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Abstract

Since large and diverse datasets required for training deep
learning (DL) models are often unavailable, synthetic im-
ages generated from game-engines are increasingly used.
However, DL models trained on synthetic images often
struggle to generalize well to real-world images. This study
systematically investigates the potential of image augmen-
tation techniques to improve their sim-to-real generaliza-
tion. To do so, we evaluate the influence of 25 basic
pixel-level image augmentations on the real-world perfor-
mance of various DL models trained solely on synthetic im-
ages. The comprehensive study covers multiple DL models,
datasets, and perception tasks, including object detection
and semantic segmentation. Our results show that image
augmentations are a promising approach to increase sim-
to-real generalization. Specific augmentations can signifi-
cantly enhance model performance on real-world datasets,
improving the median performance of the investigated mod-
els by over 5% and yielding maximum improvements of up
to 36.1%. Furthermore, we show that especially differences
in color and blur are significant factors contributing to the
sim-to-real generalization issues of DL perception models.

1. Introduction

For many perception tasks, Deep Learning (DL) models
achieve state-of-the-art results. To do so, they rely on huge
and diverse datasets during training. For many use-cases,
this data is not available because of safety and cost reasons,
hindering the deployment of DL models. To mitigate this
lack of real-world images, the use of synthetic images gen-
erated with increasingly realistic visual simulation environ-
ments has gained more and more attention. While a promis-
ing approach, DL perception models trained on synthetic
images usually have problems generalizing to real-world
images. Although this generalization problem is extremely
relevant for real-world applications, definite reasons for it
are not yet found.

The generalization problems could come from many dif-
ferent sources. Previous work has mostly looked into the
learning process using, e.g., domain adaptation techniques
[27, 40]. On model level, [35] recently investigated the in-
fluence of the DL model architecture on the generalization
capability from synthetic to real-world images and showed
that different DL models differ significantly in this capabil-
ity. On data level, not much work has been done.

A natural approach on data level to improve the sim-to-
real generalization of DL models is to try to increase the
photorealism of the visual simulation environment. Bring-
ing the synthetic images closer to the real-world domain by
increasing the photorealism should naturally improve gen-
eralization. However, increasing photorealism is a complex
problem on which the gaming industry has been working for
years, and is therefore infeasible for practitioners as well as
industry users in the near future.

As an alternative approach, this work investigates the
potential of image augmentation techniques during training
of DL models to improve sim-to-real generalization. Basic
image augmentations have shown to improve performance
when using real-world datasets [2, 38] as well as to improve
robustness to real-world distributions shifts [11]. However,
it is not yet known to what extend image augmentations can
help to reduce the shift from synthetic to real-world images.
Furthermore, investigating which image augmentations are
most beneficial to close the shift can also give further in-
sights into the shortcomings of synthetic images and the dif-
ferences to real-world ones that are relevant for DL models.

Specifically, this work considers 25 basic pixel-level im-
age augmentations such as adding blur or noise, adjusting
the contrast of images as well as changing image colors. It
trains different DL models on synthetic images in combina-
tion with image augmentations and evaluates the influence
of the augmentations on the real-world performance. To im-
prove the generalizability of the results, this work considers
multiple DL models, datasets, and perception tasks. On the
one hand, it considers object detection in a visually simple
in-air coupling situation. On the other hand, it considers
two semantic segmentation use-cases, one coming from the



autonomous driving and the other from the Unmanned Air-
craft System (UAS) sector. As DL models, five semantic
segmentation models on the two datasets as well as three
object detection models on the corresponding dataset are
considered.

The main contributions of this work are as follows. First,
it gives a comprehensive study of the isolated influence of
25 image augmentations on the sim-to-real generalization
of DL models for object detection as well as semantic seg-
mentation. It shows a positive effect of specific augmenta-
tions. Second, it expands the results by giving first insights
into combinations of augmentations. Overall, it provides
practical insights on the selection of image augmentations
to improve sim-to-real generalization when using state-of-
the-art game-engines. By doing so, this work plays a crucial
role in the deployment of DL models in domains with a lim-
ited amount of real-world data.

