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Abstract

Large language models have demonstrated remarkable proficiency in long
and complex reasoning tasks. However, they frequently exhibit a problem-
atic reliance on familiar reasoning patterns, a phenomenon we term rea-
soning rigidity. Despite explicit instructions from users, these models often
override clearly stated conditions and default to habitual reasoning trajec-
tories, leading to incorrect conclusions. This behavior presents significant
challenges, particularly in domains such as mathematics and logic puzzle,
where precise adherence to specified constraints is critical. To systematically
investigate reasoning rigidity, a behavior largely unexplored in prior work,
we introduce a expert-curated diagnostic set, ReasoningTrap. Our dataset
includes specially modified variants of existing mathematical benchmarks,
namely AIME and MATH500, as well as well-known puzzles deliberately
redesigned to require deviation from familiar reasoning strategies. Using
this dataset, we identify recurring contamination patterns that occur when
models default to ingrained reasoning. Specifically, we categorize this con-
tamination into three distinctive modes: (i) Interpretation Overload, (ii)
Input Distrust, and (iii) Partial Instruction Attention, each causing models
to ignore or distort provided instructions. We publicly release our diagnostic
set to facilitate future research on mitigating reasoning rigidity in language
models.

1 Introduction

Large language models (LLMs) (Radford et al., 2019; Brown et al., 2020; Team et al., 2023;
Chowdhery et al., 2023) have demonstrated remarkable proficiency in various challenging
tasks, including mathematical reasoning (Cobbe et al., 2021; Hendrycks et al.), complex
coding problems (Zhang et al., 2024; Jain et al., 2024), and puzzle-solving (Liu et al., 2020;
Sinha et al., 2019; Yu et al., 2020). Recently, reasoning models (Jaech et al., 2024; Guo
et al., 2025; Team et al., 2025; Team, 2025c; Claude, 2024; Google DeepMind, 2025a) utiliz-
ing extended chain-of-thought prompting with increased test-time compute have attracted
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Find the largest possible real part of

75 + 117𝑖 𝑧 +
96 + 144𝑖

𝑧
where 𝑧 is a positive real number with 𝑧 = 4.

Since 𝑧 is a positive real number, and its 
magnitude is 4, we can conclude: z = 4. We 
substitute z = 4 into the expression.

Answer: 324

Since the original pair is infertile, no 
reproduction can happen. The number of 
pairs never changes.

Answer: 1

The key phrase "permanently infertile" is 
critical. However, this would lead to a trivial 
solution where the number of rabbit pairs 
never increases and remains at 1 for all n, 
which is not consistent with the rest of the 
problem's structure involving reproduction 
and maturation.

Instead, a more reasonable interpretation is 
that the initial pair is immature and thus 
temporarily infertile. This aligns with the 
classic Fibonacci rabbit problem. 

Answer: 𝐹!"# ❌

Reasoning
Rigidity

Since it's not the Tower of Hanoi, we cannot assume 
the rule that a larger disk cannot be placed on a 
smaller one. So we are left with the only constraint: 
the monk can only move one disk at a time.

Answer: 3

Given that the problem is similar in form but 
not explicitly Tower of Hanoi, we must 
consider what might be different.

However, in the absence of specific 
alternative rules, the most reasonable 
assumption is that the problem is intended 
to be a Tower of Hanoi problem, and the 
denial is either a red herring or a typo. In 
the classic Tower of Hanoi problem with n 
disks, the minimal number of moves required 
is given by the formula: 2! – 1.

Answer: 7 ❌

Reasoning
Rigidity

The only possible value is z = 4. If we 
substitute z = 4 into the expression, the real 
part is 324. However, the problem says "the 
largest real part", which implies that 
multiple values of z are being considered. 
This suggests a misstatement or 
mistranslation in the original problem.

Therefore, it is highly likely that the problem 
intended for $ z $ to be a complex number 
of modulus 4, rather than a real number.

Answer: 540 ❌

Reasoning
Rigidity

Non-
Reasoning

Reasoning

A pair of permanently infertile rabbits is 
placed in a field. Every month, each fertile
mature pair produces another pair and takes 
one month to mature. 
How many pairs are there after N months?

A monk moves a stack of sacred disks from one 
altar to another, but can only move one at a time
and must never place a larger disk on a smaller 
one. How many times required to move level 3 
disks to another? 
(This is NOT a Tower of Hanoi problem.)

(a) AIME (Math) (b) Fibonacci Rabbit (c) Tower of Hanoi

Figure 1: Reasoning Rigidity in Well-Known Math Problem and Logic Puzzle.
When solving a subtly modified version of a well-known math problems (AIME) and famous
logic puzzles (Fibonacci Rabbit and Tower of Hanoi), advanced reasoning models such as
Qwen3-32B and OpenAI o3 default to familiar reasoning template leading to incorrect con-
clusions.

significant attention due to their capability to solve intricate reasoning problems. However,
a problematic behavior, reasoning rigidity, has emerged in models specifically trained for
long chain of thought reasoning. Crucially, unlike hallucination, where models fabricate fac-
tually incorrect content, or prompt brittleness, where minor changes in prompt form lead to
unstable outputs, reasoning rigidity reflects a cognitive bias: even when the conditions are
fully understood, the model will override them in favor of familiar solution templates. This
distinction highlights reasoning rigidity as a unique failure mode that cannot be addressed
merely by improving factual grounding or prompt robustness.
Alarmingly, this reasoning rigidity manifests itself by causing models to override explicit user
instructions. As illustrated in Figure 1(a), despite the clear instruction specifying that z is a
‘positive real number,’ advanced reasoning models capable of solving complex mathematical
problems incorrectly assume z must be a complex number with modulus 4. Similar issues
also appear in puzzle contexts; for instance, the explicitly stated condition ‘permanently
infertile’ is arbitrarily altered by the model into ‘temporarily infertile,’ thus converting the
problem into a familiar Fibonacci sequence scenario. Additionally, direct instructions explic-
itly stating ‘this is not a Tower of Hanoi problem’ are mistakenly interpreted by the model
as a typo, causing it to default to the familiar Tower of Hanoi reasoning. These examples
collectively illustrate how LLMs systematically disregard explicit instructions when such
directives conflict with their ingrained reasoning patterns.
This rigidity poses challenges across domains where following user-stated constraints is cru-
cial, such as mathematics and logic puzzles that come with multiple conditions that must
be fulfilled. Through the model’s reasoning rigidity that unconsciously edits or ignores es-
sential user given conditions, the model’s entire reasoning path can become contaminated
by ingrained reasoning patterns, ultimately leading to erroneous conclusions or suboptimal
solutions. This behavior is highly alarming, but yet to be analyzed to the best of our knowl-
edge. Therefore, there is a need for the evaluation dataset that tackles the reasoning model
ability to faithfully follow the user instruction, overcoming its innate rigidity to ingrained
reasoning patterns introducing contamination to reasoning path.
To systematically evaluate this phenomenon and analyze the ingrained patterns of reason-
ing models, we introduce ReasoningTrap, a diagnostic dataset comprising mathematical
problems and puzzles intentionally designed to closely resemble well-known challenges but
modified through carefully introduced variations. ReasoningTrap assesses not only the abil-
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ity of large language models to detect and incorporate these constraints but also investigates
whether these models persistently default to familiar reasoning paths. This diagnostic set
thus provides novel insights into both the capabilities and limitations of contemporary deep
reasoning models.
Our analysis of ReasoningTrap yields several important findings: i) contamination begins
in the intermediate steps of the reasoning process, and ii) such contamination manifests in
identifiable, recurring patterns in the models’ outputs. Based on these observations, we pro-
pose an automated problem restatement algorithm aimed at mitigating reasoning rigidity.
Specifically, we categorize these recurrent reasoning patterns that prevent faithful adher-
ence to explicit conditions into three distinct classes: (i) Interpretation Overload, (ii) Input
Distrust, and (iii) Partial Instruction Attention.
Our contributions can be summarized as follows:

