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Abstract

The generalization ability of deep learning has been extensively studied in super-
vised settings, yet it remains less explored in unsupervised scenarios. Recently, the
Unsupervised Domain Generalization (UDG) task has been proposed to enhance the
generalization of models trained with prevalent unsupervised learning techniques,
such as Self-Supervised Learning (SSL). UDG confronts the challenge of distin-
guishing semantics from variations without category labels. Although some recent
methods have employed domain labels to tackle this issue, such domain labels are
often unavailable in real-world contexts. In this paper, we address these limita-
tions by formalizing UDG as the task of learning a Minimal Sufficient Semantic
Representation: a representation that (i) preserves all semantic information shared
across augmented views (sufficiency), and (ii) maximally removes information
irrelevant to semantics (minimality). We theoretically ground these objectives from
the perspective of information theory, demonstrating that optimizing representa-
tions to achieve sufficiency and minimality directly reduces out-of-distribution risk.
Practically, we implement this optimization through Minimal-Sufficient UDG (MS-
UDGQG), a learnable model by integrating (a) an InfoNCE-based objective to achieve
sufficiency; (b) two complementary components to promote minimality: a novel
semantic-variation disentanglement loss and a reconstruction-based mechanism
for capturing adequate variation. Empirically, MS-UDG sets a new state-of-the-art
on popular unsupervised domain-generalization benchmarks, consistently outper-
forming existing SSL and UDG methods, without category or domain labels during
representation learning.

1 Introduction

Generalization ability is a critical yet challenging problem in deep learning. This challenge leads to
the emergence of the task of Domain Generalization (DG) [55 53} 42], which focuses on generalizing
deep learning models to unseen distributions. Many works have been proposed on this topic under the
supervised settings [47} 25]. However, for the scenario of unsupervised learning, e.g., self-supervised
learning (SSL), which is more prevalent and practical in the real world [33[13}/41]], limited works have
been proposed to address the generalization ability of the model. Recently, the task of Unsupervised
Domain Generalization (UDG) [56] has been proposed to handle the generalization issue in self-
supervised learning (SSL), and some methods have been proposed to improve the generalization
ability by learning or disentangling the domain-invariant representations [54} 156, 51]
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However, two key challenges remain. (i) Traditional DG methods [31}[29] often focus on disentangling
semantics from variation factors [55]], which becomes more challenging in UDG due to the absence
of category labels (e.g., cat, dog, and airplane). (ii) In order to disentangle meaningful semantics from
domain-specific variations, existing UDG techniques predominantly depend on domain labels (e.g.,
painting, scratch, and clipart) that are inaccessible or expensive in real-world scenarios. Motivated by
these challenges, our work addresses a critical research question: How can semantic information be
effectively disentangled in UDG without relying on domain labels?

To address this research question, we explore learning semantics from an information-theoretical
perspective 2| 148]]. Specifically, we argue that the shared information learned by contrastive learning
is adequate to represent semantics [44]. However, it may also encompass semantically irrelevant
but confounding factors, such as shared style and texture, which can lead to suboptimal semantic
representations. This issue might be exacerbated when unlabeled data exhibit significant semantic
and covariate distribution shifts. Therefore, eliminating semantically irrelevant information is crucial
to refining sufficient semantic representations for UDG.

Based on the above assumption, our intuition is to separate the semantic and variation information
by minimizing semantically irrelevant information within sufficient representations. To achieve this,
we formulate this non-trivial challenge as a constrained optimization problem, aiming to reduce
the dependency between the sufficient representation and the input conditioned on the semantic
space. Concretely, the optimization problem can be decomposed into two objectives: (1) minimizing
the mutual information between the semantic and variation representations, and (2) maximizing
the mutual information between the variations and the inputs conditioned on the semantic space.
Objective 1 ensures that semantics and variations are disentangled, promoting their independence
and non-redundancy. Objective 2 enables the semantic representation to retain minimal semantically
irrelevant information. By optimizing these two objectives, the system is able to learn approximately
optimal semantics that is both disentangled and minimally sufficient.

To achieve these objectives, we introduce a novel algorithm, namely Minimal Sufficient UDG
(MS-UDG). The model first employs traditional contrastive learning to ensure a sufficient semantic
representation. Then, two modules, i.e., Information Disentanglement Module (IDM) and Semantic
Representation Optimizing Module (SROM), are employed to disentangle the optimal semantic
representation from the sufficient semantic representation. IDM separates the semantic and varia-
tion representations from the sufficient semantic representation. SROM applies a mixed InfoNCE
constraint to minimize the mutual information between semantics and variations. Simultaneously, it
maximizes the mutual information between variations and the inputs through reconstruction, thereby
fulfilling our learning objectives.

Contributions. (1) To the best of our knowledge, we propose the first theoretical optimal semantic
representation for UDG from an SSL perspective. Subsequently, we introduce a tractable estimation
method for disentangling the optimal semantic representation through two optimization objectives.
This approach offers a novel view for enhancing the generalization capabilities of SSL models to
previously unseen domains.

(2) Based on dual optimization objectives, we introduce MS-UDG, an algorithm that effectively
removes semantically irrelevant information while preserving representative semantics, without
relying on domain labels. We also provide theoretical analysis to support the rationale and applicability
of our framework.

(3) Experimental results on popular benchmark UDG datasets demonstrate that our method achieves
superior performance in downstream tasks compared to existing approaches.

2 Related Work

Unsupervised Domain Generalization. Unsupervised Domain Generalization (UDG) has been
proposed to handle the problem of domain generalization in unsupervised learning [56]. Similar to
supervised domain generalization [30, 28, |20} 55 15]], methods in UDG mostly rely on representation
learning and data augmentation to conduct domain-invariant or domain-specific self-supervised
learning (SSL). For data augmentation, FDA [50]] and BSS [39]] introduce Fourier-based methods
to standardize the style of images to plug in native contrastive-based SSL. In addition, BrAD[16]
generalizes the model by aligning the image to a unified style on the feature level. For representation



learning, contrastive-based methods construct negative samples [56]] or suppress intra-domain connec-
tivity by domain labels [27]. Also, MAE [[17] is utilized in UDG. DiMAE [52]] and CycleMAE [51]]
transform the original image into its style-mixed view and then decode different domain styles by
several domain decoders. DisMAE [|54]] introduces a semantic-encoder and a variation-encoder to
disentangle semantic attributes. Moreover, some methods use UDG methods to improve the gener-
alization on specific tasks, such as face anti-spoofing [26]]. Unlike these methods, we theoretically
build our method from the contrastive learning perspective.

Contrastive Learning. Contrastive learning [33| 15, 34] is a successful paradigm in SSL. Contrastive-
based SSL methods aim to learn the shared information [32] between multi-view data. Recent
methods [46, 44} 24]] discuss task-relevant and redundant representations of SSL based on information
theory. Although there has been extensive exploration in the SSL field, the generalization of SSL to
OOD data still requires further discussion.

