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Abstract—Model extraction aims to steal a functionally similar copy

from a machine learning as a service (MLaaS) API with minimal over-

head, typically for illicit profit or as a precursor to further attacks, posing

a significant threat to the MLaaS ecosystem. However, recent studies have

shown that model extraction is highly inefficient, particularly when the

target task distribution is unavailable. In such cases, even substantially

increasing the attack budget fails to produce a sufficiently similar replica,

reducing the adversary’s motivation to pursue extraction attacks. In this

paper, we revisit the elementary design choices throughout the extraction

lifecycle. We propose an embarrassingly simple yet dramatically effective

algorithm, Efficient and Effective Model Extraction (E3), focusing on

both query preparation and training routine. E
3 achieves superior

generalization compared to state-of-the-art methods while minimizing

computational costs. For instance, with only 0.005× the query budget and

less than 0.2× the runtime, E3 outperforms classical generative model

based data-free model extraction by an absolute accuracy improvement

of over 50% on CIFAR-10. Our findings underscore the persistent threat

posed by model extraction and suggest that it could serve as a valuable

benchmarking algorithm for future security evaluations.

Index Terms—Model Extraction, Functionality Stealing, Data-Free

Knowledge Transfer

I. INTRODUCTION

Machine Learning as a Service (MLaaS) APIs from major compa-

nies like Microsoft, Google, and OpenAI provide users with access to

powerful deep learning models via a pay-per-query interface. These

models span applications such as visual recognition, natural language

processing, speech analysis, and code generation, benefiting both

industry and everyday life [1] - [4] . However, the public availability

of these APIs raises concerns about model theft [5]. Besides direct

illegal distribution of model parameters [6] - [8], clients may attempt

to reverse-engineer the models through model extraction, a tactic

that is gaining increasing attention [9].

In model extraction, an adversary queries a victim API and uses the

resulting probability vectors to train a surrogate model that approxi-

mates the victim’s functionality [9] [10]. In data-dependent scenarios,

the adversary samples in-distribution (IND) queries, while in data-

free scenarios, they lack prior knowledge of the target distribution

and synthesize substitute queries to reveal the private knowledge.

The process operates in a black-box setting, where the adversary only

has access to query inputs and responses, without any information

about the victim’s architecture, parameters, or gradients. It is assumed

that model extraction can achieve comparable performance with

minimal effort, bypassing the costs of data labeling and training from

scratch. This poses a significant threat to the intellectual property and

confidentiality of models [10] - [16] , making model extraction one

of the most pressing concerns in industrial machine learning [17].

However, the implicit assumption that model extraction is cheaper

in terms of data or computation [10] [18] has recently been ques-

tioned [19]. Building a model primarily involves data preparation,

computational resources, and expertise. In data-dependent scenarios,
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adversaries must still gather IND samples, and using the victim as

a labeling oracle may not significantly reduce costs compared to

established data pipelines [19]. In data-free extraction, while the need

for IND samples is avoided, adversaries often rely on computationally

intensive generative models to synthesize samples [11] [12], which

can demand significantly more queries (e.g., 20 million) and longer

training cycles to converge [11] [19]. Moreover, implementing so-

phisticated extraction algorithms often requires more expertise than

training a model from scratch [12] [15]. Thus, achieving a high-

performing model with minimal resources is challenging, and the

cost-effectiveness of model extraction has been exaggerated.
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Fig. 1: Comparison of E3 with traditional DFME.
Does this mean model extraction is entirely ineffective? In this

paper, we revisit key design choices throughout the lifecycle of

model extraction and reveal the inefficiency of mainstream methods.