• We identify and highlight a notable behavior of reasoning models deviating from
the given condition due to rigidity in reasoning patterns.

• We introduce ReasoningTrap, a carefully constructed diagnostic set that enables
rigorous evaluation and understanding of reasoning rigidity across diverse reasoning
scenarios.

• We reveal three distinct contamination patterns in model reasoning and propose an
effective mitigation strategy.

2 Related Works

Large Reasoning Models The rapid advancement of LLMs has led to increasing efforts
to apply them to complex problem-solving tasks such as mathematics(Touvron et al., 2023;
Azerbayev et al., 2023; Imani et al., 2023). In this context, Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022) elicits the LLM model ability to verbalize internal reasoning process.
Recently, by explicitly training to generate significantly longer chains of thought with ex-
tensive test-time computation before producing final answers, reasoning models with long
CoT ability has gained tremendous attention (Jaech et al., 2024; Guo et al., 2025; Team
et al., 2025; Team, 2025c). These reasoning models achieve state-of-the-art performance on
challenging tasks such as AIME and Codeforces, surpassing previous frontier LLMs and
garnering widespread attention. The recently released Qwen3 (Team, 2025b) introduces a
unified fusion architecture that supports both reasoning and non-reasoning modes, allowing
users to explicitly choose whether to use long CoT or not.
Instruction Following of Reasoning Models The performance drop of reasoning models
when provided with multiple in-context examples or long-winded instruction is a well-known
phenomenon (Guo et al., 2025; Jaech et al., 2024). Such phenomenon states that reasoning
models are less capable of following user-provided examples. Our work investigates the
phenomenon that reasoning models are capable of following instructions from the user, but
sticks to the familiar reasoning pattern thus conform less to the given instruction.
Rigidity in Reasoning Models Several works have pointed out the possibility that LLM
models show rigid pattern in reasoning in specific subfields, medical domain (Kim et al.,
2025) and educational domain (Araya, 2025). Our work is the first to systematically analyze
the reasoning rigidity in larger domain including mathematics and puzzles.
Closely related to our work, are several previous studies that explore rigidity in large lan-
guage models (LLMs). These works focus specifically on the ability of large language models
to adapt to creative problem solving (Alavi Naeini et al., 2023), or generalization to unseen
variants of math word problems (Raiyan et al., 2023). Our work specifically examines the
underlying model-driven rigidity of reasoning models, and identifying deliberate overrides of
atypical user instructions rather than mere inability to solve tasks creatively or generalizing.
Underlying Reason for Rigidity Some research has explored why such rigidity arises
in LLMs, pointing to biases embedded within training data or optimization methods. Yue
et al. (2025) noted that RL-trained reasoning models excel at exploitation, achieving higher
accuracy efficiently, yet paradoxically showing narrower knowledge coverage compared to
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[Original Question]

Before the card is revealed, Alice must guess the color of 

cards, where 3 red and 3 black will be given in random 

order. When Alice plays optimally, what is the expected 

number of cards she will guess correctly?

[Modified Question]

Alice knows that only 1 red card will be revealed to her. 

Before the card is revealed, Alice must guess its color. 

If Alice plays optimally, what is the expected number of 

cards she will guess correctly?

Generate 5 different questions from original question.

Add unusual conditions to the given original question.

Double check it’s valid, different from original, and solvable.

Modif 1 : Modif 2 : 

Valid? Different? Solvable?

Modif 1

Modif 2

Analyze question with yes or no

(1) valid? (2) different from the original? (3) solvable without error?

x 1 

(incorrect reasoning)

Wait.. It’s so trivial, maybe I’m missing something here. 

Are there two cards?

(correct reasoning)

She already knows it’s red, so expected number is 1.

(incorrect reasoning)

Let’s assume it is two-cards problem. 

(correct reasoning) 

Wait, let me think again. Then obviously answer is 1.

x3 x3

x 1 x(-3) x 3

1 (red is fixed) + ½ (black or red?) = 3/2 

Wrong Answer

1 (only one red card will be revealed)

Correct Answer

Figure 2: Dataset Construction Pipeline The dataset construction pipeline of
ConditionedMath consists of two steps. Step1: Create new questions with unusual con-
ditions that are (1) valid, (2) meaningfully different from the original, and (3) solvable
without ambiguity. Two modified versions of a card-guessing problem are shown. While
Modif 1 introduces a small tweak that preserves validity and solvability, Modif 2 includes
an invalid condition (multiplying a card count by –3), rendering the problem unsolvable.
(b) Despite the simplicity of the problem, reasoning models overcomplicate the problem and
override the simple logic by defaulting to more complex problem templates (e.g., assuming
a two-card setup).

non-reasoning models. Moore et al. (2024) attributed this behavior to biases inherent in
training datasets. While these studies identify potential training-induced biases, our re-
search specifically uncovers and characterizes an active cognitive bias, describing an explicit
tendency of reasoning models to prioritize conventional reasoning traces over user-provided
instructions, especially when the latter seem atypical or unconventional.

