
Under review as a conference paper at ICLR 2023

WEIGHTRELAY: EFFICIENT HETEROGENEOUS FEDER-
ATED LEARNING ON TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning for heterogeneous devices aims to obtain models of various
structural configurations in order to fit multiple devices according to their hard-
ware configurations and external environments. Existing solutions train those het-
erogeneous models simultaneously, which requires extra cost (e.g. computation,
communication, or data) to transfer knowledge between models. In this paper, we
proposed a method, namely, weight relay (WeightRelay), that could get heteroge-
neous models without any extra training cost. Specifically, we find that, compared
with the classic random weight initialization, initializing the weight of a large
neural network with the weight of a well-trained small network could reduce the
training epoch and still maintain a similar performance. Therefore, we could or-
der models from the smallest and train them one by one. Each model (except
the first one) can be initialized with the prior model’s trained weight for training
cost reduction. In the experiment, we evaluate the weight relay on 128 time se-
ries datasets from multiple domains, and the result confirms the effectiveness of
WeightRelay.

1 INTRODUCTION

One of the open challenges for federated learning for heterogeneous devices is how to transfer
knowledge between heterogeneous models (Imteaj et al., 2021; Ferrag et al., 2021; Zhang et al.,
2022). Specifically, this heterogeneous federated learning aims to obtain models of various struc-
tural configurations to fit multiple devices according to their hardware configurations and working
environment. Under this setting, it is hard for low-capacity devices to contribute their knowledge to
big models, for they might have enough memory, bandwidth or computational power to join the big
model training via Federate average (fed). Therefore, solutions that could enable big models to get
knowledge from the small models are highly desired (Imteaj et al., 2021; Ferrag et al., 2021).

Existing solutions tackle the problem by adding one or more resources such as computational, com-
munication, and extra data. For example, distillation-based methods require training cost on multi-
ple models and extra cost for knowledge transfer between those models (Zhang & Yuan, 2021; Liu
et al., 2022; Zhu et al., 2021; Li & Wang, 2019; He et al., 2020). Pruning-based methods (Jiang
et al., 2022; Li et al., 2021) require an extra cost to pruning the single model onto multiple smaller
models. Weight sharing methods, some of them (Wang et al., 2020) require the computational cost
to match the weight of various models iteratively, and some methods (Xu et al., 2019; Diao et al.,
2020) need a weight scale module to adjust weight before sharing.

Although existing solutions enable knowledge sharing between heterogeneous models, the extra
resource consumption makes it hard to implement them on smart devices. This is because most of
those devices do not have strong computational, memory or commutations capacity (Imteaj et al.,
2021; Ferrag et al., 2021). Therefore, solutions with huge training costs bring an embarrassing
burden to low-capacity smart devices. When a device’s ability limits it from using big models,
it may also limit it from contributing its knowledge to big models or getting knowledge from big
models via distillations, pruning or weight matching.

Other than capacity neglection, for smart devices, the appropriate 1D-CNN (one-dimensional-
convolutional neural networks) model is also seldom mentioned. Specifically, most solutions
were tested with 2D-CNN(two-dimensional-convolutional neural networks) models (Zhang & Yuan,
2021; Zhu et al., 2021; Li & Wang, 2019; He et al., 2020; Wang et al., 2020; Diao et al., 2020; Xu

1



Under review as a conference paper at ICLR 2023

et al., 2019) or language models (Liu et al., 2022). However, we should notice that most of the
data gathered by smart devices are time-series data (Liu et al., 2020; Xing, 2020) which can math-
ematically be described as a series of data points recorded in time order (Dau et al., 2018; Chen
et al., 2015; Fawaz et al., 2019; Tang et al., 2021). Such as the heartbeat data collected by smart-
watches (Progonov & Sokol, 2021; Park et al., 2020), the electricity consumption data gathered
by energy management devices (Gans et al., 2013), building structural vibration data recorded by
motion sensors (Vidal et al., 2014; Kavyashree et al., 2021), etc. According to the University of Cal-
ifornia, Riverside time series archive (UCR archive) (Dau et al., 2018), the state-of-the-art solutions
for time series classification tasks are all 1D-CNNs (Fawaz et al., 2019; Tang et al., 2021; Dempster
et al., 2020).

