Considering our Gaussian Process objective function, we show
a theoretical guarantee for the greedy approximation. Finally, we assess our performance
on the interactive content-based image retrieval task and demonstrate its superiority over
existing approaches and common baselines.

1 Introduction

Annotated datasets are in high demand for the majority of machine learning applications today. Active
Learning (AL) aims to actively select the most valuable samples for annotation, that when labeled and
added to the training process, will maximally boost the performance in the target task (e.g. a classifier).
In recent years, task specific AL has gained popularity, e.g. for multi-class image classification (36; 13), few
shot learning (3; 37) pose estimation (18), person re-identification (29), object detection (50) and interactive
Content-Based Image Retrieval (CBIR) (31; 4; 33; 19).

CBIR methods play an important role for data mining in large image datasets. AL has been engaged in
interactive CBIR (IIR) to reach the desired retrieval with just few user interactions. In AL cycles, the user
is given a collection of unlabeled images from a pool, indicating whether each image in the collection is
relevant (positive, belongs to the query concept) or irrelevant (negative). These images are then added to
the training set, with their corresponding (true) label to train a new classifier for retrieval. The idea is
to learn/recognize the user intent through an iterative and interactive process, as it is difficult to specify
queries directly and explicitly. In the context of Content-Based Image Retrieval (CBIR), this task involves
a form of active learning known as "pool-based" active learning (30), where the learner has access to a pool
of unlabeled data and can request the user’s label for a certain number of instances from within that pool.
For image retrieval, the unlabeled pool would typically comprise the entire searched database or a subset of
it. In general, and for the image retrieval task in particular, there are two main requirements for the learner
in this context. Firstly, the learner must accurately grasp the target concepts. Secondly, it must achieve a
quick understanding of a concept with just a small number of labeled instances. This is because the active
learning process typically commences with only one or a few query examples provided by the user, and it
should yield satisfactory results within a few rounds of labeling.

1



Under review as submission to TMLR

Selecting a batch (set) of images at each cycle (iteration) is referred to as Batch Mode AL (BMAL) (29;
25; 48; 13; 51; 36). This approach differs from the extraction of a single sample batch (25; 44). A general
pipeline describing the process of AL for image retrieval with user feedback (IIR) is shown in Fig. 1. In each
cycle, a binary classification task is introduced, characterized by highly imbalanced classes and an open-set
scenario (where the categories in the search domain are typically unknown). The negative class in general
consists of irrelevant images from diverse and heterogeneous classes (asymmetric scenario). Active learning
methods are typically employed for classification problems where the training set is substantial, and the
classes are evenly distributed. However, in the context of CBIR, the classes are highly imbalanced, with the
relevant class being significantly smaller (around 20 to 100 times) than the irrelevant class. Additionally,
CBIR tasks often involve open-set scenarios and asymmetric classes. As a consequence of these factors,
the boundary of a binary classifier that separates the desired query concept from other samples becomes
very inaccurate, especially during the initial iterations of relevance feedback. This is primarily due to the
significantly reduced size of the training set in the early stages of the active learning process. In this context,
numerous methods tend to be inefficient, resulting in a somewhat random selection process.

Selection strategies in active learning (AL) typically aim to predict the ”value" of a specific unlabeled
instance based on various hypotheses, especially in terms of increasing classification accuracy or the retrieval
measure. Commonly used cues for this purpose include uncertainty (12; 16; 46) and diversity (6; 41). Hybrid
approaches integrate both concepts for improved performance (47; 52; 1; 36). Nevertheless, uncertainty relies
on the accuracy of the classifier, which, in turn, necessitates a sufficient number of labeled samples. These
labeled samples are often unavailable, especially in the initial cycles of IIR. On the other hand, diversity
is solely based on the distribution of samples, but it may not always lead to the selection of the most
effective points. In response to these challenges, our method proposes a new approach that incorporates
both uncertainty and diversity cues in a more effective manner.

Active learning (AL) models have been extensively studied across various tasks and conditions. For instance,
they have been explored in the context of cold start, where the initial labeled training set is small (20; 53;
54; 17). Additionally, AL has been applied to address issues such as class imbalance, rare classes, and
redundancy, as demonstrated in SIMILAR (27). The BADGE model, as introduced in (2), effectively
balances diversity and uncertainty without the need for any hand-tuned hyper-parameters, much like our
approach. Additionally, certain methods specifically target large batch sizes, aiming to reduce the number
of training runs required to update heavy Deep Neural Networks (DNNs). For instance, ClusterMargin (10)
addresses the presence of redundant examples within a batch.

Recent studies such as (20; 53) have investigated the influence of budget size on active learning strategies
(diversity vs. uncertainty) and have also addressed the challenge of cold start for balanced multi-class
classification tasks. In the context of cold start, poor results are attributed to the inaccuracy of trained
classifiers in capturing uncertainty, a problem that becomes more pronounced with small labeled training
sets (34; 15). Active learning methods designed for cold start in image classification typically begin the
process with a few tens (for small datasets like CIFAR10) to hundreds of samples per class (for datasets
like CIFAR-100 and ImageNet-100) (20). Moreover, they often operate in a closed-set scenario with equal
sized classes, where type of categories are known beforehand, and samples from all classes are provided at
the start. This scenario differs from IIR tasks, which involve binary classification and an open-set context,
where the number and types of classes in the search space are unknown.

In this paper, we propose a batch mode active learning method for interactive image retrieval (IIR) that
inherently incorporates a cold start, in an open-set scenario. Traditional AL methods designed for standard
image classification can become impractical under such circumstances, due to model instability and unreliable
uncertainty estimation (54; 24; 35). We hereby focus on each individual sample and propose two types of
objective functions for AL sample selection, that measure the global change in the boundary decision. For a
linear classifier we measure the impact on the decision hyper-plane if the label is flipped. When considering
a non-linear Gaussian Process classifier we evaluate the impact of each sample on change in the overall
uncertainty of the classifier (in contrast to direct sample uncertainty in previous works). To further cope
with the scarcity of labeled samples, we suggest a greedy scheme that efficiently exploits each sample in the
subsequent selection of each batch. Our approach effectively combines both uncertainty and diversity, as
demonstrated in Section 3. Our work can be related to the MaxMin approach (25); however, we extend
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and generalize this idea by introducing a flexible framework that can be adapted to different classifiers and
accommodate a larger budget size. This is achieved through a novel score function within the proposed
greedy method.

