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Abstract

The growing computational demands of large
language models (LLMs) make efficient infer-
ence and activation strategies increasingly criti-
cal. While recent approaches, such as Mixture-of-
Experts (MoE), leverage selective activation but
require specialized training, training-free sparse
activation methods offer broader applicability and
superior resource efficiency through their plug-
and-play design. However, many existing meth-
ods rely solely on hidden state magnitudes to
determine activation, resulting in high approxi-
mation errors and suboptimal inference accuracy.
To address these limitations, we propose WINA
(Weight Informed Neuron Activation), a novel,
simple, and training-free sparse activation frame-
work that jointly considers hidden state magni-
tudes and the column-wise f3-norms of weight
matrices. We show that this leads to a sparsifica-
tion strategy that obtains optimal approximation
error bounds with theoretical guarantees tighter
than existing techniques. Empirically, WINA also
outperforms state-of-the-art methods (e.g., TEAL)
by up to 2.94% in average performance at the
same sparsity levels, across a diverse set of LLM
architectures and datasets. These results position
WINA as a new performance frontier for training-
free sparse activation in LLM inference, advanc-
ing training-free sparse activation methods and
setting a robust baseline for efficient inference.

1. Introduction

While large language models (LLMs) have revolutionized
the field of natural language processing, they often require
substantial computational resources, particularly during in-
ference, making reducing inference costs without degrading
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output quality a central challenge.

One strategy has been to activate only a sub-network of
the full model (Jacobs et al., 1991) during inference using
a Mixture of Experts (MoE) architecture, which has al-
ready seen adoption in popular and widely-used LLMs like
GPT4 (Achiam et al., 2023) and Mistral (Jiang et al., 2023).
Other methods include model distillation, where a smaller
model is trained using knowledge distilled from a larger
teacher model to route inference requests more efficiently.
However, these approaches require a considerable amount
of training, which can also be computationally costly.

An alternative is training-free sparse activation, which re-
tains the original dense model while selectively deactivating
components during inference, using criteria like hidden-
state magnitudes, weight importance, or validation data to
determine deactivation targets.

However, current training-free methods exhibit critical limi-
tations. Most notably, these approaches fail to account for
how interactions between inputs and the weight matrix dur-
ing forward propagation affect model outputs, leading to
accumulated approximation errors in sparse activation.

Contributions. In this paper, we propose WINA: a simple,
easy-to-use, training-free framework that performs sparse
activation based on the magnitude of hidden states and the
column-wise ¢s-norm of the weight matrix. In summary,
our detailed contributions include:

* Weighted-informed Activation: we introduce a novel
sparse activation method that jointly considers hidden
state magnitudes and the column-wise £5-norms of weight
matrices, leading to a more informed construction of a
sub-network during inference.

* Theoretically Tighter Approximation Error: we con-
duct a analysis to demonstrate that our weight-informed
activation mechanism yields a lower expected output error
compared to prior methods under mild assumptions.

* Numerical Experiments: The extensive evaluations per-
formed on multiple LLMs varying from 7B to 14B demon-
strate our method’s superior accuracy.
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Table 1. Feature comparison between WINA and existing methods
(Liu et al., 2024; Lee et al., 2024).

WINA TEAL CATS

Tight Approx Error v X X

Layer Generality v v X

Hetero Sparsity v v X
2. Related Work

Modern dynamic expert selection approaches fall into two
principal paradigms: training-based methods and training-
free methods. Training-based methods typically employ
a trainable router to dynamically select activated experts
for each token, with the Mixture-of-Experts (MoE) archi-
tecture (Jacobs et al., 1991) serving as the foundational
framework. In this framework, each expert operates an indi-
vidual component of the model, as only the relevant experts
are activated for each input during inference.

Training-free methods, in contrast, do not rely on a learn-
able router, instead using predefined or calculated criteria to
perform sparse activation. Q-Sparse (Wang et al., 2024) pro-
duces sparsity as a function of input magnitudes, achieving
sparsity rates of 60% with negligible performance degra-
dation. CATS (Lee et al., 2024) applies sparse activation
on SwiGLU outputs within gated MLP layers, achieving
performance comparable to the original dense model while
achieving 25% model sparsity. In contrast, TEAL (Liu et al.,
2024) extends magnitude-based activation sparsity to all net-
work layers, achieving 40-50% model-wide sparsity across
architectures with minimal performance impact.

However, current sparse activation methods suffer from
fundamental limitations. Most notably, they determine ac-
tivation elements solely based on the magnitude of hidden
states, neglecting the crucial influence of the weight matrix,
which results in suboptimal error control.

3. Methodology

As illustrated in Figure 1, WINA jointly considers both the
input tensor and the associated weight matrix, rather than
relying solely on input magnitudes. During inference, it
activates only the most influential neurons, effectively con-
structing a sparse sub-network that maintains the expressive
power of the original model.