Disentangled Representation Learning. Disentangled representation learning is a promising
approach for DG, aiming to separate semantics-relevant and irrelevant factors in data [49] 56| 21} 571
]. Class labels help ensure the model learns class-specific features consistently across domains,
avoiding reliance on domain-specific artifacts. Without class labels, the disentanglement-based
methods in UDG often focus on domain style transfer [53| I55] to separate domain variations by
domain labels. However, there is still a lack of theoretical support for disentangling domain-invariant
representations of SSL to obtain optimal semantics.

3 Preliminary and Motivation

In Sec. @], we first introduce the setting of UDG, which aims to discard the covariate information in
the representations [54]. To address our research question, in Sec.[3.2] we propose a new concept of
minimal sufficient semantic representation, treating semantic information as a proxy for the unknown
downstream task. Based on this concept, we theoretically formulate two learning objectives optimized
to disentangle representation into pure semantic information. Finally, based on these objectives, we
present our algorithm and provide a theoretical analysis in Sec. 4}

3.1 Unsupervised Domain Generalization

Notation. Let X be the input space and ) be the label space. Considering a supervised dataset
D = (Xp,Yp) with Np samples, where Xp C X and Yp C Y, the distribution of D is P(x, y,)-
Then we can define the distribution of SSL data, downstream supervised data, and test data as
Pix,..0) PX.up.Youp) and Pix,.., v,..,) respectively. In SSL, for each input (21, 72), we have
1 € Xsg and xo € Xyyg, where X, is augmented from X, ;. The extracted features are
z1 = h(x1) and z9 = h(x3), where h is the encoder and z1, 2o € Z, Z is the representation space.
The parameterized latent space for semantic-relevant and -irrelevant, or variate, factors are S and V,
respectively. The intuitive relationis Z2 =S @ V.

Problem setting. Following the setting of UDG [56], the test distribution should be kept unknown at
any stage before inference. Then, we have the condition Support(P(Xies:))N(Support(P(Xsyp))U
Support(P(Xss))) = 0. In addition, to avoid the semantic shift in the downstream task, we need
Support(P(Ysup)) = Support(P(Yies:)). The target of UDG is to obtain the optimized feature
extractor ™ which has the minimum risk on the test distribution h* = argmin,, Rp,, . . (h)

Motivation. Considering that UDG methods are built upon existing SSL methods with unknown
downstream task targets 7', we examine the goal of UDG from a contrastive learning (CL) perspective.
Given an input z; and its augmented counterpart x5, we adhere to the multi-view assumption [44],
treating x; and o as two corresponding views of the same data point. Under this assumption,
the objective of CL is to extract task-relevant representations [44]. [44] posits a compression gap
I(x1;22|T) under the task 7. This implies that while optimizing for I(x1;22), task-irrelevant
information may inadvertently be retained in the learned representations. In datasets used for SSL,
especially those from multiple domains that exhibit significant semantic and covariate distribution
shifts, this compression gap cannot be overlooked if the aim is to achieve task-specific or semantic-
specific representations. Based on this insight, we propose that semantics and variations can be
separated by explicitly modeling and minimizing task-irrelevant information.



3.2 Minimal Sufficient Semantic Representation

In this section, we first introduce the definition of sufficient representation and minimal sufficient
representation 46, 44], which aims to learn task-relevant representation optimally. In the supervised
setting, with the given image = and label y, the information bottleneck [43] can be applied to achieve
optimal representations by minimizing mutual information I (z, z) and maximizing I(z,y), where z
is the representation of x. In self-supervised learning, the augmented image x5 plays a similar role as
the supervised label [11}44]]. The definition is proposed as follows.

Definition 3.1 (Minimal Sufficient Representation in Contrastive Learning [46]]). Let éf “f and 2{’”“
be the sufficient representation and minimal sufficient representation of x; in self-supervised learning,
respectively. zo is the augmented data. Then the following conditions should be satisfied.

[(éfuf; x9) = I(x1;x2), 2{’”" = arg min I(,%fuf;xl)
il

This definition introduce the minimal sufficient representation with two stage: First, we define that

25J s sufficient if and only if I(2;"/;25) = I(z1; x5), which aligns with the target of contrastive
loss to maximize I(z1; z2) [32]]. Note that, since éf“f is defined to keep all the mutual information
between x; and x5 instead of any prior labels, the loss or change of augmented information in x5 can

also affect 25/ Second, with 25"/, we define the minimal sufficient representation 27" by searching

minimum 7 (2] "S- 1). Symmetrically, we can also define the minimal sufficient representation of 5.
More details of minimal sufficient representation can be found in Appendix.

However, the minimal sufficient representation in Definition [3.1] may still include task-irrelevant
information, particularly in UDG datasets with significant covariate shifts.

Proposition 3.2. I(2""; x;) = I(27"; T) + I(2, xz‘T) > [(ZM™: T, wherei € {1,2}, T'is
the downstream task.

The proposition indicates that if I(z;; 27" |T) is large, /"™ may not be the optimal minimal
sufficient feature. In practice, I (z;; 27" |T) can be affected by many factors in the shared informa-
tion, including style, texture, and other factors between z2 and ;. In the multi-domain situation as
the setting of UDG, the I (z;; 2" |T) will be large, which leads to performance degradation since
there can be significant distribution shifts in all task-irrelevant distributions.

The downstream task remains unseen during SSL. However, in most cases, it should be related to the
semantic information in X,,,,. In this case, we can consider I(z1;x2;T) = I(x1;x2;S). Then, we
argue that the sufficient representation should contain all semantic information between x; and x5.

Definition 3.3 (Sufficient Semantic Representation in Contrastive Learning). 2} “f is the disentangled

sufficient representation of 2 if and only if I(2"; 29; S) = I(x1;24; S). S C S is the semantic
information in X,

Definition [3.3]indicates that a representation containing all the shared semantic information between
1 and x» is sufficient to capture the semantics of 1 and x2. However, the sufficient representation
may not be the optimal representation as I (z%%; x‘S) > 0, where I(z°“f;z) > 0.

From the relation Z = S @ V, every 254f can be decomposed as suf = (s,v), where s is semantic-
relevant, which is also a sufficient semantic representation, and v is semantic-irrelevant. That means
I(v; S) = 0. By this disentanglement, if I(s; x’S) can be minimized, then s is the optimal sufficient
representation we expect. From this perspective, we propose the definition of the optimal sufficient
semantic representation in Definition [3.4]

Definition 3.4 (Minimal Sufficient Semantic Representation in Contrastive Learning). Let 2" be
the minimal sufficient semantic representation of 1. Then, 2J*" £ arg min_cus I(27 uf

1

S C & is the semantic information in X, x5 is the augmented input.

;371,,%2’5),

Definition [3.4] suggests that the minimal sufficient semantic representation should contain the least
semantic-irrelevant information. Furthermore, we can assume I (z{”m; T1, T2 ‘ S) = 0. As mentioned
above, we have the decomposition of sufficient semantic representations Vz*%/, 254/ = (z™in ),
Then, we theoretically illustrate how to effectively disentangle the 2", which answers the research
question we proposed.



