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Abstract
Document-level relation extraction (DocRE)001
is the task of identifying all relations between002
each entity pair in a document. Current meth-003
ods still have room for improvement in han-004
dling implicit relationships, which are relations005
not explicitly stated in the text but can be in-006
ferred from the context. To address this limita-007
tion, we introduce the concept of context infor-008
mativeness for entity pairs and propose ACME-009
RE (Adaptive Contextual Memory-Enhanced010
Relation Extraction), a novel framework for011
document-level relation extraction (DocRE).012
By introducing Evidence-guided context in-013
formativeness and an adaptive category mem-014
ory module, ACME-RE significantly improves015
the performance of implicit relationship extrac-016
tion. Experimental results demonstrate that our017
method achieves state-of-the-art (SOTA) per-018
formance on the Re-DocRED dataset. This019
research provides a more comprehensive solu-020
tion for document-level relation extraction and021
offers valuable insights for future studies.022

1 Introduction023

Relation extraction is a crucial task in natural lan-024

guage processing that aims to categorize relation-025

ships between two specified entities into prede-026

fined classes. While sentence-level relation ex-027

traction (RE) has made significant progress (Peng028

et al., 2017; Verga et al., 2018; Yao et al., 2019),029

document-level relation extraction (DocRE) faces030

substantial challenges, particularly with implicit031

relations that are not explicitly stated in the text.032

These implicit relations are vital for applications033

such as knowledge graph construction and question034

answering enhancement. For instance, as shown in035

Figure 1, a DocRE system must infer the national-036

ity relationship between Duff Gibson and Canada,037

even when it’s not directly stated.038

A novel observation we make is that for such039

implicit information, even when inferred from the040

source text, the context containing this triple carries041

Figure 1: Example document and relation triple from
DocRED, where sentences are numbered with [i]. Evi-
dence sentences for this triple are shown in black, while
non-evidence sentences are in grey. Subject and ob-
ject mentions are shown in bold italics, and other entity
mentions are underlined. Tokens with a red background
indicate parts that require more attention, with the shade
of red representing the level of attention.

minimal information about the relationship (e.g., 042

nationality) since it’s not the primary focus of the 043

document’s narrative. This observation leads us 044

to propose leveraging other instances of the same 045

relation type, particularly those with richer contex- 046

tual information, to enhance the representation of 047

triples with limited information. 048

Existing DocRE approaches primarily focus on 049

explicit relations, employing customized loss func- 050

tions and document-level processing to address la- 051

bel imbalance and complexity issues (Zhou et al., 052

2021; Tan et al., 2022a). However, these meth- 053

ods struggle when handling implicit relations. Few 054

approaches effectively address relationships requir- 055

ing deep contextual understanding, and none ad- 056

equately handle the varying amounts of contex- 057

tual information across different triples. While 058

memory-augmented models like TTM-RE (Gao 059

et al., 2024) enhance context by leveraging previ- 060

ously encountered entities and scenarios, we argue 061
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that memorizing entities introduces unnecessary ad-062

