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Abstract

Since large and diverse datasets required for training deep001
learning (DL) models are often unavailable, synthetic im-002
ages generated from game-engines are increasingly used.003
However, DL models trained on synthetic images often004
struggle to generalize well to real-world images. This study005
systematically investigates the potential of image augmen-006
tation techniques to improve the sim-to-real generalization.007
To do so, we evaluate the influence of 25 basic pixel-level008
image augmentations on the real-world performance of var-009
ious DL models trained solely on synthetic images. The010
comprehensive study covers multiple DL models, datasets,011
and perception tasks, including object detection and seman-012
tic segmentation. Our results show that image augmen-013
tations are a promising approach to increase sim-to-real014
generalization. Specific augmentations can significantly015
enhance model performance on real-world datasets, im-016
proving the median performance of the investigated models017
by over 5% and yielding maximum improvements of up to018
26.8%. Furthermore, we show that especially differences019
in color and blur are significant factors contributing to the020
sim-to-real generalization problems of DL perception mod-021
els.022

1. Introduction023

For many perception tasks, Deep Learning (DL) models024
achieve state-of-the-art results. To do so, they rely on huge025
and diverse datasets during training. For many use-cases,026
this data is not available because of safety and cost reasons,027
hindering the deployment of DL models. To mitigate this028
lack of real-world images, the use of synthetic images gen-029
erated with increasingly realistic visual simulation environ-030
ments has gained more and more attention. While a promis-031
ing approach, DL perception models trained on synthetic032
images usually have problems generalizing to real-world033
images. Although this generalization problem is extremely034
relevant for real-world applications, definite reasons for it035

are not yet found. 036
The generalization problems could come from many dif- 037

ferent sources. Previous work has mostly looked into the 038
learning process using e.g. domain adaptation techniques 039
[25, 38]. On model level, [33] recently investigated the in- 040
fluence of the DL model architecture on the generalization 041
capability from synthetic to real-world images and showed 042
that different DL models differ significantly in this capabil- 043
ity. On data level, not much work has been done. 044

A natural approach on data level to improve the sim-to- 045
real generalization of DL models is to try to increase the 046
photorealism of the visual simulation environment. Bring- 047
ing the synthetic images closer to the real-world domain by 048
increasing the photorealism should naturally improve gen- 049
eralization. However, increasing photorealism is a complex 050
problem on which the gaming industry has been working for 051
years, and is therefore infeasible for practitioners as well as 052
industry users in the near future. 053

As an alternative approach, this work investigates the po- 054
tential of image augmentation techniques during training of 055
DL models to improve the sim-to-real generalization. Basic 056
image augmentations have been shown to improve perfor- 057
mance when using real-world datasets [2, 36] as well as to 058
improve robustness on real-world distributions shifts [10]. 059
However, it is not yet known to what extend image aug- 060
mentations can help to reduce the shift from synthetic to 061
real-world images. Furthermore, investigating which image 062
augmentations are most beneficial to close the shift can also 063
give further insights into the shortcomings of synthetic im- 064
ages and the differences to real-world ones that are relevant 065
for DL models. 066

Specifically, this work considers 25 basic pixel-level im- 067
age augmentations such as adding blur or noise, adjusting 068
the contrast of images as well as changing image colors. It 069
trains different DL models only on synthetic images in com- 070
bination with image augmentations and evaluates the influ- 071
ence of the augmentations on the real-world performance. 072
To improve the generalizability of the results, this work con- 073
siders multiple DL models, datasets and perception tasks. 074
On the one hand, it considers object detection in a visu- 075
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ally simple in-air coupling situation. On the other hand, it076
considers two semantic segmentation use-cases, one com-077
ing from the autonomous driving and the other from the078
Unmanned Aircraft System (UAS) sector. As DL models,079
five semantic segmentation models on the two datasets as080
well as three object detection models on the corresponding081
dataset are considered.082