Proposition 3.5. I(z"/; z, |S) = 1z, 229)

Proposition [3.5|indicates that the semantic-irrelevant information in zf f is derived from 1, and we

o .
can obtain 2" as z{"'" £ arg min_..s (2" 2y |9),
1

Proposition 3.6. z = (s,v) is the sufficient semantic representation of x and s is semantic-relevant
representation. Then I(s; z|S) = I(s;v) + I(z;z|S) — I(v; z|S)

If we want to optimize s as the minimal sufficient semantic representation, considering the Markov
chain x — z — s,v, we can only optimize s and v. So, we propose to minimize I(s;v) and
maximize I(v; m|S ) to disentangle the optimal semantic representation in UDG.

4 Algorithm and Theory

4.1 Algorithm

Based on the objectives in Proposition (1) minimize I(s;v) and (2) maximize [ (v;x’S),
we propose that objective 1 enhances the independence and non-redundancy between semantic
representation and variations, while objective 2 limits the inclusion of semantic-irrelevant information
in semantic representation.

To achieve objectives, we propose the method Minimal Sufficient UDG (MS-UDG) as shown in
Fig. [T} After learning sufficient representations by contrastive learning loss InfoNCE [18]], the
model comprises two components: (1) Information Disentanglement Module (IDM), which aims
to disentangle semantic representation s and variation v. (2) Semantic Representation Optimizing
Module (SROM), which optimizes s towards minimal sufficient semantic representation.
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Figure 1: Our method’s pipeline, where z; and x5 denote the input and its augmented counterpart.
z represents the sufficient representation, while s and v correspond to the semantic representation
and variation. (a) An illustration of our two objectives. First, we employ L, s to capture sufficient
semantics. Subsequently, £,,;, and L, are introduced to learn a minimal sufficient representation.
We only describe L, and L4, for x1 in detail. The same procedure applies to xs. (b) A detailed
overview of our network and the applied constraints.

Firstly, the InfoNCE loss is applied to constrain 2%/, which aims to learn sufficient shared informa-

tion between x1 and xs.

L) —log EPE 5 )
" Ko eop T )

ey

where 7 is a temperature hyper-parameter and the K is the number of negative samples. sz =
represents a negative representation from the negative sample. We construct positive pairs by
Fourier-based augmentations (FA) [50], whose efficiency has been experimentally proved in UDG
methods [38,|51]]. FA randomly alters the amplitudes of one image (anchor) with the amplitudes from
another image (target). For our training, the target image is randomly selected from the dataset.



Then, based on the sufficient semantic representation, we introduce two components.

IDM. Following intuitive relation Z = S&V, we assume that the representation z can be disentangled
into a semantic-relevant representation s and a semantic-irrelevant representation v. After a shared
encoder extracts image features, the features are processed through a projection head to obtain a
high-dimensional representation. Subsequently, two MLP modules are applied to z to separate
semantic information from variation.

SROM. Corresponding to Proposition[3.6] we introduce a semantics and variation mixed InfoNCE
L 10ss to minimize I(s;v) and a translated reconstruction 10ss L.y, 4, to maximize I (v; x’S)

explsy © S
Emin = log K Kp( L 2) ) )

S~ exp(s1-sp)+ 3 exp(s1-vy ) +exp(s-v1)
k=0 k=0

where v is considered as a negative representation. L,,,;, is modified from InfoNCE loss, which not
only maximizes the (s1; s2) but also minimizes I (s1;v1).

Proposition 4.1. L,,;, > I(s1;v1) — I(s1;$2)

According to Proposition minimizing £L,,;, indicates decreasing I(s1;v;) and increasing
1(s1; s2) synchronously. Minimizing £,,;,, satisfies our target to minimize I(s; v). Meanwhile, same
as InfoNCE, L,,;,, also keeps s; as a sufficient semantic representation by maximizing I (s1; s2).
[D(s1,v2) — 2213 + [D(s2,v1) — 213
Emaac = 2 . 3
Here, D is the decoder to reconstruct images. Without loss of generality, we consider the object
D(s1, v2) to illustrate how L4, maximize I(v; x|S) in the following.

Proposition 4.2. 1(vy, s1;22) — I(x1;22) < I(vg; x2|S)

Proposition indicates that I (v, s1;22) is related to the lower-bound of I(vs; xng). From
ID(51,v2) — 22||2, Limae aims to maximize the mutual information I (vg, s1; 2). Thus, L4, can
help increase the mutual information I (ve; z2 f S) by raising its lower bound

As discussed above, L,,;, and L,,,, meet our learning targets described in Section@ Therefore,
the final loss is
L= ﬁsuff + Emln + »Cm.am~ @

4.2 Theoretical Analysis of Generalization Upper Bound

As discussed in previous works [[1} 4] on the generalization error bound based on the multi-distribution
learning theory [3], the upper bound of the target risk can be summarized into three parts [4]: source
empirical risk, distribution discrepancy between source and target distributions, and confidence
bound. Briefly, it can be presented as Rp ., yy.. (B) < Bpy vy (h) + AR esup + A, where
esup 15 the downstream error, A is the summation of domain discrepancy and confidence bound
in downstream [4]. However, we can not access the state of A in the SSL stage. Thus, we focus
on the error in the source domain to minimize the generalization bound in the downstream. In the
following, we demonstrate the relation between the minimal sufficient semantic representation and
the downstream error.

Theorem 4.3. For representation zfuf and V", their Bayes error rates are e™™ and e**f re-
spectively. €™ has the minimum upper bound compared with all minimal sufficient semantic
representations. Specifically, given the downstream task T, we have

e <1 — exp|—(H(T) + I(z0" ;21 |9)]

Bayes error rate [[12] is the minimum achievable error for any representation-learned classifier.

Following the previous work [46,44], we consider it as the downstream error. Theorem@] indicates
that downstream error of sufficient semantic representation 25"/ is upper bounded by I(z;"/; x4 |5).
According to Definition the Bayes error rate of 2™ has the minimum upper bound. Thus,
z™"" provides the lowest upper bound for the risk Rp (h), which helps to improve the

generalization ability of the unsupervised models.

est:Ytest)



Table 1: Performances of UDG and SSL models on PACS dataset. All models are trained on 3
selected domains and tested on the left domains, which process is repeated for all domains. “avg.”
represents macro-accuracy. We report the accuracy for every domain and the average accuracy for all
domains. Best and second best are highlighted.

Label Fraction: 1% Label Fraction: 5%
Methods Target domain Target domain
photo art cartoon  sketch  avg. | photo art cartoon  sketch  avg.

ERM 1090 11.21 14.33 18.83 13.82 | 14.15 18.67 13.37 18.34  16.13
MoCo V2 2297 1558  23.65 2527 21.87 | 3739 2557  28.11 31.16  30.56
SimCLR V2 3094 1743 30.16 2520 2593 | 54.67 3592 3531 36.84  40.68
BYOL 11.20  14.53 16.21 10.01 1299 | 26,55 17.79  21.87 19.65 21.46
AdCo 26.13  17.11 2296 2337 2239 | 37.65 2821 28.52 3035 31.18
MAE 3072 2354  20.78 2452 2489 | 32.69 24.61 2735 3044 28.77
DARLING 2778 19.82  27.51 29.54  26.16 | 44.61 3925  36.41 36.53  39.20
DIMAE 48.86 31.73 2583 3250 3473 | 50.00 41.25 3440 38.00 4091
BrAD 61.81 33.57 4347 3637 4380 | 6522 4135 50.88 50.68 52.03

CycleMAE 52.63 36.25 3553 3485 39.82 | 63.24 3996 4215 3635 4543
BSS/SimCLR | 4331 3896  48.61 48.76 4491 | 58.16 46.37 55.69  65.63 56.40

MS-UDG 4274 4713 47.84 4333 45.26 | 74.03 61.78 54.72  61.53 63.02
Label Fraction: 10% Label Fraction: 100%
Methods Target Domain Target Domain
photo art cartoon  sketch  avg. | photo art cartoon  sketch  avg.