We further propose surprisingly simple techniques that achieve im-

pressive generalization with minimal cost. For query preparation,

we show that sophisticated deep generative models are unnecessary

when IND samples are unavailable. Instead, publicly available OOD

samples, selected via language-guidance, outperform synthetic sam-

ples in functionality approximation. For surrogate training, low-

resolution pretraining significantly reduces costs while enhancing

victim guidance. We also mathematically prove, for the first time, that

temperature scaling—previously overlooked in the extraction commu-

nity—is applicable in black-box settings and accelerates convergence

while improving generalization. Finally, during deployment stage,

we introduce a novel perspective where unlabeled target distribution

samples naturally encountered by the surrogate can be leveraged forIC
A

SS
P 

20
25

 - 
20

25
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-6
87

4-
1/

25
/$

31
.0

0 
©

20
25

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

96
60

.2
02

5.
10

88
77

80

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 14,2025 at 15:13:33 UTC from IEEE Xplore.  Restrictions apply. 



rapid unsupervised adaptation, bridging the distribution gap between

training and testing in data-free scenarios.

By incorporating these nearly cost-free components, we propose

a novel E3 extraction algorithm that achieves state-of-the-art perfor-

mance with the lowest query budget and computational cost compared

to previous methods. This serves as a proof of concept that model

extraction continues to pose a significant threat to MLaaS. Figure 1

highlights the effectiveness of our approach.

Our contributions are summarized as follows:

• We highlight the inefficiency of current model extraction tech-

niques, identifying resource-intensive yet ineffective components

by revisiting the extraction pipeline.

• At each extraction stage, we introduce computationally efficient

strategies that optimize both efficiency and effectiveness under

a fixed query budget, resulting in the E3 algorithm.

• With the lowest query budget and runtime, we achieve significant

improvements in generalization, confirming that model extrac-

tion remains a substantial threat.

II. RELATED WORK

In model extraction, the adversary A prepares a query set DQ to

access a black-box victim API fθv , obtaining response probability

vectors y = fθv (x) for each sample x ∈ DQ. Early data-dependent

extraction strategies [10] select IND samples as DQ, sometimes

assuming direct access to the victim training set [20]. A surrogate

model fθs is then trained via knowledge distillation [21] to replicate

fθv . This process is formalized as:

θ∗s = argmin
θs

KLD(fθv (x)||fθs(x))
1. (1)

Here, KLD(·||·) represents the Kullback-Leibler divergence, mea-

suring the difference between the prediction distributions of fθs
and fθv . Acquiring IND sample, even without labels, is costly

and challenging in privacy-sensitive contexts. Consequently, data-

free extraction, which does not rely on target distribution samples,

has garnered widespread attention. Inspired by data-free knowledge

distillation [22], synthesizing queries with deep generative models

has become mainstream [11] [12]. DFME [11] formulates a three-

player game between the victim, surrogate and generator using

a generative adversarial network framework [24], with zero-order

optimization to estimate gradients from the black-box fθv . IDEAL

[12] optimizes the generator based on the prediction entropy of fθs ,

bypassing gradient estimation on fθv and significantly lowering the

query budget. However, inverting training samples from the model

is challenging, and the synthesized samples often deviate from the

original distribution, lacking realistic visual patterns, which hinders

the generalization of fθs . Moreover, training the generator from

scratch also introduces considerable computational overhead.

Another approach involves randomly sampling OOD samples and

adding adversarial perturbations [25] to maximize the prediction

entropy of fθv [13] [14]. These high-entropy adversarial samples

better characterize the decision boundary of fθv , increasing informa-

tion leakage from OOD queries. However, generating adversarial per-

turbations is time-consuming, and the responses are often erroneous

or ambiguous, limiting fθs from learning well-generalized mappings.

Lastly, active sampling-based extraction progressively select rep-

resentative samples from candidate OOD set as DQ [15] [26] [27].

However, selecting samples with a limited number of queries to fθv
is challenging, as the adversary must construct structural represen-

tation of the entire candidate set and recalculate selection criteria

1In model extraction, to reduce labeling costs, cross-entropy between
predictions and ground-truth labels is typically omitted from the loss function.

at each iteration. Notably, model extraction has also been adapted

for legitimate purposes like model compression as a service [28]

[29]. Whether for legitimate or illicit use, designing cost-effective

extraction strategies remains crucial.