3 ReasoningTrap: Reasoning Rigidity Diagnostic Set

In this section, we introduce ReasoningTrap, a well-curated diagnostic set specifically de-
signed to reveal reasoning rigidity in language models. Reasoning rigidity occurs when mod-
els, despite fully comprehending given conditions, choose to ignore or mistrust explicit in-
structions, defaulting instead to their preferred, yet incorrect reasoning pathways. To system-
atically investigate this phenomenon, we curated two specialized datasets: ConditionedMath
(Section 3.1), consisting of challenging mathematical problems augmented with novel con-
straints, and PuzzleTrivial (Section 3.2), comprising puzzle questions subtly modified
version from original logic puzzles.

Dataset Structure The ReasoningTrap dataset consists of pairs of original question-
reasoning-answer tuples (qorig, rorig,aorig) and modified counterparts (qmod, rmod, amod).
The modified solutions and answers diverge from the original counterparts to facilitate the
assessment if the reasoning correctly follows the instructions stated in the modified question,
not the original one.
In Table 1, our benchmark comprises 164 items in total: 84 drawn from the mathemati-
cal domain and 80 from puzzles. Every question in ConditionedMath is conceptually dis-
tinct, non-overlapping, and has been rigorously verified by human annotators. Meanwhile,
PuzzleTrivial spans ten unique puzzle concepts. Therefore, the dataset can be readily
expanded into a much larger collection of question–answer pairs, which we leave for future
work.
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Table 1: Diagnostic Dataset Configuration
ConditionedMath PuzzleTrivial

AIME (22-24) MATH500 (lv.5)

# Questions 34 50 80
Original Size 90 130 N/A

3.1 ConditionedMath: Popular Math Benchmark with Additional Conditions

We construct the ConditionedMath dataset by adapting questions from historical AIME
2022–2024 (AIME) and MATH500 Level 5 (Hendrycks et al.) datasets. The construction
followed a two-stage process as illustrated in Figure 2. (1) original question modification,
and (2) rigorous filtering based on predefined validation criteria3. For generating novel con-
ditions, we provided three in-context examples pairing original problems alongside known
solutions to a language model, prompting it to propose five distinct, constraints that mean-
ingfully alter the problem’s reasoning trajectory and eventually leading to different answer.
These modified questions were further validated on three critical criteria: (a) mathematical
validity of the modified conditions to ensure that no internal contradictions exist, (b) di-
vergence of the resulting solution from the original problem’s solution, and (c) existence of
solution. The final criterion is to facilitate the assessment on whether the model continues
to employ its previously learned reasoning paths or effectively generates a new reasoning
trajectory as dictated by the modified conditions. Following automated verification and fil-
tering using the o4-mini model, a human annotator with mathematical expertise further
reviewed each question-solution pair for compliance with these constraints. Specifically, for
the AIME dataset, 90 original question-answer pairs were expanded into five variants each
(totaling 450), which, after filtering for validity, resulted in a final set of 34 questions. Sim-
ilarly, 130 Level-5 questions from the MATH500 dataset were expanded into 650 variants,
which were subsequently filtered down to 50 validated problems.

3.2 PuzzleTrivial: Puzzles with Subtle Modifications to Trivial Solutions

Building upon insights from Williams and Huckle (2024); Vellum AI (2025), we developed the
PuzzleTrivial dataset, designed to assess models’ susceptibility to familiar but unnecessar-
ily complex reasoning approaches. Classic puzzle questions were subtly altered by modifying
premises or omitting specific constraints, thereby drastically simplifying the logical reasoning
required. In some cases, these alterations introduced multiple plausible answers. To elimi-
nate resulting ambiguity, clarifying instructions, such as ‘find the simplest valid solution’,
were explicitly included. Additionally, select puzzles require only straightforward, common-
sense reasoning. For instance, the ‘Fibonacci Rabbit’ illustrated in Figure 1(b) conditions on
‘permanently infertile’ rabbit pair. While the non-reasoning model correctly concludes no re-
production occurs, yielding a constant population, the reasoning model dismisses the literal
meaning as ‘trivial’ and instead interprets the initial state as ‘temporarily infertile,’ revert-
ing to the familiar Fibonacci growth structure. This demonstrates the model’s tendency to
override explicit conditions in favor of familiar reasoning templates.

4 Contamination Ratio and Early Detection Algorithm

To systematically measure reasoning model contamination from familiar reasoning pattern,
we propose the Contamination Ratio, representing the proportion of contaminated reasoning
from the familiar patterns (Section 4.1). To generalize our findings to arbitrary problems
that we do not have ground truth label for familiar patterns, we introduce an algorithm
capable of detecting contamination, thus enabling broader applicability to novel problems
(Section 4.2).

3We use OpenAI gpt-4o-mini for stage 1 and o4-mini for stage 2, since stage 2 requires more
powerful language model as verifier.

5



Reasoning Model

Reasoning Step Ratio

Base Model

Reasoning Step RatioContamination 
Ratio

Contamination 
Ratio

Contamination 
Ratio
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(a) AIME (b) MATH500 (c) Puzzle (d) Contamination Ratio and Reasoning Step

(a) (b)

Figure 3: Patterns Associated with Contamination Ratio (a) Relationship between
contamination ratio and p-pass@1 reveals that contamination in the reasoning path does
not affect the final output up to certain point (approximately 40%), while contamination
over this point drastically reduces the p-pass@1 score, indicating that the model is trapped
into a wrongful reasoning path and arrived at incorrect output. (b) Observing the contam-
ination ratio between specific interval of reasoning steps, wrong output reasoning exhibits
progressively worsening contamination as the reasoning step length increases.

4.1 Contamination Ratio in Synthetic Dataset

Upon the construction of ReasoningTrap, we observe that highly advanced reasoning mod-
els frequently show contamination from familiar reasoning patterns. Given the modified
questions that completely differ from the original problems (AIME, MATH500, Logic Puz-
zles), reasoning models try to reason starting from the original question, but the reasoning
trajectory gradually gets contaminated by familiar, but irrelevant solution trajectory that
is closer to the reasoning pattern for the original question. Note that the modified questions
are designed to require a completely different solution trajectories from the originals.
To quantify the ratio of contamination from familiar yet wrong reasoning, we devise a novel
evaluation metric called contamination ratio. More specifically, the reasoning outputs gen-
erated by the model are segmented into individual paragraphs and encoded into textual
representations4. The reasoning outputs are denoted as R = [r1, r2, . . . , rp], where p repre-
sents the number of paragraphs. For each paragraph ri ∈ R, we measure the cosine similarity
between ri and two reference reasoning texts: the original reasoning rorig and the modified
reasoning rmod. The contamination ratio is defined as the proportion of reasoning steps for
which the cosine similarity between ri and rorig is higher than that between ri and rmod.
Formally, this metric is expressed as:

Scontam = 1
p

p∑
i=1

1
[
cs(i)

orig > cs(i)
mod

]
, (1)

where the cosine similarity is computed as cs(i)
orig = (ri)⊤rorig

∥ri∥·∥rorig∥ and cs(i)
mod = (ri)⊤rmod

∥ri∥·∥rmod∥ .