The characteristics of 1D-CNN allow a novel weight relay solution, which does not need any extra
resources. Specifically, suppose we have a small 1D-CNN network and a large 1D-CNN network.
For the large network training, we could initialize it with a classic random weight initialization or
we could initialize it with the weight from a well-trained small network. We find that these two
kinds of initialization will be of similar performance, but the second initialization could reduce the
training cost of the large network. This training cost reduction could be used to lower the capacity
requirement and allows more low-capacity devices to join the big model training. Via ordering those
heterogeneous 1D-CNN models from the smallest to the largest, except for the first smallest model,
all the other models’ training will be benefited.

In experiments, we show the consistently training cost reduction ability of the weight relay on time
series datasets from multiple domains i.e., healthcare, human activity recognition, speech recogni-
tion, and material analysis. Despite the dynamic patterns of these datasets, weight relay robustly
shows its effectiveness.

2 RELATED WORK

2.1 DEEP LEARNING FOR TIME SERIES CLASSIFICATION

The success of deep learning encourages the exploration of its application on time series
data (Längkvist et al., 2014; Fawaz et al., 2019; Dong et al., 2021). Intuitively, the Recurrent
Neural Network (RNN), which is designed for temporal sequence, should work on the time se-
ries tasks. However, in practice, RNN is rarely applied to TS classification (Fawaz et al., 2019).
One widely accepted reason among many is that RNN models suffer from vanishing and exploding
gradients when dealing with long seuqnce data (Pascanu et al., 2013; Fawaz et al., 2019; Bengio
et al., 1994). Nowadays, 1D-CNN is the most popular deep-learning method TSC tasks. (Zheng
et al., 2014; Wang et al., 2017; Rajpurkar et al., 2017; Serrà et al., 2018; Ismail Fawaz et al., 2019;
Kashiparekh et al., 2019). According to the University of California, Riverside time series archive
(UCR archive) (Dau et al., 2018), the state-of-the-art solutions for time series classification tasks are
all 1D-CNNs (Ismail Fawaz et al., 2019; Tang et al., 2021; Dempster et al., 2020; Wang et al., 2017).

2.2 FEDERATED LEARNING ON HETEROGENEOUS DEVICES

Based on the method of transferring knowledge between heterogeneous models, the solutions to
heterogeneous Federated learning could be divided into three columns. These are distillation-based,
weight-sharing-based and pruning-based methods.

The knowledge distillation (Gou et al., 2021) allows the knowledge sharing between heterogeneous
models. It requires extra data or computational resources to enable knowledge sharing between
models (He et al., 2020; Li & Wang, 2019), which brings multiple challenges under the federated
learning setting. For example, the distillation process requires a large amount of computational
resources(Zhu et al., 2021). What’s more, the performance of the distillation is highly related to the
similarity of the distributions between the training data and distillation data.

The weight sharing method is based on the assumption that some parts of the weight of various
structure models are the shareable, and the shareable part could help to transfer the knowledge
between various structure models (Wang et al., 2020; Cai et al., 2019; Singh et al., 2019). In practice,
finding which parts of various models should be of the same parameter is hard. Therefore, a large
number of computation resources have to be taken to find which parts of models should be matched

2



Under review as a conference paper at ICLR 2023

together (Wang et al., 2020), or taken to calculate the adjustment module for weight re-scale (Diao
et al., 2020; Tan et al., 2022).

The pruning-based method aims at training a large neural network and pruning it into various small
networks according to the hardware configuration and external environment (Jiang et al., 2022; Xu
et al., 2021; Liu et al., 2021). One limitation is that it is hard to control the structure of the pruned
network, which challenges fitting those small networks according to the configuration of each edge
device. (Jiang et al., 2022; Li et al., 2021)

3 MOTIVATION

To train a 1D-CNN model, we could 1) start from a classic random weight initialization or 2) replace
parts of the random initialization weight with a well-trained weight from a small network. The
second initialization could reduce the training cost of the large network and won’t influence the final
performance.