2. Related Work
As large and diverse datasets required for DL perception
models to achieve state-of-the-art results are often not avail-
able, recent years have seen a growing interest in using
synthetic images extracted from game-engines for train-
ing. It spans multiple domains like autonomous driving
[14, 29, 30, 41] as well as UAS use-cases [12, 15, 19, 20,
33, 34]. While using synthetic images is a promising ap-
proach because of the increasing realism of the engines,
numerous studies have shown that these images are usu-
ally insufficient to train DL models that generalize well to
real-world data, as models often suffer significant perfor-
mance drops when applied outside the synthetic domain
[12, 15, 19, 20, 30, 41]. This issue is commonly re-
ferred to as the sim-to-real gap. While it was shown that
the gap can be closed when real-world images are avail-
able, e.g., using domain adaptation strategies [27, 40] or by
combining synthetic and real-world images during training
[12, 15, 19, 20, 29, 30, 41], identifying influencing factors
on the gap when only using synthetic images remains an
open problem.

While [35] investigated first influences coming from the
model, there is only limited work systematically explor-
ing the influence of the synthetic data itself. There are
some works investigating different image property metrics
to measure the differences between the synthetic and real-
world images. For example, [18] shows for the KITTI
dataset [8] and its synthetic counterpart VKITTI [7] that
even one metric for noise is enough to differentiate the
datasets as the synthetic images contain almost no noise.
They further conclude that the biggest influence on the sim-
to-real gap comes from the general coloration, lighting con-
ditions, and a lack of noise [18].

There are also some works going deeper into the inves-
tigation of the influence of noise and sensor modelling for

synthetic data on the sim-to-real gap [1, 4, 9, 36]. Most
of these modellings are done using image augmentations.
For example, [1] shows performance improvements when
matching the distortion of the real-world and the virtual
camera. Furthermore, [9] models sensor lens artifacts and
shows that it improves the mIoU for semantic segmentation
network trained on the synthetic images. Similar finding
were made when modelling camera vignetting [36]. The
influence of modelling different sensor effects including
Chromatic Aberration, Blur, Exposure, Sensor Noise and
Color Shift is investigated in [4]. It shows that applying
each effect, as well as the combination of all, improves the
performance compared to a baseline Faster R-CNN object
detection model. Going in a similar direction, [31] shows
that image augmentation generally can improve object de-
tectors trained on synthetic images but does not specify
which augmentations are used.

Compared to the works described above, this work in-
vestigates more sensor effects and augmentations as well
as more DL models and more datasets which cover multi-
ple domains and multiple perception tasks such as semantic
segmentation and object detection. Furthermore, it presents
a systematic evaluation considering the effect of each aug-
mentation in isolation as well as combinations. It gives a
detailed evaluation on which augmentations improve the
real-world performance of DL models and which do not.
Overall, this increases the generalizability of the results to
other domains and gives more detailed insights for practical
applications.

3. Experimental Setup

3.1. Method and Evaluation Metrics

To investigate the influence of applying different image aug-
mentations during training on the sim-to-real generalization
of DL perception models, following approach is used. First,
baseline models are trained only on the synthetic training
datasets without the use of image augmentations. After-
wards, the models are trained on the same synthetic training
datasets but using different image augmentations. As this
research aims to investigate the generalization to real-world
images, a real-world validation dataset is used to make sure
that the model that performs best on real-world images is se-
lected for evaluation. It is important to note that the use of
a real-world validation dataset does not influence the train-
ing itself as the model weights are trained only using syn-
thetic images. After training, all models are evaluated on
real-world datasets that correspond to the synthetic training
data. All models are trained three times and the best per-
forming training run is selected for further evaluations. To
measure the influence da of the image augmentation a on
the sim-to-real generalization of the model m, the perfor-
mance e(ma) of the model ma trained with augmentation a



is related with the performance e(mb) of the baseline model
mb using

da =
e(ma)− e(mb)

e(mb)
.

It measures the relative improvement compared to the base-
line model. As mentioned in the introduction, this work
considers the tasks of object detection as well as semantic
segmentation to increase the generalizability of the results.
Both tasks use different evaluation metrics. To evaluate the
performance of the object detection models, this work em-
ploys the widely used mean Average Precision (mAP) av-
eraged over Intersection over Union (IoU) thresholds 0.5,
0.55, ..., 0.95 from the COCO evaluation [21]. To evalu-
ate the semantic segmentation performance, the mean In-
tersection over Union (mIoU) is used. As it is clear from
the context which evaluation metric is used, no explicit dis-
crimination is made in the remainder of this work.

