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ABSTRACT

This paper presents a novel approach to address the challenge of online sequence
learning for decision making under uncertainty in non-stationary, partially ob-
servable environments. The proposed algorithm, Distributed Hebbian Temporal
Memory (DHTM), is based on the factor graph formalism and a multi-component
neuron model. DHTM aims to capture sequential data relationships and make cu-
mulative predictions about future observations, forming Successor Features (SFs).
Inspired by neurophysiological models of the neocortex, the algorithm uses dis-
tributed representations, sparse transition matrices, and local Hebbian-like learn-
ing rules to overcome the instability and slow learning of traditional temporal
memory algorithms such as RNN and HMM. Experimental results show that
DHTM outperforms LSTM, RWKV and a biologically inspired HMM-like al-
gorithm, CSCG, on non-stationary data sets. Our results suggest that DHTM is
a promising approach to address the challenges of online sequence learning and
planning in dynamic environments.

1 INTRODUCTION

Modelling sequential data is one of the essential tasks in artificial intelligence as it has many ap-
plications, including decision-making and learning world models (Moerland et al., 2023), natural
language processing (Min et al., 2021), conversational AI (Dwivedi et al., 2023), time series anal-
ysis (Eraslan et al., 2019), and video and music generation (Ji et al., 2020). One of the classical
approaches to modelling sequential data is to form a representation that stores and condenses the
most relevant information about a sequence, and to find a general transformation rule of this infor-
mation through the dimension of time (Lipton et al., 2015; Harshvardhan et al., 2020; Mathys et al.,
2011). We refer to the class of algorithms that use this approach as temporal memory (TM) algo-
rithms because they essentially model the cognitive ability of complex living organisms to remember
the past experience and make future predictions based on that memory (Hochreiter & Schmidhuber,
1997; Friston et al., 2016; 2018; Parr & Friston, 2017).

Temporal memories differ in their ability to capture data dependencies and the extent to which they
can generalise their predictions to unseen sequences. There are two extremes known in psychology
as cognitive maps Tolman (1948), which extract commonalities or schemas generalising experience,
and episodic memory Tulving et al. (1972), which stores fragments of experience separately. They
both can be viewed as temporal memories, however, the former is slower and require a lot of data to
built up a useful schema, according to contemporary computational models based on HMM (George
et al., 2021) and Transformers (Dedieu et al., 2024), while the latter is instant and is usually viewed
as a data buffer (Zhang et al., 2021).

In this paper, we explore advantages of an episodic-like memory in addressing the problem of online
sequence learning for planning and decision-making under uncertainty, which can be formalized as
reinforcement learning (RL) for a partially observable Markov decision process (POMDP) (Poupart,
2005; Singh et al., 2021). Inferring the hidden state in a partially observable environment is a se-
quence modelling problem, since it requires processing a sequence of observations to obtain enough
information about the hidden state. One of the most efficient representations of hidden states for
discrete POMDPs is the Successor Representation (SR), which disentangles hidden states and goals
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given by the reward function (Dayan, 1993; Samuel J. Gershman, 2018; Millidge & Buckley, 2022).
The Successor Features framework is an extension of SR to continuous POMDP, using the same
idea of value function decomposition, but instead for features of a hidden state (Barreto et al., 2017;
Touati et al., 2022). Temporal memory (TM) algorithms can be used to make cumulative predictions
about future states and their features, forming SR or SF. This work shows that the proposed algo-
rithm, Distributed Hebbian Temporal Memory (DHTM), can dynamically form SFs for navigation
tasks in Gridworld and AnimalAI (Fountas et al., 2020) environments.

The most prominent TM algorithms, such as a Recurrent Neural Network (RNN) (Boden, 2002) or
LSTM (Hochreiter & Schmidhuber, 1997), use backpropagation to capture data relationships, which
is known to be unstable due to recurrent nonlinear derivatives. They also require complete data se-
quences to be available during training. Although the gradient vanishing problem can be partially
circumvented in a way that Receptance Weighted Key Value (RWKV) (Peng et al., 2023) or Linear
Recurrent Unit (LRU) (Orvieto et al., 2023) models do, the problem of online learning, i.e. learning
on non-stationary data sets, is still a viable issue. Unlike graphical models such as HMM (Eddy,
2004), RNN models and their descendants also lack a probabilistic theoretical foundation, which is
advantageous for modelling sequences captured from stochastic environments (Salaün et al., 2019;
Zhao et al., 2020). There is little research on TM models that can be used in fully online adap-
tive systems interacting with partially observable stochastic environments with access to only one
sequence data point at a time, a common case in reinforcement learning (Jahromi et al., 2022).

We propose a Distributed Hebbian Temporal Memory (DHTM) algorithm based on factor graph for-
malism and a multi-compartment neuron model inspired by the HTM neuron (Hawkins & Ahmad,
2016). Factor graph is a flexible graphical representation of probabilistic distributions, which is com-
monly used in combination with sum-product algorithm (Loeliger, 2004). We found this represen-
tation particularly convenient in our attempt of probabilistic interpretation of the HTM framework.
The resulting graphical structure of our model is similar to that of the factorial HMM (Ghahramani
& Jordan, 1995). An important feature of our model is that the transition matrices for each factor
are stored as different components (segments) of artificial neurons, which makes computation very
efficient in the case of sparse transition matrices. Our TM forms sequence representations entirely
online and uses only local Hebbian-like learning rules (Hebb, 2005; Churchland & Sejnowski, 1992;
Lillicrap et al., 2020), which avoid the drawbacks of gradient methods and make the learning pro-
cess much more sample efficient than gradient methods. This comes at the expense of hidden state
generalization, since DHTM’s hidden state uniquely encodes each observation sequence. Different
trajectories leading to the same position in the partially observable Gridworld can result in different
hidden states inferred by DHTM. In essence, this makes DHTM a model of episodic memory, or an
adaptive trajectory buffer, with built-in machinery for making multistep future predictions. In this
light, we also show that an agent forming SF with DHTM can be interpreted as a kind of episodic
control (EC) (Lengyel & Dayan, 2007; Pritzel et al., 2017; Ritter et al., 2018; Emukpere et al., 2023).

Though our approach is similar to EC, we are not aware of other works, demonstrating its application
to partially observable environments. There are other temporal memories that, similarly to DHTM,
use Hebbian rules and learn online, like Asymmetric Hopfield Network (AHN) (Chaudhry et al.,
2023), Temporal Predictive Coding (tPC) (Tang et al., 2023) and Hierarchical Temporal Memory
(Hawkins & Ahmad, 2016). Compared to DHTM, AHN is a first-order memory. That is, it is
not able to disentangle identical observations that correspond to different underlying environmental
states. Therefore, it is not suitable for partially observable environments. In contrast, tPC has a
hidden layer that, potentially, makes it a high-order memory. Despite that it has been tested only in
MDP environments (Tang et al., 2024) so far, this method paves a promising direction, which we
aim to compare with in future work. Finally, the algorithm that inspired our work, HTM, is also
a Hebbian high-order temporal memory, which, opposed to DHTM, doesn’t allow for probabilistic
predictions due to its all-or-nothing computations.