2 Related Work

Pool-based Active Learning (AL) for Image Information Retrieval (IIR) can be defined as a binary (or one-
class) classification task with several unique characteristics: (i) Open-set: The number of classes and their
categories in the pool are unknown. (ii) Imbalance: Often, less than 1% of the pool contains the query
concept (positive class). (iii) Cold start: Only a few labeled samples are available, particularly in the early
and crucial cycles.
However, many existing AL methods are not specifically designed and tested in scenarios that combine
several characteristics, such as cold start, imbalance, rare classes, and an open-set scenario.

In the context of pool-based IIR, several initial studies have proposed the use of a tuned SVM with either
engineered or deep features (43; 19; 33; 39). SVM offers a practical approach for dealing with small training
sets, as it possesses a strong regularizer. For instance, in (43), a kernel SVM classifier is utilized for binary
classification tasks.

Gosselin et al. (19) proposed RETIN, a method that incorporates boundary correction to improve the
representation of the database ranking objective in CBIR. In (33), the authors introduced an SVM-based
batch mode active learning approach that breaks down the problem into two stages. First, an SVM is trained
to filter the images in the database. Then, a ranking function is computed to select the most informative
samples, considering both the scores of the SVM function and the similarity metric between the “ideal
query" and the images in the database. More recent work by (39) addresses the challenges related to the
insufficiency of the training set and limited feedback information in each relevance feedback (RF) iteration.
They begin with an initial SVM classifier for image retrieval and propose a feature subspace partition based
on a pseudo-labeling strategy.

Zhang et al. (55) proposed a method based on multiple instance learning and Fisher information, where
they consider the most ambiguous picture as the most valuable one and utilize pseudo-labeling. In contrast,
Mehra et al. (31) adopt a semi-supervised approach, using the unlabeled data in the pool for classifier
training. They employ an uncertainty sampling strategy that selects the label of the point nearest to the
decision boundary of the classifier, which is based on a heuristic of adaptive thresholding. To enhance their
results, they incorporate semantic information extracted from WordNet, requiring additional textual input
from the user. On the other hand, Barz et al. (5) proposes a method called ITAL that aims to maximize
the mutual information (MI) between the expected user feedback and the relevance model. They utilize a
non-linear Gaussian process as the classifier for retrieval.

In this work, we introduce a novel optimization process for active learning in Image Interactive Retrieval. We
follow the common strategy in the existing few shot learning methods e.g. (42; 9) and IIR (33; 5) by learning
deep features from a large, labeled dataset (such as ImageNet), and then employing a “shallow classifier" (in
terms of adjustable parameters) to avoid overfitting, at cold start. Our AL approach can accommodate both
linear (SVM) and non-linear classifiers. For SVM, we consider the rate of change of the classifier according to
a specific label. Rather than selecting the top-n most influential samples in a batch mode, which is prone to
underperforming in a cold start due to a small training set,o greedy-based approach for Batch Mode Active
Learning in IIR. In our greedy-based approach for the linear classifier case, we incorporate a pseudo-labeling
strategy by adding each selected point in the batch to the training set within the same round. Despite the
possibility of incorrect labels, gradually extending the training set helps improve the classifier’s performance,
benefiting the selection of subsequent samples in the batch until the budget is filled. We analyze this strategy
theoretically and conduct extensive experiments to demonstrate the accuracy of our method. Regarding the
non-linear Gaussian Process, our algorithm searches for samples that minimize the overall uncertainty. As
the uncertainty is not dependent on the label, we can add the sample into the training set and continue
searching for the subsequent optimal points, in a greedy manner, until the budget has been reached. In
summary, we propose a novel Batch Mode Active Learning (BMAL) for IIR task that makes the following
contributions:
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Figure 1: Main flow of the AL cycle. The top-K candidate set at cycle t determined by the classifier Ct(θ),
can be selected as the pool from the unlabeled/search corpus. The AL module extracts a batch set Xb which
is sent for annotation by a user (oracle) that generates the label set Yb. Based on the extended training set,
a new classifier Ct+1(θ) is trained for the next cycle.

1. We propose new objective functions that measure the global change in the classifier as a selection
strategy, tailored to linear and a non-linear classifier. Our framework can be customized for different
classification methods by adjusting the score function accordingly.

2. We propose a novel greedy scheme, to cope with very few labeled samples, focusing on only one
class, and operates in an open-set regime with highly imbalanced classes.

3. In the Gaussian Process case, we demonstrate a lower bound on the performance of the greedy
algorithm, using the (1− 1/e)-Approximation Theorem.

4. We present a more realistic multi-label benchmark for the Content-Based Image Retrieval (CBIR)
task, named FSOD, where the query concept involves an object within the input image.

5. We evaluate our framework using two classification methods (linear and non-linear) on four diverse
datasets, showcasing superior results compared to previous methods and strong baselines.

3 Algorithm Description

This section presents our GAL (Greedy Active Learning) framework, which employs a greedy approach for
active learning. We showcase its application in two scenarios: linear and non-linear classifiers. The fun-
damental concept behind the greedy approach is to select the optimal sample x∗ (and its corresponding
pseudo-label l̂∗ in the linear case) from a candidate set, based on maximizing a score function S. Subse-
quently, x∗ and l̂∗ are added to the labeled set, and the process repeats to select the next sample. This
iterative procedure persists until the designated budget B is reached. The greedy approach ensures that
similar samples are not redundantly included in the budget set. Once a sample xi is added, the algorithm
proceeds to find the next optimal point xj , given that xi is already in the training set.