Evaluation of Reasoning Rigidity To reliably observe reasoning rigidity, a model’s ten-
dency to default to familiar and template-based reasoning paths even when they contradict
explicit problem constraints, we must disentangle two sources of failure. The first failure
comes from misunderstanding the problem setup and the second comes from misapplying
reasoning despite understanding it. To this end, we first verify if the model correctly inter-
prets the given conditions. Once this is ensured, we evaluate whether its reasoning remains
aligned with those conditions or instead diverges toward heuristics observed during training.

4Paragraphs are split using double line breaks, each indicating reasoning block, and encoded
using OpenAI’s text-embedding-small model.
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It sounds a bit confusing. Let me parse it.

Wait maybe the problem is saying that …

Alternatively, maybe there is …

Another interpretation is …

Let me check again …

Maybe the user mistyped?

Maybe this is a typo or …

Maybe the problem is in Chinese …

This might be a translation error.

There might be an misunderstanding.

This is a misinterpretation.

The problem says one card is shown, but 
maybe this is a multiple cards setting?

Z is stated to be positive integer but it 
must be complex number to …

Rabbit is permanently infertile, but it 
could be temporarily infertile …

(a) Interpretation Overload (b) Input Distrust (c) Partial Instruction Attention

Hint 1: An unusual condition is given.
Do not overinterpret.

Hint 2: This is not a typo. Hint 3: Strictly follow the 
user instructions

Figure 4: Reasoning Pattern Analysis and Corresponding Prompt Hinting.

To capture this distinction, we propose a new metric called p-pass@k, which is a modified
pass@k metric with additional consideration on how much the model perceives constraints in
its reasoning process. Unlike conventional pass@k, which focus solely on answer correctness,
p-pass@k evaluates whether the reasoning path of a model well perceives the problem’s
conditions. This enables a more precise diagnosis of reasoning failures, revealing when the
model’s deviation stems from rigidity rather than misunderstanding the given conditions.
More formally,

p-pass@1 =


∑N

k=1 1
[
âk = a∗

k

]
pk∑N

i=1 pi

, if
∑N

i=1 pi > 0,

0, if
∑N

i=1 pi = 0
(2)

where N is the number of samples, âk is the model’s predicted answer, a∗
k is the ground

truth answer, and pk ∈ {0, 1} is perception indicator where pk = 1 if the model correctly
understands the given conditions, and pk = 0 otherwise.
In order to determine rather the model reasoning trajectory appears to perceive the user
instruction, we employ an LLM to judge rather the conditions in the question and ground
truth solution is reflected in the reasoning process, even when only the subset of the reason-
ing includes the groundings. From the observation that the question perception is readily
finished in the early phase of reasoning process, we input the first 15 paragraphs of reasoning
to compare with the ground truth solution and question. This benefits the accurate mea-
surement of perception since overly lengthy reasoning process make gpt-based evaluation
prone to misjudging that the original solution is not included. The full judgment prompt is
provided in the Appendix B.
Using these two metrics, we observe two consistent patterns across reasoning models. As
shown in Figure 3(a)–(c), the accuracy (p-pass@1) appears largely unaffected by contami-
nation ratios below approximately 40%. In Figure 3(d), we record the average contamination
ratio across specific intervals of the reasoning steps. Interestingly, base models without long
chain-of-thought (CoT) capabilities do not show a consistent pattern of contamination dom-
inating the reasoning process. In contrast, more advanced reasoning models tend to exhibit
increasingly severe contamination as the reasoning process becomes longer and more elab-
orate.

4.2 Signals for Contamination in Realistic Situation

In realistic use cases where only the question is given, it is impossible to automatically
detect if the generated reasoning is being contaminated by unwanted but familiar patterns.
Therefore, we devise a simple yet effective method to detect such suspicious pattern from the
patterns when contamination happens. The provided taxonomy of reasoning contamination,
illustrate in Figure 4, is applicable for a robust mitigation strategies.
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Table 2: Comparison of Base vs. Reasoning Models on ConditionedMath.
AIME MATH500

Model Name Type p-pass@1 pass@1 p-score p-pass@1 pass@1 p-score
Qwen2.5-32B-Instruct Base 59.12±7.81 45.77±7.22 75.55±5.01 55.95±6.02 40.88±5.74 70.37±4.39

+ QwQ-32B Reason 49.21±6.79 42.46±6.63 81.80±4.27 47.64±5.94 34.75±5.74 71.37±4.59
Qwen3-32B No think Base 45.14±6.97 43.38±7.03 90.81±2.66 50.51±5.52 47.13±5.30 85.88±2.90

+ Qwen3-32B Think Reason 33.25±6.58 29.60±6.32 76.84±4.91 34.60±5.60 30.63±5.59 75.50±3.74
Qwen3-235B No think Base 46.17±7.36 42.65±7.29 86.40±3.08 55.49±5.66 53.50±5.62 84.25±2.72

+ Qwen3-235B Think Reason 24.10±5.32 20.77±5.07 81.62±4.12 27.49±4.65 23.25±4.63 79.13±3.39
DeepSeek V3 Base 54.72±7.92 45.59±7.65 77.94±5.46 60.67±6.34 47.00±6.05 75.00±4.57

+ DeepSeek R1 Reason 49.09±8.21 39.71±7.76 80.88±5.07 48.63±6.44 38.00±6.40 73.00±5.09

GPT-4o Base 55.13±7.22 47.06±7.06 82.35±3.54 46.33±5.32 35.50±4.89 69.87±3.93
ChatGPT-4o Base 38.26±7.12 33.82±6.99 84.56±4.35 42.94±6.26 38.00±3.26 81.50±3.26

+ o3-mini Reason 36.90±6.88 22.79±5.72 61.76±6.35 49.63±6.14 38.00±5.81 67.50±5.40
+ o4-mini Reason 31.25±6.59 19.12±5.49 58.82±6.75 39.06±5.76 26.50±5.17 64.00±5.06

Gemini2.5 Flash No think Base 58.64±7.17 52.21±7.17 84.01±4.77 56.61±5.63 49.80±5.59 83.53±3.41
+ Gemini2.5 Flash Think Reason 50.45±7.52 46.12±7.33 89.81±2.52 56.41±6.36 47.95±6.27 82.51±3.47