3.1. Problem Statement

Main Problem. Consider a deep neural network (DNN) M
consisting of L layers. We denote the weight matrix of the
I-th layer as W; € R™™ and the corresponding input as an
arbitrary tensor X € R™>** for [ € {1, ..., L}, representing

Dense Linear Layer WINA Linear Layer

W T w’ r=xzom

G Weight Informed Gate Function
o[ T el ]
T m
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Figure 1. Overview of WINA. WINA performs training-free
sparse activation by adaptively selecting the most influential input
dimensions through joint consideration of both hidden state mag-
nitudes and the corresponding column-wise £2-norms of weight.

the full information content. Our goal is to identify a set
of binary activation gates G = {g1,--,gr}, where each
g1 € {0,1}™, such that the deviation between the model’s
original output and the gated output is minimized:

minimize
g1,9L

IM(X) = M(X[G)],- M

Since obtaining the complete set of possible inputs X is
generally infeasible, we instead use a sampled subset X
to approximate it. The activation gating operates in the
input vector space to reduce output deviation. With this
observation, we can reformulate the original problem into a
per-layer version to make the problem more tractable.

Refined Problem. Given a weight matrix W € R™*™ and a
sampled input vector € R", the standard linear transfor-
mation is y < Wa. Our objective then becomes identifying
an activation gate g € {0,1}" such that the gated output
yg < W (g ® ) approximates the original by solving:

minimize |[Wax-W(gox)|,. 2)
g¢{0,1}"

3.2. Weight Informed Gate Function

Motivation. Many current sparse activation methods (e.g.,
Q-sparse (Wang et al., 2024), CATS (Lee et al., 2024),
TEAL (Liu et al., 2024)) operate via a top-K gating mecha-
nism governed by the absolute values of the hidden states:

1 if |z;| is among the top-K values in |z|,
9i = . 3)
0 otherwise
However, this approach ignores the critical role that weight
matrices play.

Formalization. In our proposed WINA framework, we
systematically construct binary activation gates by selecting
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the top-K components according to specific criteria:

1 if |z;¢;| is among the top-K values in |z © |,
gi = .
0 otherwise,
“)
where ¢ € R" represents the column-wise ¢ norm of W
and © denotes the Hadamard or element-wise product.

The choice of K can be adapted to different use cases, rang-
ing from (1) a coarse-grained universal criterion where a
shared K is applied across all layers to (2) a fine-grained
layer-specific strategy that assigns K individually to better
minimize approximation error.

3.3. Theoretical Analysis

WINA also offers theoretical advantages, capable of achiev-
ing a more optimal bound on the approximation error than
TEAL. To demonstrate this, our formal analysis begins
with a fundamental Lemma C.1 that rigorously establishes
WINA'’s advantage in single-layer networks under column-
wise orthogonality constraints (see Appendix C for details).

Using our single-layer Building upon our single-layer
Lemma C.1, we now generalize the theoretical framework to
deep networks with L consecutive linear layers. As stated in
Theorem 3.1 below, we see that WINA still achieves smaller
approximation error than TEAL in the L layer case.

Theorem 3.1 (Optimal approximation error over consecu-
tive L layer). Let x € R% be an input vector and {W O}V |
denote the weight matrices of an N-layer neural network,
where each W) € R4*de-1 js column-wise orthogonal, i.e.,
WOYWO = diag(({?)?,(57)2,... (c5)?) where
£

W(f) H For any target sparsity level k € N* with
k <mingegy,.. Ny de, the expected deviation satisfies:

E[lywma - yl3] <E[lyma - vl3],  ©

where ywina denotes the output produced by WINA; yrear
is the output of TEAL; and y is the original dense network
output without any sparsification.

Proof. See Appendix D.

Using these, we now consider realistic deep neural net-
works equipped with various activation functions. Follow-
ing our established methodology, we first present the fun-
damental Lemma E.1, which rigorously demonstrates that
WINA maintains its tighter error approximation guarantee
for single-layer networks equipped with common activation
functions (e.g., ReLU and its variants, sigmoidal functions,
and softmax) under standard architectural constraints (com-
plete analysis in Appendix E).

Finally, we extend this theorem to the case of a multi-layer
network with activation activations.

Theorem 3.2 (Optimal approximation error over consecu-
tive L layer with MIF). Let 2 € R be an input vector that
follow a zero-mean symmetric distribution and {W 9} |
denote the weight matrices of an N-layer neural network,
where each W) € R4“*d1 s colymn-wise orthogonal, i.e.,
WOYWO = diag(({?)?,(57)%,... (5)?) where
0 <
any target sparsity level k € N* with k < mingeqy . n} de,
the expected deviation satisfies:

’. Let f : R — R be an activation function. For

E[lywma - yl3] <E[lyren-wl3],  ©

where ywina denotes the output produced by WINA; Yrgar
is the output of TEAL; and vy is the original dense network
output without any sparsification.