We follow the common strategy in few-shot learning where features are a-priori learned on a large la-
beled corpus (e.g. ImageNet). We then follow the assumption where all the images in the dataset are
represented by feature vectors xi ∈ Rd, (where d is the feature dimension) either engineered or coming
from a pretrained network. In this paper we derive our image features from a pre-trained backbone. Let
Xu := (x1, x2, . . . , xm) denote the set of unlabeled image features (representing the searched dataset), and
Xl := (xm+1, xm+2, . . . , xm+l) the labeled set. Relevant (positive) and irrelevant (negative) samples are
labeled by yi ∈ {+1,−1} respectively, and the label set is denoted by Yl. The initial labeled set Xl which
defines the query concept, consists of few (usually 1-3) query image features labeled by +1. In the course
of the iterative process, the user receives an unlabeled batch set Xb ⊂ Xu of size B := |Xb|, and is asked to
label the relevant (y = +1) and irrelevant (y = −1) images. The AL procedure selects the set of B samples,
such that when labeled and added to the training set, aims to reach the maximum retrieval performance.
In this work, we suggest a greedy-based framework which consists of two phases at each AL cycle. Let Ct
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Figure 2: To calculate the score for a point xi in the candidate set, we train a classifier C(θ+
i ) by assuming

the sample is positive. Similarly, we train another classifier C(θ−
i ) with a negative label. The score Si is then

determined as the minimum value obtained by applying a function F to both options (4).

be the classifier at cycle t. In the first phase, a candidate subset Xc ⊆ Xu of size K := |Xc| is selected out
of the unlabeled pool. This set can be either the whole unlabeled dataset or a subset which is determined
by the top-K relevance probabilities. The candidate set Xc accommodates mostly irrelevant samples due to
the natural data imbalance. In the second phase, the algorithm extracts a batch set Xb ⊂ Xc by an AL
procedure. A user (oracle) annotates the images selected in Xb and adds their features and labels into the
labeled set (Xl,Yl). Based on the new training set, a classifier Ct+1 is trained for the next cycle, as illustrated
in Fig. 1.

The selection process is designed to pick the samples which are mostly “effective" upon being labeled,
i.e. maximally improve the classifier performance. At each greedy step, a score of each unlabeled sample is
computed, evaluating the contribution of the sample to the classifier improvement, and the sample with the
highest score is added to Xb as described in Algorithm 1. We now demonstrate the GAL framework in two
settings: linear (SVM) and nonlinear (Gaussian Process) classifiers via the greedy approach.

Algorithm 1 Greedy Active Learning (GAL) Algorithm
function GAL(Xc,Xl,Yl, B)
Xb ← {}
for i← 1 to B do

x∗, l̂∗ ← Next(Xc,Xl,Yl) ▷ Find the point that maximizes the score function S
Xl ← Xl ∪ {x∗}
Yl ← Yl ∪ {l̂∗}
Xc ← Xc \ x∗

Xb ← Xb ∪ {x∗}
end for
return Xb

end function

3.1 Linear Classification

Let us define the outcome of a trained binary classifier C parameterized by θ, as the measure for the relevance
of a sample to a query image. Consider F as a score function that measures the effectiveness of a sample
point xi. Let’s assume that xi has a label li, and θli represents the parameters of a classifier as if the point
xi is included in the training set with label li. One possible score function could be the quantification of the
decision boundary’s change when xi is added to the training set. Given the requirement to apply a classifier
over a search space that can contain millions or more samples, efficiency becomes a crucial consideration.
As a result, we chose to utilize a linear classifier like SVM. It’s worth noting that a single layer feed forward
neural network (NN) is also applicable, being equivalent to Logistic Regression and expected to yield similar
results to SVM. However, employing a multi-layer perceptron (MLP) in our scenario is prone to overfitting
due to the small training set, and it would lead to higher computational costs during the search process.
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Let W0 ∈ Rd define the initial SVM hyperplane of the AL cycle, and W ∈ Rd the hyperplane which was
obtained with an additional candidate point xi with label li. We then define the score function as

Fsvm := ∥W (xi, li)−W0∥2
2. (1)

Note that theoretically, there are two unknowns involved in this process. The label, and the most effective
point x∗ given the label. Ideally, if the labels of the candidate points were known, then

x∗ = argmax
xi∈Xc

Fsvm(xi, li, θli), (2)

and l∗ is the label of the optimal point. This selection is conditioned on the sample label which is unavailable
in practice. We therefore suggest to estimate the label by the minimizer of Fsvm such that

l̂i := argmin
li∈{−1,+1}

Fsvm(xi, li, θli). (3)

We refer to l̂i as a pseudo-label. The selection score function is therefore defined as

Si := Fsvm(xi, l̂i, θl̂i) = min
li∈{−1,1}

Fsvm(xi, li, θli), (4)

where we essentially search for samples that mostly impact the decision boundary as a proxy for the most
effective sample. The underline assumption relies on the separability of the data. We hypothesize that a
false label will lead to a larger change in the decision boundary. This is not desirable for the selection, since
the importance of the point might be spurious. The true label though, leads to a smoother and moderate
behavior. Fig. 4a illustrates this hypothesis: let the dashed line be the current boundary (based on the train
set). Representing the unlabeled candidates as transparent points, we pick a sample (green point) and assign
it with the wrong label (blue), to generate a new decision boundary (blue line). Similarly, the true negative
(red) label yields a classifier indicated by the red line. We observe that the incorrect label results a higher
deviation from the current classifier (Ct) as expected. The index of the selected point is then given by the
MaxMin operator which is the largest score among the candidate points,

i∗ = argmax
i∈1,2,...,|Xc|

Si, (5)

where
Si = min

li∈{−1,+1}
Fsvm(xi, li, θli). (6)

This selection procedure, denoted by NEXT-SVM, is summarized in Algorithm 2 and Fig. 2.