III. METHODOLOGY

In this section we elaborate on our proposed strategies in E3. The

first two apply to both data-dependent and data-free scenarios, while

the last two are specifically tailored for data-free model extraction.

A. Two-Stage Extraction with Varying Resolution

The ultimate goal of model extraction is to replicate the victim

model’s functionality at a lower cost than training from scratch.

However, without ground-truth supervision, the surrogate often re-

quires the same sample volume as the victim’s training set and longer

training times to converge [19]. To address this, we propose a two-

stage training routine with varying resolutions (VarRes), balancing

training cost and generalization.

In image classification, the victim typically processes square im-

ages of size R × R. When the query set is limited, using the same

input for the surrogate can lead to overfitting. Therefore, in the first

stage, we randomly crop a rectangle from the image, rescale it to

r× r (where r < R), and optimize the following loss function:

θ∗s = argmin
θs

KL(fθv (x) || fθs(transform(x))) (2)

where transform refers to the input transformation applied to fθs ,

such as the RandomResizedCrop operation [30] in PyTorch [31].

In the second stage, we fine-tune the surrogate at full resolution

during the final epochs as in Equation 1. Notably, the victim always

receives the original image x as input, ensuring that the query budget

remains unchanged. Low-resolution training in the first stage reduces

computational costs while encouraging robustness to input scale

variations. As shown in Fig. 2, training the surrogate with the same

input size as the victim causes the training loss to rapidly converge to

zero, limiting further guidance from the victim. In contrast, VarRes

preserves a meaningful prediction difference between the victim and

the surrogate, enabling the surrogate to continuously absorb task-

specific knowledge from the victim. This teacher-student discrepancy

is widely regarded as highly advantageous [10] [11] [15].
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B. Temperature Scaling in Black-box Extraction

When using KL divergence to measure the prediction difference

between the victim and the surrogate, the optimization objective can

be expressed as:

min−

c
∑

j=1

σj(zv) log σj(zs) (3)

where zv and zs are the output logits of fθv and fθs , respectively,

and are transformed into probability distributions via the softmax

function σ(·). However, the output of modern deep neural networks

tends to be over-confident [32], where only the predicted class t of

the victim receives significant weight in σt(zv), ignoring relative

differences among other classes [33]. This results in near one-hot
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labels, making it difficult to capture the ”dark knowledge” needed for

the surrogate to effectively learn the victim’s unique functionality.

To address this, the classic solution in knowledge distillation

[21] is to soften the model’s predictions with temperature scaling,

transforming the prediction probabilities into σ(zv/τ) and σ(zs/τ),
where τ is the temperature parameter. This reduces class differences

in the probabilities, allowing the loss function to focus on matching

the entire logits vector [33] [34]. However, in model extraction,

the adversary only has access to the black-box probability output

σ(zv) from the victim. Since σ(·) is not injective and therefore non-

invertible [35], it was considered impossible to derive the specific

temperature-scaled σ(zv/τ). As a result, temperature scaling has

been overlooked in model extraction [10] - [15].

In this paper, we show that simple elementary operations can

derive σ(zv/τ) from σ(zv) in a mathematically equivalent way.

Proposition: ∀z ∈ Rc, τ ∈ R, σ(zi/τ) = σ(log(σ(zi))/τ)
Proof Sketch: log(σ(zi))/τ = (zi− log(

∑

j
exp(zj)))/τ = zi/τ+

C, where C = log(
∑

j
exp(zj))/τ. Since σ(x) = σ(x + C) [13],

σ(log(σ(zi))/τ) = σ(zi/τ + C) = σ(zi/τ)
This is the first demonstration that temperature scaling can be

applied to black-box model extraction seamlessly. Fig. 3 shows a

performance comparison of the surrogate on CIFAR-10, with and

without temperature. Higher temperature significantly accelerates

convergence and improves final generalization.