The proposed TM is tested as an episodic memory for an RL agent architecture navigating in a
Gridworld environment and a more challenging AnimalAI testbed (Crosby et al., 2020). The results
demonstrate that our algorithm outperforms classical LSTM, RWKV and a biologically inspired
HMM-like world model CSCG (George et al., 2021) in changing environments and is in order of
magnitude more sample efficient than Dreamer V3 (Hafner et al., 2023). Another advantage of our
algorithm is that it can be implemented on neuromorphic processors using only local learning rules.

Our contribution to this work includes the following key elements:
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• A novel episodic memory model, called DHTM, which is based on a factor graph formalism
and features an efficient, bio-inspired implementation.

• We demonstrate that the DHTM can operate fully online, using only local Hebbian-like
learning rules.

• We show that DHTM learns at a speed comparable to model-based table episodic con-
trol while supporting distributed representations. This capability significantly broadens its
applicability.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

This paper considers decision-making in a partially observable environment (Poupart, 2005). The
environment is defined by its state transition function P (s, a, s′) = Pr(s′ | s, a), determining its
dynamics, where s′, s ∈ S is called state space, a ∈ A—action space. Partial observability means
that an agent has access to observations o ∈ O, which only partially inform about the environment’s
state s at each moment.

In reinforcement learning (RL), the goal for the agent is set through the reward function R(s) : S →
R. The task of RL is to find the agent’s policy π(a | s) : S×A→ [0, 1] that maximizes the expected
return G = E[

∑T
t=0 γ

lRt], where T is an episode length and discount factor γ sets the importance
of remote rewards. Value-based methods usually aim to estimate the Q-function given a policy π:
Qπ(st, at) = E[

∑
l≥t γ

l−tR(sl+1) | st, at, π]. For an optimal value function Q∗, an optimal policy
can be defined as π(a | s) = argmax

a
Q∗(s, a).

One of the drawbacks of value-based methods is that they require learning a new Q-function when
the reward function changes, even if the environment remains the same. To get around this, the
dynamics of the environment and the reward function can be decoupled, which leads us to the
successor representation framework.

2.2 SUCCESSOR REPRESENTATION

Successor representations are such representations of hidden states from which we can linearly infer
the state value given the reward function (Dayan, 1993). For a discrete state space, such representa-
tion can be derived just by rearranging sums in the equation for value function:

V (ht = i) = E[

∞∑
l=0

γlRt+l+1 | ht = i] =
∑
j

SRijRj , (1)

where γ is a discount factor, i-th row in the matrix SR is the Successor Representation of a state i,
and SRij =

∑∞
l=0 γ

lp(ht+l+1 = j | ht = i). Rj is a reward for observing the state j.

An extension of SR for large or continuous state spaces that we use is Successor Features (Barreto
et al., 2017), which is based on a similar idea of value function decomposition, but in a feature space
instead (see details in Appendix A).

It is easy to show that, similarly to the Q-function, both SR and SF can be obtained using dynamic
programming. However, this limits its use to relatively stable environments, since changes in the
transition function can’t be taken into account immediately.

The next step to improve an agent’s adaptability is to use a world model to approximate the environ-
ment’s transition function and use it directly to form SR according to its definition. And one of the
most basic such world models is the Hidden Markov Model.

2.3 HIDDEN MARKOV MODEL

A partially observable environment can be approximated by a Hidden Markov Model (HMM) with
hidden state space H and observation space O. Generally, H is not equal to environemnts state
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space S since the environemnt’s true structure is usually unknown. For simplicity, we assume that
actions are fully observable and that information about them is contained in hidden state. For the
process of length T with state values h1:T = (h1, . . . , hT ) and observations o1:T = (o1, . . . , oT ),
the Markov property yields the following factorization of the generative model:

p(o1:T , h1:T ) = p(h1)

T∏
t=2

p(ht|ht−1)

T∏
t=1

p(ot|ht). (2)

In the case of a discrete hidden state variable, a time-independent stochastic transition matrix can be
learned with the Baum-Welch algorithm (Baum et al., 1970), a variant of the expectation maximiza-
tion (EM) algorithm. To compute the statistics for the expectation step, it uses the forward-backward
algorithm, which is a special case of the sum-product algorithm (Kschischang et al., 2001).

Factor graph is a convenient graphical representation (Loeliger, 2004) of probabilistic models like
HMM (see Fig.1A for an example). Formally, a factor graph is a bipartite graph, where one part con-
sists of factors (squares), which, replacing conditional probabilities, define dependencies between
random variables (circles) constituting the other part. Such representation also allows extension of
forward-backward algorithm to sum-product algorithm. As shown in section 3.1, we base DHTM
on ideas from the sum-product algorithm and the Factorial HMM, while adapting them for online
learning.

3 DISTRIBUTED HEBBIAN TEMPORAL MEMORY

3.1 FACTOR GRAPH MODEL

Distributed Hebbian Temporal Memory is based on the sum-product belief propagation algorithm
in a factor graph (see Figure 1A). Analogous to Factorial HMM (Ghahramani & Jordan, 1997), we
divide the hidden space H into subspaces Hk. There are four sets of random variables (RV) in
the model: Hi

t−1—latent variables representing hidden states from the previous time step (context),
Hk

t —latent variables for the current time step, and Φk
t –feature variables. All random variables have

categorical distributions. RV state values are denoted by corresponding lowercase letters: hi
t−1, hk

t ,
φk
t , olmt .

In this work, each variable Φk
t is considered independent and has a separate graphical model for

increased computational efficiency. However, in practice, hidden variables of the same time step
are statistically interdependent. We introduce their interdependence through a segment computation
trick that goes beyond the standard sum-product algorithm (see Appendix B for details).

The model also has three types of factors: M i
t−1—messages from previous time steps, F k

c —context
factor (generalized transition matrix), F k

e –emission factor. We assume that messages M i
t−1 contain

posterior information from time step t−1, so we don’t plot observable feature variables for previous
time steps in Figure 1A.

We will discuss only the upper block of the graph in Figure 1A, which is DHTM itself. The lower
block—an encoder—is described in Appendix D. The only requirement for the encoder is that its
output should be represented as states of categorical variables (features) for the current observation.

The main routine of the DHTM is to estimate distributions of hidden state variables given by the
equation 3, the computational flow of which is schematically shown in Figure 1B:

p(hk
t ) ∝

∑
Ωk

∏
i∈ωk

M i
t−1(h

i
t−1)F

k
c (h

k
t ,Ωk), (3)

where summation is over all possible hidden RV states in Ωk = {hi
t−1 : i ∈ ωk}, ωk = i1, . . . , in—

set of previous time step RV indexes included in F k
c factor, (n+ 1)—factor size.

3.2 NEURAL IMPLEMENTATION

For computational purposes, we translate the factor graph shown in Figure 1A to the Hebbian learn-
ing neural network architecture shown in Figure 1B (for a biological interpretation of the model,
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Figure 1: A. Example of a factor graph for the DHTM. The input to the model is a sequence of
observations ot. The encoder block forms categorical features Φk

t . Each feature Φ has its own
explaining hidden variable, which may depend on hidden variables of the other features and on
itself from the previous time step. F k

c and F k
e are context and emission factors for the corresponding

variables. Unary factors M i
t−1 called messages represent accumulated information about previous

time steps. B. Neural implementation. Random variables are represented by cell clusters (white
circles), where each cell corresponds to a state and its spike frequency to the probability of the
state p(hk

t ). The dendritic segments of the cell correspond to the context factor values fl for a given
combination of states (active presynaptic cells). Segments’ excitations El are combined to determine
the cell’s spike frequency p(hk

t ). Segment synaptic weights reflect the specificity of the combination
of presynaptic cells for the segment. Emission factors F k

e are fixed and represented by minicolumns
within a variable.

see Appendix C). Each RV can be viewed as a set of neurons representing the states of the RV,
i.e. p(hk

t ) = p(cjt = 1), where j–is the index of a neuron corresponding to the state hk
t and

cjt ∈ {0, 1}—cell’s activity. Since RVs are categorical, only one cell per variable can be active at a
time and their activity is defined through sampling of RV’s distribution.