Therefore, to train multiple models on a smaller budget, we don’t need to train every model from
the stretch. We could initialize some of those models by the trained weight from the others for fast
convergence. Figure 3 gives an example of the weight relay on the Crop (Tan et al., 2017) dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Accumulate computational cost 1e7

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

Test accuracy by accumulate computational cost

0 100 200 300 400 500
Communication round

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

Test accuracy by communication round

 classic initialization 
 small model
 weight relay 
 small model with kernel x2
 weight relay 
 small model with kernel x2, channel x2
 weight relay 
 small model with kernel x2, Channel x2, layer +1
 classic initialization 
 small model with kernel x2, Channel x2, layer +1

Figure 1: The left image shows the relationship between the accumulated computational cost and the
test accuracy of each model. The accumulated computational cost calculates the computational cost
we used to obtain a well-trained model. As the image shows, to obtain a single largest model from
classic initialization (purple), we need about 0.8e7 computational resources, and we could only get
1 model. However, with weight relay, at the point 0.8e7, we have four models(blue, orange, green
and red). And the red model, which has the same structure as the purple model, also has the same
performance. The right image shows the performance of each model by communication round. We
could see that the weight relay model (red) converged much faster than the classic initialization
models (purple).

4 WEIGHT RELAY

In Figure 4, a schematic of weight relay is given. What’s more, in this Section, we will explain
the weight relay in detail. Specifically, Section 4.1 will introduce heterogeneous models for time
series classifications. Section 4.2 will introduce how to align those models. Specifically, when a
well-trained weight is passed to a large model, which part of the large network should be replaced.
Section 4.3 will discuss the stop criteria of weight relay.

4.1 HETEROGENEOUS MODELS

According to the result statistics on the UCR archive, all state-of-the-art neural network solutions on
time series classification tasks are 1D-CNN models Fawaz et al. (2019); Wang et al. (2017); Tang
et al. (2021). Therefore, this paper mainly talked about 1D-CNN models and heterogeneous could
happen on all three main structure configurations: the number of layers, kernel sizes and the number
of channels.

3



Under review as a conference paper at ICLR 2023

Classic initialization weight

Trained weight

train

Relay

train

Relay

train

Train a small network Train a large network
from weight relay Train a larger network

from weight relay

Relay

…
Weight relay initialization weight

Weight relay

Figure 2: The schematic shows training multiple models with weight relay. Weight relay starts from
the training of the smallest network with classic initialization. The trained weight of the smallest
network will be used to replace a part of the classic initialization weight of a large network. When
the large network is trained, its weight could be used to accelerate the training of a larger network.
Since the weight relay only replaces the random initialization with a well-trained one, it requires
almost no cost, and the training cost of each model (except the first one) is also smaller than training
those from classic initialization.

4.2 WEIGHT ALIGNMENT

The weight alignment defines which part of the large network should be replaced with the weight
of the small network. The alignment will have three steps because the neural network has three
hierarchies. Specifically, a neural network is composed of layers. Layers are composed of weight
sets. And the weight sets are composed of weight tensors. Therefore, we need to pair weight sets
and layers before we align weight tensors.

First step: pair weight sets by layers. The convolutional layer and the batch normalization layer
will be indexed from the input to the output. For example, the first convolutional layer is the con-
volutional layer closest to the input. The fully connected layer will be indexed by reverse order.
Therefore, the first fully connected layer will be the layer closest to the output. For each of those
three types of layers, the ∗-th layer’s tensor set of the small network should be paired with the ∗-th
layer’s tensor set of the large network

Second step: pair tensors by paired weight sets: According to the definitions of the 1D-CNN,
tensors in each set will have different functions, such as weight, bias, and running mean. Therefore,
for two paired sets, tensors in the two sets will be paired by their function name.

Third step: align two paired tensors. For two paired tensors A and B, the alignment of the two
tensors is to align the output and input dimensions with the left margin and align the kernel
dimension with the centre. Specifically, the small network’s ∗-th element should be aligned with
the middle of the large network’s ∗-th element on the input(output) channel. Therefore, the small
network’s i-th element should be aligned with the middle of the large network’s j-th element on the
kernel dimension. Then the i and j describe the alignment relationship of A and B in the Equation 1

j = i+ ⌊(b− 1)/2⌋ − ⌊(a− 1)/2⌋ (1)

where the b and a are kernel sizes of large network and small network.