C. Language-Guided Query Selection

In data-free scenarios, the absence of IND samples for the target

task makes it difficult to effectively transfer knowledge from the

victim to the surrogate. Traditional approaches tackle this by syn-

thesizing substitute samples using generative models or adversarial

perturbations, both of which are computationally expensive. In this

paper, we find that publicly available OOD samples from the Internet

can offer valuable image priors, such as general shape and texture

features. While the class semantics may not fully align with the target

task, these samples are a cost-effective choice for queries. However,

OOD samples that deviate significantly from the target distribution

are less effective for knowledge transfer [36] [37]. The challenge,

then, is efficiently constructing an optimal query set from these

OOD samples. Active sampling [15] progressively select the most

informative samples from the OOD set as queries, but significantly

increases the computational cost and query budget, as it requires

generating representations or confidence scores for all samples using

either the victim or surrogate [15] [37].

In this paper, we propose a novel multimodal strategy that leverages

a language model to select a query set from an OOD set with a

predefined class structure, semantically similar to the target task.

Specifically, given a labeled OOD set DO with class names {COi}
kO
i=1

and target task class names {CTj}
kT
j=1

(which may not overlap), we

compute the semantic similarity between each OOD class and the

target task using a pretrained language encoder El(·) as follows:

similarityi =
∑

j

(

El(COi) · El(CTj )
)

(

|El(COi)| · |El(CTj )|
)

similarity
′
i =

similarityi −min(similarityi)

max(similarityi)−min(similarityi)

Thus, similarity′
i ×

(

|DQ|
|DO|

)

represents the sampling probability

for each class in DO . This language-guided sampling strategy is

extremely efficient, performed in a single pass without requiring

additional queries to the victim. Moreover, it is model-agnostic,

avoiding the bias towards either the victim or the surrogate that often

arises in active sampling strategies.

D. Test-Time Distribution Alignment

Model extraction aims for the surrogate to replicate the behavior of

the victim during deployment, ensuring that for a test sample xtest,

the surrogate’s output approximates the victim’s conditional distribu-

tion, pv(y|xtest). Although the surrogate is trained on pv(y|xtrain),
which aligns with the desired behavior pv(y|xtest) during testing,

the absence of IND samples from the target task causes a mismatch.

The marginal distribution of the surrogate’s training data p(xtrain)
inevitably differs from the deployment distribution p(xtest), leading

to covariate shift [38] and impairing generalization. Recent data-free

knowledge transfer methods alleviate this issue through distribution-

invariant learning [39], but they increase computational costs and

require access to the victim’s internal features, which is unfeasible

in black-box extraction.

Inspired by test-time classifier adjustment [40], we propose a

low-cost solution for unsupervised online adaptation, leveraging the

unlabelled target distribution samples that the surrogate naturally

encounters post-deployment, which enables the surrogate to better

align with the target distribution. We decompose fθs into a feature

extractor fe(·) and a classification head fc(·), where the classification

head is parameterized by weights w ∈ R
c×d and biases b ∈ R

c, with

c representing the number of classes and d the feature dimension

output by fe(·). In prototype learning [41], each wi ∈ R
d represents

the prototype for class i. The classification process of fc(·) can

thus be interpreted as assigning a sample to the class with the

highest similarity to its prototypes. Thus, we propose fine-tuning the

classification head by updating the prototypes. For each class i, we

dynamically maintain a support set Si = {xij}
k
j=1 consisting of the

k samples with the lowest prediction entropy that fθs predicted as

class i. The prototype wi is updated as follows:

wi = (1− α) · wi + α ·
∑

j
fe(xij )

where α is the interpolation coefficient balancing the old weights

and the new prototypes. The fine-tuning of w can be viewed as

slightly rotating the classification hyperplane to adapt to shifts in

the distribution p(x), thereby aligning the surrogate with the target

distribution. Test-Time Distribution Alignment (TTDA) requires no

additional labeled data, with updates performed online during testing.

It only fine-tunes the classification head without extra forward or

backward passes, resulting in minimal computational overhead.