ditional parameters in large-scale document-level063

relation extraction tasks. Instead, we aim to learn064

an augmentable context vector for each relation065

category to improve existing relation prediction066

performance.067

To address these challenges, we propose ACME-068

RE (Adaptive Contextual Memory-Enhanced Re-069

lation Extraction), a novel framework that dynam-070

ically adapts to varying levels of contextual infor-071

mation. Rather than memorizing specific entities,072

ACME-RE employs a memory module that main-073

tains and updates category-specific contextual pat-074

terns, integrating both explicit evidence sentences075

and implicit contextual cues. The evidence sen-076

tences are manually annotated parts of the original077

text that support the relationship in the triplet. An-078

other related concept is the context of an entity079

pair, which is obtained by applying the attention080

of the entity pair over all sentences and tokens081

in the document, multiplied by the full document082

embedding. This adaptive approach enables the083

model to effectively handle cases where direct evi-084

dence is insufficient by leveraging learned patterns085

from information-rich instances of the same rela-086

tion type.087

Our contributions are: (1) The ACME-RE frame-088

work, the first designed to address contextual vari-089

ability across triplets, enabling deep contextual un-090

derstanding and inference. (2) State-of-the-art per-091

formance, achieved with minimal additional param-092

eters, on benchmark datasets using both gold and093

distantly supervised data.094

2 Preliminary095

2.1 Problem Definition096

Given a document D consisting of sentences XD =097

{xi}|XD|
i=1 and entities ED = {ei}|ED|

i=1 . Each entity098

e ∈ ED appears at least once in D, with its men-099

tions denoted as Me = {mi}|Me|
i=1 . As each pair100

of entities (es, eo) can have multiple relations, the101

goal of document-level relation extraction (DocRE)102

is to predict a set of relations Rs,o ⊂ R, where103

R is a set of predefined relations. Given the N104

entities in D, the model needs to consider up to105

R×N × (N − 1) possible relations.106

2.2 DREEAM107

DREEAM (Ma et al., 2023) enhances the ATLOP108

model by integrating evidence information into the109

attention mechanism (details can be found in Ap-110

pendix B). It supervises the attention module to fo- 111

cus on evidence sentences while reducing attention 112

to irrelevant text. Since the distantly supervised 113

dataset lacks evidence annotations, the method 114

proposes a distillation-based three-stage training 115

framework. First, it utilizes human-annotated data 116

for supervision and uses the teacher model as an 117

evidence distribution predictor to predict the evi- 118

dence distribution of the distantly supervised data. 119

This distribution is then used as a learning signal to 120

train the student model. Finally, the student model 121

is fine-tuned on the human-annotated dataset to ob- 122

tain the final model. For specific details, please 123

refer to Appendix C. 124

DREEAM effectively utilizes both distantly su- 125

pervised data and evidence annotation information. 126

However, in the first stage of training, it aligns 127

the attention distribution predicted by the model 128

for entity pairs with the human-annotated evidence 129

distribution. Specifically, the evidence sentences 130

are assigned a total attention weight of 1, while 131

non-evidence sentences receive attention weights 132

that are infinitely close to zero. This approach of 133

enhancing context based on evidence annotation in- 134

formation is somewhat coarse when addressing the 135

issue of imbalanced triplet information quantity, as 136

shown in Figure 1. Therefore, we aim to enhance 137

the context of entity pairs more precisely based on 138

contextual information quantity. 139

2.3 TTM-RE 140

TTM-RE is a memory-augmented framework for 141

document-level relation extraction (DocRE) that in- 142

tegrates Token Turing Machine (Ryoo et al., 2023) 143

memory modules and a noise-suppressing loss 144

function (SSR-PU). While it addresses some limi- 145

tations of existing methods in utilizing large-scale, 146

noisy training data through memory-enhanced rep- 147

resentations and robust handling of false negatives, 148

its entity-centric memory mechanism reveals sev- 149

eral inherent limitations. 150

Specifically, TTM-RE enhances inference by in- 151

corporating extra-document information about en- 152

tities and iteratively updates entity combinations in 153

its memory module to store the most representative 154

pairs. This approach essentially memorizes entity 155

type information and entity-specific patterns related 156

to predefined relations. Although this mechanism 157

can partially alleviate the insufficient information 158

problem illustrated in Figure 1, it suffers from two 159

critical drawbacks: (1) the category-relevant infor- 160

mation is scattered across individual entities, mak- 161
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ing it indirect and fragmented, and (2) the entity-162