4.3 STOP CRITERIA FOR EACH MODEL

The Weight relay is robust to various early stop criteria. Generally, loose stop criteria will make
the model stop in a few numbers of epochs than strict stop criteria. However, as we will show in
Appendix A, no matter whether the stop criteria are strict or loose, the weight relay keeps working
on most datasets in the UCR archive.

5 ANALYSIS OF WEIGHT RELAY

This section will have two parts. In Section 5.1, we will show that though the alignment method in
Equation 1 is defined in pair, it is reliable for the alignment of multiple models. Secondly, we will
give a macro (Section 5.2) and a micro (Section 5.3) explanation of the coverage acceleration of the
weight relay.

4



Under review as a conference paper at ICLR 2023

5.1 CONSISTENCY PROOF FOR THE ALIGNMENT

This section will show that despite we only define the relationship between two kernels, this opera-
tion will keep the consistency when we have multiple kernels. The consistency of weight alignment
can be describe as below: For any three kernel weights {A,B,C} and their length relationship are:

a < b < c

We could use weight alignment to deter the alignment relationship between C and the other two
kernels as:

Ai
align with−−−−−→ Ck (2)

Bj
align with−−−−−→ Ck (3)

The signal Phase alignment can be called consistency if, with the same operation on A and B , we
should have

Ai
align with−−−−−→ Bj

Here, we give an example to illustrate the consistency of multiple kernels. Supposing we have three
kernels of length 3, 5, 8. Via Equation. 1, the A1 should align with C4, the B3 should align with C4.
Consistency means that the A1 should align with B3.

Proof of consistency for Equation.1:

When we combine Equation.1 and Equation.2 we know that the a th element of kernel A should
align with c th element of kernel C and their index relationship is:

k = i+ ⌊(c− 1)/2⌋ − ⌊(a− 1)/2⌋ (4)

With Equation.1 and Equation.3 we know the alignment relationship between elements in B and C
is:

k = j + ⌊(c− 1)/2⌋ − ⌊(b− 1)/2⌋ (5)

Using the Equation. 5 to subtract Equation. 4 and we have:

k − k =
i+ ⌊(c− 1) /2⌋ − ⌊(a− 1) /2⌋

+
−j − ⌊(c− 1) /2⌋+ ⌊(b− 1) /2⌋

(6)

Therefore, we know
j ≡ i+ ⌊(b− 1) /2⌋ − ⌊(a− 1) /2⌋

Which means that
Ai

should align with−−−−−−−−−→ Bj

as it should be.

5.2 MACRO EXPLANATION OF THE TRAINING ACCELERATION

One explanation of the training acceleration is that compared with the classic initialization weight,
the weight relay initialization is closer to the final weight. An experiment evidence is given in the
Section6.5. We statistic the distance between the initialization weight and trained weight, and we
will see that compared with the random initialization, the weight relay initialization are of a smaller
distance to the final value.

5.3 MICRO EXPLANATION OF THE TRAINING ACCELERATION

The micro explanation to the training acceleration is that: the small network’s optimization direction
is the optimization direction of the large network’s sub-network, where the small network should
replace the weight. Therefore, the training acceleration is because the training of the small network
makes the sub-network close to the final target, which also matches the experiment result in the
macro explanation(Section6.5).

To explain this, we could start from a simple case study in Figure 3.

5



Under review as a conference paper at ICLR 2023

0 100 200 300 400
0.3

0.2

0.1

0.0

0.1

0.2
input and target

input_X
target

0 50 100 150 200 250

0.2

0.1

0.0

0.1

0.2

kernels
large kernel
samll kernel

0 100 200 300 400

0.75

0.50

0.25

0.00

0.25

0.50

0.75

conv results

larget kernel
small kernel

0 50 100 150 200 250

0.10

0.05

0.00

0.05

0.10
adjusted gridents

adjusted large kernel
small kernel

70 75 80 85

0.075

0.050

0.025

0.000

0.025

0.050

0.075

adjusted gridents zoom view
adjusted large kernel
small kernel

Figure 3: This example shows that: Given the same input and target, the gradient direction of the
small kernel is the same as the gradient direction of the aligned part of the large network. Specif-
ically, images from left to right are: 1) input and target, which are generated by random noise; 2)
A large kernel weight which is random noise, and the weight of the small kernel, which is cropped
from the large kernel; 3) The convolution results for large kernel and small kernel with the input in
image 1); 4) The gradients of kernels which is calculated with the random target in image 1). To
demonstrate the overlapping parts of the two kernels are in a similar direction, their magnitude was
adjusted; 5). A zoom view of the overlapping gradient parts (indexed 70 to 90).