ERM 16.27  16.62 18.40 12.01 1582 | 4329 2427 3262 20.84 30.26
MoCo V2 44.19 2585 35.53 2497 32.64 | 59.86 2858  48.89 3479 43.03
SimCLR V2 54.65 37.65 46.00 2825 41.64 | 6745 436 5448 3473  50.06
BYOL 27.01 2594 2098 19.69 2340 | 4142 23.73 30.02 18.78  28.49
AdCo 46.51  30.31 31.45 2296 3281 | 5859 29.81 50.19 3045 42.26
MAE 35.89 2559 3328 3239 31.79 | 36.84 2524 3225 3445 3220
DARLING 53.37 3991 46.41 30.17 4246 | 68.86 41.53 56.89 3751 51.20
DiIMAE 7787 5977 5772 3925 58.65 | 7899 63.23 59.44 5589 64.39
BrAD 72.17 4420  50.01 55.66  55.51 -

CycleMAE 8594 6793 5934 3825 62.87 | 90.72 7543 69.33 5024 71.41
BSS/SimCLR | 6329 5137 5943  66.09 60.04 | 79.50 62.73  65.67 73.02 70.23
MS-UDG 74.10 6190 63.73 73.66 68.35 | 84.80 63.74 71.73 71.27 72.89

S Experiments

5.1 Experimental Setup

Datasets. Following previous UDG work [56], PACS [23] and DomainNet [35]] are evaluated for
benchmarking UDG methods. Meanwhile, we also evaluate our methods on OfficeHome, Office31,
and VLCS whose results and details can be found in the Appendix.

DomainNet has 345 categories and 6 different domains (Clipart, Infograph, Quickdraw, Painting,
Real, and Sketch). PACS has 9,991 images with 7 classes from 4 domains: Art, Cartoons, Photos,
and Sketches. For DomainNet, the six domains are split into two sets: 1. Clipart, Infograph, and
Quickdraw; 2. Painting, Real, and Sketch as previous work did. 20 classes are selected as both
unlabeled and labeled data. We use one set for seen domains and the other one for unseen domains.
We report the micro-accuracy and macro-accuracy on six domains. For PACS, three domains are
selected for training, and the remaining domain is used for evaluation.

Experimental Protocol. We adopt the all-correlated setting, as proposed in DARLING [56] and
DisMAE [54]. The overall process is divided into three main steps. First, a pre-trained model is
obtained using UDG methods on the unlabeled data from the source domain. Second, this pre-trained
model is fine-tuned on varying proportions of labeled data from the source domain, with either
the classifier or the entire backbone network being adjusted. Finally, the model is tested on the
unseen domain. Following the benchmark [56] and general setting of SSL (i.e., linear probing and
fine-tuning), we adopt linear probing for 1% and 5% label fractions and fine-tuning for 10% and
100% label fractions in downstream tasks.

To ensure a fair comparison with previous SSL methods, including MoCo V2 [7]], SimCLR V2 [5],
BYOL [6], AdCo [19]], and MAE [17], as well as UDG methods such as DARLING [56]], DIMAE [52],
BrAD [16], BSS [39], and CycleMAE [51]], the SSL models are initialized using ImageNet pre-



Table 2: Performances of UDG and SSL models on the DomainNet subset, which contains six
domains. The models are trained on source domains and evaluated on target domains. “Overall” and
“avg.” refer to micro-accuracy and macro-accuracy. Best and second best are highlighted.

Label Fraction: 1%

Source paintingUrealUsketch clipartUinfographUquichdraw

Target clipartUinfographUquichdraw paintingUrealUsketch overall avg.
BYOL 621 348 4.27 500 847 442 5.61 5.31
MoCo V2 18.85 10.57 6.32 11.38 14.97 15.28 12.12 12.9
AdCo 16.16 12.26 5.65 11.13  16.53 17.19 1247  13.15
SimCLR V2 2351 1542 5.29 2025 17.84 18.85 1546 16.86
MAE 2238 12.62 10.50 17.86 24.57 19.33 17.57 17.88
DARLING 18.53 10.62 12.65 1445 21.68 21.30 16.56 16.54
DiIMAE 26.52 15.47 15.47 20.18 30.77 20.03 21.85 2141
BrAD 47.26 16.89 23.74 20.03 25.08 31.67 25.85 27.45
CycleMAE 37.54 18.01 17.13 22.85 30.38 22.31 24.08 24.71
BSS/SimCLR | 61.94 19.58 26.98 2740 31.55 41.49 3227 34.82
MS-UDG 55.88  20.03 18.65 32.15 39.81 42.89 3245 3492

Label Fraction: 5%

Source paintingUrealUsketch clipartUinfographUquichdraw

Target clipartUinfographUquichdraw paintingUrealUsketch overall avg.
BYOL 9.60  5.09 6.02 9.78  10.73 3.97 7.83 7.53
MoCo V2 28.13  13.79 9.67 20.8 2491 21.44 18.99  19.79
AdCo 30.77 18.65 7.75 19.97 24.31 24.19 1942 2094
SimCLR V2 34.03 17.17 10.88 21.35 2434 27.46 20.89 2254
MAE 326 1528 1343 24.55 30.43 26.07 22.88 23.73
DARLING 39.32 19.09 10.50 21.09 30.51 28.49 2331 24.83
DIMAE 4231 18.87 15.00 27.02 39.92 26.50 27.85 28.27
BrAD 37.54 18.01 17.13 22.85 30.38 22.31 24.08 24.71
CycleMAE 55.14  20.87 19.62 27.64 40.24 28.71 30.80  32.04
BSS/SimCLR | 71.21 20.93 32.42 36.68 41.49 52.75 39.73  42.58
MS-UDG 71.02 28.21 28.51 40.07 47.05 49.51 41.33  44.06

Label Fraction: 10%

Source paintingUrealUsketch clipartUinfographUquichdraw

Target clipartUinfographUquichdraw paintingUrealUsketch overall avg.
BYOL 1455 871 5.92 9.50 10.38 4.45 8.69 8.92
MoCo V2 3246 18.54 8.05 2535 2991 23.71 21.87  23.00
AdCo 3225 17.96 11.56 2335 2998 27.57 2279 23.78
SimCLR V2 37.11 19.87 12.33 24.01 30.17 31.58 2428 25.84
MAE 51.86 24.81 23.94 41.24 54.68 39.41 38.85 39.32
DARLING 35.15 20.88 15.69 2590 33.29 30.77 26.09 26.95
DiIMAE 70.78  38.06 27.39 50.73  64.89 55.41 4949 51.21
BrAD 68.27 26.60 34.03 31.08 38.48 48.17 38.74  41.10
CycleMAE 74.87 38.42 28.32 52.81 67.13 56.37 50.78  52.98
BSS/SimCLR | 71.95 21.27 33.47 39.49 44.67 55.42 41.57 4438
MS-UDG 79.70  30.01 40.11 53.73 63.77 65.82 5337 55.52

trained model for the DomainNet and PACS datasets. Additionally, SSL training without ImageNet
pre-trained model is conducted for comparison with DisMAE [54] on DomainNet. Further details of
this experiment can be found in the Appendix.