Proof. See Appendix F.

3.4. From Theory to Practice

Motivation. In Section 3.3, our theoretical analysis
assumes zero-mean symmetric inputs (have been ob-
served (Liu et al., 2024)) and the column-wise orthogonality
of the weight matrices, which LLMs often violate in real-
ity. To bridge this gap between theory and practice, we
propose a tensor transformation framework that enforces
column-wise orthogonality on some weights.

Transformation Protocol.
Decomposition (SVD) on W:

We perform Singular Value

W=UxVT

where U and V' are orthogonal matrices, and X is a diago-
nal matrix containing the singular values of W. Then we
transform W to W as follows:

W =WV

This transformation guarantees that the resulting matrix W’
satisfies the column-orthogonality:

(W)W =xTUTUY = 2 (7)

To maintain the model’s final output unchanged after this
transformation, we propagate these transformations through
adjacent layers using computational invariance (Ashkboos
et al., 2024), as formally derived in Appendix B).

4. Experiments

4.1. Experimental Setup

Models. We present comprehensive experimental results
across four models: Qwen-2.5-7B (Dong et al., 2024),
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Llama-2-7B (Touvron et al., 2023), Llama-3-8B (Dubey
et al., 2024), and Phi-4-14B (Abdin et al., 2024).

Evaluation. We follow TEAL’s use of the Im-evaluation-
harness pipeline (Gao et al., 2023) for our evaluations on
an extensive suite of downstream tasks, including PIQA
(Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019),
HellaSwag (Zellers et al., 2019), Arc Challenge (Clark
et al., 2018), MMLU (Hendrycks et al., 2020), and
GSMS8K (Cobbe et al., 2021).

Baselines. To eliminate the potential effect introduced
by the transformation process, we introduce an additional
baseline, TEAL-Transform. In this variant, the TEAL ap-
proach is applied to the transformed model, retaining the k
elements with the largest absolute values |z].

To further improve performance, we assign layer-specific
sparsity ratios instead of a uniform sparsity across the model
through the greedy algorithm proposed in TEAL.

4.2. Results.

Here, we provide an empirical comparison of WINA against
TEAL-based baselines (e.g., TEAL and TEAL-transform)
across different sparsity levels (25%, 40%, 50% and 65%)
to demonstrate the effectiveness of our proposed algorithm
under various experimental settings.
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Figure 2. Sparsity-performance frontiers. Sparsity-performance
across Qwen-2.5-7B, Llama-2-7B, Llama-3-8B, and Phi-4-14B.

As demonstrated in Figure 2 and Table 2, WINA consis-
tently outperforms both TEAL and TEAL-transform base-
lines across multiple model architectures. Specifically, it
achieves superior performance on Qwen-2.5-7B and Llama-

Table 2. Results over different sparsity levels across Qwen-2.5-7B,
Llama-2-7B, Llama-3-8B and Phi-4-14B.

Model Method Sparsity
025 04 05 065
TEAL 72.83 71.66 6893 5540
Qwen-2.5
7B TEAL-transform 72.99 71.52 68.62 56.93
WINA 73.02 7138 6926 58.34
Laman  TEAL 5411 5249 5051 4421
OB TEAL-transform 5419 5284 5140 4551
WINA 5442 5283 5176 45.82
TEAL 65.58 62.65 5851 4536
Llama-3
"Sh TEAL-transform  65.99 62.94 59.19 47.28
WINA 66.00 6320 59.57 47.77
P TEAL 76.86 7598 7436 68.71
e TEAL-transform  76.56 76.50 7474  69.86
WINA 7757 7671 7591 70.72

2-7B for most sparsity levels, and maintains this advantage
across all sparsity levels for Llama-3-8B and Phi-4-14B.
Notably, as sparsity increases, the performance gap between
WINA and the baselines becomes more pronounced. For
instance, at 65% sparsity, WINA achieves improvements
of 2.94% (vs TEAL) and 1.41% (vs TEAL-transform) on
Qwen-2.5-7B, 1.61% (vs TEAL) and 0.31% (vs TEAL-
transform) on Llama-2-7B, 2.41% (vs TEAL) and 0.49%
(vs TEAL-transform) on Llama-3-8B, and 2.01% (vs TEAL)
and 0.86% (vs TEAL-transform) on Phi-4-14B. This scaling
behavior demonstrates WINA’s superior robustness.

Furthermore, our comprehensive experimental results in
Appendix A demonstrate that WINA achieves superior per-
formance particularly strong performance such as GSMS8K,
ARC Challenge, and HellaSwag. Notably, the method main-
tains robust accuracy even under aggressive sparsity level,
substantially outperforming baseline approaches.