5.3.1 THEORETICAL ANALYSIS

Mathematically, we would show that: when kernels of various sizes meet the three requirements: 1)
they were alignment, 2) they are of the same output, and 3) they are of the same target, the weight
of those alignment parts will be optimized with the same direction.

Supposing we have weights of two kernels A and B of length a and b. The input signal is T which
length is t.

Each layer of 1D-CNNs requires the output’s length equal to the input’s length. Thus, we need to
pad the input signal. The padding size has a relationship with the length of the kernel. For kernel of
length ∗, we denote the padded input as P∗ and the output as O∗.

Based on the definition of convolution operation 1, we know the gradient of the i-th element for
kernels Ai

∇Ai =

t−1∑
k=0

∇Oa
k

Pa
i+k

(7)

and the gradient of the j-th element for kernels Bb is

∇Bj =

t−1∑
k=0

∇Ob
k

Pb
j+k

(8)

Based on the assumption 2) and 3) when two kernel are of same output and same target they will be
of same gradient. Thus we have

∇Oa
∗ ≡ ∇Ob

∗ (9)

and we could simplified to Oi

Based on the assumption 3) Under the weight relay setting, every model share the same target (data
on all devices). Thus we have:

E (∇Os
i ) = E

(
∇Ol

i

)
(10)

Since A and B are aliened, we could combine the Equation 8 with Equation 1, and we get:

∇Bi+⌊(b−1)/2⌋−⌊(a−1)/2⌋ =

t−1∑
k=0

∇Ok

Pb
i+⌊(b−1)/2⌋−⌊(a−1)/2⌋+k

(11)

1https://e2eml.school/convolution_one_d.html

6

https://e2eml.school/convolution_one_d.html


Under review as a conference paper at ICLR 2023

Therefore if:

Pa
i+k ≡ Pb

i+⌊(b−1)/2⌋−⌊(a−1)/2⌋+k (12)

We could have:
∇Ai ≡ ∇Bi+⌊(b−1)/2⌋−⌊(a−1)/2⌋ (13)

The Equation 13 means the alignment parts will be optimized with the same direction.

Based on the definition of same padding, we know:

P∗
m =

{Tm−⌊(∗−1)/2⌋, if 0 ≤ m− ⌊(∗ − 1)/2⌋ ≤ t− 1

padding value, otherwise
(14)

We could see values in Pa
i+k are:

Pa
i+k =

{Ti+k−⌊(a−1)/2⌋, if 0 ≤ i+ k − ⌊(a− 1)/2⌋ ≤ t− 1

padding value, otherwise
(15)

and values in Pb
i+⌊(b−1)/2⌋−⌊(a−1)/2⌋+k are also:

Pb
i+⌊(b−1)/2⌋−⌊(a−1)/2⌋+k =

{Ti+k−⌊(a−1)/2⌋, if 0 ≤ i+ k − ⌊(a− 1)/2⌋ ≤ t− 1

padding value, otherwise
(16)

Based on Equation 15 and Equation 16, we know the Equation 12 is always correct. Thus, weight
of those alignment parts will be optimized with the same direction as it described in Equation 13

In real cases, we cannot expect the target of small and large networks are the same. However, it is
reasonable to assume that those two networks’ targets are similar. In Figure 4, we random 5000 sets
of kernels and two targets and plot the relationship between gradient and targets. We could see that
the small kernel’s gradient direction is similar to the gradient direction of the aligned part when the
target is similar. Therefore, as long as their targets are similar, the weight relay could accelerate the
training of the large network.

0.0 0.2 0.4 0.6 0.8 1.0
cos distance of result

0.0

0.2

0.4

0.6

0.8

1.0

co
s d

ist
an

ce
 o

f g
rid

en
t

Figure 4: The blue points are results from 5000 tests with random input, targets, and weight. The
orange point is the origin point. We could see that when the value of the x-axis approaches 0 (target
similar), the value of the y-axis comes to 0 (gradient direction similar).