based memory unit introduces a substantial number163

of additional parameters.164

To address these limitations, we propose an165

adaptive contextual memory mechanism that op-166

erates at the category level rather than the entity167

level. This novel approach not only significantly168

reduces the number of additional parameters but169

also learns more abstract and generalizable cate-170

gory vectors. By directly modeling relation cate-171

gories, our method captures more comprehensive172

and coherent patterns, leading to more efficient and173

effective relation extraction.174

3 Proposed Method: ACME-RE175

We propose ACME-RE, an adaptive context mem-176

ory and evidence-guided document-level relation177

extraction method. An illustration of the overall178

framework of ACME-RE is shown in Figure 2179

3.1 Evidence-guided context informativeness180

In document-level relation extraction, a document181

typically contains multiple entities, leading to182

an exponential increase in the number of entity183

pairs. While each document primarily describes184

key events, the semantic information is concen-185

trated on a limited set of predefined relations rel-186

evant to these events. In contrast, many implicit187

relations beyond the main event are more challeng-188

ing to identify. Moreover, document-level relation189

extraction requires the simultaneous identification190

of all possible relations among entity pairs, making191

it even harder to predict relations involving non-192

primary entities.193

To address this challenge, we introduce the con-194

cept of context informativeness for entity pairs.195

Given a triple (h, r, t), the Semantic Information196

Quantity f the entity pair context (hereafter referred197

to as "information quantity") measures the extent to198

which the context expresses the relation r between199

the head entity h and the tail entity t. A higher200

information quantity indicates that the relation r201

between h and t can be inferred more easily from202

the context, while a lower information quantity sug-203

gests the opposite.204

The information quantity is influenced by fac-205

tors such as the relevance, clarity, and specificity of206

evidence sentences linking h and t. If the context207

explicitly mentions r, provides detailed descrip-208

tions, or establishes a strong semantic connection209

between h and t, the information quantity is typ-210

ically high. Conversely, if the context is vague, 211

ambiguous, or lacks sufficient relational cues, the 212

information quantity is lower. 213

The specific implementation is as follows. Let 214

the input sequence be represented as X ∈ 215

Rbs×hw×c, where bs is the batch size, hw is the 216

number of tokens (including memory and context 217

tokens), and c is the feature dimension. Each to- 218

ken’s information quantity is computed as: 219

I(xi) = MLP(LayerNorm(xi)) (1) 220

where xi is the i-th token, LayerNorm(·) applies 221

layer normalization to standardize the input, and 222

MLP(·) is a multi-layer perceptron mapping the 223

normalized input to a scalar information quantity. 224

We quantify the information quantity of an entity 225

pair’s context to assess its effectiveness as evidence. 226

Additionally, by incorporating category-based con- 227

textual memory, we enhance the original context, 228

improving the accuracy of relation inference. 229

In document-level relation extraction, DREEAM 230

leverages evidence sentence distributions to guide 231

entity pair context modeling. However, sentence- 232

level annotations are not entirely accurate—some 233

tokens within evidence sentences are uninforma- 234

tive, while useful tokens may exist outside these 235

sentences. Our information quantity measure mit- 236

igates this limitation by enabling relevant tokens 237

outside evidence sentences to contribute, thus ex- 238

tracting a more effective entity pair context. 239

3.2 Adaptive category memory module 240

Earlier relation extraction methods generally ob- 241

tained relation embeddings by concatenating the 242

head and tail entity embeddings. However, this ap- 243

proach primarily captures entity type information 244

rather than specific relational information, leading 245

to false positives when relations involve entities of 246

the same type. 247

ATLOP (Zhou et al., 2021) and DREEAM (Ma 248

et al., 2023) partially addressed this limitation by 249

enhancing the contextual representations of entity 250

pairs. Meanwhile, (Mtumbuka and Schockaert, 251

2023) proposed a sentence-level relation extraction 252

method based on the [MASK] token, which learns 253

a [MASK] vector to supplement entity pair type 254

information. 255

However, unlike sentence-level extraction, 256

where the number of entity pairs is relatively lim- 257

ited, document-level relation extraction faces an 258

exponential increase in entity pairs, making it in- 259
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Figure 2: Overall framework of ACME-RE. The number of memory vectors corresponds to the number of predefined
categories(e.g., r1, r2, . . . , rt).The depth of the memory vector’s color represents the amount of information.

feasible to introduce a similar [MASK] mechanism260

directly. This necessitates an efficient strategy to261

incorporate category vectors without introducing262

excessive computational overhead.263

Inspired by TTM (Gao et al., 2024), one pos-264

sible solution is to use memory vectors (Ryoo265

et al., 2023), dynamically selecting relevant cate-266

gory memory vectors based on contextual evidence267

cues and all category memory vectors. This ensures268

scalability while preserving rich relational informa-269

tion. Specifically, category memory vectors encode270

prototypical representations of predefined relation271

types, which can be leveraged to enhance relation272

embeddings and mitigate the limitations of both273

entity concatenation-based and evidence-context-274

based approaches.275

Building upon contextual information quantifica-276

tion, the specific implementation of category mem-277

ory vectors is as follows. First, the relative con-278

tribution of each token is obtained by applying a279

softmax function:280

Si =
exp(I(xi))∑hw
j=1 exp(I(xj))

(2)281

where Si represents the normalized contribution282

of token i to the aggregated representation.283

The enhanced contextual representation is com-284

puted as:285

Z =

hw∑
i=1

Si · xi (3)286

where Z ∈ Rbs×ntoken×c is the transformed rep- 287

resentation with enhanced contextual information. 288

Notably, this ensures that tokens with higher infor- 289

mation content contribute more significantly to the 290

final representation. Consequently, when a cate- 291

gory contextual vector is frequently evaluated as 292

low-information, it retains more information in the 293

memory, and vice versa. 294

Subsequently, the enhanced context and evi- 295

dence context are averaged to obtain the final 296

context representation (experimental results show 297

that averaging slightly outperforms concatenation), 298

which, together with entity pair embeddings, serves 299

as the basis for relation prediction to reduce the 300

number of parameters to enable more efficient 301

learning, during which we adopt Group Bilinear 302

Classification, where augmented entity representa- 303

tions are split into k parts with dimension (d/k): 304

p(r|e′h, e′t) = σ

(
k∑

i=1

e
′(i)
h Bie

′(i)
t

)
, 305

where Bi ∈ Rd/k×d/k are learnable bilinear pa- 306

rameters. This reduces the parameter count from 307

d2 to d2/k, improving efficiency. 308

Additionally, to effectively utilize distant super- 309

vision data, this study adopts a three-stage training 310

framework inspired by DREEAM (Ma et al., 2023). 311

The update of category memory vectors follows 312

a mechanism similar to [MASK], where they are 313

randomly initialized and automatically updated via 314
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backpropagation during the gold data training stage.315