5. Conclusion

In this paper, we introduce WINA, a training-free sparse
activation framework that selects active neurons based on
both hidden state magnitudes and the column-wise ¢5-norms
of subsequent weight matrices.

Our theoretical analysis demonstrates that WINA achieves a
tighter bound on approximation error compared to existing
approaches, under mild assumptions. To bridge the gap
between theoretical guarantees and practical deployment in
pre-trained LLMs, we further adopted a tensor transforma-
tion protocol that enforces column-orthogonality in weight
matrices without altering model output. Our extensive exper-
iments across multiple LLM architectures and benchmarks
also validate WINA'’s superior performance under controlled
sparsity settings, establishing it as a new state-of-the-art in
the domain of training-free sparse activation.
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Table 3. Results of controlled sparsity experiments over Qwen-2.5-7B

Method Sparsity PiQA  WinoGrande HellaSwag Arc-c MMLU GSM8K  Avg
Baseline - 79.71 72.85 78.93 51.11 71.93 83.32 72.98
25% 79.27 78.56 72.77 51.19 71.30 82.87 72.83

. 40% 78.40 77.28 73.09 52.65 70.20 78.32 71.66

TEAL (Liuetal,, 2024) 50, 78.62 75.02 69.77  51.02 6772 7142 68.93
65% 73.72 63.35 62.67 42.75 54.95 34.95 55.40
25% 80.09 72.77 78.65 51.79 71.56 83.09 72.99
TEAL-transform 40% 79.71 72.30 77.73 51.28 69.93 77.18 71.52
) 50% 78.56 68.67 75.74 50.00 67.28 71.49 68.62

65% 76.06 61.33 67.30 44.20 56.06 32.60 56.93
25% 80.05 72.69 78.58 51.37 71.51 83.93 73.02
WINA 40% 78.40 70.56 78.02 50.94 70.54 79.83 71.38
50% 78.67 69.30 76.48 50.85 67.99 72.25 69.26
65% 76.17 61.01 70.09 42.92 59.48 38.36 58.34
A. Results

Qwen-2.5-7B. We evaluate WINA on Qwen2.5-7B (Yang et al., 2024) across various sparsity levels (i.e, 25% — 65%)
under the controlled sparsity setting. As shown in Table 3, WINA consistently matches or outperforms both TEAL and TEAL
-transform across all sparsity levels. Notably, as sparsity increases, the performance gap between WINA and the baselines
becomes more pronounced. For instance, at 65% sparsity, WINA outperforms TEAL by 2.94% and TEAL-transform by
1.41% on average. This trend indicates that WINA is more robust under high sparsity, likely due to its ability to retain the
most influential activations by jointly considering hidden state magnitudes and weight norms. Particularly on harder tasks
such as GSMS8K and HellaSwag, WINA maintains relatively strong performance even when aggressive sparsification is
applied.

Llama-2-7B. On Llama-2-7B, WINA again shows strong performance under various sparsity constraints. As shown in
Table 4, WINA achieves the highest average accuracy at 25% sparsity, outperforming both TEAL-based baselines and the
full model. While performance naturally degrades at the extreme 65% sparsity level, WINA still offers the best accuracy,
suggesting its robustness under aggressive pruning.

Llama-3-8B. The results on Llama-3-8B further emphasize WINA's resilience to pruning, as summarized in Table 5.
While TEAL slightly outperforms at the 25% level, WINA leads in all remaining sparsity configurations, culminating in
+1.06% and +2.41% over TEAL at 50% sparsity and 65% sparsity, respectively. Notably, WINA sustains particularly strong
performance on reasoning-intensive tasks like GSM8K and ARC Challenge, where other methods show significant drops
under compression. These patterns suggest that WINA is not only compression-friendly but also capable of preserving
complex decision-making abilities under tight computational budgets.

Phi-4-14B. WINA also delivers robust performance on Phi-4-14B across all tested sparsity levels, as detailed in Table 6. It
consistently either matches or exceeds the accuracy of both TEAL and TEAL-transform, and achieves the top average score
at every sparsity setting. At the highest sparsity of 65%, for instance, WINA improves upon TEAL and TEAL-transform
by +2.01% and +0.86%, respectively. Its ability to retain high performance on complex benchmarks such as GSM8K and
MMLU, even under severe pruning, highlights its stability. These outcomes demonstrate that WINA can effectively preserve
key reasoning mechanisms in large-scale models, making it well-suited for sparsity-constrained deployments.
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Table 4. Results of controlled sparsity experiments over Llama-2-7B