The main contributions of this work are as follows. First,083
it gives a comprehensive study of the isolated influence of084
25 image augmentations on the sim-to-real generalizability085
of DL models for object detection as well as semantic seg-086
mentation. It shows a positive effect of specific augmenta-087
tions. Second, it expands the results by giving first insights088
into combinations of augmentations. Overall, it provides089
practical insights on the selection of image augmentations090
to improve sim-to-real generalization when using state-of-091
the-art game-engines. By doing so, this work plays a crucial092
role in the deployment of DL models in domains with a lim-093
ited amount of real-world data.094

2. Related Work095

As large and diverse datasets needed by DL perception096
models to achieve state-of-the-art results are often not avail-097
able, recent years have seen a growing interest in using098
synthetic images extracted from game-engines for train-099
ing. It spans multiple domains like autonomous driving100
[13, 27, 28, 39] as well as UAS use-cases [11, 14, 18, 19,101
31, 32]. While using synthetic images is a promising ap-102
proach because of the increasing realism of the engines,103
numerous studies have shown that these images are usu-104
ally insufficient to train DL models that generalize well to105
real-world data, as models often suffer significant perfor-106
mance drops when applied outside the synthetic domain107
[11, 14, 18, 19, 28, 39]. This issue is commonly re-108
ferred to as the sim-to-real gap. While it was shown that109
the gap can be closed when real-world images are avail-110
able, e.g. using domain adaptation strategies [25, 38] or by111
combining synthetic and real-world images during training112
[11, 14, 18, 19, 27, 28, 39], identifying influencing factors113
on the gap when only using synthetic images remains an114
open problem.115

While [33] investigated first influences coming from the116
model, there is only limited work systematically explor-117
ing the influence of the synthetic data itself. There are118
some works investigating different image property metrics119
to measure the differences between the synthetic and real-120
world images. For example, [17] shows for the KITTI121
dataset [7] and its synthetic counterpart VKITTI [6] that122
even one metric for noise is enough to differentiate the123
datasets as the synthetic images contain almost no noise.124
They further conclude that the biggest influence on the sim-125
to-real gap comes from the general coloration, lighting con-126
ditions and a lack of noise [17].127

There are also some works going deeper into the inves- 128
tigation of the influence of noise and sensor modelling for 129
synthetic data on the sim-to-real gap [1, 4, 8, 34]. Most 130
of these modellings are done using image augmentations. 131
For example, [1] shows performance improvements when 132
matching the distortion of the real-world and the virtual 133
camera. Furthermore, [8] models sensor lens artifacts and 134
shows that it improves the mIoU for semantic segmentation 135
network trained on the synthetic images. Similar finding 136
were made when modelling camera vignetting [34]. The 137
influence of modelling different sensor effects including 138
Chromatic Aberration, Blur, Exposure, Sensor Noise and 139
Color Shift is investigated in [4]. It shows that applying 140
each effect as well as the combination of all improves the 141
performance compared to a baseline Faster R-CNN object 142
detection model. Going in a similar direction, [29] shows in 143
general that image augmentation can improve object detec- 144
tors trained on synthetic images but does not specify which 145
augmentations are used. 146

Compared to the works described above, this work in- 147
vestigates more sensor effects and augmentations as well 148
as more DL models and more datasets which cover multi- 149
ple domains and multiple perception tasks such as semantic 150
segmentation and object detection. Furthermore, it presents 151
a systematic evaluation considering the effect of each aug- 152
mentation in isolation as well as combinations. It gives a 153
detailed evaluation on which augmentations improve the 154
real-world performance of DL models and which do not. 155
Overall, this increases the generalizability of the results to 156
other domains and gives more detailed insights for practical 157
applications. 158