3.1.1 The Greedy Approach

The ultimate objective of the AL procedure is to extract a batch consisting of B samples. Ideally, the optimal
solution would search for all the permutations of positive and negative labels of the candidate set such that
the score would be maximal. This is of course intractable. We therefore use the greedy active learning
(GAL) approach which is illustrated in Fig. 3. In GAL, the sample xi0 is initially selected by NEXT-SVM
(Algorithm 2). We then insert its pseudo label into the train set, and calculate the next optimal point xi1 .
In this illustration, l̂0 = +1 associated with the left child of the tree root. At the third iteration l̂1 = −1
and i4 is selected. Samples i0, i1, i4 (marked by the red circles in Fig. 3) are then inserted into the budget
set Xb. This procedure continues recursively until the budget B is reached, as described in Algorithm 1.

In this study we focus on the few labeled set setting (early interactive cycles), where the algorithm is highly
dependent on the pseudo-label evaluation accuracy. The points are selected according to Algorithms 1,2
based on definition (1). We demonstrate the selection pattern of our GAL with SVM in Fig. 4b for B = 3.
In this toy example, there is an imbalanced dataset of points in R2 with two relevant (solid blue) and seven
irrelevant (solid red) samples. Updating the classifier (yellow line) with the added selected points (green
circles) we show the shift of the current classifier (dashed line) towards the solid black line which represents
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Algorithm 2 Selecting the Next Point in the SVM scenario
function Next–SVM(Xc, Xl, Yl)

for i← 1 to |Xc| do
xi ← Xc[i]
θ+ ← Classifier(Xl ∪ xi, Yl ∪+1)
θ− ← Classifier(Xl ∪ xi, Yl ∪ −1)
l̂i ← argminli∈{−1,+1} Fsvm(xi, li, θli) by (1) and (6)
Si ← Fsvm(xi, l̂i, θl̂i)

end for
i∗ ← arg maxi Si

return xi∗ , l̂i∗

end function

Figure 3: In the SVM scenario, the GAL algorithm employs a binary tree structure. The initial point xi0

is chosen through the NEXT-SVM procedure (Algorithm 2). The red circles represent the results obtained
from NEXT-SVM, which are based on the corresponding pseudo-labels.

.

(a) (b)

Figure 4: (a) Label proxy demonstration. Points sampled from two Gaussian distributions. A Change in the
decision boundary for two label options are shown. Red/Blue stands for negative/positive labels respectively.
Bold/light points indicate train/candidate samples with the corresponding labels. The dashed line is the
classifier based only on the train set (bold circles). Blue and red lines designate the emerging classifier as if
the selected point (green circle) is labeled as blue or red. The red classifier has a lower deviation from the
dashed line which is in accordance with the true label (red). (b) GAL selection of three points (green circles)
with two positive (blue) and one negative (red) samples. Two points are close to the classifier boundary
(implying uncertainty), and the third is further away from both (implying diversity). The new classifier
(yellow line) gets closer to the target boundary (bold black line) which is based on the whole dataset.
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Figure 5: The normalized probability of obtaining B accurate pseudo-labels vs. the probability of correctly
estimating one pseudo-label.

the optimal classifier (trained with the whole dataset). Moreover, the proposed GAL implicitly encodes both
uncertainty and diversity concepts as the selection of the two points near the boundary can be related to
uncertainty and the distant point to diversity (see Fig. 4b). The uncertainty is a by product of the MaxMin
operator (5), (6). Points with high uncertainty (close to the boundary) will likely cause the maximum change
in the separating hyperplane and therefore will be selected by (1) as can be seen in Fig. 4b. As for diversity,
selection of nearby samples in the embedding space are discouraged due to our approach. Note that whenever
a sample point is added to the labeled set, selection of a similar point will result in a low score and will be
dropped due to the Max operation, promoting selection of distant points (Fig. 4b).

Another aspect of the algorithm relies on the budget size B. The suggested algorithm is highly dependent
on the pseudo label l̂, where the effectiveness of the AL algorithm increases as the pseudo labels become
more reliable. Let p be the probability for correct pseudo label. The normalized probability, denoted as PN ,
of obtaining B accurate pseudo labels is given by

PN = 1
B

B∑
i=1

pi,

as illustrated in Fig. 5 . This observation suggests that a larger batch size is more sensitive to errors,
while a smaller value of B is preferred in each active learning (AL) cycle. This will be demonstrated in the
experimental results.

3.1.2 Complexity for SVM based GAL

Lastly, the complexity of training a linear classifier such as SVM is approximately O(dn2), where n is the
number of samples and d is the feature dimension (8). Hence, the complexity of our algorithm at cycle i
with K candidates a budget B is given by

Complexity(i) = O(BKd(iB)2). (7)

3.2 Nonlinear Classifier: Gaussian Process

Gaussian Processes (GP) (49) are generic supervised learning method designed to solve regression and
probabilistic classification problems where the prediction interpolates the observations. Classification or
regression by means of a GP, is a non-linear and non-parametric procedure that does not require iterative
algorithms for updating. In addition, GP provides an estimate of the uncertainty for every test point, as
illustrated in Fig. 6. As can be seen, uncertainty (pink region) is significant as we get further away from the
the train (black) points. A Gaussian process can be thought of as a Gaussian distribution over functions
f : X → R, where in our case f(x) represents the decision boundary. GP is fully specified by a mean function
µ : X → R and a covariance function Σ : X ×X → R (also known as a kernel function). The mean function
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Figure 6: Gaussian Process: The true function is represented by a dashed blue line, while the prediction
based on the training points is depicted by the red line. The uncertainty (std) of the prediction is illustrated
by the pink area, and the training points are denoted by black circles.