Method Sparsity PiQA  Arc-c  WinoGrande HellaSwag MMLU GSM8K  Avg
Baseline - 79.05 46.33 68.98 76.00 41.82 13.87 54.34
25% 78.18  45.99 69.85 76.01 41.30 13.34 54.11
. 40% 77.53 4445 67.88 75.32 38.66 11.07 52.49
TEAL (Liuetal 2024) 504, 7753 4121 67.25 73.57 3471 879 5051
65% 7443 33.87 62.12 64.20 27.05 3.56 44.21
25% 7845 46.42 69.14 75.93 41.75 13.42 54.19
TEAL-transf 40% 77.69 4548 68.43 75.18 39.22 11.05 52.84
transtorm 50% 78.07 4377 66.54 73.48 3628 1024 5140
65% 7432 37.71 63.77 66.49 29.11 3.64 45.51
25% 78.45 46.16 69.69 75.95 42.14 14.10 54.42
WINA 40% 7791 45.56 67.32 75.52 39.58 11.07 52.83
50% 78.35 4445 67.96 73.65 36.55 9.63 51.76
65% 74.59 37.88 63.93 66.55 28.81 3.18 45.82
Table 7. (G)FLOPs over different sparsity across diffrent model architecture.
Sparsity  QWen2.5-7B Llama-2-7B Llama-3-8B Phi-4
Baseline 7.07 6.61 7.50 14.15

0.25 544 (123.1%) 499 24.5%) 5.76 (1 23.2%) 10.74( 24.1%)

0.4 446 (1 36.9%) 4.02(139.2%) 4.71( 37.2%) 8.69 (| 38.6%)

0.5 3.81 (4 46.1%) 3.37 (4 49.0%) 4.01 (J 46.5%) 7.33 (| 48.2%)

0.65 2.83 (1 60.0%) 2.40(} 63.7%) 2.97 (60.4%) 5.28 (| 62.7%)

Acceleration. In addition to performance gains, WINA yields substantial computational acceleration across all evaluated

LLMs. As shown in Table 7, WINA reduces the overall (G)FLOPs by up to 60.0% on Qwen-2.5-7B, 63.7% on Llama-2-7B,
60.4% on Llama-3-8B, and 62.7% on Phi-4-14B at the 65% sparsity level. These consistent reductions in floating point
operations could translate to faster inference speeds and lower computational costs, validating WINA'’s effectiveness as a
practical solution for deployment under tight resource constraints.

B. Orthogonal Tensor Transformation

Without loss of generality, we present the pseudocode for the orthogonal tensor transformation applied to a
transformer-based model M comprising L decoder layers. Each layer includes the following weight matrices:

(WO w® W, W, w w, wil

gate>’ down

} for / = 1,...,L, along with the output projection matrix Whe,q of the

final head layer. While we focus on this specific setup for clarity, the transformation is readily applicable to other transformer
architectures, including those with encoder-decoder structures or alternative feedforward configurations.

C. Lemma regarding the optimal approximation error over single layer

Lemma C.1 (Optimal approximation error over single layer). Let © € R™ be an input vector and W € R™*™ be a matrix
satisfying column-wise orthogonality: WW = diag(c?,c3,...c2) where c; = |W.;|. For any target sparsity level k € N*
satisfying k < n, the expected deviation between the original network output and the gated output via WINA is less or equal
to that of TEAL’s. Formally:

E [HW:BWINA - Wﬂ?”%] < E |:HW:ETEAL - Wl’”%] ,

where Twna is the sparse input via WINA, retaining the k elements activated with the largest |x; - |W. ||2|, and @rgar is the

7
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Table 5. Results of controlled sparsity experiments over Llama-3-8B

Method Sparsity PiQA  Arc-c  WinoGrande HellaSwag MMLU GSM8K  Avg
Baseline - 80.79 53.33 72.61 79.17 62.20 50.19 66.38
25% 80.25 53.16 73.32 78.85 61.85 48.07 65.58

. 40% 79.11 48.98 71.82 77.43 59.26 39.27 62.65

TEAL (Liu et al., 2024) 50% 78.24 48.12 70.01 74.83 54.50 27.37 58.51
65% 73.34 37.37 63.46 61.76 32.07 4.17 45.36

25% 80.85 53.50 73.16 78.85 61.57 47.99 65.99

TEAL-transform 40% 79.43  50.60 70.88 77.36 59.23 40.11 62.94
50% 77.69 48.38 69.06 75.70 54.82 29.49 59.19