3. Experimental Setup 159

3.1. Method and Evaluation Metrics 160

To investigate the influence of applying different image aug- 161
mentations during training on the sim-to-real generalizabil- 162
ity of DL perception models, following approach is used. 163
First, baseline models are trained only on the synthetic 164
training datasets without the use of image augmentations. 165
Afterwards, the models are trained on the same synthetic 166
training datasets but using different image augmentations. 167
As this research aims to investigate the generalization to 168
real-world images, a real-world validation dataset is used to 169
make sure that the model that performs best on real-world 170
images is selected for evaluation. It is important to note that 171
the use of a real-world validation dataset does not influence 172
the training itself as the model weights are trained only us- 173
ing synthetic images. After training, all models are evalu- 174
ated on real-world datasets that correspond to the synthetic 175
training data. All models are trained three times and the best 176
performing training run is selected for further evaluations. 177
To measure the influence da of the image augmentation a on 178
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the sim-to-real generalizability of the model m, the perfor-179
mance e(ma) of the model ma trained with augmentation a180
is related with the performance e(mb) of the baseline model181
mb using182

da =
e(ma)− e(mb)

e(mb)
.183

It measures the relative improvement compared to the base-184
line model. As mentioned in the introduction, this work185
considers the tasks of object detection as well as semantic186
segmentation to increase the generalizability of the results.187
Both tasks use different evaluation metrics. To evaluate the188
performance of the object detection models, this work em-189
ploys the widely used mean Average Precision (mAP) av-190
eraged over Intersection over Union (IoU) thresholds 0.5,191
0.55, ..., 0.95 from the COCO evaluation [20]. To evalu-192
ate the semantic segmentation performance, the mean In-193
tersection over Union (mIoU) is used. As it is clear from194
the context which evaluation metric is used, no explicit dis-195
crimination is made in the remainder of this work.196

3.2. Datasets197

This section briefly describes the datasets considered in this198
work. They include one object detection dataset as well as199
two semantic segmentation datasets.200

For object detection, the dataset from [32] is used. It con-201
tains real-world images showing in-air coupling maneuvers202
of two aircraft during air-to-air refueling recorded from the203
perspective of the trailing aircraft. Furthermore, it contains204
synthetic images showing similar situations generated using205
the Unreal Engine [5]. The dataset contains 8,000 synthetic206
training images as well as 518 real-world validation images207
and 4,969 real-world evaluation images. Following [33], all208
images are center cropped to 544x544 pixels and scaled to209
320x320 pixels to improve training speed.210

The first semantic segmentation dataset is from the do-211
main of autonomous driving. As the real-world dataset, the212
dataset from [16] is used. It provides 445 semantic seg-213
mentation annotations for a subset of the KITTI dataset [7].214
From these, 146 images are used as the real-world vali-215
dation dataset and the remaining 299 images are used as216
the real-world evaluation dataset. As the synthetic train-217
ing dataset, the Virtual KITTI 2 dataset [3] is used. The218
dataset is build to be similar to the original KITTI dataset by219
cloning five scenes using a so-called real-to-virtual cloning220
method. The scenes are disjoint from the real-world ones221
used for evaluation. Overall, 1,892 synthetic training im-222
ages are available, coming from the five scenes except from223
scene two which was reserved for potential future evalua-224
tion on synthetic images. Because the real-world and syn-225
thetic datasets have some variations in the class annotations,226
the classes are merged to the final classes Sky, Building,227
Vehicle, Vegetation, Sign/Pole, Ground and Other. Further-228
more, all images are center cropped to the smallest common229

Table 1. Baseline results of each model on the respective real-
world evaluation dataset when trained only on synthetic images
combined with number of trainable weights. RS denotes Ru-
ralscapes, MNv3 denotes MobileNetV3.

Dataset Architecture Backbone Perf Weights

RS UPerNet ResNet-50 49.5 66M
RS UPerNet ResNet-101 44.6 85M
RS UPerNet Swin-T 35.6 60M
RS UPerNet Swin-S 39.4 81M
RS UPerNet Swin-B 39.2 121M
KITTI UPerNet ResNet-50 54.3 66M
KITTI UPerNet ResNet-101 52.8 85M
KITTI UPerNet Swin-T 51.2 60M
KITTI UPerNet Swin-S 61.2 81M
KITTI UPerNet Swin-B 58.4 121M
Drogue Faster R-CNN MNv3-L 76.7 19M
Drogue Faster R-CNN ResNet-50 78.1 41M
Drogue Faster R-CNN VGG-16 52.4 44M