IV. EXPERIMENTS

A. Experimental Settings

We use ResNet-18 and ResNet-34 [43] trained on CIFAR-10 and

CIFAR-100 [42] as victims. ResNet-18 is employed as the surrogate

architecture to approximate the victims’ functionality. We compare

E3 against classical and SOTA extraction methods from top-tier AI

and security conferences. In the data-dependent (DD) scenario, we

include Knockoff Nets [10] from CVPR 2019. In the data-free (DF)

scenario, we evaluate techniques including DFME [11] from CVPR

2021 and IDEAL [12] from ICLR 2023, based on deep generative

models, as well as CloudLeak [13] from NDSS 2020, SPSG [14] from

CVPR 2024 based on adversarial perturbations, and Marich [15], the

SOTA active sampling strategy from NeurIPS 2023.

For E3, we use the minimal query budget from the comparison

methods in both DD and DF scenarios. On CIFAR-10/100, with

full resolution R = 32, we use a reduced resolution of r = 24
during the first stage of VarRes. For temperature scaling, we set high

temperatures of τ = 102 and τ = 103 in the DD and DF scenarios,

respectively. In the language-guided query selection, we leverage the

lightweight text encoder from MobileCLIP [44] to generate class
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TABLE I: Comparison of E3 with SOTA model extraction algorithms. AC: Adversarial Capability; DD: Data Dependent; DF: Data-Free. Qb: Query

Budget. ↑ (higher is better), ↓ (lower is better). Best results in bold, second-best in •.

AC Method

CIFAR-10 CIFAR-100

Qb(↓)

Victim: Resnet18

Acc: 94.97%

Victim: Resnet34

Acc: 95.94% Qb(↓)

Victim: Resnet18

Acc: 77.33%

Victim: Resnet34

Acc: 81.88%

Time(↓) Acc(↑) Time(↓) Acc(↑) Time(↓) Acc(↑) Time(↓) Acc(↑)

DD

KnockoffNets 0.05M 395.28• 91.56 ± 0.38 416.9• 91.28 ± 0.86 0.05M 395.2• 71.65 ± 0.26 417.13• 70.97 ± 1.29

E3 w/o VarRes 0.05M 394.93• 94.11 ± 0.20• 417.08• 94.48 ± 0.37• 0.05M 395.19• 75.95 ± 0.42• 417.19• 75.72 ± 0.21•

E3 0.05M 343.58 95.48 ± 0.25 366.05 95.62 ± 0.14 0.05M 342.56 78.37 ± 0.43 364.43 79.16 ± 0.47

DF

DFME 20M 2002.82 40.61 ± 2.39 2093.25 31.18 ± 2.68 20M 2060.73 7.27 ± 0.92 2117.98 5.29 ± 1.34

IDEAL 0.25M 4049.14 65.22 ± 1.88 4129.13 62.26 ± 1.68 0.3M 4564.98 19.13 ± 0.58 4716.18 17.10 ± 0.40

CloudLeak 0.5M 1860.66 87.65 ± 0.59 1894.72 85.48 ± 2.13 0.5M 1867.77 53.89 ± 1.69 1884.91 48.82 ± 1.16

SPSG 5M 1904.18 88.07 ± 0.42 1917.48 85.47 ± 0.49 5M 1909.07 62.37 ± 0.76 1925.53 57.80 ± 1.21

Marich 0.1M 958.75 90.66 ± 0.41 1029.60 88.85 ± 0.99 0.1M 1171.92 69.49 ± 1.49 1265.86 69.98 ± 1.51

E3 w/o VarRes 0.1M 459.85• 94.23 ± 0.17• 482.44• 93.22 ± 0.69• 0.1M 464.27• 74.94 ± 0.56 485.72• 72.71 ± 1.32

E3 0.1M 398.72 94.37 ± 0.26 421.39 94.01 ± 0.07 0.1M 401.86 72.31 ± 0.65• 423.90 72.34 ± 1.73•

name embeddings, using the LSVRC-2012 [45] as the candidate OOD

set. For test-time distribution alignment, α is set to 0.1. The code and

detailed settings are available at https://github.com/GradOpt/E3.
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TABLE II: Improvement from TTDA on CIFAR-10 Variants.