represents the expected value of the function at any input point, while the covariance function determines
the similarity between different input points. The Squared Exponential Kernel is defined as

K(x, x′) = exp
(
− 1

2γ2 ∥x− x′∥2
)

. (8)

Let A := Xl be the train set of size L and the candidate set Xc of size K. The training kernel matrix is defines
as Σ11(A) ∈ RL×L where every entry in the matrix is given by (8) for x, x′ ∈ A. Similarly, the train-test
kernel matrix is defined as Σ12 ∈ RL×K , x ∈ A, x′ ∈ Xc, and test kernel matrix is given by Σ22 ∈ RK×K ,
x, x′ ∈ Xc. Then, the mean function is expressed by

µA = ΣT
12Σ11(A)−1f(x), x = [x1, x2, . . .] ∈ A,

and the covariance matrix is given by

ΣA = Σ22 − Σ21Σ11(A)−1Σ12. (9)

The variance at test point x′
i is given by the diagonal term

σ2
A(x′

i) = ΣA(i, i). (10)

Equation (9) reflects the variance reduction of the test set due to the train set A. In our setting, µA(xi) and
σ2

A(xi) denote the decision boundary (red curve in Fig. 6), and uncertainty (pink area in Fig. 6) at point xi

given the train set A. Now, At each AL cycle, if the current train set is denoted by A, We define the score
function of a candidate point xi as the uncertainty area as if xi was added into the train set,

Fgp(xi) := −
( ∑

x∈Xc

σ2
A∪xi

(x) + max
x∈Xc

σ2
A∪xi

(x)
)

. (11)

The first term is the uncertainty area over Xc, and the second term stands for its maximal value. Samples
which maximize this function are considered informative1. Note that by (9), the uncertainty covariance
does not depend on the labels of the training set, avoiding the problem of pseudo labeling. The NEXT-GP
algorithm for the GP is described in Algorithm 3.

In order to grow from a single sample selection to a batch we suggest a greedy approach, since finding the
optimal batch by checking all the permutations is NP-hard.

1The minus sign is used to change the min to max operator.
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Algorithm 3 Selecting the Next Point in the GP scenario
function Next–GP(Xc, A)

for i← 1 to |Xc| do
xi ← Xc[i]
Si ← Fgp(xi) by (11)

end for
i∗ ← arg maxi Si

return xi∗

end function

3.2.1 Theoretical Analysis

We now investigate the conditions which guarantee a reasonable good approximation to the optimal batch
selection. Nemhauser et al. (32) established a performance lower bound for a greedy algorithm when employed
to maximize a normalized, monotone submodular set function. Let F be an objective function which accepts
as input a subset of X and outputs a number such that better subsets have larger numbers. A function F
is monotone if A ⊂ B implies F (A) ≤ F (B). The function F is submodular if and only if for all A,B ⊂ X ,

F (A) + F (B) ≥ F (A ∩ B) + F (A ∪ B).

Theorem 3.1. (32) Given a budget B ∈ N and a finite set X and a non-negative monotonic submodular
function F (A) where A ⊆ X and F (∅) = 0. For the following maximization problem

A∗ = argmax
|A|≤B

F (A),

The greedy maximization algorithm returns Agreedy such that

F (Agreedy) ≥
(

1− 1
e

)
F (A∗).

The suggested greedy algorithm selects the sample which reduces the total uncertainty (11) the most. There-
fore our objective function is given by the variance reduction due to the batch set. By (9) and (10), the
variance reduction at a test point xi is given by

σ2
A(xi) := Σ22(i, i)− Σ21Σ−1

11 (A)Σ12(i, i).

Das and Kempe (11) showed that the variance reduction satisfies the diminishing returns behavior: adding
a new observation reduces the variance at xi more, if we have made few observations so far, and less, if we
have already made many observations. Nemhauser et al. (32) proved that a function F is submodular if for
all subsets S ⊆ T ⊆ X , and all x ∈ X \ T

F (S ∪ x)− F (S) ≥ F (T ∪ x)− F (T ).

This characterization matches the diminishing returns property regarding the variance reduction. Since
σ2

A(xi) is submodular for a single point xi, the sum of submodular functions is also submodular and therefore
the total variance reduction

F (A) =
∑

x∈Xc

σ2
A(x) + max

x∈Xc

σ2
A(x)

is submodular as well. Additionally, F (A) is also monotonic (11; 28), that is, for all A ⊆ B ⊆ X , F (A) ≤
F (B), and normalized (F (∅) = 0). Therefore, our cost function (11) satisfies the conditions of Theorem 3.1,
and the greedy algorithm achieves the constant factor approximation as stated in the Theorem.

10



Under review as submission to TMLR

3.2.2 Complexity for Gaussian Process Based GAL

Lastly, the complexity of a matrix of order n inversion is O(n3). Hence for each AL cycle i with K candidates
and a budget B,

Complexity(i) = O(BK(iB)3).

4 Evaluation

We asses the GAL framework by employing two image retrieval techniques, which utilize linear (SVM) and
non-linear (Gaussian Process) classifiers. The algorithm for the linear classifier is based on the cost func-
tion (1). In our evaluation, we compare our approach against various AL algorithms. (i) Random selection,
(ii) Cyclic Output Discrepancy (COD) (21), (iii) MaxiMin (25), (iv) Ranked batch-mode AL (RBMAL) (7),
and in the cases where B > 1, (v) Coreset (41; 26) and (vi) Kmeans++ (45). The COD (21) method esti-
mates the sample uncertainty by measuring the difference of model outputs between two consecutive active
learning cycles,

Scod := ∥C(x; θt)− C(x; θt−1∥ (12)
where C(x) is the classifier prediction, θt and θt−1 are its parameter set in the current and previous ac-
tive learning cycles, respectively. MaxiMin (25) algorithm maximizes the minimum norm of the classifier,
i.e. prioratizing “smoother” classifiers among the possible functions

SMaxiMin := min
l∈{+1,−1}

∥f(x)l∥. (13)

∥f(x)l∥ denotes the norm of interpolating function when training the classifier with positive and negative
labels of x. In the linear SVM case, f(x) = ∥W∥2

2. RBMAL method (7) combines uncertainty and diversity
by

SRBMAL := α(1− ϕ(x, xlabeled)) + (1− α)u(x), (14)
where ϕ is a similarity measure, u(x) the uncertainty, and α = |Xu|/(|Xu|+ |Xl|). The batch set extracted by
the above three methods, is obtained by selection of top-B score samples. Kmeans++ (45) and Coreset (26;
41) are diversity-based BMAL methods, and therefore applicable for B > 1. In Kmeans++, the batch
samples are chosen as the closest points to each of the B centroids, and in Coreset, we ensure that the batch
samples adequately represent the entire candidate pool based on the L2 norm distance.