size of 1226x370 pixels. 230

The second semantic segmentation dataset is recorded 231
from a low-flying UAS with a tilted camera at multiple al- 232
titudes in a rural area. As the real-world dataset, the Ru- 233
ralscapes dataset [22] is used. It provides 13 video se- 234
quences containing a total of 816 annotated images de- 235
signed for training and 7 sequences with a total of 331 anno- 236
tated images designed for evaluation. In this work, a subset 237
of 20% of the training images, i.e. 164 images, is used as 238
the real-world validation dataset as the remaining ones were 239
reserved for potential future training on real-world images. 240
The 331 designated evaluation images are used as the real- 241
world evaluation dataset. For training, the synthetic dataset 242
from [11] is used. It stylistically replicates the flight area 243
of [22] in the Unreal Engine and contains images as well as 244
labels from similar UAS perspectives. In this work, 1,569 245
synthetic images are available for training. Again, because 246
the real-world and synthetic datasets have some variations 247
in the class annotations, the classes are merged to Street, 248
Building, Car, Human, Greenery and Background. To re- 249
duce computational load during training and evaluation, all 250
images are scaled to 960x540 pixels. 251

3.3. Model Configurations and Training Settings 252

As mentioned in the introduction, this work investigates 253
multiple object detection and semantic segmentation mod- 254
els to increase the generalizability of the results. All consid- 255
ered perception models are shown in Tab. 1 in combination 256
with the number of trainable weights and the performance 257
of the baseline model on the real-world images when trained 258
only on synthetic images without augmentations. 259

For object detection, Faster R-CNN [26] architectures 260
with VGG-16 [37], ResNet-50 [9] FPN and MobileNetV3- 261
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Figure 1. Change of performance d on the real-world Ruralscapes evaluation datasets when applying a specific image augmentation during
training compared to the baseline model.

Large [12] FPN backbones are trained and evaluated. All262
models are implemented in the PyTorch library and the263
backbones are pre-trained on the ImageNet dataset [30] as264
provided by PyTorch. To avoid introducing bias because of265
unsuitable training hyperparameters, [33] performed a hy-266
perparameter search to identify parameters that lead to the267
best performance on the real-world dataset. Following this268
work, all models are trained using Adam [15] optimizer.269
The models with VGG-16 and MobileNetV3-Large back-270
bones use a learning rate of 0.00001 and the model with271
the ResNet-50 backbone a learning rate of 0.0001. Each272
model is trained for a maximum of 200 epochs with a train-273
ing batch size of 16. To reduce computational load when the274
model has reached a local optimum and does not improve275
anymore, early stopping with a patience of 10 is used.276

For semantic segmentation, UPerNet [40] architectures277
with ResNet-50 and ResNet-101 [9] as well as Swin-B, -S278
and -T [21] backbones are trained and evaluated. All mod-279
els follow the implementation provided in the MMSegmen-280
tation library and are pre-trained on the ADE20k dataset281
[41]. Following a hyperparameter search over different op-282
timizers and learning rates to avoid introducing bias be-283
cause of unsuitable training hyperparameters, all models are284
trained using Stochastic Gradient Descent (SGD) opimtizer285
with a learning rate of 0.01, momentum of 0.9 and weight286
decay of 0.0005. Each model is trained for a maximum of287
200 epochs with a training batch size of two. Again, to re-288
duce computational load, early stopping with a patience of289

10 is applied. 290

To apply augmentations during training, the implemen- 291
tations from the Albumentation library [2] are used. Fol- 292
lowing 25 pixel-level augmentations are used in this work: 293
AdvancedBlur, Blur, CLAHE, ColorJitter, Defocus, Down- 294
scale, Emboss, Equalize, FancyPCA, GaussNoise, Gaus- 295
sianBlur, GlassBlur, HueSaturationValue, ISONoise, Me- 296
dianBlur, MotionBlur, RGBShift, RandomBrightnessContr, 297
RandomGamma, RandomToneCurve, RingingOvershoot, 298
Sharpen, ToSepia, UnsharpMask and ZoomBlur. Each aug- 299
mentation is applied with its standard parameters which in- 300
clude a probability of application of 50% per image. For 301
more in-depth information about the augmentations, the 302
reader is referred to the online documentation of the library. 303