6 EXPERIMENT

6.1 BENCHMARKS

University of California, Riverside (UCR) 128 archive (Dau et al., 2018) is selected to evaluate
the weight relay under the federated setting. This is an archive of 128 univariate TS datasets from
various domains, such as speech reorganizations, health monitoring, and spectrum analysis. What’s
more, those datasets also have different characteristics. For instance, among those datasets, the class
number varies from 2 to 60, and the length of each dataset varies from 24 to 2844. The number of
training data varies from 16 to 8,926.

7



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0
Sm

al
l m

od
el

 a
cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

Figure 5: From top to bottom, each row shows the statistical results when the large model has
2Xkernel size, 2Xchannel number, one extra layer, and all extensions than the smaller model. From
the left to the right image, we can see that, for most of the dataset, the large model will perform
better than the small model (the first column). The performance of the weight relay is similar to the
performance of training from classic (the second column); the weight relay has a lower training cost
(the third column); To archive similar performance, the weight relay has a smaller training cost (the
fourth column).

6.2 EVALUATION CRITERIA

Following the datasets archive (Dau et al., 2018), the accuracy score is selected to measure the
performance. Following the paper (fed), the communication round multiple model size is selected
to measure the training cost.

8



Under review as a conference paper at ICLR 2023

6.3 EXPERIMENT SETUP

Following Fawaz et al. (2019); Tang et al. (2021); Ismail Fawaz et al. (2019), for all benchmarks,
we follow the standard and unify settings (Wang et al., 2017) for all 128 datasets in the UCR archive.
The training will stop when the training loss is less than 1e-3 or reach 5000 epoch. To mimic the
federated learning scenario, the client number is 10. More details can be found in the supplementary
material.

6.4 EXPERIMENT RESULT

The experiment shows that weight relay has similar performance and fewer computation resources
costs than using federated average on all devices to obtain each model. Due to the larger number of
datasets, we cannot list the results of all datasets. Therefore, we plot the statistical result of the 128
datasets, and the result is shown in Figure 5.

6.5 CASE STUDY OF THE CONVERGENCE ACCELERATION

In this section, the top three datasets in the UCR archive of most training samples are selected. As
we explained in Section 5.2, the visualization in Figure 6.5 confirms that the weight relay could
accelerate convergence because the weight from a well-trained small network is closer to the target
weight than random initialization.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Absolute distance of each weight between 
 trained and initialization

0

100

200

Fr
eq

ue
nc

y

ElectricDevices
Third convolutional layer

Classic initialization
Weight relay

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Absolute distance of each weight between 
 trained and initialization

0

100

200

300

Fr
eq

ue
nc

y

Crop
Third convolutional layer

Classic initialization
Weight relay

0.00 0.02 0.04 0.06 0.08 0.10

Absolute distance of each weight between 
 trained and initialization

0

100

200

300

Fr
eq

ue
nc

y

FordB
Third convolutional layer

Classic initialization
Weight relay

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Absolute distance of each weight between 
 trained and initialization

0

100

200

300

Fr
eq

ue
nc

y

ElectricDevices
Second convolutional layer

Classic initialization
Weight relay

0.00 0.02 0.04 0.06 0.08 0.10

Absolute distance of each weight between 
 trained and initialization

0

100

200

300

Fr
eq

ue
nc

y

Crop
Second convolutional layer

Classic initialization
Weight relay

0.00 0.01 0.02 0.03 0.04 0.05

Absolute distance of each weight between 
 trained and initialization

0

100

200

Fr
eq

ue
nc

y

FordB
Second convolutional layer

Classic initialization
Weight relay

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Absolute distance of each weight between 
 trained and initialization

0

10

20

Fr
eq

ue
nc

y

ElectricDevices
First convolutional layer

Classic initialization
Weight relay

0.00 0.02 0.04 0.06 0.08 0.10

Absolute distance of each weight between 
 trained and initialization

0

10

20

30

Fr
eq

ue
nc

y

Crop
First convolutional layer

Classic initialization
Weight relay

0.00 0.01 0.02 0.03 0.04

Absolute distance of each weight between 
 trained and initialization

0

5

10

15

Fr
eq

ue
nc

y

FordB
First convolutional layer

Classic initialization
Weight relay

Figure 6: This histogram statistic the distance between the initialization weight and trained weight.
As we can see, compared with the random initialization, the weight relay initialization are of a
smaller distance to the final value. Therefore, it will be easier to converge than a random initializa-
tion one.