Scenario Acc w/o TTDA Acc w/ TTDA Improvement

CIFAR-10 94.35 ± 0.22 94.37 ± 0.26 0.02
CIFAR-1034 93.94 ± 0.06 94.01 ± 0.07 0.07
CIFAR-10GN 79.19 ± 0.85 79.71 ± 0.87 0.52

B. Comparison with SOTA Extraction Algorithms

We compare the query budget, runtime on a single RTX 4090 GPU,

and test accuracy of all methods on CIFAR-10/100 in Table I. E3

consistently outperforms all competitors across different scenarios.

VarRes not only reduces runtime but also improves generalization

in some cases, allowing the surrogate model to achieve similar

functionality to the victim at a lower computational cost. In the DD

scenario, E3 requires the same query budget as KnockoffNets but

delivers approximately 4% and 7% higher accuracy, with a shorter

runtime. When both the victim and surrogate use the ResNet-18

architecture, the surrogate trained by E3 even surpasses the victim,

benefiting from the regularization effect of knowledge distillation

[33], while previous extraction methods failed to achieve similar

effects due to their inefficient training routines.

In the DF scenario, VarRes exhibits a slight trade-off between

performance and efficiency, though generalization remains strong

and could be improved by extending the second stage. In contrast,

methods based on generative models requires 5 to 10 × more runtime

and a much larger query budget, yet completely failed on more

complex tasks like CIFAR-100. Approaches based on adversarial

perturbations and active sampling perform slightly better but are

still far inferior to E3. Compared to the top-performing competitor,

Marich, E3 uses less than half the runtime and achieves over 3%

higher accuracy on both datasets. Notably, E3 in the DF scenario

surpasses Knockoff Nets with IND queries, with the surrogate closely

approximating the labeling oracle, i.e., the victim. Interestingly, when

the victim becomes more sophisticated (e.g., using ResNet-34 instead

of ResNet-18), most surrogates experience a decline in performance,

consistent with previous findings [46]. This can be attributed to the

challenge smaller surrogates face in aligning with the victim when

the query set is limited. However, E3 exhibits minor degradation,

highlighting its potential to effectively target larger and better victims.

C. Ablation Study

We present a brief analysis of the contributions of each component

in E3. Figure 4 shows the effect of temperature on CIFAR-10.

Higher temperatures significantly improve generalization, and beyond

τ = 10, accuracy stabilizes, simplifying parameter selection. Figure

5 visualizes the feature space of ResNet-18, comparing the first

and last 100 LSVRC class samples selected via language-guided

query selection, along with original CIFAR-10 samples. The first

100 classes effectively capture CIFAR-10 features, demonstrating the

efficacy of semantic selection. However, the last 100 classes also

provide meaningful features, leading us to sample from all classes

with normalized probabilities. This ensures both informativeness and

diversity, resulting in a 1.22% improvement over CIFAR-100 and

0.37% over random sampling from LSVRC as queries.

Table II summarizes the improvements from test-time distribution

alignment (TTDA) across various scenarios. Since the surrogate’s

performance is already close to that of the victim, TTDA provides

only a marginal boost. However, when test samples are corrupted

by Gaussian noise, TTDA proves particularly effective, making it

valuable in cases of distribution shift between the surrogate and

victim deployment. Furthermore, TTDA introduces only about 1%

extra latency during deployment and allows model fixation after brief

adaptation, resulting in negligible overhead.

V. CONCLUSION

In this paper, we address the inefficiency of current model

extraction by thoroughly revisiting design choices throughout the

pipeline. From query preparation to training routine and surrogate

deployment, we propose E3, a novel algorithm that achieves superior

generalization with minimal computational overhead. Our strategies

can be seamlessly integrated in a plug and play manner to optimize

existing and future extraction algorithms. For future work, we plan

to extend E3 to other data modalities and model families [47] [48],

and to experiment with larger datasets and real-world APIs.
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