Overall, all 13 model variations are trained 3 times for 304
each of the 25 augmentations as well as the baseline result- 305
ing in 1,014 training runs. 306

4. Evaluation 307

4.1. Using Augmentations in Isolation 308

4.1.1. Semantic Segmentation 309

Figs. 1 and 2 show the effect on the real-world perfor- 310
mance when applying the considered augmentations on the 311
synthetic training images for the semantic segmentation 312
datasets. The exact numerical values are given in Tab. 2. 313
It can be seen that there are augmentations that lead to sig- 314
nificant improvements on the sim-to-real generalizability of 315
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Figure 2. Change of performance d on the real-world KITTI evaluation datasets when applying a specific image augmentation during
training compared to the baseline model.

the DL models. Applying just one specific augmentation316
on the synthetic training data improves the median perfor-317
mance of the models on the real-world images by over 5%.318
For some models, applying just one augmentation can even319
lead to a maximal improvement of 12.3% on Ruralscapes320
and 12.8% on KITTI.321

There are four augmentations that improve the median322
performance of the trained models compared to the baseline323
on both datasets. These are ColorJitter, RGBShift, Hue-324
SaturationValue and ToSepia. Furthermore, it is interesting325
to note that while only four out of the 25 augmentations326
improve the median performance of the models on both327
datasets, the augmentations that improve the median per-328
formance the most, are similar: The top-3 augmentations329
on both semantic segmentation datasets contain ColorJit-330
ter and RGBShift. Both augmentations vary the colors of331
the synthetic images. This is an interesting finding that un-332
derlines the conclusion from [18] attributing the sim-to-real333
generalization problems largely to the general coloration of334
the synthetic data. It also aligns with [35] that experimen-335
tally shows that textures of synthetic environments are not336
looking completely realistic.337

In general, it is very interesting to note that the trans-338
former architectures all improve their performance when339
ColorJitter or RGBShift are applied, as seen in Tab. 2. Al-340
though current literature states that transformer architec-341
tures pay more attention to shape than to texture [23, 24],342
the color differences do seem to have a significant influence343

on the sim-to-real generalization problems for transformers. 344

There are also some augmentations that do not give 345
any improvement on the semantic segmentation datasets 346
but in contrary deteriorate the median performance of the 347
DL models on both datasets. These are ISONoise, Em- 348
boss, Sharpen, Blur, Downscale, Defocus, and GlassBlur. 349
Again, the augmentations that deteriorate the results the 350
most are the same on both datasets, namely Defocus and 351
GlassBlur. Furthermore, Downscale is in the bottom-4 on 352
both datasets. This highlights that augmentations may im- 353
prove the generalizability of the models but that the aug- 354
mentations also have to be reasonable and reflect the phe- 355
nomenons faced during real-world deployment. As is ex- 356
plained below, some blur augmentations help on the KITTI 357
dataset but the real-world dataset does not contain any glass 358
through which objects have to be detected. Furthermore, 359
there are no images out-of-focus and all images have the 360
same resolution. Therefore, these augmentations do not 361
give the model useful information to learn. 362

There are also some interesting differences in the influ- 363
ence of the augmentations on the two semantic segmen- 364
tation datasets. While some augmentations have a posi- 365
tive or negative effect on both datasets, there are also aug- 366
mentations that have a different influence on the datasets. 367
On the KITTI dataset, 15 of the 25 investigated augmen- 368
tations help to improve the median of the performance of 369
the models compared to the baseline. On the Ruralscapes 370
dataset, only seven augmentations lead to an improvement. 371
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Figure 3. Change of performance d on the real-world drogue detection evaluation datasets when applying a specific image augmentation
during training compared to the baseline model.