7 CONCLUSION

In this paper, we proposed the weight relay method, which could reduce the training cost for hetero-
geneous model training. We theoretically analyse the mechanism of weight relay and experimentally
verify the effectiveness on multiple datasets from multiple domains.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen,
and Gustavo Batista. The ucr time series classification archive, July 2015. www.cs.ucr.edu/
˜eamonn/time_series_data/.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, and et.al. The ucr time series archive.
arXiv:1810.07758, 2018.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: Exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, pp. 1–42, 2020.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020.

Xuanyi Dong, David Kedziora, Katarzyna Musial, and Bogdan Gabrys. Automated deep learning:
Neural architecture search is not the end. arXiv preprint arXiv:2112.09245, 2021.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963, 2019.

Mohamed Amine Ferrag, Othmane Friha, Leandros Maglaras, Helge Janicke, and Lei Shu. Feder-
ated deep learning for cyber security in the internet of things: Concepts, applications, and experi-
mental analysis. IEEE Access, 9:138509–138542, 2021.

Will Gans, Anna Alberini, and Alberto Longo. Smart meter devices and the effect of feedback
on residential electricity consumption: Evidence from a natural experiment in northern ireland.
Energy Economics, 36:729–743, 2013.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. Advances in Neural Information Processing Systems, 33:
14068–14080, 2020.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. A survey on federated
learning for resource-constrained iot devices. IEEE Internet of Things Journal, 9(1):1–24, 2021.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F. Schmidt,
Jonathan Weber, Geoffrey I. Webb, and et.al. InceptionTime: Finding AlexNet for Time Series
Classification. arXiv e-prints, art. arXiv:1909.04939, Sep 2019.

Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Leandros
Tassiulas. Model pruning enables efficient federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

Kathan Kashiparekh, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
Convtimenet: A pre-trained deep convolutional neural network for time series classification.
arXiv:1904.12546, 2019.

BG Kavyashree, Shantharam Patil, and Vidya S Rao. Review on vibration control in tall buildings:
from the perspective of devices and applications. International Journal of Dynamics and Control,
9(3):1316–1331, 2021.

10

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


Under review as a conference paper at ICLR 2023

Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes: an efficient feder-
ated learning framework for heterogeneous mobile clients. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, pp. 420–437, 2021.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong Chen, and Xing Xie.
No one left behind: Inclusive federated learning over heterogeneous devices. arXiv preprint
arXiv:2202.08036, 2022.

Shengli Liu, Guanding Yu, Rui Yin, and Jiantao Yuan. Adaptive network pruning for wireless
federated learning. IEEE Wireless Communications Letters, 10(7):1572–1576, 2021.

Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and M Shamim Hossain.
Deep anomaly detection for time-series data in industrial iot: A communication-efficient on-
device federated learning approach. IEEE Internet of Things Journal, 8(8):6348–6358, 2020.

Sungkyu Park, Marios Constantinides, Luca Maria Aiello, Daniele Quercia, and Paul Van Gent.
Wellbeat: A framework for tracking daily well-being using smartwatches. IEEE Internet Com-
puting, 24(5):10–17, 2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318, 2013.

Dmytro Progonov and Oleksandra Sokol. Heartbeat-based authentication on smartwatches in vari-
ous usage contexts. In International Workshop on Emerging Technologies for Authorization and
Authentication, pp. 33–49. Springer, 2021.

Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew Y Ng.
Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv:1707.01836,
2017.

Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. Towards a universal neural network
encoder for time series. In CCIA, pp. 120–129, 2018.

Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. Detailed compar-
ison of communication efficiency of split learning and federated learning. arXiv preprint
arXiv:1909.09145, 2019.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Chang Wei Tan, Geoffrey I Webb, and François Petitjean. Indexing and classifying gigabytes of
time series under time warping. In Proceedings of the 2017 SIAM international conference on
data mining, pp. 282–290. SIAM, 2017.

Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, and Jing Jiang. Omni-
scale cnns: a simple and effective kernel size configuration for time series classification. In
International Conference on Learning Representations, 2021.

F Vidal, M Navarro, C Aranda, and T Enomoto. Changes in dynamic characteristics of lorca rc
buildings from pre-and post-earthquake ambient vibration data. Bulletin of Earthquake Engineer-
ing, 12(5):2095–2110, 2014.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
neural networks: A strong baseline. In 2017 international joint conference on neural networks,
pp. 1578–1585. IEEE, 2017.

11



Under review as a conference paper at ICLR 2023

Liudong Xing. Reliability in internet of things: Current status and future perspectives. IEEE Internet
of Things Journal, 7(8):6704–6721, 2020.

Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and Naixue Xiong. Accelerating federated learn-
ing for iot in big data analytics with pruning, quantization and selective updating. IEEE Access,
9:38457–38466, 2021.

Zirui Xu, Zhao Yang, Jinjun Xiong, Janlei Yang, and Xiang Chen. Elfish: Resource-aware federated
learning on heterogeneous edge devices. Ratio, 2(r1):r2, 2019.

Lan Zhang and Xiaoyong Yuan. Fedzkt: Zero-shot knowledge transfer towards heterogeneous on-
device models in federated learning. arXiv preprint arXiv:2109.03775, 2021.

Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and A Salman Avestimehr.
Federated learning for the internet of things: Applications, challenges, and opportunities. IEEE
Internet of Things Magazine, 5(1):24–29, 2022.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification using
multi-channels deep convolutional neural networks. In International Conference on Web-Age
Information Management, pp. 298–310. Springer, 2014.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 ROBUST TO VARIOUS EARLY STOP CRITERIA

This section shows that the weight relay is robust to various early stop criteria. Specifically, the
experiment in Figure 5 is run with the learning rate of 0.0001; the train will stop when the loss is
less than 1e-3 or 5000 epochs. In figure 7, the experiment will stop if the value of loss changing is
less than 2% within 200 epochs. In Figure 8, we change the learning rate to 0.01 while keeping other
settings the same as Figure 7. We could see that the weight relay consistently shows effectiveness
with these various hyper-parameter settings.

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)
Distribution by Large m

odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y
our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)
Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

Figure 7: The experiment results under the stop criteria: the value of loss changing is less than 2%
within 200 epochs.

13



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 c

os
t r

at
io

(o
ur

s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc

0.0

0.2

0.4

0.6

0.8

1.0

Sm
al

l m
od

el
 a

cc

dataset(s):Small model acc > Large model acc
dataset(s): Small model acc < Small model acc

Distribution by Large model acc

Distribution by Sm
all m

odel acc

0.0 0.2 0.4 0.6 0.8 1.0
Large model acc (classic)

0.0

0.2

0.4

0.6

0.8

1.0

La
rg

e 
m

od
el

 a
cc

 (o
ur

s)

dataset(s):Large model acc (ours) > Large model acc (classic)
dataset(s): Large model acc (ours) < Large model acc (ours)

Distribution by Large model acc (classic)

Distribution by Large m
odel acc (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost ratio(classic)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 c
os

t r
at

io
(o

ur
s)

dataset(s):Training cost ratio(ours) > Training cost ratio(classic)
dataset(s): Training cost ratio(ours) < Training cost ratio(ours)

Distribution by Training cost ratio(classic)

Distribution by Training cost ratio(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Training cost

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

our solution
classic solution

Distributions by training cost ratio

Distributions by test accuracy

Figure 8: The experiment results under the learning rate 0.01.

14


	Introduction
	Related Work
	Deep learning for time series classification
	Federated learning on heterogeneous devices

	Motivation
	Weight relay
	Heterogeneous models
	Weight alignment
	Stop criteria for each model

	Analysis of weight relay
	Consistency proof for the alignment
	Macro Explanation of the training acceleration
	Micro explanation of the training acceleration
	Theoretical analysis


	Experiment
	Benchmarks
	Evaluation criteria
	Experiment setup
	Experiment result
	Case study of the convergence acceleration

	Conclusion
	Appendix
	Robust to various early stop criteria