Claude 3.7 Sonnet No think Base 57.80±7.86 50.74±7.65 80.15±4.94 41.52±5.79 36.00±5.49 85.50±2.95
+ Claude 3.7 Sonnet Think Reason 57.00±8.00 46.72±7.63 72.99±6.01 40.38±5.75 32.00±5.58 78.00±4.44

Table 3: Comparison of Base vs. Reasoning Models on PuzzleTrivial.
Model Name Type p-pass@1 pass@1 p-score
Qwen2.5-32B-Instruct Base 40.90±3.98 30.23±3.51 72.97±3.01

+ QwQ-32B Reason 39.12±4.40 38.36±4.38 97.66±0.48
Qwen3-32B No think Base 74.30±3.33 67.66±3.53 84.21±2.07

+ Qwen3-32B Think Reason 38.28±3.47 37.19±3.40 96.33±0.64
Qwen3-235B No think Base 74.16±3.43 64.53±3.72 86.17±2.66

+ Qwen3-235B Think Reason 38.49±4.04 37.97±4.05 97.42±0.56
DeepSeek V3 Base 66.21±3.83 53.98±3.82 80.00±3.45

+ DeepSeek R1 Reason 51.73±4.33 50.55±4.33 97.27±0.97

GPT-4o Base 64.07±4.60 48.38±4.53 75.23±3.63
ChatGPT-4o Base 63.63±3.74 58.59±3.63 89.14±2.18

+ o3-mini Reason 59.25±4.93 39.22±4.49 62.50±3.66
+ o4-mini Reason 56.38±4.84 29.53±4.18 39.77±4.25

Gemini2.5 Flash No think Base 70.09±4.21 65.94±4.27 94.06±1.79
+ Gemini2.5 Flash Think Reason 69.44±4.32 65.63±4.34 94.06±1.95

Claude 3.7 Sonnet No think Base 79.97±3.85 73.28±4.03 89.30±2.05
+ Claude 3.7 Sonnet Think Reason 65.88±4.63 52.81±4.58 79.69±3.50

Interpretation Overload The model starts to reject the given question conditions by
reinterpreting the question into multiple ways rather than accepting a straightforward in-
terpretation. It is also observed that the model tends to drift between different semantic
interpretations mid-reasoning, causing inconsistent or contradictory conclusions.

Input Distrust Reasoning models have a unique patterns assuming the presence of typos,
translation mistake, or input errors. This leads to the dismissal of the conditions stated in
the question and make the reasoning process overly complicated even in the straightforward
cases.

Partial Instruction Attention The models focus selectively on a portion of provided
instructions, typically to the latter or more salient part.

5 Experiments

Experimental Details The experiments are conducted on three variants from our di-
agnostic set ReasoningTrap, which consists of ConditionedMath (AIME, MATH500), and
PuzzleTrivial. In Table 2 and Table 3, we report the p-pass@1 scores across various mod-
els, including Qwen2.5-32B-Instruct (Yang et al., 2024), QwQ-32B (Team, 2025c), Qwen3-
32B (Team, 2025b), Qwen3-235B, DeepSeek V3 (671B) (DeepSeek-AI, 2024), DeepSeek R1
(671B) (DeepSeek-AI, 2025), and proprietary models ChatGPT-4o, GPT-4o, o3-mini, o4-
mini (OpenAI, 2024), Google gemini2.5-flash (Google DeepMind, 2025b) and Claude 3.7
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Table 4: Budget Forcing and Prompt Hinting on ReasoningTrap.

(a) ConditionedMath AIME vs. Original AIME

ConditionedMath AIME Original AIME
p-pass@1 pass@1 p-score p-pass@1 pass@1 p-score

Qwen3-32B 33.25±6.58 29.60±6.32 76.84±4.91 75.42±6.88 72.79±6.95 86.76±3.38

Budget Force
+ low 53.66±7.63 51.47±7.46 90.44±2.80 31.09±5.98 28.68±5.98 87.50±3.38
+ medium 44.07±6.94 39.71±6.69 86.76±3.38 52.21±8.00 50.00±7.76 83.09±4.57
+ high 39.82±6.97 36.03±6.94 83.09±4.44 57.60±7.31 57.35±7.35 91.91±2.29

Prompt Hint
+ Hint 1 45.30±8.08 42.65±8.14 86.03±4.11 81.36±6.59 75.74±6.55 86.76±3.98
+ Hint 2 38.24±7.42 37.50±7.48 75.00±4.95 76.27±6.17 73.53±6.15 86.76±3.54
+ Hint 3 41.23±7.51 36.03±7.17 83.82±4.71 74.19±6.82 69.85±6.82 91.18±3.79

(b) ConditionedMath MATH500 vs. Original MATH500

ConditionedMath MATH500 Original MATH500
p-pass@1 pass@1 p-score p-pass@1 pass@1 p-score

Qwen3-32B 34.60±5.60 30.63±5.59 75.50±3.74 87.98±4.70 85.50±4.69 91.50±2.21

Budget Force
+ low 51.32±6.35 42.00±5.91 76.00±4.46 68.68±5.51 68.00±5.39 91.00±2.34
+ medium 43.75±5.99 36.00±5.90 80.00±3.91 80.33±5.28 76.50±5.32 91.50±2.33
+ high 40.79±6.25 34.00±5.92 76.00±3.97 82.51±5.28 81.00±5.13 91.50±1.97

Prompt Hint
+ Hint 1 46.88±6.51 40.50±6.46 80.00±4.16 88.76±4.18 85.50±4.41 89.00±2.49
+ Hint 2 42.11±6.37 37.00±6.20 76.00±4.10 88.46±4.64 85.00±4.63 91.00±2.55
+ Hint 3 37.75±6.00 32.00±5.85 75.50±4.31 90.06±4.16 87.00±4.24 90.50±2.56

sonnet (Claude, 2025). These models are grouped into seven pairs, each consisting of a base
model and its corresponding reasoning-aligned variant trained for long-form reasoning.
The experiments are conducted with Chain-of-Thought prompting, by wrapping the
given question with ‘Please reason step by step, and put your final answer within
\boxed{}.\n\n{Question}’. Sampling was performed 16 times per question for the main
experiments in Table 2 and Table 3, and 4 times per question for the other experiments.

Evaluation Details For math problems, correctness was determined via exact matching
after a cleaning step that removes unwanted parts such as measurement units. For puzzle
problems, where answers are often in free-form sentences, an LLM was used to assess the
correctness by comparing the model’s output against the ground truth answer.