3.2. Datasets
This section briefly describes the datasets considered in this
work. They include one object detection dataset as well as
two semantic segmentation datasets.

For object detection, the dataset from [34] is used. It con-
tains real-world images showing in-air coupling maneuvers
of two aircraft during air-to-air refueling recorded from the
perspective of the trailing aircraft. Furthermore, it contains
synthetic images showing similar situations generated using
the Unreal Engine [6]. The dataset contains 8,000 synthetic
training images as well as 518 real-world validation images
and 4,969 real-world evaluation images. Following [35], all
images are center cropped to 544x544 pixels and scaled to
320x320 pixels to improve training speed.

The first semantic segmentation dataset is from the do-
main of autonomous driving. As the real-world dataset, the
dataset from [17] is used. It provides 445 semantic seg-
mentation annotations for a subset of the KITTI dataset [8].
From these, 146 images are used as the real-world vali-
dation dataset and the remaining 299 images are used as
the real-world evaluation dataset. As the synthetic train-
ing dataset, the Virtual KITTI 2 dataset [3] is used. The
dataset is build to be similar to the original KITTI dataset by
cloning five scenes using a so-called real-to-virtual cloning
method. The scenes are disjoint from the real-world ones
used for evaluation. Overall, 1,892 synthetic training im-
ages are available, coming from the five scenes except from
scene two which was reserved for potential future evalua-
tion on synthetic images. Because the real-world and syn-
thetic datasets have some variations in the class annotations,
the classes are merged to the final classes Sky, Building,
Vehicle, Vegetation, Sign/Pole, Ground, and Other. Further-
more, all images are center cropped to the smallest common
size of 1226x370 pixels.

The second semantic segmentation dataset is recorded

Table 1. Baseline performance of each model on the respective
real-world evaluation dataset when trained without augmentations
on synthetic images, combined with number of trainable weights.
RS denotes Ruralscapes, MNv3 denotes MobileNetV3.

Dataset Architecture Backbone Perf Weights

RS UPerNet ResNet-50 49.5 66M
RS UPerNet ResNet-101 44.6 85M
RS UPerNet Swin-B 39.2 121M
RS UPerNet Swin-S 39.4 81M
RS UPerNet Swin-T 35.6 60M
KITTI UPerNet ResNet-50 54.3 66M
KITTI UPerNet ResNet-101 52.8 85M
KITTI UPerNet Swin-B 58.4 121M
KITTI UPerNet Swin-S 61.2 81M
KITTI UPerNet Swin-T 51.2 60M
Drogue Faster R-CNN VGG-16 52.4 44M
Drogue Faster R-CNN ResNet-50 78.1 41M
Drogue Faster R-CNN MNv3-L 76.7 19M

from a low-flying UAS with a tilted camera at multiple al-
titudes in a rural area. As the real-world dataset, the Ru-
ralscapes dataset [24] is used. It provides 13 video se-
quences containing a total of 816 annotated images de-
signed for training and 7 sequences with a total of 331 anno-
tated images designed for evaluation. In this work, a subset
of 20% of the training images, i.e. 164 images, is used as the
real-world validation dataset and the remaining ones were
reserved for potential future training on real-world images.
The 331 designated evaluation images are used as the real-
world evaluation dataset. For training, the synthetic dataset
from [12] is used. It stylistically replicates the flight area
of [24] in the Unreal Engine and contains images as well as
labels from similar UAS perspectives. In this work, 1,569
synthetic images are available for training. Again, because
the real-world and synthetic datasets have some variations
in the class annotations, the classes are merged to Street,
Building, Car, Human, Greenery, and Background. To re-
duce computational load during training and evaluation, all
images are scaled to 960x540 pixels.

3.3. Model Configurations and Training Settings

As mentioned in the introduction, this work investigates
multiple object detection and semantic segmentation mod-
els to increase the generalizability of the results. All consid-
ered perception models are shown in Tab. 1 in combination
with their number of trainable weights and the performance
of the baseline model on the real-world images when trained
only on synthetic images without augmentations.