In our second image retrieval approach, we incorporate a Gaussian Process (GP) technique, which was
proposed in (5) and referred to as Information-Theoretic AL (ITAL). This method employs a selection
strategy that aims to maximize the mutual information between the expected user feedback and the relevance
model. To integrate the GP into our framework, we steer the active learning selection process towards data
points that minimize the overall uncertainty of the GP classifier, as defined in equation (11).

4.1 Datasets

We evaluate the GAL on a wide range of scenarios including 4 datasets, representing image-level and object-
level IIR. For instance-level retrieval, we used Paris-6K abbreviated as Paris, following the standard protocol
as suggested in (38). This dataset contains 11 different monuments from Paris, plus 1M distractor images,
resulting in 9994 images with 51− 289 samples per class and 8204 distractors. Next, we built a benchmark
based on Places365 (56), indicated as Places. It contains 365 different types of places such as “restaurants",
“basements", “swimming pools" etc. Our Places dataset consists of the validation set of Places365. We
used 30 classes as queries (randomly sampled) with 100 samples per-class. Lastly, we validated ourselves
on object-level retrieval, a previously unexplored task in CBIR-AL. To this end we built a new benchmark
from the FSOD dataset (14), often used for few-shot object detection tasks. At this benchmark images
often include multiple objects (labels), therefore introducing a high challenge for a retrieval model. FSOD
dataset is split into base and novel classes. We used the base set, for our benchmark. The base set contains
5, 2350 images with 800 objects categories where each object appears in 22-208 images. As our query pool,
we randomly chose 30 object categories appearing in 50-200 images. We refer to this dataset as FSOD-IR
and we intend to share the protocol publicly for future research. In all the above experiments, we used a
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Figure 7: mAP Learning Curves of SVM-based GAL with B = 1 and K = 200 for different datasets.
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Figure 8: mAP Learning Curves of SVM-based GAL with B = 3 and K = 200 for different datasets.

Resnet-50 backbone pre-trained on Imagenet-21K (40). For the first iteration we used the top-K nearest
neighbors by the cosine similarity. We used one query for Paris and Places benchmarks, and two queries
for FSOD-IR (due to multiplicity of objects in images). We repeated the process for 5 random queries and
calculated mAP at each AL cycle.

To ensure a fair comparison between our method and ITAL (5), we conducted our evaluation of the GAL
framework on the identical dataset of MIRFLICKR-25K (23), which was also employed in ITAL. We
followed the same protocol used in ITAL for consistency. This benchmark designed for retrieval consists of
25K images, with query images belonging to multiple categories. We further used the same feature extractor
as ITAL (see (5)). For all datasets we follow the same protocol: sample a query image from a certain class,
consider all images belonging to that class (or containing the same object in FSOD-IR) as relevant, while
instances from different classes are considered irrelevant. In all our experiments we run with 5 different
initial queries for each class and report mean average precision (mAP) as retrieval performance.

Figure 9: mAP Learning Curves of SVM-based GAL with B = 3 and B = 7. It is evident that the larger
batch size yields inferior results.
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Figure 10: Pseudo-label accuracy tested on FSOD Benchmark, averaged over all classes and for candidate
size of 200 and B = 1. Random choice is 50%.
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Figure 11: mAP Learning Curves of SVM-based GAL with B = 3 followed by B = 7 and K = 200 for
different datasets.

Figure 12: Image retrieval results for Tin Can in FSOD-IR dataset with B=3 at iteration 4. Green boxes
stand for relevant results while red boxes account for false positives. The second query image has two
objects: Can and Display monitor. The RBMAL method mistakenly retrieves images with monitor, where
GAL succeeds to find the common pattern in the queries.

4.2 Experimental Results

We quantified the AL methods by their learning curves, indicating the retrieval performance (measured in
mAP) progress along the interactive cycles. The curves are then aggregated by a single measure of the
Normalized Area under Learning Curve (5) between 1,2 to 95 labeled samples. The results for both SVM
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and GP are averaged over five different randomly selected queries. We further found that the strategy of
selection from a pool of top-K ranked samples according to the classifier obtained from the previous round
is beneficial in our GAL and often also in the competitive methods. This subset Xc is comparably rich
of positive samples and ’hard’ negatives, further reducing the extreme imbalance in the general dataset.
For instance, our experiment on FSOD showed that in average, 30% of the candidate set included positive
samples, comparing to 0.5% density in the general dataset. We further analyze the impact of different
candidate set size K up to the whole unlabeled dataset.

Paris Places FSOD
Candidate size 100 200 1k all 100 200 1k all 100 200 1k all

Random 0.847 0.942 0.834 0.810 0.375 0.390 0.298 0.224 0.576 0.630 0.452 0.404
RBMAL (7) 0.915 0.920 0.806 0.731 0.410 0.375 0.293 0.217 0.660 0.610 0.466 0.390
COD (22) 0.909 0.924 0.881 0.716 0.399 0.391 0.359 0.221 0.630 0.639 0.606 0.410
MaxiMin (25) 0.883 0.885 0.892 - 0.395 0.381 0.363 - 0.625 0.621 0.603 -
GAL (ours) 0.903 0.960 0.960 - 0.428 0.426 0.418 - 0.674 0.672 0.672 -

Table 1: Normalized Area under Learning Curve with B=1 under different candidate settings. These results
indicate the impact of our cost functions on the value of the selected samples. We indicate the top performing
method in bold and the second place by the underline mark. We omit the test results for “all" in several
cases due to increased computation cost and saturation.