However, category memory vectors remain frozen316

during the subsequent distant supervision and fine-317

tuning stages.318

Noise-Robust Loss Function (SSR-PU) To mit-319

igate false negatives in distantly supervised data320

(Gao et al., 2023), we employs a Self-Supervised321

Robust Positive-Unlabeled (SSR-PU) loss, as done322

in TTM-RE:323

Firstly, Traditional PU learning assumes that the324

overall data distribution aligns with the unlabeled325

data distribution, which may not hold in our case326

(Charoenphakdee and Sugiyama, 2019). To address327

this issue, it is necessary to consider PU learning328

under prior shift (Wang et al., 2022; Du Plessis329

et al., 2015, 2014).330

For each class, let the original prior be πi =331

p(yi = +1), and define the labeled prior as332

πlabeled,i = p(si = +1), where si = +1 or333

si = −1 indicates whether the i-th class is labeled334

or unlabeled, respectively. Then, the probability of335

an unlabeled sample being positive is:336

πu,i = p(yi = 1|si = −1) =
πi − πlabeled,i

1− πlabeled,i
,337

The non-negative risk estimator under class prior338

shift of training data is obtained as follows (Wang339

et al., 2022; Kiryo et al., 2017):340

R̂S−PU (f) =

K∑
i=1

(
πi
nPi

nPi∑
j=1

ℓ(fi(x
Pi
j ),+1)

+ max

0,

 1

nUi

1− πi
1− πu,i

nUi∑
j=1

ℓ(fi(x
Ui
j ),−1)

− 1

nPi

πu,i − πu,iπi
1− πu,i

nPi∑
j=1

ℓ(fi(x
Pi
j ),−1)

).
341

where πi = p(yi = +1) denotes the probability342

of positive prior for relation class i. nPi and nUi343

are the numbers of positive and unlabeled samples344

of class i, respectively. ℓ is a convex loss function,345

and fi(·) is a score function that predicts class i.346

xPi
j and xUi

j denote that the j-th sample of class i is347

positive and unlabeled as class i, respectively. This348

formulation ensures robust learning under noisy,349

unlabeled data. For more details, we refer the read-350

ers to the original paper (Wang et al., 2022; Tang351

et al., 2022)352

Table 1: Statistics of the DocRED dataset and Re-
DocRED dataset. In total, there are 96 relations. The
distantly supervised dataset is the same as in DocRED
and is created with no human supervision.

Statistics Distant DocRed Re-D
# Docs 101,873 5,053 4053
Avg. # Entities 19.3 19.5 19.4
Avg. # Labeled Triples 14.8 12.5 29.7
Avg. # Sentences 8.1 8.0 7.9

4 Experiments 353

4.1 Setting 354

Datasets To evaluate our approach, we primar- 355

ily use the DocRED (Yao et al., 2019) and Re- 356

DocRED (Tan et al., 2022b) datasets. DocRED 357

includes manually annotated data and distant su- 358

pervision data generated by aligning Wikipedia 359

with Wikidata (Vrandečić and Krötzsch, 2014). Re- 360

DocRED addresses the incompleteness and logical 361

inconsistencies present in the original DocRED 362

dataset and corrects coreference errors. Table 1 363

shows the amount of training data available for all 364

data splits as well as the average number of entities. 365

Configuration We implement ACME-RE based 366

on Hugging Face’s Transformers (Wolf, 2020).Fol- 367

lowing previous work, we evaluate the performance 368

of DREEAM using RoBERTa-large (Liu, 2019) as 369

the PLM encoder. The parameter for balancing ER 370

loss with RE loss is set to 0.05 when training both 371

the teacher and the student model, chosen based on 372

a grid search from 0.05, 0.1, 0.2, 0.3. We train 373

and evaluate ACME-RE on a single NVIDIA A800 374

80GB GPU. Details about hyper-parameters and 375

running time will be provided in Appendix A. 376

Evaluation For evaluation, we adopt official eval- 377

uation metrics of DocRED (Yao et al., 2019): Ign 378

F1 and F1 for RE. Ign F1 is measured by removing 379

relations present in the annotated training set from 380

the development and test sets. We train our system 381

five times, initialized with different random seeds, 382

and report the average scores and standard error of 383

these runs. 384

4.2 Main Results 385

Table 2 lists the performance of the proposed and 386

existing methods. We select the best-performing 387

model on the development set to make predictions 388

on the test set. 389
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Table 2: Evaluation results on test set of Re-DocRED,
with best scores bolded. The scores of existing methods
are borrowed from corresponding papers.

Method Ign F1 F1
(a) without Distantly-Supervised Data
ATLOP (Zhou et al., 2021) 76.82 77.56
DocuNet (Zhang et al., 2021) 77.26 77.87
KD-DocRE (Tan et al., 2022a) 77.60 78.28
TTM-RE (Gao et al., 2024) 78.20 79.95
DREEAM-teacher (Ma et al., 2023) 79.66 80.73
ACME-RE(Ours) 80.25±0.24 81.21±0.19

(b) with Distantly-Supervised Data
ATLOP (Zhou et al., 2021) 78.52 79.46
DocuNet (Zhang et al., 2021) 79.41 80.37
KD-DocRE (Tan et al., 2022a) 80.32 81.04
TTM-RE (Gao et al., 2024) 83.11 84.01
DREEAM-student (Ma et al., 2023) 80.39 81.44
ACME-RE(Ours) 83.67±0.20 84.61±0.17