For object detection, Faster R-CNN [28] architectures
with VGG-16 [39], ResNet-50 [10] Feature Pyramid Net-
work (FPN) and MobileNetV3-Large [13] FPN backbones
are trained and evaluated. All models follow the imple-
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Figure 1. Relative change of performance to the baseline model on the real-world Ruralscapes evaluation dataset when applying a specific
image augmentation during training.

mentation provided by the Torchvision library [23] and the
backbones come pre-trained on the ImageNet dataset [32].
To avoid introducing bias because of unsuitable training hy-
perparameters, [35] performed a hyperparameter search to
identify parameters that lead to the best performance on
the real-world dataset. Following this work, all models are
trained using Adam [16] optimizer. The models with VGG-
16 and MobileNetV3-Large backbones use a learning rate
of 0.00001 and the model with the ResNet-50 backbone a
learning rate of 0.0001. Each model is trained for a max-
imum of 200 epochs with a training batch size of 16. To
reduce computational load when the model has reached a
local optimum and does not improve anymore, early stop-
ping with a patience of 10 is used.

For semantic segmentation, UPerNet [42] architectures
with ResNet-50 and ResNet-101 [10] as well as Swin-B,
-S and -T [22] backbones are trained and evaluated. All
models follow the implementation provided in the MMSeg-
mentation library [5] and come pre-trained on the ADE20k
dataset [43]. Following a hyperparameter search over
different optimizers and learning rates to avoid introduc-
ing bias because of unsuitable training hyperparameters,
all models are trained using Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0005. Each model is trained
for a maximum of 200 epochs with a training batch size of
two. Again, to reduce computational load, early stopping
with a patience of 10 is applied.

To apply augmentations during training, the implemen-
tations from the Albumentation library [2] are used. Fol-
lowing 25 pixel-level augmentations are used in this work:
AdvancedBlur, Blur, CLAHE, ColorJitter, Defocus, Down-
scale, Emboss, Equalize, FancyPCA, GaussNoise, Gaus-
sianBlur, GlassBlur, HueSaturationValue, ISONoise, Me-
dianBlur, MotionBlur, RGBShift, RandomBrightnessContr,
RandomGamma, RandomToneCurve, RingingOvershoot,
Sharpen, ToSepia, UnsharpMask and ZoomBlur. Each aug-
mentation is applied with its standard parameters which in-
clude a probability of application of 50% per image. For
more in-depth information about the augmentations, the
reader is referred to the online documentation of the library.

Overall, all 13 model variations are trained 3 times for
each of the 25 augmentations, as well as the baseline, re-
sulting in a total 1,014 training runs.

4. Evaluation

4.1. Using Augmentations in Isolation

4.1.1. Semantic Segmentation
Figs. 1 and 2 show the effect on the real-world perfor-
mance when applying the considered augmentations on the
synthetic training images for the semantic segmentation
datasets. The exact numerical values are given in Tab. 2. It
can be seen that there are augmentations that lead to signif-
icant improvements in the sim-to-real generalization of the
DL models. Applying just one specific augmentation on the
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Figure 2. Relative change of performance to the baseline model on the real-world KITTI evaluation dataset when applying a specific image
augmentation during training.

synthetic training data improves the median performance of
the models on the real-world images by over 5%. For some
models, applying just one augmentation can even lead to
a maximal improvement of 14.6% on KITTI and 14% on
Ruralscapes.

There are four augmentations that improve the median
performance of the trained models compared to the baseline
on both datasets. These are ColorJitter, RGBShift, HueSat-
urationValue, and ToSepia. Furthermore, it is interesting
to note that while only four out of the 25 augmentations
improve the median performance of the models on both
datasets, the augmentations that improve the median per-
formance the most, are similar: The top-3 augmentations
on both semantic segmentation datasets contain ColorJit-
ter and RGBShift. Both augmentations vary the colors of
the synthetic images. This is a noteworthy finding that un-
derlines the conclusion from [19] attributing the sim-to-real
generalization problems largely to the general coloration of
the synthetic data. It also aligns with [37] that experimen-
tally shows that textures of synthetic environments are not
looking completely realistic.

Furthermore, it is interesting to note that the transformer
architectures all improve their performance when ColorJit-
ter or RGBShift are applied, as seen in Tab. 2. Although
current literature states that transformer architectures pay
more attention to shape than to texture [25, 26], the color
differences do seem to have a significant influence on the
sim-to-real generalization issues of transformers.

Deeper investigations into the influence of the color aug-
mentations suggest that there is not one particular class or
color that has a significantly larger negative impact on the
sim-to-real generalization but that a wide variety seems to
have some relevant mismatch between the synthetic and
the real-world images. Furthermore, the application of the
color augmentations seems to reduce the negative effects
of color differences although they sometimes produce im-
ages with unrealistic colors, which are more dissimilar to
the real-world images than the original synthetic images.
This suggests that the color augmentations may be inducing
some form of domain randomization on the colors, instead
of making them more realistic.