Since factors F k
c represent dependencies between variables, in neural implementation we view them

as collections of connections between cell groups corresponding to RVs that F k
c takes as arguments.

Each factor’s entry maps a particular combination of states hk
t , h

i1
t−1, . . . , h

inl
t−1 to a factor value fl.

We found it useful to represent each such entry as a separate computational unit, which we call
segment (alluding to dendritic segments of a biological neuron). As shown in Figure 1B, segment l
connects its presynaptic cells hi1

t−1, . . . , h
inl
t−1 (one per each RV), constituting its receptive field, to

the cell it excites hk
t . The factor fl value can be thought of as a segment’s excitation efficiency, i.e.

how strong its presynaptic pattern influences the cell’s activation.

Reformulation of belief propagation step in equation 3 in terms of segmental computations results
in the following equations:

p(hk
t ) = softmax

j∈cells[Hk
t ]
( max
l∈seg(j)

(El)), (4)

El = log fl + wl log
1

nl

∑
u∈rec(l)

wulmu +
∑

u∈rec(l)

(1− wul) logmu, (5)

where cells[Hk
t ]—indexes of cells corresponding to states of the variable Hk

t , seg(j)—all
segments for cell j, wul—synapse efficacy or neuron’s specificity for segment, such that
wul = p(sl = 1|cut−1 = 1), wl = 1

nl

∑
u wul—average synapse efficacy for segment l, and nl-

number of cells in segment’s receptive field rec(l). mu is presynaptic cell’s activation probability
p(cut−1 = 1), which carries messages from the previous time-step and corresponds to entry in M i

t−1.
For detailed derivation and rationale behind these equations, see Appendix B.

Initially, cells have no segments. As learning progresses, new non-zero connections, grouped into
segments, are created. In equation 5, we benefit from having sparse factors because their complexity
depends linearly on the number of non-zero entries or segments. And that’s usually the case in our
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model due to the one-step Monte Carlo learning and the special form of the emission factors F k
e :

F k
e (h

k
t , φ

k
t ) = I[hk

t ∈ col(φk
t )], (6)

where I—indicator function, col(φk
t ) is a set of hidden states connected to the feature state φk

t
forming a column. The shape of the emission factor is inspired by the presumed columnar structure
of the neocortex and has been shown to induce a sparse transition matrix in HMM (George et al.,
2021).

The next step after computing the p(hk
t ) distribution is to incorporate information about the current

feature states p(hk
t | φk

t ) ∝ p(hk
t )I[hk

t ∈ col(φk
t )]. After that, the learning step is executed. The

loop closing step of our TM algorithm is to assign the posterior of the current step p(hk
t | φk

t ) to
M i

t−1.

3.3 LEARNING

DHTM learns fl and wul weights by Monte-Carlo Hebbian-like updates. First, hi
t−1 and hk

t are
sampled from their posterior distributions: p(hi

t−1 | φi
t−1) ∝M i

t−1 and p(hk
t | φk

t ) respectively.
Cells that correspond to sampled states become active. For cell j corresponding to hk

t we check if
there are segments matching the pattern of sampled states (active cells) from the previous time-step
{hi

t−1}i. If there are no such segments, the new segment connecting sampled cells is created. For all
newly created segments and segments with receptive fields matching active cells from the previous
time-step, its activity sl is set to 1. Then fl is updated according to the activity of the segment sl and
the activity of its cell cjt , so that fl is proportional to several coincidences sl = cjt = 1 in the recent
past (exponential moving average of coincidence):

∆fl = α(cjt − fl)sl, (7)

where α ∈ [0, 1) is the segment’s learning rate.

That is, fl is trained to be equal to the cell’s average activation frequency when the segment is
active. It’s similar to Baum-Welch’s update rule (Baum et al., 1970) for the transition matrix in
HMM, which, in effect, counts transitions from one state to another, but in our case, the previous
state (context) is represented by a group of RVs.

Weights wul are also updated by the Hebbian rule to reflect the specificity of a presynaptic u for
activating a segment l. That is, they are targeted to represent the probability p(sl = 1 | cut−1 = 1)
that segment sl is active, given that cell u was active at the previous time step. In our algorithm, it
is approximated as an exponential moving average of the frequency activation of segment sl, given
cut−1 = 1:

∆wul = β · I[cut−1 = 1] · (I[sl = 1]− wul), (8)
where β ∈ [0, 1) — learning rate.

3.4 AGENT ARCHITECTURE

We incorporate DHTM as a part of an RL agent. The same agent is used for other memories tested.
The agent consists of a memory model and a feature reward function. The memory model generates
SF by predicting cumulative future distributions of feature variables Φk. We assume that the reward
function can be decomposed linearly in feature space as Rt =

1
n

∑n
k=1 r

k
i , where rki is a reward

associated with feature state φk
t = i and n—number of feature variables. rki is learned during

interaction with the environment and is used in combination with SF representations to estimate the
action value function (see Appendix A for details).

The agent training procedure is outlined in Algorithm 1. For each episode, the memory state is
reset to a fixed initial message with RESET MEMORY() and the variable action is set to a fixed
initial action. An observation returned by an environment (obs) is encoded as a set of categorical
variables. In the OBSERVE() routine, memory learns to predict next feature states as described in
section 3. An agent learns associations to map feature states and rewards in the REINFORCE()
function:

rki ← rki + αI[φk
t = i](Rt − rki ) (9)

where α is a learning rate, Rt—a reward for the current time step.

6



Published as a conference paper at ICLR 2025

Algorithm 1 General agent training procedure

1: for episode=1..n do
2: RESET MEMORY()
3: action← initial action
4: while (not terminal) and (steps < max steps) do
5: obs, reward← STEP()
6: features← ENCODE(PREPROCESS(obs))
7: OBSERVE(features, action)
8: REINFORCE(reward, features)
9: action← SAMPLE ACTION()

10: ACT(action)
11: end while
12: end for

We include actions in DHTM by forcing
some of the hidden variables Hk

t to rep-
resent actions. That is, we assume that
information about action is contained in
the hidden state of the model. For exam-
ple, if we have 4 actions, we set 4 states
for one of the hidden variables and set its
state from observing the action.

In SAMPLE ACION(), for each action
and current state, TM predicts feature
states up to time step T under policy π,
and the predictions are combined to form
SF (equation 10). For simplicity, we al-
ways build SF under a uniform policy,
which doesn’t guarantee optimality, but

we found that it doesn’t make a significant difference to iterative policy improvement in our ex-
perimental setups. The planning horizon T is determined dynamically from the distribution of Φk

t+l.
For each prediction step l, we check whether the distribution of Φk

t+l is close to uniform (according
to Kullback-Leibler distance) or whether any of states with positive reward has probability above a
threshold; in that case, the prediction cycle is stopped. The action value is determined by combin-
ing the corresponding SF and feature state rewards as shown in equation 11. Finally, the action is
sampled from the softmax distribution over the action values.