Implementation Details. Following previous disentanglement-based UDG methods [51} 152]], we
adopt ViT-S/16 [9]] as the backbone. The learning rate for pre-training is set to 1 x 10~%. The weight
decay is set to 0.05, and the batch size is 32. For 7 in Ly, we set the temperature 7 = 0.07 as
previous work [18]. During fine-tuning, all methods are trained for 50 epochs, and the best evaluation
model is selected to test on unseen domain data, following the exact training schedule outlined in [54].
The test domains also remain unseen during the model selection. Further details can be found in the
Appendix.

5.2 [Experimental Results

We present the experimental results in Tab. 1| (PACS) and Tab. 2| (DomainNet). Compared to
contrastive-based and generative-based SSL methods MoCo V2, SimCLR V2, BYOL, AdCo, and
MAE, MS-UDG outperforms in most cases. Among contrastive-based methods, SimCLR v2, which



uses multi-view augmented images as self-supervised signals, performs best. Compared with other
SSL methods, MAE demonstrates better performance on the DomainNet dataset, second only to
SimCLR V2 on the PACS dataset. From the results, these SSL methods perform poorly on downstream

tasks with unseen domain data, as they ignore domain covariates.

Compared to the state-of-the-art (SOTA) SSL method
SimCLR V2, MS-UDG improves the performance
by +19.33%, +22.34% ,+26.71 %, and +22.83% for
label fractions 1%, 5%, 10% and 100%, respectively,
on the PACS dataset. On the DomainNet dataset,
MS-UDG improves the SOTA SSL method MAE by
+17.04%, +18.45%, and +14.52% in overall accu-
racy for label fractions 1%, 5%, and 10%.

From our results, MS-UDG outperforms most
contrastive-based and disentanglement-based UDG
methods across two datasets. Specifically, in linear
evaluation with 1% and 5% label fractions, MS-UDG
outperforms the SOTA method, BSS, by +0.35% and
+6.62 %, respectively, on the PACS dataset. On the
DomainNet dataset, MS-UDG improves by +0.18%
and +1.6 % in linear evaluation compared to BSS. In
full fine-tuning with 10% and 100% label fractions,
MS-UDG surpasses the SOTA method CycleMAE
by +5.48% and +1.48 %, respectively, on the PACS
dataset. On the DomainNet dataset, MS-UDG shows

Semantics | Variations

Figure 2: The reconstruction results produced
by MS-UDG. Rows 1 and 3 display input im-
ages that preserve either semantic content or
stylistic variations, derived from four distinct
domains within the DomainNet dataset. In
contrast, Rows 2 and 4 present reconstructed
images using alternative variation representa-
tions within the feature space.

an improvement of +2.59% overall accuracy for the 10% label fraction.

5.3 Ablation Study

Effectiveness of Each Component of MS-UDG.
Since MS-UDG is based on two optimization objec-
tives, we investigate the impact of each target. Our
baseline is the native InfoNCE loss L., s y. Next, we
introduce the IDM and SROM modules and evalu-

Table 3: Effectiveness of each component
of MS-UDG on PACS dataset. All models
are trained on 3 selected domains and tested
on the remaining domains, which process is
repeated for all domains. Best is highlighted.

ate Lnin and L,,4., separately. Finally, we assess

the performance of the entire method, incorporating Methods Label Fraction
Esuffa [/mivu and Emax' 1% 5% 10%
’ . Baseline (L pr) | 42.45 56.17 64.81
We evaluate the effectiveness on the PACS dataset. +Lmin 4285 5791 6532
From Tab. |§|, both applying L, and L, 4, improve +Lomaz 4477 5772 67.40
the baseline, while the performance can be further oo e 4526 63.02 68.35

improved by combining L,,;,, and L, 4. by +2.81%,

6.85%, and +3.54% under 1%, 5%, and 10% label fractions. Combining the two losses further
improves the results, aligning with our theoretical analysis. Minimizing I(s;v) and maximizing
I(v; x| S) reduce the semantic-irrelevant information I(s; x|S).

Visualization of Reconstruction. Fig. []illustrates reconstructed images with consistent semantics
and varying styles, showcasing MS-UDG’s strong capability to separate features.

6 Conclusion and Limitation

In conclusion, we tackle the challenge of semantic disentanglement in UDG without domain labels
by formulating it as a constrained optimization problem. Our framework, MS-UDG, integrates
contrastive learning with novel modules to effectively separate semantics and variation, achieving
state-of-the-art performance. However, MS-UDG is primarily tailored for scenarios with pronounced
domain discrepancies. This assumption may limit its effectiveness in settings with subtle covariate
shifts, where improvements in disentanglement are less evident.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe the scope, assumptions and contributions in the Abstract and
Introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of multi-modality setting in Sec[6] and further
discussed the performance degradation when combining UDG and DG in Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For assumptions, we give detailed statements and explanations in the main text
and Appendix [A] For propositions and theorems, we provide proofs in Appendix [B]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information of pre-training, linear probing, and fine-tuning
settings in Sec. [5|and Appendix [C| Meanwhile, for each component, we did ablation study

as shown in Sec.|5.3] Appendix [Fl and [H]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will open the dataset splits and code upon publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the training and test details in Sec .[5|and Appendix[C]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We assess the proposed method alongside other SOTA approaches on five
widely-used domain generalization benchmarks. All methods are subjected to identical
training and evaluation settings, and the results are averaged across three different random
seeds to ensure reliability and robustness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the information of computer resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We report broader impacts in Appendix [K]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data and code used in the paper are open-sourced, and we follow their
licenses and cite them in the paper. The data splits are also detailed in Sec. [5|and Appendix[I|

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The code and documents will be released upon publication.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Explanation of Concepts

A.1 Minimal Sufficient Representation

Minimal Sufficient Statistic: The minimal sufficient statistic (MSS) proposes a concept of effective
statistic [8]. Given two sets of data X, Y, (X,Y) ~ P(X,Y), F £ fo(X) is a statistic of X, if the
Markov chain X — F' — Y is satisfied, we can define the sufficient statistic, which captures the all
information between X and Y.

Definition A.1 (Sufficient Statistic [8]]). F' is a sufficient statistic for Y if and only if I(F,Y) =
I(X;Y)

However, the definition of sufficient statistic can not effectively extract the essential information [40].
For instance, directly copy’ can satisfy the above definition. Thus, the minimal sufficient statistic is
introduced.