Paris Places FSOD
Candidate size 100 200 1k all 100 200 1k all 100 200 1k all

Random 0.922 0.905 0.812 0.807 0.402 0.388 0.283 0.217 0.637 0.633 0.473 0.404
RBMAL (7) 0.923 0.888 0.785 0.718 0.397 0.355 0.295 0.213 0.652 0.592 0.467 0.389
COD (22) 0.914 0.927 0.895 0.692 0.394 0.394 0.351 0.213 0.625 0.627 0.605 0.398
Kmeans++ 0.922 0.941 0.935 0.744 0.416 0.417 0.394 0.205 0.661 0.666 0.632 0.393
Coreset (26) 0.915 0.943 0.914 0.767 0.405 0.407 0.357 0.230 0.664 0.666 0.599 0.418
MaxiMin (25) 0.906 0.926 0.916 0.906 0.409 0.402 0.368 - 0.657 0.648 0.612 -

GAL (ours) 0.946 0.960 0.952 - 0.430 0.427 0.419 - 0.681 0.686 0.675 -
GAL (batch) 0.943 0.957 0.955 - 0.431 0.421 0.417 - 0.679 0.678 0.675 -

Table 2: Normalized Area Under Learning Curve with B=3, under different candidate settings. We indicate
the top performing method in bold and the second place by the underline mark. GAL(batch) shows the
result of our approach without the greedy component of our scheme.

As an ablation study we conducted tests to evaluate the impact of our suggested objective function for AL
selection and also tests on our algorithm under non-greedy settings by selecting the top-B samples that
maximize the cost functions (1), (6) and (11) given a budget B. The non-greedy approach may encounter
issues with redundant samples, as similar points could have similar scores. In contrast, the greedy algorithm
prevents this scenario by ensuring that once a sample is selected, it is added to the training set. This allows
for the selection of a new sample that maximizes the score function, taking into account the updated training
set.

4.2.1 SVM Classifier

We first present the global performance measure of Normalized Area Under Learning Curve for the SVM-
based scenario, tested for budget size B = 1 and B = 3 in tables 1 and 2. It is worth noting that the
results obtained when B = 1 allow us to assess the impact of our cost function independently from the
greedy scheme. We indicate the top performing method in bold and the second place by an underline mark.
Interestingly, random sampling often yields high performance. This is consistent to other AL studies in
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Paris Places FSOD
Candidate size 100 200 500 100 200 500 100 200 500

Random 0.908 0.908 0.910 0.344 0.348 0.316 0.593 0.582 0.580
RBMAL (7) 0.906 0.876 0.811 0.332 0.310 0.281 0.590 0.534 0.487
COD (22) 0.900 0.909 0.897 0.332 0.320 0.318 0.555 0.559 0.552
Kmeans++ 0.913 0.935 0.919 0.374 0.363 0.357 0.611 0.622 0.603
Coreset (26) 0.900 0.902 0.880 0.347 0.342 0.326 0.583 0.581 0.569
MaxiMin (25) 0.910 0.925 0.919 0.355 0.353 0.323 0.589 0.591 0.563

GAL (ours) 0.929 0.939 0.932 0.366 0.369 0.369 0.618 0.625 0.612
GAL (batch) 0.930 0.941 0.927 0.366 0.361 0.361 0.619 0.614 0.615

Table 3: Normalized Area Under Learning Curve with B = 3, 7, under different candidate settings. We
indicate the top performing method in bold and the second place by the underline mark.

classification benchmarks in the literature, under cold-start conditions (20) (as a diversity based strategy).
Yet, in 8 out of 9 tests, GAL outperforms other methods and baselines for B = 1, where for B = 3, GAL
is consistently the top performing method. Note that the top performance for all methods is reached for
K = 100 or 200 and there is no consistent competitor in the second place, indicating the robustness of GAL
approach under different candidate pools.

Another interesting observation shows that considering a larger candidate pool (from 100 to the whole
dataset) does not necessarily improve the performance. Often a smaller candidate pool is preferred as
observed in all the methods compared in our datasets for B = 3 (cf. Table 1 bottom, due to higher
concentration of positive and hard negative samples, being better candidates for AL. For the majority of
competitive methods, we discovered that a candidate set size of K = 200 is optimal and can significantly
reduce the computational cost, an important aspect in an interactive system.

Next, we present a comparison of the learning curves by retrieval mean Average Precision (mAP) in figs. 7
and 8 for B = 1 and B = 3 with K = 200. These figures show the superior performance of GAL over
previous methods and various baselines. The strongest competitor at B = 3 is found to be Kmeans++
which is purely based on diversity, performing comparably to GAL in low the extreme cold start (up to 25 in
FSOD-IR and up to 40 in Places). This result is consistent with the analysis in (20) showing that diversity
based models such as Kmeans++ or Coreset are top performing methods at extreme cold start. Yet, as more
labels are accumulated, Kmeans++ under-performs GAL that leverages also uncertainty. Furthermore, we
note a substantial disparity, with 5-10% (absolute points) higher mAP when compared to MaxiMin (dark
green) and around 5% better (from e.g. 0.75 to 0.80 in FSOD) compared to Kmeans++.

As illustrated in Fig. 9 and supported by our earlier analysis presented in Fig. 5, larger budget sizes present
more significant challenge, especially during the initial cycles. The challenge is demonstrated in Fig. 10.
During the initial cycles, the pseudo-label accuracy is inadequate, leading to accumulated errors, particularly
for larger values of B. In response to this challenge, we conducted experiments where we set B = 3 for the
first 10 cycles, which was increased to B = 7. Nevertheless, our method is superior to other approaches, as
shown in Table 3 and Fig. 11.