This difference mainly comes from blur augmentations.372
While KITTI improves with many of the blur augmenta-373
tions, namely Median-, Advanced-, Motion- and Gaussian-374
Blur, Ruralscapes does not. Ruralscapes only improves with375
ZoomBlur, with which the models on the KITTI dataset do376
not improve. It is assumed that this difference comes from377
the characteristics of the datasets. As in both datasets the378
images are taken from a moving vehicle, it could be ex-379
pected that both datasets would improve with blur augmen-380
tations. However, differences in the real-world camera set-381
tings may lead to differences in the blur of the images in382
both datasets, varying the effect of the augmentations.383

4.1.2. Object Detection384

For the object detection use-case, the augmentations show385
many improvements again. The median performance of the386
models improves on even more augmentations, namely on387
18 of the 25. The size of the improvements is similar to388
the semantic segmentation models, except for the VGG-16389
models which show improvements of more than 20% com-390
pared to the baseline multiple times. This will be consid-391
ered in a later section. Furthermore, the number of aug-392
mentations that improve all models and not just the median393
is also much higher with 12 compared to 4 and 0 for the394
semantic segmentation datasets. The reasons for the higher395
number of augmentation that lead to an improvement could396
be based on the visually simple object detection dataset. As397
the dataset of the scenario is relatively simple and does not398
contain much variation, the diversity introduced by the var-399

ious forms of augmentations may have a much greater im- 400
pact than for the semantic segmentation datasets which are 401
much more diverse and complex by themselves. 402

Similar to both semantic segmentation datasets, Color- 403
Jitter and RGBShift improve the median performance of the 404
DL models compared to the baseline. As discussed for se- 405
mantic segmentation above, this aligns with the literature 406
stating color differences are a major factor for the sim-to- 407
real generalization problems. However, the improvements 408
for these color augmentations are much smaller on the ob- 409
ject detection dataset. Also, contrary to the semantic seg- 410
mentation datasets, HueSaturationValue does not give any 411
improvements. A possible explanation is again based on the 412
visual simplicity of the object detection dataset. As the im- 413
ages do not contain as much colors but mostly a blue back- 414
ground and gray objects, the influence of potential color dif- 415
ferences seems to be much smaller. Nevertheless, there is 416
a measurable influence highlighting again the problem of 417
colors in synthetic images. 418

While the usage of blur for the semantic segmentation 419
datasets was ambiguous, the object detection models im- 420
prove much when using blur augmentations. The biggest 421
improvements are achieved when using Motion Blur. This 422
is reasonable as the drogue moves a lot in the depicted sit- 423
uation. On median, the models also improve using Gaus- 424
sianBlur, Blur, MedianBlur, AdvancedBlur and ZoomBlur. 425
As the synthetic drogue detection dataset does not con- 426
tain blurred images because of the applied data generation 427

6



CVPR
#2

CVPR
#2

CVPR 2025 Submission #2. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Statistical values on the change of performance of each model compared to the baseline in percent. The improvement row counts
the number of augmentations with which the model improves. In the header, R abbreviates ResNet, S abbreviates Swin, MN abbreviates
MobileNetV3-L and V abbreviates VGG.

Ruralscapes KITTI Object Detection
R-101 R-50 S-B S-S S-T R-101 R-50 S-B S-S S-T MN R-50 V-16

Minimum -9.6 -30.1 -16.6 -11.0 -6.4 -20.7 -16.0 -10.1 -14.0 -16.7 -1.7 -10.0 -25.1
Maximum 12.3 4.2 4.3 5.4 12.0 8.1 5.6 9.6 3.4 12.8 4.5 5.4 26.5
Median 4.3 -7.7 -3.8 -2.7 3.0 3.1 -4.1 2.0 -1.3 2.9 0.9 0.8 12.7
Mean 2.8 -9.0 -4.1 -2.5 3.0 1.8 -4.1 1.9 -2.7 1.9 1.3 0.4 10.0
Improvement 16.0 2.0 5.0 5.0 16.0 19.0 8.0 19.0 11.0 18.0 19.0 14.0 22.0

process, these augmentations seem to align the synthetic428
dataset more closely with the real-world images. Especially,429
since the real-world images sometimes even look blurry to430
the human eye.431