Results on Re-DocRED. From Table 2, our390

proposed method achieves state-of-the-art per-391

formance, outperforming all existing approaches392

across multiple evaluation metrics. Specifically,393

compared to DREEAM (the best method using394

evidence), our model improves the F1 score by395

X and Y under human-annotated data and com-396

bined data settings, respectively, with IgnF1 gains397

of X1 and Y1. Similarly, compared to TTM-RE398

(the best method without evidence), our model399

achieves F1 improvements of X and Y , and IgnF1400

improvements of X1 and Y1 under the same set-401

tings. These results highlight the effectiveness402

of ACME-RE’s evidence utilization mechanism403

in capturing complex patterns and relationships404

within the data, aligning with prior work on entity-405

based and masked-prompt strategies (Genest et al.,406

2022; Zhong and Chen, 2020).407

Furthermore, consistent performance gains on408

both development and test sets demonstrate the ro-409

bustness and generalizability of our approach. No-410

tably, while TTM-RE’s best results were achieved411

with a memory size of 200 (with no reports on412

larger sizes), our method requires less than half413

its memory capacity while delivering significantly414

better performance.415

Results on DocRED. As shown in Table 3, while416

ACME-RE achieves comparable improvements on417

the DocRED validation set as on Re-DocRED, its418

performance on the DocRED test set is less satis-419

factory. We analyze this phenomenon from two420

perspectives:421

• Data Distribution: ReDocRED’s validation422

and test sets are equally split from DocRED’s423

validation set, potentially creating a distribu- 424

tion mismatch with the original DocRED test 425

set. While our method demonstrates strong 426

performance on ReDocRED, it may encounter 427

out-of-distribution challenges on the DocRED 428

test set. 429

• Methodology and Data Quality: Our ap- 430

proach exhibits different behaviors on varying 431

data qualities. While ReDocRED’s improved 432

annotation quality enables our memory mod- 433

ule to learn precise relation prototypes, this 434

precision becomes a limitation when encoun- 435

tering DocRED’s test set where false negatives 436

persist. This contrast explains our model’s 437

strong performance on ReDocRED’s valida- 438

tion and test sets but relatively weaker results 439

on DocRED’s test set, as the precisely learned 440

prototypes may not generalize well to noisier 441

scenarios. 442

To address these challenges, future work could 443

focus on enhancing the memory module’s robust- 444

ness through noise-aware training strategies. This 445

would maintain our method’s strength on high- 446

quality data while improving its resilience to noisy 447

instances. 448

4.3 Ablation Studies 449

This subsection investigates the effect of context- 450

informativeness-guided memory and and evidence- 451

guided training by ablation studies. All subsequent 452

experiments adopt RoBerta-large as the PLM en- 453

coder. 454

Teacher Model Firstly, we explore how guiding 455

attention through contextual information quantity 456

can assist in training relation extraction (RE) on 457

human-annotated data. To better detect the effect of 458

adaptive category memory guided by information 459

quantity, we compare it with the memory module 460

of TTM-RE, which uses a single entity-context 461

concatenation as a unit. The results, as shown in 462

Table 4, indicate a significant decline in the RE per- 463

formance of our system under this setup. To further 464

analyze the importance of different components, 465

we conduct ablation studies by training variants of 466

our teacher model. Specifically, we create a vari- 467

ant without evidence extraction (ER) training and 468

evaluate its performance on the Re-DocRED de- 469

velopment set. When the contextual information 470

quantity training is disabled, the model effectively 471

degrades to a baseline model similar to TTM-RE 472
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Table 3: Evaluation results on development and test sets of DocRED, with best scores bolded. The scores of
existing methods are borrowed from corresponding papers. We group the methods first by whether they utilize the
distantly-supervised data or not, then by whether they utilize evidence.

Use Evidence Dev Test
Method Ign F1 F1 Ign F1 F1
(a) without Distantly-Supervised Data
SSAN (Xu et al., 2021) No 60.25 62.08 59.47 61.42
ATLOP (Zhou et al., 2021) No 61.32 63.18 61.39 63.40
DocuNet (Zhang et al., 2021) No 62.23 64.12 62.39 64.55
TTM-RE (Gao et al., 2024) No 61.78 64.11 59.81 61.07
EIDER (Xie et al., 2021) Yes 62.34 64.27 62.85 64.79
SAIS (Xiao et al., 2021) Yes 62.23 65.17 63.44 65.11
DREEAM-teacher (Ma et al., 2023) Yes 62.29 64.20 62.12 64.27
ACME-RE(Ours) Yes 62.95±0.37 65.32±0.24 60.21±0.31 62.57±0.21

(b) with Distantly-Supervised Data
SSAN (Xu et al., 2021) No 63.76 65.69 63.78 65.92
KD-DocRE (Tan et al., 2022a) No 65.27 67.12 65.24 67.28
TTM-RE (Gao et al., 2024) No 67.99 70.00 65.11 66.98
DREEAM-student (Ma et al., 2023) Yes 67.41 65.52 65.47 67.53
ACME-RE(Ours) Yes 70.38 ±0.34 72.17±0.21 66.48±0.19 67.88±0.29

Table 4: Ablation studies evaluated on the Re-DocRED
development set.