Definition A.2 (Minimal Sufficient Statistic). A sufficient statistic F' is minimal sufficient if and only
if, any sufficient statistic S, 3¢ as a function, F' = ¢(S)

The MSS are sufficient statistics containing the least information about X [22]]. Based on the property
of MSS, many methods are proposed to obtain the effective representations, such as Information
Bottleneck [43]]

Minimal Sufficient Representation: Motivated from the above discussion, the minimal sufficient
representation is proposed for self-supervised learning [44} 46]|. Definition[3.T]introduce the definition
of minimal sufficient representation, which is similar to the definition of minimal sufficient statistic.
However, the minimal sufficient representation can still capture redundant information, especially
when large distribution discrepancies exist in the dataset. For instance, the minimal sufficient
representations from sketch images in PACS dataset may still capture the information of sketch
domain. Therefore, we propose the definition of minimal sufficient semantic representation to handle
this issue.

A.2 OOD Generalization Bound

From the probably approximately correct (PAC) learning theory on multi-distribution [3], the out-of-
ditribution generalization bound has been proposed [[1} 4]

Theorem A.3. Consider the risk on source domain D; is Rp . (h), then, we have

Ng
RP(Xtesthtest) (h) S Z RP(XDivYDi) (h) + diU(DS’ Dt) + A

Where div(Ds, D;) is the divergence between the source distributions ﬁs and the unseen target
distribution Dy, X is the confidence bound, and N is the number of source domains.

For div(f)s, D,), Albuquerque et al.[1]] define it as the distance from unseen distribution D;
to the simplex supported by the source distributions Dy, Cha et al. [4]] simply define it as

ﬁ vad 2sup 4 | Pp, (A)—Pp, (A)|. For A, Albuquerque et al.[1] consider it as the shift of the label-

ing function on the unseen distribution, and Cha et al. [4]] relate it to the VC dimension of the model. In
our paper, as we can not control these two items, we simply use A to present the summation of them. In

.. R . . _ —Na
addition, we intuitively consider the source risk as Rp . . (k) =3 RP(XDi‘YD,L-) (h). There-
fore, we can utilize Theorem |.3to approximate the upper bound of the target risk Rp ., . (h)

B Theoretical Proof

Proof of Proposition 3.2 I(x;;T;27") = I(27"™,T) — I(27""™; T|«;). With lemma 1 in [46],
I(21,T|x1) and I (21, T|x2) should be zero. By the definition of interaction information, we have
I(ws; 277) = I(ws; T; 27 + L(ai; 27 |T)
= I(ET) + I 50 T)) 2 I T)
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Proof of Proposition Considering the Markov chain 1 — 21, Vf, f is arbitrary conditional
factor, we have I(z1; f|x1) = 0. This also the assumption in [46], so we have

I(z1; 21, 22|8) = I(z1;21|8) + I(21; 228, 21)
= I(z1;21|9)
O
Proof of Proposition [3.6] Following the assumption in Proof of Proposition we have I(s;v ‘ x) =
0. Then
I(z;z|S) = I(s,v; z|S)

= I(s;z|S) + I(v; xS, s)

= I(s;|S) + I(v;z|S) — I(v; w; 5|5)

=I(s;z|S) + I(v;z|S) — I(s;v]S) + I(s;v]S, )

= I(s;z|S) + I(v;z|S) — I(s;v]9)
Since I(s;v) = I(s;v]S), we have

I(s;3|S) = I(z;2|S) + I(s;v) — I(v;z|S)
O
Proof of Proposition According to [32], the log-bilinear model can be represented as a density
ratio:
p(b]a)
f(a,b) =exp(a,b/T) x
(a.5) = expl(a, b/r) o =
a, b are randomly given variables. In addition, The mutual information can be expressed as
p(bla)
I(a;b) = Ex log
(asb) )

X is the given dataset. We set Z,, are representations from other images instead of x1, which means
5,V € Znegs | Zneg| = 2K Then, we have

p(s2 ’81)
p(s2)

Emin = _EXSSL lOg[

p(s2]s1) p(z=[s1) | ploi]s)
p(s2) ZZ’GZneg p(z7) p(v1)

p(s2) p(s2) p(vi]s1)
poals) T plsalsr) plon)
P(SQ) p(v1|51)

p(82‘81) p(v1)

= I(v1;81) — I(81;82)

~Ex,,, log[l+2 according to [32]

ssl

2 EXSSZ log[

O
Proof of Proposition[d.2] Since 0 = I(vy;S), we have I(’UQ;ZE2’81) < I(vg;22) = I(vg;z2|S).
Thus
1(02781;1‘2) = I(Sl;mg) + ](U2;$2’81)
§ I(Sl;Z2)+I(U2;1’2|S)

From our assumption, s; may not contain all the information in the shared information between x;
and o, thus I(sy; xz‘S) < I(xq; xz‘S). Then, with Deﬁnition we have

I(s1;22) = I(s1522; 5) + I(s1; 22| 9))
S I($1;$2;S) + I($1;$2’S)
= I(x1;2)
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Then,
I(vg, s1;22) — I(x1;22) < I(vg, 815@2) — I(s1;2) < [(vg;x2|5)

Proof of theorem 3] According to [10], the equality between e**/ and H T’sz
—In(1 — ey < H(T|2))
Generally, we consider that X1 18 large enough to cover the semantic information in X, thus we
have I(z5"7; ) = I(25"/; T). Then,
H(T|2") = H(T) — H(S) + H(S|2*)
So, we should consider the H (S| 25 for the upper bound of e/
H(S|z sufy = H(S|z1, 21" )—l—Iml,S‘zsuf
S|x1 + I(zq; S|zsuf
S|az1 + I(mq; 27" f|S 1:17zf“f)+l(x1;5)
S|a1) + I(w; 27" f|S )+ H(z1) — H(x1|5)

= H(
= H(
< H(
H(S) + I(x1;2*|S)

Thus, H(T‘zf“f) < H(T) + I(xy; zf“f|S). Then we have
e <1 exp[—(H(T) + I(2;";21]8)]

Since I(2]"";21|S) < I(z sul . gy |'5), the upper bound of ™" is minimum in the sufficient repre-
sentatlons O

C Implementation Details

For pre-training, we use ViT-S/16 as the backbone and the same for fine-tuning. The pre-training
follows a cosine decay schedule. All experiments were conducted on a single Nvidia A100 80GB
GPU, an 8-core CPU, and 250GB of memory. The details of experimental settings can be seen in
Tab. [ For all models, the input size is 224 x 224. When performing linear probing, we adopt
the same normalization scheme as described in [[17] by incorporating a batch normalization layer.
Experiments are conducted three times with different random seeds, and the average accuracy from
these runs is reported.