There are also some augmentations that do not give any
improvement on the semantic segmentation datasets but
in contrary deteriorate the median performance of the DL
models on both datasets. These are ISONoise, Emboss,
Sharpen, Blur, Downscale, Defocus, and GlassBlur. Again,
the augmentations that deteriorate the results the most are
the same on both datasets, namely Defocus and Glass-
Blur. Furthermore, Downscale is in the bottom-4 on both
datasets. This highlights that augmentations may improve
the generalization of the models but that the augmentations
also have to be reasonable and reflect the phenomenons
faced during real-world deployment. As is explained below,
some blur augmentations help on the KITTI dataset but the
real-world dataset does not contain any glass through which
objects have to be detected. Furthermore, there are no im-



ages out-of-focus and all images have the same resolution.
Therefore, these augmentations do not give the model use-
ful information to learn.

There are also some noteworthy differences in the in-
fluence of the augmentations on the two semantic segmen-
tation datasets. While some augmentations have a posi-
tive or negative effect on both datasets, there are also aug-
mentations that have a different influence on the datasets.
On the KITTI dataset, 15 of the 25 investigated augmen-
tations help to improve the median of the performance of
the models compared to the baseline. On the Ruralscapes
dataset, only seven augmentations lead to an improvement.
This difference mainly comes from blur augmentations.
While KITTI improves with many of the blur augmenta-
tions, namely Median-, Advanced-, Motion- and Gaussian-
Blur, Ruralscapes does not. Ruralscapes only improves with
ZoomBlur, with which the models on the KITTI dataset
do not improve. It is assumed that this difference comes
from the characteristics of the datasets. As in both datasets
the images are taken from a moving vehicle, it could be
expected that both datasets would improve with blur aug-
mentations. However, differences in the real-world camera
settings may lead to differences in the blur of the images,
varying the effect of the augmentations.

4.1.2. Object Detection
For the object detection use-case, the augmentations show
many improvements again. The median performance of the
models improves on even more augmentations, namely on
18 of the 25. The size of the improvements is similar to
the semantic segmentation models, except for the VGG-16
models which show improvements of more than 30% com-
pared to the baseline multiple times. This will be consid-
ered in a later section. Furthermore, the number of aug-
mentations that improve all models and not just the median
is also much higher with 12, compared to 4 and 0 for the
semantic segmentation datasets. The reasons for the higher
number of augmentation that lead to an improvement could
be based on the visually simple object detection dataset. As
the dataset is relatively simple and does not contain much
variation, the diversity introduced by the various forms of
augmentations may have a much greater impact than for the
semantic segmentation datasets which are much more di-
verse and complex by themselves.

Similar to both semantic segmentation datasets, Col-
orJitter and RGBShift improve the median performance
of the object detection models compared to the baseline.
As discussed for semantic segmentation above, this aligns
with the literature stating color differences are a major fac-
tor for the sim-to-real generalization problems. However,
the improvements for these color augmentations are much
smaller on the object detection dataset. Also, contrary
to the semantic segmentation datasets, HueSaturationValue
does not give any improvements. A possible explanation is

again based on the visual simplicity of the object detection
dataset. As the images do not contain as much colors but
mostly a blue background and gray objects, the influence of
potential color differences seems to be much smaller. Nev-
ertheless, there is a measurable influence, again highlight-
ing the problem of coloration in synthetic images.

While the usage of blur for the semantic segmentation
datasets was ambiguous, the object detection models im-
prove much when using blur augmentations. The biggest
improvements are achieved when using Motion Blur. This
is reasonable as the relevant objects move a lot in the de-
picted situations. On median, the models also improve us-
ing GaussianBlur, Blur, MedianBlur, AdvancedBlur, and
ZoomBlur. As the synthetic object detection dataset does
not contain blurred images because of the applied data gen-
eration process, these augmentations seem to align the syn-
thetic dataset more closely with the real-world images. Es-
pecially, since the real-world images sometimes even look
blurry to the human eye.