65% 73.23 39.51 61.96 65.25 38.66 5.08 47.28

25% 80.79 53.16 73.24 78.96 61.54 48.29 66.00

WINA 40% 79.60 50.09 71.27 77.54 58.82 41.85 63.20
50% 78.35 49.06 70.32 75.12 55.26 29.34 59.57

65% 73.45 40.10 62.67 64.89 38.48 7.05 47.77

Table 6. Results of controlled sparsity experiments over Phi-4-14B

Method Sparsity PiQA  WinoGrande HellaSwag Arc-c MMLU GSM8K  Avg
Baseline - 81.28 76.80 81.93 5597 77.06 90.22 77.21
25% 81.07 75.45 81.92 56.23 76.63 89.84 76.86
. 40% 80.79 73.80 81.21 54.95 75.10 88.02 75.98
TEAL (Liuetal,, 2024) - 54, 80.63 71.98 80.06  53.84 7352  86.13  74.36
65% 77.64 66.06 74.26 50.77  65.17 74.37 68.71
25% 80.96 74.59 81.60 55.63 76.68 89.92 76.56
TEAL -transf 40% 81.18 74.19 80.94 54.61 75.99 90.07 76.50
transtorm 50% 79.82 72.38 7979 5392 7451  88.02 7474
65% 77.64 68.51 74.72 52.47  66.64 77.18 69.86
25% 81.01 75.37 81.91 56.31 76.60 90.22 77.57
WINA 40% 81.18 72.45 81.44 56.06 76.44 90.67 76.71
50% 81.39 73.95 81.75 54.95 75.83 87.57 75.91
65% 78.24 70.72 77.10 51.11 70.05 77.10 70.72
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Algorithm 1 Orthogonal Tensor Transformation

1: Input: Model M with matrix We,, of embedding layer, L decoder layers with matrices

(WO wO w wi wh wid w1 and matrix Wieaq of head layer.

gate’ down

2: Qutput:
3:  Transformed model M’
4: W}go) A () Perform SVD on W,(CO)
5: ](CO) <V
6: Wemp < Weme](CO)
7: for {=1,2,...,Ldo
s WO w00, WO WD, 1O« who
9: Wg(ﬁge Usv? (>) Perform SVD on
10: Q;i)te

¢ ¢ ¢
11: WO( ) ( ;a)te)TW( )

£ (0 ¢ ¢ £ (0 2) (2
12: Wg(az)ﬁe <« Wg(agng(;a)te’ WQS ) ( )Qéa)te
13: if / < L then
. (e+1) _ . (e+1)

14: W, =UXV (>) Perform SVD on W,/
15: ,(f ey
16: Wi < (@YW,
17: end if
18: end for

19: return M’

sparse input via TEAL, retaining the k elements with the largest |x;|.

Proof. LetZ7°(x) := {i|x; = 0} be the set of indices of zero elements at . The output deviation between the original

network output and the gated output via a general-format sparsification is:

2

|W (27-0 - )| = > oW
1€Z=0 2
:

1€Z=0 1€Z=0

= X 2 mEm W W,
j€Z=0 4eZ=0

=2 > W W
i€Z=0 i+5€Z=0

The expected output deviation for WINA is:

2
EWINA = HW.’BIQ[IJNA - WSCH

= > @ Wli+ Y @, W, W, ;.

i€T5A i#j €5

Since W is assumed to be column orthogonal, the cross-term expectations vanish, and the expected output error is determined

solely by the main term:

ewINA = ),

€T A

9
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Because WINA sparsification sets the k& smallest |x;c;| terms to zero, we have the mask of WINA reaches out the lower
bound of approximation error for a single layer network, i.e.,

gwina(x) = argmin - [W(zog-x) ||2 . (8)
96{071}77/

Thus, the above indicates that WINA sparsification achieves the tight lower bound of the approximation error, including
those of TEAL and CATS.

D. Proof of Theorem 3.2

Proof. We prove this by mathematical induction.

Step 1: Base case IV = 2. The output error for sparse activation parameterized via mask g is:

g™ - v
S WO (D 0 g®) - W@y
~ [ WO (gD 0 g®) - WOyl L w2y @)y
~ (WO () 0 g® — yl) + W () -y D)

2)(,(1 2 1 2 1 1 1
WO () 0 g —yD) s WO W g 0 g~ WD)
Let:
A®M = diag(gM - 1), A® =diag(¢® -1), MWD =diag(gV).
Then, let v and u be
v =W (o (¢ 1))
~-wWOWD(@og®)o(g®-1))
_ @ A@ W 0y
u=WAWD(zo (g -1))
=wWOWOLAD 4.

Since E|u +v|* = E|u|® + E|v|* + 2E(u"v), the expected value of the cross-term is:

E[’U,T’U] _ E[mTA(l)(W(l))T(W(Q))T(W(2))A(Q)W(l)M(l)m]
B[O AW MO ga™AO (0T (w)7)]
= tr (WOE[AP W OEMO AV E[za ) (WD) (W @)T)

Since E[M,A1] = E[g™M @ (¢! —1)] = 0, the cross-term expectation E[u"v] is zero. Thus, the expected output deviation
via sparse activation g,

e® =E[|u+v]’]

©
=E[|[w® (y{) 0 g@ - yél))||2] +E[[WO W Wz e g™ - W(1>w)||2]

Upon Lemma C.1, we have that
E[[W® WDz 0 ggh, - W) 2] < E[WS WDz 0 gl - Wwha)|?]