Table 4: Experimental Settings. Lp represents linear probing, and ft represents fine-tuning.

label fraction strategy backbone epoch batch_size weight_decay learning_rate optimizer betas
Pretraining (DomainNet and PACS)
- - ViT-S/16 80 192 0.05 le-4 AdamW  (0.9,0.95)
Finetuning (DomainNet)
1% Ip ViT-S/16 50 32 0.05 Se-4 AdamW  (0.9,0.95)
5% Ip ViT-S/16 50 128 0.05 Se-4 AdamW  (0.9,0.95)
10% ft ViT-S/16 50 128 0.05 Se-4 AdamW  (0.9,0.95)
100% ft ViT-S/16 50 128 0.05 Se-4 AdamW  (0.9,0.95)
Finetuning (PACS)

1% Ip ViT-S/16 50 16 0.05 Se-4 AdamW  (0.9,0.95)
5% Ip ViT-S/16 50 64 0.05 Se-4 AdamW  (0.9,0.95)
10% ft ViT-S/16 50 64 0.05 Se-5 AdamW  (0.9,0.95)
100% ft ViT-S/16 50 64 0.05 Se-5 AdamW  (0.9,0.95)

D Effects of Fourier-based Augmentation

By comparing Tab. [3| with Tab. [T} we observe that the baseline, i.e., using only L, s, outperforms
certain UDG methods. Prior work [56] has shown that Fourier-based Augmentation (FA) enhances
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UDG performance. Here, we further investigate its impact on our method. As presented in Tab. [5}
Ly ¢ without FA corresponds to the native InfoNCE loss, aligning with MoCo V2 [7]], and achieves
comparable average performance. However, incorporating FA significantly boosts the baseline by
+21.22%. Our findings are consistent with BSS [39], where FA improves SimCLR V2’s baseline
performance by +16.02%, further underscoring the effectiveness of FA in self-supervised learning.

Table 5: Results of detailed ablation study on PACS in label fraction 1%. “w/o FA” and “w/ FA”
denote training without and with Fourier-based Augmentation, respectively. Best is highlighted.

Methods photo  art cartoon sketch avg.

MoCo V2 2297 15.58 23.65 25.27  21.87
Baseline (Lgypr w/o FA) | 25.02 2375 16.85 19.31  21.23
Baseline (Lg,pr W/ FA) | 34.89 459  47.68 4133 4245

+Lonin 3555 4493 47.84 4308 4285
+Lonas 39.82 4628 47.04 4594 4477
+Lomin+Lomas 4274 4713 4784 4333 4526

E Learning without ImageNet Pre-trained Model

In this section, we discuss the performance of UDG methods learning without initializing with a
pre-trained model on ImageNet. To compare with previous work [54] fairly, we use ViT-B/16 as our
backbone, and the depth of the decoder layer is 1, following the setting in the work [54]. As shown in
Tab. [6} MS-UDG outperforms SOTA methods in most settings.

F Effects of Decoder Depth

As previous studies explored the impact of decoder depth (the number of multi-head attention blocks,
as in MAE), we present the results for different decoder depths on DomainNet in Tab.[/| In line with
prior work [49]51]], our findings confirm that a lightweight decoder achieves superior performance.

G Visualization of Extracted Features on Multi-domain Data

We present t-SNE visualization of six domain features from MS-UDG and MAE on the DomainNet
datasets. From Fig.[8] MS-UDG separates variations well.

Table 6: Evaluation of UDG and SSL models which train without the initialization from the ImageNet
pre-trained model. Most results are drawn from the work [21]. We keep the same setting with
DisMAE: pre-training 500 epochs and fine-tuning 50 epochs. Best is highlighted.

Label Fraction 1% Label Fraction 5%
Target domain Target domain
paintUrealUsketch paintUrealUsketch

overall  avg. overall  avg.

ERM 798 994 538 8.46 7.77 6.48 8.64 9.84 8.29 8.32

MAE 880 10.30 12.62 1038 10.57 | 12.13 17.63 15.02 15.60 14.93

DARLING | 859 9.01 11.10 9.32 9.57 9.31 12.00 13.72 11.61 11.68

CycleMAE | 9.21 949  6.62 8.82 844 | 1144 1421 10.01 1258 11.88

DisMAE 11.04 11.64 1246 11.65 11.71 | 13.69 17.74 1692 1647 16.12

MS-UDG 12.38 1241 12,77 1252 1248 | 16.87 21.87 17.52 19.59 18.76
Label Fraction 10% Label Fraction 100%

Target domain Target domain
paintUrealUsketch paintUrealUsketch
ERM 1414 1676 12.63 1519 1451 | 2625 3329 2325 2928 27.59
MAE 1934 23.07 24.18 2229 2220 | 31.72 43.72 36.74 39.02 37.40
DARLING | 13.72 19.76 1643 17.40 16.64 | 25.87 37.60 26.67 32.11  30.05
CycleMAE | 17.80 2293 17.15 2023 1929 | 31.72 3944 30.00 3539 3372
DisMAE 2449 27.06 28.24 2661 26.60 | 38.890 4595 4372 4358 4285
MS-UDG | 22.27 2931 28.02 27.09 2653 | 39.82 51.60 45.08 46.99 4550

overall  avg. overall  avg.
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Table 7: The results on the different depths of the decoder layer on DomainNet. The fine-tuning
results are conducted on source domain set {clipart, infograph, quickdraw} and target domain set
{painting, real, sketch} with a label fraction of 1%. Best is highlighted.

layer depth | overall avg.
1 27.63  31.02
2 25.83  26.63
4 25.33  26.55
8 24.05 2494

tSNE Visualization t-SNE Visualization

eeeeeeeeeee

(a) Semantics (b) Variation (a) Features

MS-UDG MAE

Figure 3: We present the t-SNE visualization of six domain features from MS-UDG and MAE on the
DomainNet dataset, with semantics and variation features of MS-UDG visualized separately.

H Effects of Cross Attention in SROM

In the SROM module, we use the cross attention to fuse s; and v» inspired by Stable Diffusion [36]],
which uses cross attention on prompts and image features. Here, we view the semantic representation
s1 as a prompt to fuse semantics and variation. The ablation study of cross-attention is shown in
Tab.[8] Using cross attention to fuse v and s further enhances performance.

Table 8: Results with and without cross-attention. “w/o Cross Attn” and “w/ Cross Attn” denote
training without and with cross-attention, respectively. Best is highlighted.

Label Fraction 1%

Source paintingUrealUsketch "

Target clipartUinfographUquickdraw overall —ave.
w/o Cross Attn | 54.82  19.47 18.94 26.36  31.08
w/ Cross Attn | 49.44  20.90 22.71 27.63 31.02

Label Fraction 10%

Source paintingUrealUsketch overall  avg
Target clipartUinfographUquickdraw ’
w/o Cross Attn | 79.03  32.89 36.31 44.02 4941
w/ Cross Attn | 79.70  30.01 40.11 4533  49.94

I Results on More Benchmarks
We evaluate several SOTA methods on more benchmarks OfficeHome [43]], VLCS [1]], and Of-

fice31 [37]. As those datasets have limited images, making them less ideal for SSL, we used them
as downstream tasks by pre-training on DomainNet and evaluating on other datasets. To preserve
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Table 9: Evaluation on OfficeHome. Best is highlighted.