It is noteworthy that overall although Kmeans++ performed better in the first 10 cycles, our methods still
showcase superior performance overall. The greedy approach has a slight impact in the linear SVM case,
assumably due to unreliable pseudo-labels, mostly occurring at the initial cycles (see fig. 10). This strategy
is better manifested in the GP process, that is label independent.

Next we show some qualitative results are shown in Fig. 12. Given two query images of the class Tin Can
in the FSOD-IR, we show the top-16 relevant images by GAL and RBMAL methods at the fourth iteration
with B = 3. Green/red boxes indicate relevant/irrelevant results respectively. Note that the right query
image includes a monitor display in addition to the Tin Can. While GAL yields 15 correct out of 16 retrieval
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results (with a visually reasonable mistake), the RBMAL method picks up few monitor images which are
present only in the second query.

Finally, despite GAL evaluating a classifier for each selection candidate, the computational cost of our method
remains reasonable for several reasons.

1. We demonstrate that a small candidate set, comprising only 0.1-1% of the dataset (obtained from
the classifier’s top-k), is sufficient as the active learning selection pool. In many cases, this approach
even yields improved performance, as evidenced in Tables 1 and 2. Consequently, there is no need
to run our algorithm on the entire unlabeled set.

2. This allows for quick training and AL cycles, a practical requirement in an interactive system such
as IIR.

3. Fig. 13 illustrates the running time of GAL for FSOD-IR with budget sizes of B = 3 and B = 7,
which aligns with the complexity described in (7). We demonstrate that iteration cycles typically
take only a few seconds, even without parallelization.

4. To further expedite runtime, our training process can be distributed in a parallel manner, assigning
each candidate to a separate process.

Overall, these factors contribute to a reasonable computational cost for GAL.

Figure 13: GAL running time in seconds for FSOD-IR, K = 100 and K = 200. Left: B = 3 Right: B = 7.

4.2.2 Gaussian Process

We further present the results of GAL utilizing a Gaussian Process (GP) classifier, which are compared to
ITAL (5). For this purpose, we replaced the active learning (AL) module of ITAL with GAL, employing
our score function (11). To make a fair comparison, we first ran ITAL with varying candidate pool sizes
K. Fig. 14 illustrates the results of ITAL for B = 3 and K = 200, 400, 1000, as well as the entire dataset
(K = 20, 000). Table 4 provides a summary of these findings. It is evident that the entire unlabeled dataset
is needed for ITAL to reach it’s best result.

Next, we compared GAL and ITAL. Normalized Areas under Curve are summarized in the top panel of
Table 5, where GAL outperforms ITAL even when considering only 1,500 points which are 7.5% of the
unlabeled dataset as candidates. We further observe the impact of our greedy scheme component boosting
the overall performance by nearly 7% (from 0.566 to 0.605) with respect to standard batch selection strategy
(denoted by GAL(batch), i.e. choosing the top-B scores at each round). This outcome is consistent with
our theoretical analysis. Fig. 15 depicts the comparison between these two methods for B = 3 and B = 1
respectively with candidate pool K=200,400, and 1,500. The figure shows 2-5% mAP improvement with
K=1,500.
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Figure 14: mAP Learning Curves of ITAL for B = 3 and different candidate set size K.
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Figure 15: mAP Learning Curves of GP-based GAL with B=1 (left) and B=3 (right) for MIRFLICKR
database. ITAL used the whole unlabeled set, while GAL used different candidate set size K.

K Normalized AUC
200 0.547
400 0.552

1,000 0.564
20,000 0.585

Table 4: Normalized Areas under Curve of ITAL (5) algorithm for B = 3 at variety of candidate set sizes
K. ITAL requires all the corpus for maximum performance.

5 Summary and Future Work

In this paper we address the problem of active learning for Interactive Image Retrieval task. This task
introduces several unique challenges, starting with only few labeled samples in hand, as well as open-set
and asymmetric scenario (the negative set includes various unknown categories with different size). To cope
with these circumstances we suggested a new approach that considers the impact of each individual sample
on the decision boundary as a cue for sample selection in the AL process. Our objective function, considers
pseudo labels or directly optimizes a global uncertainty measure for this task. Furthermore, addressing a
batch mode AL, and to better cope with the scarcity of labeled samples, we embed our approach in a greedy
frame where each selected sample in the batch is added to the train set, before selecting the subsequent best
promising one. This process is continued until the designated budget is reached, attempting to effectively
expand the train set, within each batch. Additionally, we provide a theoretical analysis that supports the
idea that our greedy scheme offers a reliable approximation in the context of Gaussian Process.
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method K B = 1 B = 3
ITAL (5) 20,000 (all) 0.586 0.585
GAL (ours) 200 0.584 0.570
GAL (ours) 400 0.593 0.583
GAL (ours) 1,500 0.608 0.605
GAL (batch) 200 0.584 0.553
GAL (batch) 400 0.593 0.573
GAL (batch) 1,500 0.608 0.566

Table 5: Normalized Area under Learning Curves for MIRFLICKR database. Our GAL outperforms ITAL
(5). Note that for B = 1 there is no greedy process. The impact of our greedy scheme is manifested in
B = 3.

Our method was demonstrated on linear and non-linear yet efficient classifiers on several large image retrieval
benchmarks. Promising results were obtained compared to previous methods. In addition, we believe that
our framework can pave the way for broader applications, including addressing the cold start problem in
realistic open-set scenarios. In future work, it would be valuable to incorporate a quantitative measure that
quantifies the disentanglement of the two implicitly combined cues of diversity and uncertainty. This could
lead to improvements in performance and provide better explainability of the algorithm’s decisions.
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