10
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Next, we compare IE[HW(Q)(y_L(,l) ©g® - ys(,l))H ] given g\(m)NA and Q%LL.
E[[W® (y{" 0 g - yf)|°]
1 2 2
Bl X ¥y )W)

S R

E[ Y @wWORs Y ¢y ) Tw )

jeZ=0(g) i,7¢27°(g?)
%]
= Y (@EEGD)? Y W)Y WR VYD)
JeT0(g®) i,jeT%(g?)
%]

> (B

JET=0(g®)

where the last line is due to W (?) is column-orthogonal, the cross-term’s expectation is zero.

Because WINA sparsification sets the k smallest (y(l) (2) )2 terms to zero, we have:
2 1 2 1 2 2 1 1
E[IW® (g5 09 =4S IPT<E[WP (g8, 09 —yf) )I%]

Therefore, we have that
2 < o2
WINA = €TEAL"

Step 2: Inductive proof for N > 2. Assume for some N > 2 that

(N)

(N)
EwINA

< €TEAL-
Define the exact output of (N + 1) layer network:
y = WD)y (V) _ (N Ly (D g
The output via mask g(N*1) is that
yéN+1) _y
_ W(N+1)(y£(]N) © gV _ (V1) 4 (N)
_ W(N+1)((yéN) @Q(N+1)) B y!(JN)) + W(N+1)(yg(JN) _ y(N))
The expected output deviation is:
e =B[N (y (M) @ gV gy (N2 4 BT D (V) — 4 (N2 (10)
the cross-term zeros out because of the assumption.

Upon induction assumption, for the second term, we have that

E[WO (ygid, -y s EIW Dy -y (11)

GWINA 9TEAL

For the first term, we have that

E[[W D (yf" 0 g™ —y M) 7]

=E[ > 3 yj(N) (V) (W(N+1))TW§£V+1)]
JEI=0(g(N+1)) jeT=0(g(N+1))
N+1 N N N Ny
: A I I U RD N S LT
JeI=0(g(N+1)) 4,§eT0 (gN*D)
i)
- (e By ™),

jeI:O(g(NJrl))

11
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where the last line is due to W (V+1) is column-orthogonal, the cross-term’s expectation is zero.

Since WINA retains the k largest |y§N)c§V *1|, thus:

E[JW N (g™ 0 g’ ~yS"IPT < EIW Dy 0 glg” - 9517 (12)
Consequently, we reach the conclusion that

A’ < ST - (13)

E. Lemma regarding the optimal approximation error over a single layer with activation function

Lemma E.1 (Optimal approximation error over a single layer with activation function). Let x € R" be a zero-mean input
vector, W € R™*" be a matrix that satisfies column-wise orthogonality: W™W = diag(c3,c3,...c2) where c; = |W. ;| and
/R — R be an activation function. For any target sparsity level k € N* satisfying k < n, the expected deviation between
the original output and the gated output via WINA gating mechanism is less than or equal to that of TEAL gating mechanism.
Formally:

E[|f(Wawwa) - f(Wa)|3] <E[|f(Warea) - f(W)]3],

where Twna is the sparse input via WINA, retaining the k elements with the largest |z - |W. ;]2
input via TEAL, retaining the k elements with the largest |z |.

Proof. Let A be the error term of the output via sparse activation parameterized with g,
d
Ag = W(ZB © (1 —g)) = Z WZ'};CL'Z‘ © (1 _gi)~
i=1

Using a Taylor expansion and ignoring higher-order terms (assuming A, is small), the output deviation given an activation
function f is:

TWix+Ag,)— f(Wi.x) » V' f(W @),

Thus, the expected squared output deviation between the original output and the gated output approximates to:

eg =E|f(Wz +Ay) - f(We)|”

d
=E| Y f(Wim+ Ng i) - f(Wi )|

i=1

d
~E|| Y VA(Wix)Ag
=1

E[vzf(W x)A7 ]

M=

<.
Il
[

> B[V f(Wia)(Wisz: © (1-g:))°]

M=

S
I
Ju

M=~

E[Vf(W;.x)] Z]E(W x; 0 (1-g;))?

. .
= Y E[Vf(Wi)] Z( )E[Cfﬂﬁfl
i=1 €Z=9(g

Because WINA sparsification select the k& smallest az?cf terms to zero, we have that
EWINA < €TEAL- (14)

F. Proof of Theorem 3.5

Proof. We prove this by mathematical induction.