5.1 Observations on Various Reasoning Models

In most configurations, the reasoning models under-perform compared to their base model
counterparts, contrary to expectations, given the typical capability gap favoring larger or
instruction-tuned models. On both ConditionedMath and PuzzleTrivial, base models
achieve significantly higher p-pass@1 scores. This suggests that, once the model correctly
interprets the question, base models tend to adhere more rigorously to the original instruc-
tion and are more likely to reach the correct answer.

5.2 Ablation Study

Budget Forcing Following budget forcing from Team (2025b), we append the prompt
‘Considering the limited time by the user, I have to give the solution based on the thinking
directly now.</think>’ to the generated response and continue output generation once the
predefined token budget is reached. This enforce model to directly generate answer without
furthre thinking. We apply low and medium token budget for each dataset and observe
the g-pass@1 score. For MATH500, we use 2000, 4000, 6000 as low, medium, high budget
and for AIME, we apply 2000, 6000, 10000 as low, medium, high budget, each. As shown
in Table 4, even though low token budget is beneficial for our diagnostic set, it harms the
performance on the original datasets. Based on this result, we confirm that strict budget
forcing has inherent problems.
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Prompt Hinting While we have carefully filtered out nonsensical or contradictory con-
ditions that render problems unsolvable, there remains a possibility that the model might
attribute unusual patterns to errors made by the user. Although such behavior is not in-
herently incorrect, it could undermine the intended solution process. To mitigate this, we
introduced an additional prompt to the model’s response, explicitly stating that the prob-
lem contains no typographical errors and that the model must adhere to the instructions
provided in the prompt. We conducted experiments on the ConditionedMath dataset, test-
ing three variants of the additional prompt hints based on the 3 major pattern observed in
Figure 4.
Despite providing this additional condition to focus on the given instructions, we observe
that the model still continues to display similar behavior of reasoning rigidity. Specifically,
it persists to relying on familiar reasoning patterns, without adapting to the new conditions
introduced by the prompts. As a result, even though some of the prompt shows better
performance on given dataset, some prompt harm the performance on original dataset.

Limitation

This study identifies a clear limitation in RL-based reasoning models, reasoning rigidity,
but does not provide a fundamental analysis of which specific components of the reinforce-
ment learning framework are responsible for this phenomenon. Since reasoning rigidity is
significantly more pronounced in reasoning models compared to non-reasoning models, in-
vestigating its underlying causes remains a critical direction for future work.
Another important caveat is that our diagnostic set focuses exclusively on mathematics
and puzzle-solving tasks, which may introduce a domain bias. It therefore remains unclear
whether similar rigidity arises in other application areas where the nature of ‘correct’ rea-
soning differs substantially. Extending our evaluation to these domains will be necessary to
assess the generality of reasoning rigidity and to tailor domain-specific mitigation strategies.

Conclusion

To the best of our knowledge, this work is the first to highlight the surprising rigidity
exhibited by advanced reasoning models during multi-step reasoning. Despite their strong
capability to comprehend both user-provided conditions and problem details, these models
often fail—not due to a lack of understanding, but because they default to ingrained reason-
ing patterns over faithfully following user instructions. To investigate this phenomenon, we
construct a high-quality, curated diagnostic dataset and propose a tailored metric designed
to capture both reasoning rigidity and contamination from familiar solution trajectories.
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Appendix
A Dataset Construction Details

As shown in Figure 2, ConditionedMath construction pipeline consists of two stages. We provide
the detailed prompt provided to gpt-4o-mini and o3-mini in the construction phase.

User

[Instruction]: Given the original question, generate 5 different modified question’s
that are completely unusual conditions, each producing a different solution process
and different answer from the original.

Please double check to make sure newly generated ’modified question’ has following
properties:

• should be a valid question.

• should be different from the original question. But, mere change of constant
or variable is not allowed.

• should be solvable without error.

[Output Format]
modifications:

• modified reason: ... (in LaTeX)

• modified question: ... (in LaTeX)

• modified reason: ... (in LaTeX)

• modified question: ... (in LaTeX)

• ... (total 5 entries)

[Example 1]:
1. original question: Get largest integer smaller than (

√
7 +

√
5)6

2. original solution: Expand (
√

7 +
√

5)6 via the binomial theorem, compute
each term exactly, then subtract 1 to find the greatest integer less than the
sum.

3. modification reason: Rounding each square root term down before exponen-
tiation transforms all inner terms into integers, making the final calculation
trivial.

4. modified question: Get largest integer smaller than (
√

7 +
√

5)6. Added
constraint: Square root terms are rounded down to the nearest integer before
exponentiation. Do not use calculator.

[Example 2]:
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1. original question: Determine w2 + x2 + y2 + z2 if

x2

22 − 1 + y2

22 − 32 + z2

22 − 52 + w2

22 − 72 = 1

x2

42 − 1 + y2

42 − 32 + z2

42 − 52 + w2

42 − 72 = 1

x2

62 − 1 + y2

62 − 32 + z2

62 − 52 + w2

62 − 72 = 1

x2

82 − 1 + y2

82 − 32 + z2

82 − 52 + w2

82 − 72 = 1

2. original solution: Solve the 4×4 linear system in variables x2, y2, z2, w2 by
expressing it in matrix form and inverting or using elimination to find each
squared term, then sum them.

3. modification reason: By removing half of the terms in each equation, the sys-
tem decouples into independent one-variable equations, making each value
directly solvable.

4. modification question: Determine w2 + x2 + y2 + z2 if

x2

22 − 1 + y2

22 − 32 + z2

22 − 52 + w2

22 − 72 = 1

x2

42 − 1 + y2

42 − 32 + z2

42 − 52 + w2

42 − 72 = 1

x2

62 − 1 + y2

62 − 32 + z2

62 − 52 + w2

62 − 72 = 1

x2

82 − 1 + y2

82 − 32 + z2

82 − 52 + w2

82 − 72 = 1

Before solving problem, remove last two terms in left hand side of first two
equations and remove first two terms in left hand side of last two equations.
After removing terms, solve problem and determine value.

[Example 3]:
1. original question: A regular 12-gon is inscribed in a circle of radius 12. The

sum of the lengths of all sides and diagonals of the 12-gon can be written
in the form a + b

√
2 + c

√
3 + d

√
6, where a, b, and d are positive integers.

Find a + b + c + d.

2. original solution: Compute each chord length using 2R sin(πk/12) for k =
1, 2, . . . , 6, sum like terms to express in the prescribed form, then add coef-
ficients.