Label Fraction 1%

Pre-training Domain(DomainNet) PaintingURealUSketch

Target Domain(OfficeHome) Art  Clipart Product avg.
MAE 1341  24.63 2321 2042
DisMAE 22.89 18.07 4379 2825
BSS 2439  27.16 3553 29.03
MS-UDG 2771 2479 37.71  30.07

Label Fraction 5%

Pre-training Domain(DomainNet) PaintingURealUSketch

Target Domain(OfficeHome) Art  Clipart Product avg.
MAE 42.68 43.79 4241 4296
DisMAE 44.64 4582 45.2 45.22
BSS 439  50.53 42.69 4571
MS-UDG 494  58.16 56.78  54.78

the unseen domain setting, overlapping domains were excluded. Those benchmarks are all adopted
leave-one-domain-out validation. The results, compared with SOTA UDG methods DisMAE and
BSS, are summarized in Tab. 0] [I0] and [TT] MS-UDG outperforms in those benchmarks as well.

OfficeHome consists of four domains with 15,500 images: Art, Clipart, Product, and Real-World.
The Real-World domain is excluded from the evaluation because of the overlap with the pre-training
domain of DomainNet. VLCS consists of images from four distinct domains with around 10,000
images: Caltech101, LabelMe, SUNQ9, and VOC2007. Office31 consists of images from three
distinct domains with 4110 images: Amazon, Webcam, and DSL. More details of datasets can be
found in DomainBed [14].

J A Comparison of UDG and DG

Given the differences in scope and the available prior knowledge between DG and UDG, as discussed
in the following paragraph, making a direct and fair comparison between the two proves challenging.
To further explore this, we evaluate the performance of combining UDG with DG, i.e., pre-training
with UDG methods followed by supervised learning using DG methods. We conducted some
experiments with the UDG+DG approach as shown in Tab. [T2] We observed some interesting results.
When using 1% labeled data, SWAD negatively impacted the performance of all UDG models.
However, with 100% labeled data, linear probing and fine-tuning produced different outcomes. Fine-
tuning with SWAD improved the performance of DisMAE and MS-UDG, while slightly degrading
the results for BSS and MAE. On the other hand, linear probing with SWAD led to slight performance
degradation across all methods, except for MAE. This could be due to the limited number of tuned
parameters in linear probing or the small training data in few-shot settings, which might make it
difficult for SWAD to find flat minima. This is an intriguing phenomenon and presents an interesting
avenue for future research in this area.

In the following, we discuss the detailed differences between UDG and DG. Unlike traditional DG
methods, UDG leverages unlabeled data through a self-supervised learning strategy to improve
generalization on downstream tasks. In other words, UDG provides an unsupervised pre-trained
model (upstream), whereas traditional DG methods train a supervised model (downstream). Below
are the differences from the setup and theory perspectives.

Firstly, from a setup perspective, traditional DG methods typically train on category labels to enhance
generalization, whereas UDG uses only unlabeled data to train a pre-trained model. Given the
differences in scope and the available prior knowledge between DG and UDG, we believe it is
challenging to make a direct and fair comparison between the two.

Secondly, from the theory perspective, traditional DG methods always focus on the generalization
bound of the target risk since the methods are built on the available category labels. Thus, the original
theory of DG is hard to adapt to the UDG area.
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Table 10: Evaluation on VLCS. Best is highlighted.

Label Fraction 1%

Pre-training Domain(DomainNet) ClipartUInfographUQuickdraw

Target Domain(VLCS) Caltech101 LabelMe SUNO09 VOC2007 avg.
MAE 62.79 46.85 39.19 43.93 48.19
DisMAE 68.17 57.24 41.66 45.74 53.20
BSS 58.20 4431 40.25 42.04 46.20
MS-UDG 68.17 49.11 41.93 45.04 51.06

Label Fraction 5%

Pre-training Domain(DomainNet) ClipartUInfographUQuickdraw

Target Domain(VLCS) Caltech101 LabelMe SUNO09 VOC2007 avg.
MAE 69.84 49.01 44.44 43.93 51.81
DisMAE 69.93 54.23 43.37 43.22 52.69
BSS 68.34 47.13 40.21 41.6 49.32
MS-UDG 79.01 52.12 54.65 49.78 58.89

Table 11: Evaluation on Office31. Best is highlighted.

Label Fraction 1%

Pre-training Domain(DomainNet) ClipartUInfographUQuickdraw

Target Domain(Office31) Amazon DSLR Webcam avg.
MAE 21.05 20.00 20.63 20.56
DisMAE 21.00 30.77 20.63 24.13
BSS 22.81 18.46 17.46 19.58
MS-UDG 24.56 41.54 19.05 28.38

Label Fraction 5%

Pre-training Domain(DomainNet) ClipartUInfographUQuickdraw

Target Domain(Office31) Amazon DSLR Webcam avg.
MAE 20.8 32.31 27.78 26.96
DisMAE 45.11 33.85 33.33 37.43
BSS 44.86 35.38 34.13 38.12
MS-UDG 58.40 52.31 50.00  53.57

K Broader Impacts

This research seeks to advance the field of Unsupervised Domain Generalization (UDG) by addressing
two core objectives: disentangling semantics and variation without domain labels and category labels.
These efforts have the potential to make significant contributions across multiple domains, including
healthcare, where the ability to generalize from limited labeled data is of paramount importance. In
fields where large-scale unlabeled data is scarce but robust generalization is essential, our approach
to disentangling these factors in an unsupervised manner could provide a critical insight, enabling
models to perform well in unseen environments without requiring extensive labeled data.
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Table 12: Evaluation on UDG+DG(SWAD) methods.

Label Fraction 1% (Linear probing)

Pre-training Domain(DomainNet) PaintingURealUSketch
Target Domain(OfficeHome) Art  Clipart Product avg.
MAE 1341 24.63 2321 2042
MAE+SWAD 10.84 17.23 21.14  16.40
DisMAE 22.89 18.07 43.79  28.25
DisMAE+SWAD 12.05 18.28 2371  18.01
BSS 2439  27.16 3553 29.03
BSS+SWAD 13.86  23.95 27.14  21.65
MS-UDG 2771 2479 37.71  30.07
MS-UDG+SWAD 21.08 26.89 3829  28.75
Label Fraction 100%(Fine tuning)
Pre-training Domain(DomainNet) PaintingURealUSketch
Target Domain(OfficeHome) Art  Clipart Product avg.
MAE 54.00 67.53 69.31  63.61
MAE+SWAD 48.00 67.13 7143  62.19
DisMAE 55.50 67.13 75.4 66.01
DisMAE+SWAD 59.00 743 76.98  70.09
BSS 51.00  63.35 65.87  60.07
BSS+SWAD 475  63.15 65.61  58.75
MS-UDG 59.00  69.72 73.28  67.33
MS-UDG+SWAD 62.5 73.51 76.46  70.82
Label Fraction 100%(Linear probing)

Pre-training Domain(DomainNet) PaintingURealUSketch
Target Domain(OfficeHome) Art  Clipart Product avg.
MAE 29.00  36.65 43.12  36.26
MAE+SWAD 51.00 35.86 65.34  50.73
DisMAE 40.00 58.76 53.17  50.64
DisMAE+SWAD 40.00 60.36 44.18  48.18
BSS 40.00  55.58 5397 49.85
BSS+SWAD 415 5538 51.59 4949
MS-UDG 50.00 67.33 63.76  63.76
MS-UDG+SWAD 52.00 67.73 65.34 61.69
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