12
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Step 1: Base case [NV = 2. The output error for sparse activation via g@ is:
lus? -4

[ WO (£ ©g@) - Wy )]

- (WO @) 0 g @) =W FD) + W f) =W D)

[ WO (£ ©9@) - (450 + WO 550) - 1y )]

Let:
M® = diag(gV), M@ = diag(¢g® - 1).

Then, let v and u be
v=WH(f(yM) o (g® - 1))
_ W(Q)M(Q)f(W(l)M(l):c)
w=WOLFWOMOz) - f(W D)),

Let D = W(Q)TW(Q), then the expected value of the cross-term becomes:
E[u'v] = E[f(W(l)M(l)x) _ f(W(l)x)]TW(z)TW(Q)M(Q)f(W(l)M(l)x)

= E[f(W(l)M(l)x) _ f(W(l)x)]T DM(Q)f(W(l)M(l)x)
SEY Dy (M) (FWOMOz), - f(W D)) fWD M Dz),

When gEQ) =1, (M®),; = 0, and the corresponding terms disappear. When g(z) =0, (M®);; = 1. Therefore:

%

E[uv]=E| ¥ Dy (FWOMOz), - f(Wa),). f(WDM D),
i:g§2):0

Since x follows a symmetric distribution with mean 0, and W) has orthogonal columns, the distributions of W M) A7) g
and Wz are symmetric. For any activation function f, the cross-term cancels out under the symmetric distribution. Thus,
the expected output deviation becomes

e$? = El|u+v|’] = E[Ju|*] + E[|v]]

=E[[WwSME f(wOMOz) 21+ E[[WO[f (WO M V) - f(WDa)][3]

Here, the latter one yields the below due to Lemma ??.
E[[W® [ (WO MG @) - F(WO2)][P] < E[W O (W O Mgy @) - (7 D2)]?].
Next, we compare the former term. We have that:
E[W® (f(y) 0 g®) - W f(y{D)[]
= (1) (1) @\T177(2)
£ > Yo fy ) fly ) (W) W

JeT-0(g(1)) ieZ-0(g(V))

E Y WPy Y M) MWy w?

j€I=°(g(1)) i,jEI:O(g(l))

i#]
= Y (@R Y WY WR ) )
§eT-0(gD) i,7eZ-%(g™)

i%j

= X (GRS ()

jeI=0(gM)

13
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where the last line is due to T/ (?) being column-orthogonal, thereby the cross-term’s expectation is zero.

b

Because WINA sparsification sets the k smallest ( f (y; ; )c§.2) )2 terms to zero, we have that

E[[W (f(y§?) © g8hn) - WD £(y)12] <E[W P (f(w§D) 0 g ) - WP f(y§)2]

Thus, we have that ® ©
CWINA < €TEAL-

Step 2: Inductive proof for IV > 2. Assume for IV > 2, the below holds

(N)
CwINA

Consider the output of (N + 1) layers network, i.e., yV 1) = V1) £ (4 (V)

<e

The output deviation via sparse activation of g is:
ys(]N+1) _y(N¥D)
=W (f(y§M) 0 g™ D) - WD f(y )
WD ((f(y$) 0 g™ ) = F(y§N) + WD (£ (yF) - F(yP)
The expected output deviation is:
eg T =E[WND(f(yi) 0 g™ - f(yFON I+ EIW D (F(y5) - fyP)))?, (15)
the cross-term zeros out because of the assumption.

Upon the induction assumption, the second term yields that
E[W D (Fyod,) =~ F)IP <EIWN D 50) - F™)))P. (16)
For the first term, we have that
B[O (1) 0 gD - (g1

N N N N N N
=E Y fM?IWEEs Y faI Sy
JeT=0(g(M)) i,jeZ° (g™)
%]

N N+1
=E Y f)? w2
JjeI=0(g(M))

N
=E Z f(yé,j))20?~
JEI=0(gM))

Since WINA retains the k largest E[ f (yéz) )?c3], therefore:

E[W™D £y 0 g(ler) = FSONI2 <EWN D (£(yM) 0 glhil) - Fy§O N2

Consequently, we conclude that
(N+1) _ (N+1)
eWINA~ S CTEAL -

G. Resources Used & Limitations

The total run time of our experiments were run using two A100 80GB GPUs for a couple of days.

In terms of limitations, we focus the comparisons of our approach with current leading methodologies for sparse activation
(i.e., TEAL (Liu et al., 2024) and CATS (Lee et al., 2024)). Naturally, we are unable to compare with all existing sparse
activation methodologies and prior works, but, instead, we use these TEAL and CATS as they currently represent the current
upper bound of optimal performance-efficiency trade-offs; as such, we use these approaches to compare against in order to
ensure our performance tests and comparisons are robust and fair.
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