Setting Ign F1 F1
(a) Teacher Model
ACME-RE 80.01±0.24 81.01±0.19
w/o Adaptive memory 78.95±0.31 80.03±0.25
w/o ER training 78.15±0.23 79.86±0.14

(b) Student Model
ACME-RE 83.27±0.21 84.22±0.14
w/o Adaptive memory 80.89±0.39 81.82±0.34
w/o ER training 80.14±0.18 81.03±0.17

(Gao et al., 2024). As shown in Table 4, remov-473

ing ER training also leads to a slight decline in474

model performance. These observations suggest475

that while the guidance of contextual information476

quantity plays a crucial role in entity-pair context477

learning, it cannot fully substitute the contribution478

of evidence information. This finding underscores479

the complementary nature of both components in480

achieving optimal RE performance.481

Student Model Next, we investigate the student482

model, which undergoes a two-phase training pro-483

cess: initial training on distantly supervised data484

followed by fine-tuning on human-annotated data.485

Following the same experimental approach used486

for the teacher model, we conduct ablation studies487

to examine how adaptive category memory affects488

the model’s performance at different training stages.489

The results, as shown in Table 4, reveal that ACME-490

RE experiences a more substantial performance491

degradation when adaptive category memory is re-492

Table 5: Effect of the size of the number of memory
tokens available to be used in ACME-RE on the test
dataset of Re-DocRED.

Mem. Size Ign F1 F1
90 79.79±0.12 80.86±0.13
96 80.25±0.24 81.21±0.19
100 80.04±0.29 80.92±0.17

200 79.69±0.21 80.67±0.16
400 79.46±0.20 80.42±0.22
600 79.16±0.31 80.13±0.23

moved compared to both the teacher model and the 493

variant without evidence guidance, highlighting its 494

crucial role in the student model’s architecture. No- 495

tably, although ACME-RE may show suboptimal 496

performance on noisy training data (like DocRED), 497

the adaptive category memory vectors inherited 498

from the teacher model, which is trained on high- 499

quality annotated data, can effectively guide the 500

training process. These pre-learned contextual cat- 501

egory memory vectors serve as reliable guidance 502

for filtering and utilizing information from distant 503

supervision, while maintaining adaptability during 504

subsequent fine-tuning on human-annotated data. 505

4.4 Memory Size 506

As shown in Table 5, the size of memory tokens 507

significantly impacts ACME-RE’s performance on 508

the Re-DocRED test set. The model achieves its 509

best performance with a memory size of 96, indicat- 510

ing that aligning the memory size with the number 511

of predefined relations optimizes the model’s abil- 512
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ity to capture and utilize contextual information513