SFπ
t+T (φ

k = j | ht) =

T∑
l=0

γlpπ(φ
k
t+l+1 = j | ht) (10)

Qπ(ht, at) =
∑
jk

∑
ht+1

SFπ
t+T (φ

k = j | ht+1) · p(ht+1 | ht, at) · rkj , (11)

3.5 DHTM AND EPISODIC CONTROL

Algorithm 2 Episodic memory learning

Input: φt+1, at
1: ht+1←Dat

(ht)
2: φ∗

t+1← argmax
φ

Fe(ht+1, φ)

3: if ht+1 is null or φ∗
t+1 is not φt+1 then

4: ht+1← argmax
h̸∈K

Fe(h, φt+1) # K is the

set of keys for all actions
5: Dat

(ht)← ht+1

6: end if
7: ht ← ht+1

It can be shown that DHTM combined with the
agent architecture described in the previous sec-
tion is similar to episodic control.

DTHM performs best when its hidden state space
is large. Since the hidden state for unpredicted ob-
servations is formed randomly, it’s important that
there are no accidental state collisions when re-
membering transitions. That is, DHTM tries to
remember new sequences without interfering with
old memories. In effect, this makes DHTM a
buffer of agent trajectories with a built-in recall en-
gine. Episodic Control is based on a similar idea,
and to investigate its difference from DHTM, we
implemented an Episodic Control agent, a simpli-

fied counterpart of DHTM, reflecting its core property that presumably helps it solve RL tasks.

Episodic Control (EC) is a general computational approach to storing and reusing an agent’s expe-
rience, inspired by the notion of episodic memory from psychology (Tulving et al., 1972). The core
of EC is a dictionary Da = (Ka, Va) that stores key-value pairs for each discrete action a ∈ A. In
our EC version, Ka is an array of hidden states ht and Va is an array of corresponding subsequent
hidden states ht+1. If the key state ht already exists in the dictionary, its value is rewritten. That is,
Da represents the transition matrix of a deterministic HMM for a feature variable Φt. The hidden
state ht and the feature state φt have the same dependence as in DHTM (equation 6), but in EC we
assume that there are infinite hidden states per feature state. To predict the next state, we just have to
look upDa for the current state ht, but if there is no entry for ht or the prediction does not match the
observed state φt+1, then the new state is formed. Unlike DHTM, the new state is not completely
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Figure 2: POMDP 5x5 Gridworld foraging task using different types of memory: DHTM, CSCG,
LSTM, RWKV. All agents, except for DHTM, are trained in two modes. The first mode is with
oracle, which tells the agent to reinitialize memory and clear the trajectory buffer during environ-
mental change. The second mode is without oracle, so the agent continues using its current strategy
to gather new trajectories and update memory. There is also an episodic control agent (ec) among
baselines, which uses a simple dictionary to store trajectories and make predictions. A. Dynamic of
steps required for the agent to reach the goal. In the 300th episode, the goal is blocked by a wall, so
the agent needs to find a new optimal trajectory. B. Total steps taken during 1000 episodes.

random, but to avoid collisions, the algorithm makes sure that this state hasn’t been chosen before.
The learning procedure of the EC agent’s memory Da is summarized in the algorithm 2.

Since Da can be transformed into a transition matrix, the process of forming SF can be reduced
to one in Sec. 3.4. However, since the resulting transition matrix is sparse, it’s more efficient to
consider Da as a graph representation and to perform SF formation as a breadth-first search (see
Appendix E.3 for details).

4 EXPERIMENTS

We test our model in a reinforcement learning task in the Gridworld environment and in a more
challenging AnimalAI 3D environment. This section shows how different memory models affect
the adaptability of an RL agent. For each setup, the results are averaged over five experiments
with different seed values, and one standard deviation is shown everywhere, except for boxplots.
See Appendix E for details on the baselines, their model parameters, and training regimes. See
Appendix F for a more detailed description of the environments and setups1.

4.1 GRIDWORLD

The first test was conducted in partially observable Gridworld in a 5x5 alternating maze with a
stationary end state and the agent’s starting position. The agent can observe only the colour of
the cell it is in and the colour of an obstacle it encounters, while being punished in addition to
the constant step penalty. Each episode ends when the reward is collected or when the maximum
number of action steps is reached. In each episode, we measure the number of action steps required
for the agent to reach the goal.

Each trial lasts 1000 episodes and consists of two phases. In the first phase, there are no obstacles on
the shortest path to the terminal state. In the second phase, after 300 episodes, the previously optimal
path is blocked by a wall, so the agent has to take a detour to get the reward. The experiment aims to
show the ability of a memory to relearn the structure of the maze in the test time. If the agent is able
to reach the end state in the second phase, it suggests that the model can forget, or at least suppress,

1The source code of the experiments and algorithms is at https://github.com/
Cognitive-AI-Systems/him-agent/tree/iclr25.
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Figure 3: Amount of action steps the agent performs to reach the goal in a 10x10-meter room in
AnimalAI environment using DHTM, CSCG, LSTM, RWKV and EC dictionary. The agent and
the goal have the same initial positions throughout the episodes. Each time-step, the agent gets an
encoded image of a first-person view of the environment and produces one of three actions: turn
left, turn right, or go forward. A. Dynamic of steps required for the agent to reach the goal. B. Total
steps taken during 1000 episodes by the agent with DHTM with K-Means encoder and Categorical
VAE. For the latter, DHTM’s context factor size is varied (i.e., how many previous time-step hidden
variables are considered for prediction).

the memory of the old shortest path when it is blocked. Otherwise, the agent will continue to hit the
wall and fail to reach the terminal state.

In this experiment, we compare our memory model DHTM with CSCG (George et al., 2021), LSTM
(Hochreiter & Schmidhuber, 1997) and RWKV (Peng et al., 2023) within the same agent architecture
that uses memory to form successor features and evaluate actions (see Sec. 3.4). All memories,
except DHTM, are trained in two modes. The first mode is with an oracle that tells the agent to
reinitialize memory and clear the trajectory buffer just in time for the environmental change. The
second mode is without an oracle, so the agent continues to use its current strategy to collect new
trajectories and update memory in the second phase. There is also a simple episodic control agent
(EC) among the baselines, which uses a dictionary to store trajectories and make predictions (see
Section 3.5 for details).

The results in Figure 2 show that CSCG effectively can’t adapt to the environmental change in the
online regime, but only if it is retrained from scratch on new trajectories. And, apparently, LSTM and
RWKV are only able to learn a predictive model for a small horizon, since they perform significantly
worse than other baselines in the second phase, even with oracle enabled. In contrast, DHTM and
EC are able to adapt online even without explicit memory’s trainable parameters reinitialisation.
Another important observation is that the EC agent performs on par with DHTM, suggesting that its
mechanism can explain most of DHTM’s performance in this task. However, see Appendix H.2 for
experiments that show their difference in scalability.

4.2 ANIMALAI

AnimalAI is a 3D environment capable of providing rich visual input to an agent in the form of RGB
images. The goal of the experiment described here is to show that DHTM can handle distributed
representations and is scalable to environments with larger state spaces.