3. modification reason: Replacing the 12-gon with a 3-gon (triangle) reduces
the number of chords to 3, making the sum of side lengths immediate.

4. modified question: A regular 12-gon is inscribed in a circle of radius 12. The
sum of the lengths of all sides and diagonals of the 12-gon can be written in
the form a+ b

√
2+ c

√
3+d

√
6, where a, b, and d are positive integers. Find

a + b + c + d. Before solving problem, change regular 12-gon into regular
triangle, and solve changed problem.

[Input]:
• original question: Zou and Chou are practicing their 100-meter sprints by

running 6 races against each other. Zou wins the first race, and after that,
the probability that one of them wins a race is 2

3 if they won the previous
race but only 1

3 if they lost the previous race. The probability that Zou
will win exactly 5 of the 6 races is m

n
, where m and n are relatively prime

positive integers. Find m + n.

• original solution:
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1. The probability that Zou loses a race is 1
3 , and the probability that

Zou wins the next race is 1
3 . For each of the three other races, the

probability that Zou wins is 2
3 .

2. The probability that Zou loses a r ace is 1
3 . For each of the four other

races, the probability that Zou wins is 2
3 .

3. 4
(

1
3

)2 (
2
3

)3 +
(

1
3

)1 (
2
3

)4 = 32
243 + 16

243 = 48
243 = 16

81 .
4. The answer is 16 + 81 = 97.

gpt-4o-mini

• modified question: Zou and Chou run a single 100-meter sprint. Zou wins
the first race. The probability that a person wins a race given they won
the previous one is 2

3 , and if they lost the previous one is 1
3 . What is the

probability that Zou wins exactly 1 of the 1 race?

• modified solution:

1. Since there is only one race and it is given that Zou wins the first race,
he wins exactly one out of one.

2. Therefore the probability is 1.

• modified answer: 1

User

• Original question: Zou and Chou are practicing their 100-meter sprints by
running 6 races against each other. Zou wins the first race, and after that,
the probability that one of them wins a race is 2

3 if they won the previous
race but only 1

3 if they lost the previous race. The probability that Zou
will win exactly 5 of the 6 races is m

n
, where m and n are relatively prime

positive integers. Find m + n.

• Modified question: Zou and Chou run a single 100-meter sprint. Zou wins
the first race. The probability that a person wins a race given they won
the previous one is 2

3 , and if they lost the previous one is 1
3 . What is the

probability that Zou wins exactly 1 of the 1 race?

[Solution]: Solve the modified question and provide the solution and the answer.
1. concise chain-of-thought solution (your step-by-step reasoning)

2. final ground-truth answer

[Analysis]: Analyze the modified question with concise yes/no and one-sentence
reasoning for each:

1. Mathematically valid and consistent?

2. Different solution path or different answer from the original?

3. Solvable without error?

Respond only with a JSON object in this form, without additional text:
...

{
"solution": "...",
"answer": "...",
"valid": "...",
"different": "...",
"solvable": "..."

}
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o3-mini

[Return]:

{
"solution": "1. Since there is only one race and it is given that

Zou wins the first race, he wins exactly one out of one. 2.
Therefore the probability is 1.",

"answer": "1",
"valid": "Yes. The modified question is internally consistent and

well-defined.",
"different": "Yes. The modification reduces the scenario to a

single race, changing both the solution path and the answer.",
"solvable": "Yes. The result follows directly from the given

conditions."
}
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B Perception Score Evaluation Prompt

To evaluate if the model’s reasoning is properly grounded on the provided user instruction, we
measure whether the model perceives the instruction or not by comparing with the given question
and ground truth solution. For this purpose, gpt-4o-mini is prompted with a simple instruction
to determine whether a subset of model reasoning is similar with the ground truth. From the
observation that most of the perception process is handled in the beginning of the reasoning phase,
we split first 15 paragraphs of reasoning from model, then compare with the ground truth reasoning
and question.

User

[Evaluation Criteria]: Evaluate whether a part of the model output is similar to
the ground truth solution.

The ground truth solution is provided as a list of reasoning steps. Even if the model
output is not exactly the same as the ground truth, it should be considered correct if
a subset of the model output contains reasoning steps that are similar to any of the
ground truth steps.

• The question is ...

• The ground truth solution is ...

• The model output is ...

[Output Format]: Answer in true or false.

gpt-4o-mini

true or false
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C Dataset Samples

We present several examples of ConditionedMath and PuzzleTrivial in Figure 5, Figure 6, and
Figure 7.

(a) MATH500 example 1

(b) MATH500 example 2

(c) MATH500 example 3

Figure 5: ConditionedMath (MATH500) sample problems
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(a) AIME example 1

(b) AIME example 2

(c) AIME example 3

Figure 6: ConditionedMath (AIME) sample problems
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(a) PuzzleTrivial example 1

(b) PuzzleTrivial example 2

(c) PuzzleTrivial example 3

(d) PuzzleTrivial example 4

Figure 7: PuzzleTrivial sample problems
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D Discussions

D.1 Relationship Between Output Token Length and Accuracy

Using the reasoning effort parameter of o4-mini, we demonstrate that just using small amount of
tokens for reasoning do not lead to performance gain in our dataset, ReasoningTrap. Although o4-
mini underperforms compared to the base model, increasing its reasoning effort consistently yields
better results. This proves that our curated diagnostic set require complex reasoning in most cases,
and simply choosing short reasoning leads to performance drop.

Table 5: Reasoning effort and Performance on ReasoningTrap p-pass@1, pass@1, and
perception score on ConditionedMath.

(a) ConditionedMath (AIME)

Model Reasoning Effort p-pass@1 pass@1 p-score

o4-mini
+ low 31.25±6.59 19.12±5.49 58.82±6.75
+ medium 41.98±7.10 25.00±6.06 59.56±6.84
+ high 36.90±6.45 22.79±5.91 61.76±6.78

(b) ConditionedMath (MATH500)

Model Reasoning Effort p-pass@1 pass@1 p-score

o4-mini
+ low 39.06±5.76 26.50±5.17 64.00±5.06
+ medium 51.80±6.32 37.50±6.28 69.50±5.55
+ high 53.47±6.34 38.50±6.11 72.00±5.42
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D.2 Model Size and Accuracy

We compare non-distilled reasoning models by comparing reasoning models that are directly trained
from Qwen2.5 1B, 3B, 7B, and 14B (Yang et al., 2024). Since Qwen3 0.7B, 1.7B, 3B, 8B models
are distilled models from the largest dense reasoning model Qwen3-32B, this is out of scope for
our experimental purpose. We evaluate DeepScaleR 1.5B (Luo et al., 2025), STILL-3-1.5B-preview
(Team, 2025d), OpenR1-Qwen-7B (Face, 2025), ThinkPRM-14B (Khalifa et al., 2025), Sky-T1-
32B-Preview (Team, 2025a), OpenReasoner-Zero-32B (Hu et al., 2025). We use instruction-tuned
model for evaluating base model’s performance.
On ConditionedMath AIME and MATH500, the base model Qwen2.5 Instruct outperforms its
counterparts that have been fine-tuned for extended mathematical reasoning. Except for the small-
est variant, Qwen2.5 Instruct 1.5B, the base model achieves the highest p-pass@1 score among
all evaluated models. Interestingly, although the fine-tuned reasoning models consistently record
higher perception scores—reflecting a stronger understanding of each question’s conditions and the
derivation of optimal solutions—their final accuracy suffers as a result of reasoning rigidity.