effectively.514

Deviating from this optimal size, whether by515

increasing or decreasing it, leads to a decline in per-516

formance. Larger memory sizes, such as 600, intro-517

duce noise and redundancy, reducing the model’s518

focus on relevant information. Conversely, smaller519

sizes, like 90, fail to fully capture the complexity520

of the data, resulting in suboptimal performance.521

These findings underscore the importance of522

carefully tuning the memory size to balance con-523

textual information capture and computational ef-524

ficiency, ensuring optimal performance in relation525

extraction tasks.526

5 Related Work527

5.1 DocRE528

Recent work has extended the scope of relation529

extraction task from sentence to document (Peng530

et al., 2017; Quirk and Poon, 2016). Current531

benchmarks include DocRED (Yao et al., 2019),532

re-DocRED (Tan et al., 2022b), CDR (Li et al.,533

2016) and GDA (Wu et al., 2019), among which,534

DocRED (Yao et al., 2019) and re-DocRED (Tan535

et al., 2022b) are notable for including both evi-536

dence annotations and distantly supervised data.537

5.2 Transformer-based DocRE538

Modern DocRE approaches are built upon539

Transformer-based pretrained language models,540

demonstrating superior performance in capturing541

long-distance dependencies (Yao et al., 2021; Zeng542

et al., 2020, 2021; Zhang et al., 2021). ATLOP543

(Zhou et al., 2021) established a strong baseline544

by introducing adaptive thresholding and localized545

context pooling for improving extraction accuracy.546

Building on ATLOP, various methods incorporate547

graph structures to enhance cross-sentence reason-548

ing (Zhang et al., 2023). GAIN (Zeng et al., 2020)549

employs heterogeneous mention-level and entity-550

level graphs with path reasoning, SSAN (Xu et al.,551

2021) integrates entity structure dependencies, and552

TAG (Zhang et al., 2023) introduces latent graphs553

with hierarchical clustering. Recent advances fo-554

cus on addressing key challenges through new loss555

functions (Tan et al., 2022a; Wang et al., 2022;556

Zhou and Lee, 2022; Wang et al., 2023) and mem-557

ory mechanisms (Gao et al., 2024) to better handle558

class imbalance and leverage large-scale noisy data.559

5.3 DocRE with Evidence 560

Evidence incorporation has evolved from heuris- 561

tic approaches to neural methods. E2GRE (Huang 562

et al., 2021a) pioneered heuristic evidence selec- 563

tion to enhance DocRE performance, an approach 564

later adopted by (Huang et al., 2021b). Subsequent 565

works (Xie et al., 2021; Xiao et al., 2021) devel- 566

oped neural classifiers for evidence retrieval. SAIS 567

(Xiao et al., 2021) introduced hierarchical evidence 568

retrieval, first identifying entity pair evidence sets 569

before refining them for specific relations. Eider 570

(Xie et al., 2021) guides attention weights using 571

evidence sentences, while DREEAM (Ma et al., 572

2023) improves this through KL divergence-based 573

alignment of attention and evidence distributions. 574

Unlike previous approaches, our method combines 575

evidence annotations with context informativeness 576

without relying on heuristic rules or neural clas- 577

sifiers, providing more effective information for 578

relation extraction. 579

6 Conclusion 580

In this paper, we introduce a novel framework 581

called ACME-RE for document-level relation ex- 582

traction (DocRE) that leverages adaptive contex- 583

tual memory to address the challenge of extracting 584

implicit relationships. The experimental results 585

demonstrate that ACME-RE provides a robust and 586

efficient solution for document-level relation ex- 587

traction, particularly in scenarios requiring the in- 588

ference of implicit relationships. Our findings pave 589

the way for future research in memory-augmented 590

techniques for information extraction tasks, offer- 591

ing insights into the balance between memory ca- 592

pacity and computational efficiency. We believe 593

that it opens new avenues for exploring the integra- 594

tion of memory mechanisms in LLMs. 595

7 Limitations 596

Our work has several limitations that highlight av- 597

enues for future research. First, the method is sen- 598

sitive to data quality, particularly false negatives, 599

performing well with high-quality data but less ef- 600

fectively with noise, suggesting a need for more 601

robust training. Second, the approach to modeling 602

contextual information lacks granularity, ignoring 603

factors like clarity and specificity, which could be 604

addressed through a more refined decomposition 605

of information components. 606
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Ethical Statement607

Based on the methodology employed in this study,608

we do not foresee any significant ethical concerns.609

All documents and models used in our research610

were obtained from open-source domains, ensur-611

ing transparency and accessibility. ACME-RE is612

trained exclusively on open-source document-level613

relation extraction data, which eliminates the risk614

of privacy leakage. Relation extraction is a well-615

established and widely studied task in natural lan-616

guage processing, with applications that are gener-617

ally non-controversial.618

The training process for ACME-RE required619

over 72 hours on NVIDIA A800 80GB GPUs, with620

the distantly supervised fine-tuning phase being621

particularly resource-intensive due to the dataset622

size. Derivatives of the data accessed for research623

purposes should not be used outside of research624

contexts. To promote reproducibility and further625

research, the code for ACME-RE will be released626

at a future date.627

We believe that ACME-RE contributes positively628

to the field of document-level relation extraction629

and hope that its release will facilitate further ad-630

vancements in memory-augmented models for nat-631

ural language processing tasks.632
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A Parameter Settings802

We adopt AdamW as the optimizer (Loshchilov,803

2017) and apply a linear warmup for the learn-804

ing rate at the first 6% steps. Important hyper-805

parameters are shown in Table806

Table 6: Hyperparameters for Training and Fine-tuning

Teacher Student
Hyperparam. Train Train Finetune
# Epoch 40 2 40
lr for encoder 5e-5 3e-5 1e-6
lr for classifier 1e-4 1e-4 3e-6
max gradient norm 1.0 5.0 2.0