4.1.3. Differences Between the Deep Learning Models
From model perspective, the semantic segmentation model
with the ResNet-101 backbone is the model that improves
with the highest number of augmentations across both se-
mantic segmentation datasets as shown in Tab. 2. Con-
trary, the model with the ResNet-50 backbone improves
with the lowest number of augmentations. As the models
with the ResNet-50 and ResNet-101 backbone have the best
and second-best baseline on the Ruralscapes dataset, re-
spectively, this cannot be explained with a low baseline per-
formance. Instead, the ResNet-50 backbone with its lower
number of trainable weights might already be close to its
capacity boarder and, therefore, cannot learn the informa-
tion added by the augmentations. In contrast, the ResNet-
101, has more trainable weights and might have more ca-
pacity left to learn the diversity added by the augmenta-
tions. Similar trends are observed for the MobileNetV3-
based object detection model. It has the fewest trainable
weights and exhibits by far the smallest maximal deteriora-
tion and improvement. Because of its smaller capacity, the
model seems to learn relatively robust weights but to also
have only limited improvement potential with augmenta-
tions. Therefore, augmentations seem to have more benefits
for models with a high capacity.

While model capacity is a contributing factor, it is not
the only influence on the effectiveness of augmentations.
Baseline performance seems to also play a role, which is
reasonable as models with lower baseline performance tend
to have more room for improvement. For example, the
Swin-B and Swin-S models possess more trainable weights
than ResNet-101 but do not consistently exhibit more im-
provements. Instead, the Swin-T model, with less trainable
weights, benefits significantly from augmentations, proba-
bly due to its low baseline performance.
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Figure 3. Relative change of performance to the baseline model on the real-world object detection evaluation dataset when applying a
specific image augmentation during training.

Table 2. Statistics on the relative change of performance of each model compared to the baseline. The improvement row counts the number
of augmentations with which the model improves. Abbreviations: R for ResNet, S for Swin, MN for MobileNetV3-L, and V for VGG.

Ruralscapes KITTI Object Detection
R-101 R-50 S-B S-S S-T R-101 R-50 S-B S-S S-T MN R-50 V-16

Minimum -8.8 -23.1 -14.2 -9.9 -6.0 -17.2 -13.8 -9.2 -12.3 -14.3 -1.7 -9.1 -20.0
Maximum 14.0 4.4 4.5 5.8 13.7 8.8 6.0 10.7 3.5 14.6 4.7 5.8 36.1
Median 4.5 -7.1 -3.7 -2.6 3.1 3.2 -4.0 2.0 -1.3 3.0 0.9 0.8 14.5
Mean 3.2 -7.7 -3.7 -2.3 3.4 2.1 -3.6 2.2 -2.5 2.3 1.4 0.5 12.9
Improvement 16.0 2.0 5.0 5.0 16.0 19.0 8.0 19.0 11.0 18.0 19.0 14.0 22.0

The object detection model with the VGG-16 backbone
seems to combine a relatively high capacity and low base-
line performance. As a result, it has by far the highest im-
provement as well as the highest number of augmentations
with which it improves on the real-world evaluation data.
However, even for this model, not all augmentations help,
as it also experiences great deterioration of up to -20% with
some augmentations.

4.2. Using Selected Combinations of Augmentations

In Sec. 4.1, it was shown that there are several augmenta-
tions that improve the model performance compared to the
baseline when applied in isolation. This section presents
first investigations on whether combining augmentations
can improve the results further. This research is reason-
able as the brute-force approach of combining all possible
augmentations is not useful but deteriorates the results, as

Table 3. Mean of the relative change of performance to the
baseline models for the selected combinations of augmentations.
Abbreviations: CJ for ColorJitter, RGBS for RGBShift, DS for
Dataset Specific, and MS for Model Specific. SemS denotes the
augmentations that improve the models on the semantic segmen-
tation datasets.

Augmentation All CJ+RGBS SemS DS MS
Dataset

Ruralscapes -15.2 5.8 9.7 2.6 6.4
KITTI -17.1 2.5 3.5 5.3 -1.0

Drogue -3.7 3.4 — -4.7 -5.0

shown in Tab. 3. The median of the models deteriorates
on all considered datasets. Even on the object detection
dataset, on which most augmentations have a positive influ-
ence, the combination of all leads to a deterioration. As the



number of potential combinations grows exponentially with
the number of augmentations, only four promising combi-
nations are evaluated in this work. The results are shown in
Tab. 3.