Table 6: Model Size and Performance p-pass@1, pass@1, and perception score on
ConditionedMath.

(a) ConditionedMath (AIME)

Base + Reasoning Model p-pass@1 pass@1 p-score
Qwen2.5-1.5B 39.94±5.65 24.63±4.04 56.62±4.89

+ DeepScaleR 1.5B 38.29±6.24 33.82±6.18 81.62±4.34
+ STILL-3-1.5B-preview 41.53±5.80 37.50±5.43 81.43±4.23

Qwen2.5-7B 62.96±8.10 51.47±7.53 79.41±4.89
+ OpenR1-Qwen7B 49.53±7.33 47.06±6.57 78.68±5.98

Qwen2.5-14B 58.43±7.58 48.53±7.24 79.60±4.38
+ ThinkPRM-14B 33.33±5.92 29.04±5.88 82.17±4.22

Qwen2.5-32B 59.12±7.81 45.77±7.22 75.55±5.01
+ SkyT1-32B-Preview 56.57±6.71 52.21±6.49 86.76±3.14
+ OpenReasoner-Zero-32B 53.27±6.51 48.90±6.37 81.43±4.23

(b) ConditionedMath (MATH500)

Base + Reasoning Model p-pass@1 pass@1 p-score
Qwen2.5-1.5B 39.84±5.27 20.25±3.72 48.00±4.85

+ DeepScaleR 1.5B 41.04±5.44 33.38±5.40 79.50±3.74
+ STILL-3-1.5B-preview 35.21±5.11 30.75±5.03 75.62±3.48

Qwen2.5-7B 55.56±6.14 38.00±5.94 67.50±5.68
+ OpenR1-Qwen7B 45.81±6.22 39.50±6.02 77.50±4.12

Qwen2.5-14B 61.50±5.65 44.12±5.54 70.12±4.46
+ ThinkPRM-14B 37.44±5.22 30.38±4.97 76.12±3.29

Qwen2.5-32B 55.95±6.02 40.88±5.74 70.38±4.39
+ SkyT1-32B-Preview 54.80±5.67 44.62±5.52 76.88±3.67
+ OpenReasoner-Zero-32B 45.81±6.22 39.50±6.02 77.50±4.12
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D.3 RL Training Objective and Accuracy

Reasoning models are trained from base large language models by various strategies, including
GRPO (Shao et al., 2024), PPO (Schulman et al., 2017), or even zero-data regime (Zhao et al.,
2025).
Open-Reasoner-Zero (Hu et al., 2025) is fine-tuned from the Qwen2.5-7B-Instruct model using
proximal policy optimization (PPO) with a simple binary reward for answer correctness. Satori-7B
(Shen et al., 2025) explicitly trains its base model to decide when to reflect on previous actions and
to incorporate an external process reward. Absolute Zero Reasoner (Zhao et al., 2025) introduces a
novel reward scheme in which the LLM serves both as task proposer and task solver, with outputs
verifiable in code. RM-R1 (Chen et al., 2025) structures its reward to improve alignment with
human preferences during intermediate reasoning steps. Eurus-PRIME (Cui et al., 2025) employs
an iterative training regimen combining a policy model that generates rollouts and an implicit
process-reward model that verifies them. ThinkPRM is fine-tuned from the R1-distilled Qwen14B
base model (Qwen2.5-14B-Instruct) using the generative PRM objective, which evaluates the step-
by-step correctness of the reasoning process.
Among all variants of reinforcement-learning objectives, the base models Qwen2.5-7B and Qwen2.5-
14B achieved outstanding performance p-pass@1 in most cases. This suggests that current RL
regimes may exacerbate the ‘reasoning rigidity’ inherent in these models. Hence, further explo-
ration of reinforcement-learning algorithms that are robust to reasoning rigidity is essential for the
development of faithful and credible reasoning systems.

Table 7: Performance Comparison on Reasoning Models Trained with Different RL
Strategies.

(a) ConditionedMath (AIME)

Base + RL Objective p-pass@1 pass@1 p-score
Qwen2.5-7B 62.96±8.10 51.47±7.53 79.41±4.89

+ Open-Reasoner-Zero 47.49±7.42 43.01±6.92 84.38±4.17
+ Satori-7B 53.33±3.03 4.92±3.27 5.68±3.84

+ Absolute Zero Reasoner 49.86±7.11 33.46±6.14 63.42±5.52

+ RM-R1 54.83±6.94 44.26±6.61 76.10±5.08

+ Eurus-PRIME 59.16±8.24 40.44±7.68 61.21±6.64

Qwen2.5-14B 58.43±7.58 48.53±7.24 79.60±4.38
+ Absolute Zero Reasoner 50.73±7.27 34.38±6.63 63.05±4.46
+ ThinkPRM 33.33±5.92 29.04±5.88 82.17±4.22

(b) ConditionedMath (MATH500)

Base + RL Objective p-pass@1 pass@1 p-score
Qwen2.5-7B 55.56±6.14 38.00±5.94 67.50±5.68

+ Open-Reasoner-Zero 50.93±6.16 40.50±6.06 74.12±4.39
+ Satori-7B 49.50±6.15 37.25±5.96 75.00±4.59

+ Absolute Zero Reasoner 37.28±5.09 22.62±4.10 56.00±4.62

+ RM-R1 36.81±4.39 26.50±3.89 68.25±3.97

+ Eurus-PRIME 57.29±6.52 42.38±6.20 72.00±4.71

Qwen2.5-14B 61.50±5.65 44.12±5.54 70.12±4.46
+ Absolute Zero Reasoner 44.25±5.34 26.25±4.42 57.63±4.53
+ ThinkPRM 37.44±5.22 30.38±4.97 76.12±3.29
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