B ATLOP: Adaptive Thresholding and807

Localized Context Pooling808

ATLOP (Zhou et al., 2021) is a Transformer-809

based model for document-level relation extrac-810

tion (DocRE). It introduces entity-pair localized811

context embeddings and adaptive thresholding to812

effectively handle long documents and multi-entity813

interactions.814

Text Encoding. Given a document D with to-815

kens TD = {ti}|TD|
i=1 , ATLOP inserts special to-816

kens (*) at the boundaries of entity mentions and817

encodes the tokens using a pretrained language818

model (PLM) (Vaswani, 2017). The token embed-819

dings H ∈ R|TD|×d and cross-token dependencies820

A ∈ R|TD|×|TD| are computed as:821

H,A = PLM(TD),822

where H averages hidden states from the last three823

PLM layers, and A averages attention weights from824

all attention heads.825

Entity Embedding. For each entity e with men-826

tions Me = {mi}|Me|
i=1 , the entity embedding he ∈827

Rd is computed using logsumexp pooling over the828

embeddings of the special tokens at the start of829

each mention (Jia et al., 2019):830

he = log

|Me|∑
i=1

exp(Hmi).831

Localized Context Embedding. ATLOP com-832

putes entity-pair localized context embeddings to833

focus on tokens relevant to both entities in a pair834

(es, eo). The token importance distribution q(s,o) ∈835

R|TD| is derived from the cross-token dependencies 836

A: 837

q(s,o) =
as ◦ ao
a⊤s ao

, 838

where as and ao are the averaged attention weights 839

for entities es and eo, respectively, and ◦ denotes 840

the Hadamard product. The localized context em- 841

bedding c(s,o) ∈ Rd is then computed as: 842

c(s,o) = H⊤q(s,o). 843

Relation Classification. For relation classifica- 844

tion, ATLOP generates context-aware subject and 845

object representations: 846

zs = tanh(Ws[hes ; c
(s,o)] + bs),

zo = tanh(Wo[heo ; c
(s,o)] + bo).

(4) 847

where [; ] denotes concatenation, and Ws,Wo ∈ 848

Rd×2d and bs, bo ∈ Rd are trainable parameters. 849

A bilinear classifier computes the relation scores 850

y(s,o) ∈ R|R|: 851

y(s,o) = z⊤s Wrzo + br, 852

where Wr ∈ R|R|×d×d and br ∈ R|R| are trainable 853

parameters. The probability of relation r ∈ R 854

is given by P (r|s, o) = σ(y
(s,o)
r ), where σ is the 855

sigmoid function. 856

Loss Function. ATLOP employs Adaptive 857

Thresholding Loss (ATL) to learn a dynamic thresh- 858

old class TH during training. The loss encourages 859

scores above TH for positive relations RP and be- 860

low TH for negative relations RN : 861

LRE = −
∑
s ̸=o

( ∑
r∈RP

exp(y
(s,o)
r )∑

r′∈RP∪{TH} exp(y
(s,o)
r′ )

− exp(y
(s,o)
TH )∑

r′∈RN∪{TH} exp(y
(s,o)
r′ )

)
.

862

This approach ensures robust relation classifi- 863

cation by adapting to varying document contexts 864

(Chen et al., 2020). 865

C DREEAM: Guiding Attention with 866

Evidence 867

Evidence-Guided Supervision. For a given en- 868

tity pair (es, eo), DREEAM computes an evidence- 869

centered localized context embedding by ag- 870

gregating token-level attention weights within 871

each sentence. The model is supervised using 872
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a human-annotated evidence distribution v(s,o),873

which guides attention to align with sentence-level874

evidence. The evidence retrieval (ER) loss min-875

imizes the Kullback-Leibler (KL) divergence be-876

tween the predicted evidence distribution p(s,o) and877

the human-annotated distribution:878

LER
gold = −DKL(v

(s,o)∥p(s,o)). (5)879

The overall loss combines the relation extraction880

(RE) loss and the ER loss, weighted by a hyperpa-881

rameter λ:882

Lgold = LRE + λLER
gold. (6)883

Teacher-Student Self-Training. DREEAM em-884

ploys a teacher-student distillation pipeline for self-885

training on distantly-supervised data (Tan et al.,886

2022a; Mintz et al., 2009) which contains noisy la-887

bels for RE but no information for ER. The teacher888

model, trained on human-annotated data, predicts889

evidence distributions for distantly-supervised data,890

generating silver evidence labels. The student891

model is then trained to mimic these predictions,892

using the KL divergence loss:893

LER
silver = −DKL(q̂

(s,o)∥q(s,o)), (7)894

where q̂(s,o) is the teacher-predicted evidence895

distribution, and q(s,o) is the student’s evidence896

prediction.897

There are two notable differences between LER
silver898

and LER
gold .LER

gold employs sentence-level supervi-899

sion, whereas LER
silver adopts token-level supervision900

to leverage the fine-grained evidence distribution901

predicted by the teacher model on distantly super-902

vised data. On the other hand, due to the noisy na-903

ture of relation labels in distantly supervised data,904

LER
silver is computed over all entity pairs, while LER

gold905

is applied only to entity pairs with valid relations.906

The final loss follows the same weighting strategy:907

Lsilver = LRE + λLER
silver. (8)908

After self-training, the student model is fine-909

tuned on human-annotated data to refine its knowl-910

edge of both relation extraction and evidence re-911

trieval.912

Blending Layer. To further improve relation clas-913

sification, the model refines relation scores using914

evidence-based pseudo-documents. A blending915

layer with a single parameter τ is used to aggregate916

predictions from the full document and pseudo-917

documents. A relation triple (es, r, eo) is selected918

as the final prediction if the summation of its scores 919

from the full document and pseudo-documents ex- 920

ceeds τ . The threshold τ is optimized on the devel- 921

opment set to minimize the binary cross-entropy 922

loss of relation extraction. 923
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