The agent’s task is to reach a sphere of radius 0.5m, which is located in a square area of size 10 by
10 meters. The start position of the agent and the position of the ball are the same between episodes.
In each episode, we measure the number of actions (steps), which are AnimalAI’s standard left/right
turn and forward walk, the agent takes to reach the goal, with the maximum number of actions
limited to 40. Each action is repeated three times and three frames are skipped, so one agent action
step corresponds to three steps in the environment.
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We test DHTM and EC agents using two different encoders: K-Means and Categorical VAE (Jang
et al., 2017). Both encoders are pre-trained on RGB images collected with a uniform strategy during
2000 episodes in the same room used for agent testing. K-Means represents an image as a single
categorical variable with 50 states, and Categorical VAE is configured for distributed representation
with five variables with 50 states each (see Appendix D for details). In case of EC agent, since it
doesn’t support distributed representations, we map each unique VAE encoding to one feature state
using a simple dictionary. Since the resulting number of states for such feature variable is large
(typically more than 1000), it’s infeasible to use the same mapping for CSCG. We also didn’t find
much difference for LSTM and RWKV using K-Means or VAE, so we only keep the results for VAE
encoder.

The results are shown in Figure 3A. It can be seen that after about 150 episodes, the agent with
DHTM and the EC agent reach the goal stably, although the DHTM agent with distributed encoding
(with a factor size of 4) converges to a slightly shorter path on average. The agent with CSCG slowly
improves its strategy, but LSTM and RWKV agents don’t show any learning on this time-step scale.
To understand a common learning time-step scale for contemporary model-based algorithms, we
also tested a small version of Dreamer V3 (18M parameters) (Hafner et al., 2023), which success-
fully solves the same task after about 35× 103 action steps (1000 episodes) versus 3.5× 103 steps
(150 episodes) for DHTM (see Appendix H.1 for details).

To show that DHTM can’t simply be replaced by multiple parallel EC dictionaries or CSCGs in
the case of distributed encoding, we also vary the context factor size of DHTM, that is, how many
previous time-step variables are taken into account to predict the current state of a variable. The
factor size of 1 corresponds to the graph of the Factorial HMM, with parallel HMMs. It can be
seen from Figure 3B that in our case of categorical VAE, knowing only the previous state of the
variable is not enough to reliably predict rewarding features, since the agent doesn’t converge to the
shortest path. We also tested the variant (factor 1*) where each feature variable is represented
by three hidden states, to ensure that the result for factor size 1 is not due to DHTM’s hidden
state collisions. DHTM with a factor that takes into account more than one previous time-step
hidden variable (excluding the action variable) performs significantly better. For diagrams depicting
factor graphs used in these experiments, see Appendix E.4. For further experiments showing the
importance of distributed encoding in DHTM, see Appendix H.3.

5 CONCLUSION

This paper introduces a novel episodic memory model, DHTM. It combines ideas from belief prop-
agation, episodic control, and neurophysiological models of the neocortex, resulting in a fast proba-
bilistic sequence memory.

The experiments show that our memory model can quickly learn observation sequences in changing
environments and effectively reuse them for RL tasks, on par with model-based table episodic con-
trol. We also show that, unlike CSCG and table EC, DHTM is able to handle distributed representa-
tions and account for statistical dependencies between variables of these representations. Potentially,
it extends the application of our algorithm to higher state spaces, exploiting their factorizations for
more efficient computations and to reduce the number of stored parameters.

Our results suggest that DHTM can be viewed as an adaptive trajectory buffer for a slower gen-
eralizing algorithm, such as a Neural State Space Model (Jiang et al., 2023). Through prediction
error learning, DHTM can selectively discard and replace obsolete transitions in observed trajecto-
ries without disrupting relevant experience. It can also provide an initial policy for an agent through
episodic control until a slower but more accurate world model takes over. These features of a trajec-
tory buffer are highly desirable in the case of online learning in non-stationary environments.

Further improvements of DHTM can be directed towards the implementation of an automatic fea-
ture space factorization discovery to determine an optimal context factor size during learning. To
avoid excessive segment growth in noisy environments, it’s also possible to implement an adaptive
segment activation threshold. One of the main limitations of this study is that the evaluation of
the algorithms is limited to basic RL setups due to the simple agent architecture. More advanced
use cases could be demonstrated using better exploration strategies and in combination with other
memory models, which is also a matter of future research.
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A VALUE FUNCTION DECOMPOSITION

In our agent model, we approximate the reward function R(s) as a sum:

Rt =
1

n

n∑
k=1

r(φk
t ), (12)

where r(φk
t ) is a reward associated with state φk

t , n–number of feature variables. Then, similarly to
the Successor Representation idea (see Section 2.2), the value function can be represented as:

V (ht) = E[

∞∑
l=0

γlRt+l+1 | ht] =

∞∑
l=0

γlE[
1

n

n∑
k=1

r(φk
t ) | ht]

=
1

n

n∑
k=1

∑
j

∞∑
l=0

γlp(φk
t+l+1 = j | ht)r

k
j

=
1

n

n∑
k=1

∑
j

SFk
j (ht)r

k
j , (13)

where SFk
j (ht) =

∑∞
l=0 γ

lp(φk
t+l+1 = j | ht), ht = (h1

t , ..., h
n
t )—hidden state vector of variables

{Hk
t }k.

B DETAILS OF NEURONAL IMPLEMENTATION

As shown in Figure 1B, each RV can be viewed as a set of neurons representing the states of the RV,
i.e. p(hk

t ) = p(cjt = 1), where j–is the index of a neuron corresponding to the state hk
t . Cell activity

is binary cjt ∈ {0, 1}, and the probability can be interpreted as a spike rate. Factors F k
c and M i

t−1
can be represented as vectors, where elements are factor values for all possible combinations of RV
states included in the factor. Let’s denote the elements of the vectors as fl and mu respectively,
where l corresponds to a particular combination of state values hk

t , h
i1
t−1, . . . , h

inl
t−1, and u indexes

all neurons representing states of RVs from previous time steps.

Inspired by biological neural networks, we group the connections of a neuron into dendritic seg-
ments. A segment acts as an independent computational unit that detects a particular input pattern
(a contextual state) defined by its receptive field. In our model, a segment connects the factor value
fl and the excitation El induced by the segment l to the cell to which it is connected. The segment
is active, i.e. sl = 1 if all its presynaptic cells are active, otherwise sl = 0. Computationally, a
segment transmits its factor value fl to the cell to which it is attached if the context matches the
corresponding state combination.

We can now rewrite equation 3 as the following:

p(hk
t ) ∝

∑
l∈seg(j)

Llf
k
l , (14)

where Ll =
∏

u∈rec(l) mu is segment’s likelihood as long as messages are normalized to probability
distributions, seg(j)—indexes of segments that are attached to cell j, rec(l)—indexes of presynaptic
cells that constitute receptive field of a segment with index l.

Initially, cells have no segments. As learning progresses, new non-zero connections, grouped into
segments, are created. In equation 14, we benefit from having sparse factor value vectors because
their complexity depends linearly on the number of non-zero components. And that’s usually the
case in our model due to the one-step Monte Carlo learning and the special form of the emission
factors F k

e :
F k
e (h

k
t , φ

k
t ) = I[hk

t ∈ col(φk
t )], (15)

where I—indicator function, col(φk
t ) is a set of hidden states connected to the feature state φk

t
forming a column. The shape of the emission factor is inspired by the presumed columnar structure
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of the neocortex and has been shown to induce a sparse transition matrix in HMM (George et al.,
2021).