The first considered combination aggregates the aug-
mentations that lead to an improvement of the median per-
formance of the models on all three datasets, namely Col-
orJitter and RGBShift. This combination leads to slight im-
provements on some datasets but does not necessarily im-
prove the performance compared to applying only one of
the augmentations. On the Ruralscapes dataset, this combi-
nation leads to slightly better results than the best augmen-
tation in isolation. For object detection, the improvement is
larger than both augmentations in isolation. While the com-
bination still leads to an improvement on the KITTI dataset,
it is worse than both augmentations in isolation.

The second considered selection combines all augmenta-
tions that lead to an improvement on both semantic segmen-
tation datasets, namely ColorJitter, RGBShift, HueSatura-
tionValue and ToSepia. Because of that, it is only evaluated
on the semantic segmentation datasets. When combining
these augmentations, it improves the median performance
on both semantic segmentation datasets. While the median
improvement using this combination is still smaller than
some of the isolated augmentations on the KITTI dataset,
it outperforms the previous best augmentation on the Ru-
ralscapes dataset by 3.9%.

The third considered combination is dataset-specific and
contains all augmentations that lead to a median improve-
ment on each dataset in isolation. Therefore, for each
dataset, it contains the augmentations for which the me-
dian improvement in Figs. 1 to 3 is greater than zero. The
forth combination is model-specific and contains all aug-
mentations that lead to an improvement of that model on the
dataset. The results show that there is potential to be found.
However, combining multiple augmentations seems to be a
tricky task. While on the Ruralscapes dataset, the model-
specific variant sees a median improvement larger than that
of any augmentation in isolation, all the other models do
not see improvements compared to augmentations in isola-
tion. For half of the variants, the median of the model per-
formance even deteriorates. Overall, this underscores that
using augmentations is a promising approach to improve
sim-to-real generalization but combining multiple augmen-
tations is a tricky task that does not necessarily lead to im-
proved results.

5. Conclusion and Future Work
This work investigates the potential of basic pixel-level im-
age augmentations to improve the generalization of DL per-
ception models from synthetic training to real-world eval-
uation images. It evaluates the influence of 25 augmenta-
tions on five semantic segmentation models on two datasets

as well as three object detection models on one object de-
tection dataset. Overall, this work shows that using aug-
mentations is a promising approach to improve sim-to-real
generalization. Even when using only one augmentation,
the median real-world performance of the models improves
by more than 5% on all considered dataset. Some models
even reach maximum improvements of 36.1% on the object
detection, 14.6% on the autonomous driving, and 14% on
the UAS dataset when using only one augmentation during
training.

Furthermore, the results of this work underline that dif-
ferences in coloration seem to have a significant influence
on the problem of DL models to generalize from synthetic
to real-world images, as RGBShift and ColorJitter are the
only augmentations improving the median performance of
the models on all three dataset. Furthermore, the perfor-
mance of all transformer models improves using these two
augmentations during training, indicating that color differ-
ences do seem to have a significant influence on the sim-
to-real generalization problems for these architectures, al-
though current literature states that transformer architec-
tures pay more attention to shape than to texture.

This work further confirms findings from current litera-
ture that adding noise and blur may improve the general-
ization from synthetic to real-world images. However, we
show that this depends on the considered dataset and that the
added effects should reflect the conditions that the model
will face when deployed. For example, adding glass blur
for models that will never see through glass may help to in-
crease the diversity of the training dataset but does not seem
to help improve final performance when deployed. While
not all considered datasets improve with the addition of blur
augmentations, the usage of blur should especially be con-
sidered when faced with situations in which the camera or
the observed objects move a lot.

While this work shows many positive effects of us-
ing augmentations on the sim-to-real generalization, it also
shows that not all augmentations improve the model per-
formance on real-world images. Furthermore, combining
augmentations without careful consideration may harm the
real-world performance and combining augmentations in a
useful way seems to be a difficult task. Because of that,
future work should investigate possible benefits and strate-
gies of combining multiple augmentations, and the influ-
ence of their parametrization further. As the number of pos-
sible combinations grows exponentially, using optimization
frameworks or learning optimal augmentation strategies for
synthetic images seem to be promising directions.

Overall, while increasing photorealism is still a promis-
ing outlook to increase sim-to-real generalization in the
long-run, image augmentations provide a simple-to-use way
to improve the generalization when using existing state-of-
the-art game-engines today.
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