The segment likelihood Ll resulting from the sum-product algorithm is computed as if the presy-
naptic cells were independent. However, this isn’t usually the case for sparse factors. To account for
their interdependence, we substitute the following equation for segment log-likelihood:

logLl = wl log
1

nl

∑
u∈rec(l)

wulmu +
∑

u∈rec(l)

(1− wul) logmu, (16)

where wul—synapse efficacy or neuron specificity for segment, such that
wul = p(sl = 1|cut−1 = 1), wl = 1

nl

∑
u wul—average synapse efficacy for segment l, and

nl-number of cells in segment’s receptive field rec(l).

The idea behind the formula is to approximate between two extreme cases. The first is
p(sl = 1|cut−1 = 1)→ 1 for all u, which means that all cells in the receptive field are dependent and
part of a cluster, i.e. they fire together. In this case, p(sl) = mu for all u, but we also reduce the
prediction variance by averaging across different u. In the opposite case, p(sl = 1|cut−1 = 1)→ 0
for all u, presynaptic cells don’t cluster and the segment activation probability is just a product of
the activation probability of each cell.

The resulting equation for belief propagation in DHTM is the following:

p(hk
t ) = p(cjt = 1) = softmax

j∈cells[Hk
t ]
( max
l∈seg(j)

(El)), (17)

where El = log fl + logLl, cells[Hk
t ]—indexes of cells representing states for the variable Hk

t .
Here we also approximate the logarithmic sum with the max operation, inspired by the neurophysi-
ological model of segment aggregation by cells (Stuart & Spruston, 2015).

The next step after computing the p(hk
t ) distribution parameters is to incorporate information about

the current feature states p(hk
t | φk

t ) ∝ p(hk
t )I[hk

t ∈ col(φk
t )]. After that, the learning step is ex-

ecuted. The loop closing step of our TM algorithm is to assign the posterior of the current step
p(hk

t | φk
t ) to M i

t−1.

C BIOLOGICAL INTERPRETATION

Neural implementation of the DHTM is inspired by neocortical neural networks (see Fig. 4). Hid-
den variables Hk may be considered as populations of excitatory pyramidal neurons in cortical
layer L2/3 of somatosensory areas, with lateral inhibition modelled as softmax function. Staiger &
Petersen (2021) showed that neurons in this layer are responsible for temporal context formation.

The neuronal activity at timestep t can be thought to carry messages Mk
t−1. Messages are propa-

gated through synapses of dendritic segments, which correspond to factors F k
c . Dendritic segments

of biological neurons are known to be coincidence detectors of their synaptic input (Stuart & Sprus-
ton, 2015). That is, each segment can be thought of as a detector of a particular combination of
active cells (states in our interpretation). If we associate a segment’s parameter with factor value, a
collection of dendritic segments represent a mapping from state space to factor values, representing
context factor Fc.

Our computational model of neuron and its dendrites is based on HTM neuron model (Hawkins &
Ahmad, 2016). In this model, each segment has a receptive field and activates when a number of
active cells in this receptive field reaches a threshold. The neuron is active if any of its segments
are active. We use the same activation rule, but the threshold is fixed to the receptive field size. Our
algorithm of segment’s growth on demand is also similar to HTM’s. In principle, DHTM can be
considired as a probabilistic interpretation of HTM, allowing belief propagation.

Similarly to HTM framework, our temporal memory can be interpreted as a model of cortical layers.
Feature variables Φk

t may be considered to represent cells of a granular layer (L4), as they are known
to be the main hub for sensory excitation for L2/3. L2/3 cells that have common sensory input from
the layer L4 are modelled as columns for particular feature states col(φk

t ) (Mountcastle, 1997).
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Figure 4: Biological view of the neural implementation of the DHTM. Variables H ·
t−1 correspond to

populations of neurons that have common sensory input and lateral inhibitory competition. Dendritic
segments correspond to factor values fl. Spike frequency of a neuron reflects state probability p(hk

t )
of a variable.

D ENCODING OBSERVATIONS

Since DHTM is designed to process categorical random variables, we need a categorical encoder for
RGB images to solve AnimalAI tasks.

To compare our model to CSCG and EC in AnimalAI, we use the approach described in Guntupalli
et al. (2023) to quantize observation space. K-Means (implementation from scikit-learn) with
50 clusters pretrained on 4 × 104 64x64 RGB observations from trajectories sampled by uniform
policy. To encode an image, the distance from each cluster is calculated and the index of the closest
cluster is returned. In that way, AnimalAI’s observation space is represented by one categorical
variable.

In order to test DHTM’s ability to deal with distributed encoding, we also trained Categorical VAE
(Jang et al., 2017) with the latent space represented by five categorical variables with 50 states each.
We use a slightly modified implementation from Subramanian (2020). The only difference is that
we modify the loss function by adding mean squared reward prediction error, which is linearly
calculated from the latent codes to ensure the linear decomposition in feature space (equation 12).
The model is trained on 6× 104 64x64 RGB images for 20 epochs with batch size 64. An image is
encoded by first passing it through VAE’s encoder block, then, to ensure stable encoding, instead of
sampling from the latent distribution, the state with the highest logit is chosen for each variable.

E IMPLEMENTATION DETAILS

As mentioned in Section 3.4, we incorporate DHTM as a part of an RL agent, which has a mem-
ory model and a feature reward function. All tested memory models share the same pipeline—
conditioned on actions, they learn sequences of categorically encoded observations and are used to
form SFs.

In all experiments in Section 4.1, the agent uses softmax exploration with temperature equal to 0.04,
except for EC agent we set softmax temperature to 0.01, since for higher temperatures its policy
is unstable. For SF formation the agent uses γ = 0.8 and γ = 0.9 for Gridworld and AnimalAI
experiments respectively. Maximum SF horizon is set to 50, but it is usually shorter since we
employ early stop condition based on feature variables distribution. That is, if the prediction is
close to uniform or the probability of a state with associated positive reward meets a threshold, the
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planning is interrupted. We use probability thresholds equal to 0.05 and 0.01 for Gridworld and
AnimalAI respectively.

In scaling Gridworld experiments (Appendix H.2), we increase maximum planning horizon up to
100 steps, and we also had to decrease agent’s temperature to 0.02 for DHTM and to 0.002 for EC
agent. Discount factor is 0.7 for DHTM and 0.9 for EC. We found that, in 10x10 maze, DHTM’s
strategy becomes more stable if we increase the positive reward threshold up to 0.4. EC agent con-
verges faster if we increase its softmax temperature, however, it converges to less optimal trajectory
on average.

In the noise tolerance AnimalAI experiment (Appendix H.3), for DHTM we use the same set of
agent parameters, except we set the goal probability threshold to 0.5. We also set the goal detection
threshold equal to the mean positive reward since we found that noise variable states mostly get
reward assignment slightly above zero, in contrast to signal variables, in which only several states
get positive reward assignment.

E.1 LSTM AND RWKV

LSTM baseline was implemented with a single LSTMCell from PyTorch library (Paszke et al.,
2019). It is supported by an additional symexp-layer to encode input before passing it to the LSTM
cell and a symexp-layer to decode the LSTM cell’s output from the LSTM’s hidden state back to the
input representation, where symexp activation function, symexp(x) = sign(x)e|x|−1, is a reverse
of symlog function: symlog = sign(x) log (|x|+ 1).

The similar way we implemented RWKV baseline: a single RWKV layer supported by single-layer
encoder and decoder. Current public RWKV implementation is a fast evolving framework (Bo,
2021), and for the increased performance it is tightly bound to the offline batch training common
for the transformer architectures. In our case we needed a so-called sequential mode for online
learning similar to LSTM. Thus, we adapted another public implementation mentioned in the official
documentation (RWKV in 150 lines of code).

For both Gridworld and AnimalAI tasks, LSTM and RWKV with a hidden state size of 100 are
trained on a buffer of 1000 trajectories with learning rate 0.002 on 50 randomly sampled batches of
size 50 every 10 episodes.

We also incorporated some notion of random variables in hidden states by splitting the hidden state
of the tested RNNs into groups. In all experiments the hidden state represents 10 categorical vari-
ables with 10 states. That is, RNN is forced to learn 10 categorical distributions with multi-cross-
entropy loss to explain the observed sequences, which is a somewhat close to the multi-categorical
hidden state representation used in Dreamer V2/V3 (Hafner et al., 2023). The idea of using symexp
activation function, mentioned above, is inspired by Dreamer too, and is used to remedy the prob-
lem of learning extreme probability values. Without symexp the neural network has to represent
zero probability with high negative logit values and one-probability with high positive logit values,
which is hard to reach with low learning rate and may lead to instabilities. Thus, symexp function
makes it faster to reach target values in log space.

E.2 CSCG

CSCG baseline was implemented using code from the repository accompanying the paper (https:
//github.com/vicariousinc/naturecomm_cscg). CSCG was trained on buffers of 500
action steps with 1000 EM steps until convergence. We iteratively calculated the exponential moving
average of transition matrices obtained for different batches with a smoothing coefficient α = 0.05
as described in the paper (Dedieu et al., 2019). This smoothed transition matrix was used as an
initialization for the next training batch and for inference. The first batch of observations is gathered
using the uniform policy, and later batches are gathered using the current best policy.

In so-called oracle mode, the transition matrix is trained from scratch every 500 steps. The buffer is
discarded at the environmental change and the transition matrix is reinitialised.
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E.3 EPISODIC CONTROL

Here, we provide an algorithm for SF formation using EC dictionary Da (see Algorithm 3). In con-
trast to other memory algorithms, EC dictionary doesn’t estimate state transition probabilities, but it
stores connections between them in all-or-nothing fation. Therefore, on each time step, all predicted
observations are assumed equally probable. But it’s not a limitation in our set of experiments, since
we tested our algorithms in deterministic environments.

Algorithm 3 SF formation for EC

Input: h0, γ ∈ (0, 1), T
Output: SF

1: SF← array of zeros
2: PS← {h0} # PS is the set of all states (nodes) on the current BFS depth
3: goal found← false
4: for l = 1..T do
5: PS←

⋃
a∈A{Da(h)}h∈PS # get next depth nodes assuming the policy is uniform

6: counts← array of zeros
7: for all h ∈ PS do
8: φ← argmax

φ
Fe(h, φ)

9: countsφ = countsφ + 1
10: goal found← rφ > 0 # check if the feature state is rewarding
11: end for
12: SF = SF + γl−1 NORMALIZE(counts)
13: if goal found is true then
14: break
15: end if
16: end for

E.4 DHTM

In the Gridworld task and AnimalAI with K-Means encoder, the factor-graph for DHTM consists
of three hidden variables H with 40 states per one feature state. Each hidden variable gets the
same copied observation, and their predictions are averaged. Using several hidden variables here is
essential, as it significantly increases the amount of trajectories memory is able to store by decreasing
collision probability for hidden state representations of different trajectories.

In AnimalAI experiments, hidden variables state spaces are of size 40 states per one feature state. For
Categorical VAE encoder, we use one hidden variable per feature variable, except the case (factor
1*) that tests that information from one feature variable is not sufficient for correct prediction, in
which three hidden variables per observation variable are used and the factor of size three connecting
to only hidden copies of the same feature variable. Examples of typical DHTM’s graphical models
used in our experiments are presented on Figure 5. It’s important to note that edge colours denote
separate graphical models, but the variables are shared (copied) between them. So there are no loops
in these models. For simplicity, we define context factor size as the number of hidden variables from
the previous time-step it has connections to, but it also connects to one hidden variable of the current
step and the action variable.

The most important DHTM’s parameters, except the factor size, are factor learning rate α and its
initial value f0. For better adaptability in changing and stochastic environments, the initial factor
value should be set closer to zero, but in stationary environments, it can be safely set f0 = 1,
allowing faster convergence. In Gridworld we use α = 0.1 and f0 = 0.05, and in AnimalAI we set
α = 0.001 and f0 = 1. We also set the limit on the number of segments 5 × 104, but practically
never reach it in our experiments.
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Figure 5: Examples of factor-graphs for two main setups. Edge colours show that edges correspond
to separate graphical models with copied variables. All context factors are also connected to action
variable At−1. A. Graphical model for one feature variable. In that case, feature value is copied
for three hidden variables, to increase hidden state space and avoid memory collisions. B. Graphical
model for Categorical VAE distributed encoding, example for factor of size 3 (i.e. takes into account
tree hidden variables from the previous time-step).

F EXPERIMENTAL SETUPS

F.1 GRIDWORLD

We use a simple homebrew Gridworld implementation. Each Gridworld position maps to a colour,
reward, and terminal state indicator. There are two special colours for the world border and obsta-
cles. Each time-step, an agent gets the colour index of the current agent’s position. An agent is able
to see obstacles or border colour when trying to go through them, which just replace current position
colour for one step without actually changing the agent’s position. We also punish an agent trying
to go through a wall or world border in addition to base step reward punishment to facilitate faster
convergence to optimal trajectories.

Samples of setups used in our experiments are depicted in Figure 6. Additional setups for scaling
experiments are shown in Figure 7. Here, the red colour corresponds to obstacles (negative numbers)
and the light gray colour to the reward (number 4). Letters A and G correspond to the agent’s initial
position and goal, correspondingly. Floor colours are resampled for each trial, but we ensure that
there are no more than five floor colours, including the terminal state. In each episode, the agent and
the terminal rewarding state have the same initial positions. The episode ends when the terminal
state is entered or the limit of action steps is reached.

F.2 ANIMALAI

AnimalAI is a testbed inspired by experiments with animals (Crosby et al., 2020). The environment
consists of 3D area surrounded by a wall and many different objects that can be placed using a
configuration file, including walls, food, ramps, trees, movable obstacles, and more. We tested our
agent in a 10x10-meter room surrounded by walls (see Fig. 8). Each timestep, the agent gets an RGB
image of a first-person view of the environment and is able to influence its behaviour by choosing
one of three actions: turn left, turn right, or go forward. The agent and food item have the same fixed
initial positions for each episode. The episode ends if the food item is collected or the maximum
episode time is reached. To make an agent’s actions more discretized, we repeat its choice three
times and skip three frames.
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Figure 6: Schematic view of POMDP Gridworld setups. The left picture shows the initial setup of
the environment, with the reward delivered by the light gray square (number 4). The right picture
represents the environment after the reward is blocked by obstacles (red squares or negative num-
bers). The letter A depicts the agent’s initial position and the letter G—the goal.

Figure 7: Schematic view of POMDP Gridworld setups for scale experiments. From left to right:
5x5, 7x7, 10x10. The letter A depicts the agent’s initial position and the letter G—the goal.

Figure 8: Sample of the agent’s first-person view of our setup in AnimalAI environment. The green
ball represents a goal, a food item to be collected.
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Figure 9: Dreamer V3 (18M) score in AnimalAI experiment described in this paper.

G CAPACITY

In this section, we provide basic theoretical analysis of DHTM’s capacity. Since the hidden state
for unpredicted feature state transition is generated randomly, the main source of errors is accidental
collision of hidden states. Due to special form of the emission factor (see equation 6), the collision
is possible only for the same feature sate. Here we analise the capacity of DHTM for factor grpah
depicted in Figure 5. Let’s assume that the stream of feature states is sampled from uniformly
distributed categorical random variable. Therefore, the probability to have a collision pc =

1
nφnvnh

,
where nv—number of hidden variables, nφ, nh are the number of states for feature and hidden
variables correspondingly. Therefore, the probability of having no collisions for a l transitions is
equal to (1 − pc)

l. Let’s set a threshold c ∈ (0, 1), which determines our confidence in that the
sequence of transitions is collision free. Solving the equation 1 − c = (1 − pc)

l with respect to l,
we get:

l =
log(1− c)

log(1− 1
nφnvnh

)
. (18)

Using the Taylor expansion for nφnvnh → + inf , we can see that l grows linearly with the total
number of states nφnvnh. Therefore, DHTM’s capacity scales linearly with the number of neu-
rons. This, however, can be easily improved if we set additional prior on hidden state activation
probability, which would take into account hidden state usage, but we leave it for future research.

H ADDITIONAL EXPERIMENTS

H.1 DREAMER

In order to ground our experiments to state-of-the-art model based algorithms, as an additional
baseline, we test the smallest version of Dreamer V3 with 18 million parameters. We use the imple-
mentation described in Voudouris et al. (2023), which is based on Hafner et al. (2023) and adapted
for AnimalAI.

We tested it with default parameters in the same setup as described in Section 4.2, except we don’t
apply frame skip. The agent successfully solves the task after 105 × 103 action steps. Taking into
account the frame skip used in our experiments with DHTM, it’s approximately 35 × 103 action
steps versus 3.5× 103 for the DHTM agent to solve the task.

H.2 SCALABILITY

In this section, we explore DHTM’s scalability properties and compare them to the EC agent. In
RL experiments, like presented in section 4, the number of segments largely depends on the RL
algorithm used, its exploration strategy, and how fast it converges to a stable policy. We tested
DHTM and EC agents in empty Gridworld of different sizes: 5x5, 7x7 and 10x10, where the agent
and the goal are placed in opposite corners (see Fig. 7). As shown in Figure 10A, the DHTM-based
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agent requires fewer episodes to find the goal; however, the policy becomes less stable as the size
of the Gridworld grows. As a consequence of faster convergence, DHTM produces fewer segments
than the number of EC’s dictionary entries throughout experiments. It also can be seen that for both
DHTM and EC agents, the number of memory units grows non-linearly with the state space size
(see Fig. 10B).
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Figure 10: Comparison of EC and DHTM-based agents in foraging task in POMDP Gridworld of
different sizes: 5x5, 7x7 and 10x10. A. Dynamic of steps required for the agent to reach the goal.
B. Number of segments grown (or dictionary entries for EC agent) after 300 episodes with respect
to state space size.

In principle, the number of segments reflects the number of transitions stored, which is proportional
to the amount of experience provided to the memory. To show that, we tested DHTM and EC agent
in 10x10 empty Gridworld using the same memory parameters as for experiments in section 4.1, but
under uniform strategy. That is, agents freely explored the environment during 100 episodes and at
the end the number of segments for DHTM and dictionary size for EC was recorded for each episode
length. Figure 11 shows that DHTM’s number of segments and EC’s dictionary size grow linearly
with the maximum episode length. In other words, since DHTM lacks generalisation abilities it
largely serves as a trajectory buffer, in the same sense as a dictionary in EC.

DHTM’s computational complexity (time and memory) of the prediction step grows linearly with
respect to the number of segments. Therefore, to use it for huge environments, there is need to prune
unnecessary segments or remember only selected episodes. This is a common problem among
episodic-like memories. The current approach to form SF also should be adjusted to be scalable,
since it requires maximum planning horizon to be equal to the episode length. Among the improved
approaches could be to employ n-step TD learning, hierarchical planning or SF caching, to recalcu-
late it less frequently.

H.3 NOISE TOLERANCE

In order to show the key difference between DHTM and its simplified EC version, we tested agents in
the same AnimalAI setup as described in 4.2, but we add one noise variable to the VAE encoder. It’s
easy to see that the naive mapping from distributed VAE encoding to one categorical variable used
for EC doesn’t work in this case, since even identical observations will likely be encoded differently
due to the noise variable. In contrast, since DHTM is able to handle distributed representations
directly (as the name implies), it still can use non-noise variables independently to learn transitions.

In this experiment, we vary DHTM’s factor size (see Fig. 12). Since factors formed completely
random, probability to include the noisy variable increases with factor size and this consequently
worsen the performance of the agent. If the factor size is set to the total number of variables, DHTM
becomes effectively unfactorised, similarly to its EC counterpart.
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Figure 11: Comparison of DHTM’s number of segments with EC agent’s dictionary size depending
on episode length in Gridworld after uniform exploration during 100 episodes.
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Figure 12: Number of action steps the agent takes to reach the goal in a 10x10-meter room in the
AnimalAI environment, using DHTM and EC models with a distributed Categorical VAE encoder
that includes one additional noisy variable (six variables in total). DHTM’s factor size is varied,
determining the number of variables sampled for each factor.

I GLOSSARY

Categorical Random Variable—a discrete random variable that can take on of finite K possible
states.
Cortical Column or Minicolumn—a population of neurons in the neocortex that spans across
layers and shares sensory input.
Dendritic segment—a group of synapses (neuron’s connections) that acts as an independent
computational unit affecting the resulting neuron’s activity.
Factor Graph—bipartite graph representing the factorization of a probability distribution, with one
part representing factor nodes and another—random variables.
Factor size—number of variables connected to the factor. For simplicity, we refer only to the
number of previous hidden states, used for prediction.
Hidden Markov Model (HMM)—statistical model of a stochastic process where state probability
depends only on previous state of the process.
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Multi-compartment neuron model—a model of neuron that divides neuron’s connections into
groups (segments) of different types (compartments), where each group may be considered as partly
independent computational unit and groups of each compartment may affect the neuron’s activity
differently.
Oracle—a mythical creature that gives up to our algorithms insightful information about the
environment that is usually hidden.
Successor Representations (SR)—a discounted sum of future [one-hot encoded] observations.
Successor Features (SF)—a generalization of SR, a discounted sum of future latent states.
Temporal Memory (TM)—in this work by this term we mean “memory for sequences”.
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