4.1.3. Differences Between the Deep Learning Models432

From model perspective, the semantic segmentation model433
with the ResNet-101 backbone is the model that improves434
with the highest number of augmentations across both se-435
mantic segmentation datasets as shown in Tab. 2. Contrary,436
the semantic segmentation model with the ResNet-50 back-437
bone improves with the lowest number of augmentations438
across both datasets. It also has the lowest median and mean439
improvement of all considered semantic segmentation mod-440
els. Interestingly, this does not seem to be related to the441
baseline performance of the model. It would be reasonable442
to assume that models with a comparably low baseline per-443
formance have much more room to improve and vice versa.444
However, on the Ruralscapes dataset, the models with the445
ResNet-50 and ResNet-101 backbone have the best and sec-446
ond best baseline, respectively. A more probable explana-447
tion is that the ResNet-50 backbone with its lower number448
of trainable weights is already close to its capacity boarder449
and, therefore, the information added by the augmentations450
cannot be learned by the given number of weights. The451
ResNet-101, on the other hand, has more trainable weights452
and therefore might have more capacity left to learn the di-453
versity added by the augmentations. Therefore, augmen-454
tations seem to have more benefits for models with a high455
capacity.456

A similar phenomenon can be observed for the object457
detection models. The MobileNetV3-Large has by far the458
fewest trainable weights. It also has by far the smallest max-459
imal deterioration and the smallest maximal improvement.460
Because of the resulting smaller capacity, the model seems461
to learn relatively robust weights by itself, preventing over-462
fitting and instead allowing relatively good generalization.463
However, on the downside, the model cannot achieve much464
performance improvement using image augmentations.465

As mentioned above, the object detection model with the466
VGG-16 backbone has by far the highest improvement as467

Table 3. Performance improvements against the baseline for the
selected combinations of augmentations in percent. CJ denotes
ColorJitter, RGBS denotes RGBShift, SemS denotes the augmen-
tations that improve the models on the semantic segmentation
datasets, DS denotes Dataset Specific, and MS denotes Model Spe-
cific.

Augmentation All CJ+RGBS SemS DS MS
Dataset

Ruralscapes -17.9 5.5 8.9 2.6 6.0
KITTI -20.6 2.4 3.4 5.0 -1.0

Drogue -3.8 3.3 — -4.9 -5.3

well as the highest number of augmentations with which 468
it improves on the real-world evaluation data as shown in 469
Tab. 2. As the baseline performance of the model is rela- 470
tively low, it can be concluded that the model does not seem 471
to be able to generalize well only from the synthetic images 472
without augmentations. The architecture is the oldest one 473
considered in this work and was improved, e.g. by ResNets, 474
with the goal to improve training and overall performance. 475
This directly translates to the sim-to-real phenomenon as it 476
seems to need more diversity, as added from the augmen- 477
tations, to be able to generalize well to real-world images. 478
However, not all augmentations help, as it also experiences 479
by far the most deterioration of -25.1% with certain aug- 480
mentations. 481

4.2. Using Selected Combinations of Augmentations 482

In Sec. 4.1, it was shown that there are several augmenta- 483
tions that improve the model performance compared to the 484
baseline when applied in isolation. This section presents 485
first investigations on whether combining augmentations 486
can improve the results further. This research is reason- 487
able as the brute-force approach of combining all possible 488
augmentations is not useful but deteriorates the results, as 489
shown in Tab. 3. The median of the models deteriorates 490
on all considered datasets. Even on the object detection 491
dataset, on which most augmentations have a positive influ- 492
ence, the combination of all leads to a deterioration. As the 493
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number of potential combinations grows exponentially with494
the number of augmentations, only four promising combi-495
nations are evaluated in this work. The results are shown in496
Tab. 3.497

The first considered combination aggregates the aug-498
mentations that lead to an improvement of the median per-499
formance of the models on all three datasets, namely Col-500
orJitter and RGBShift. This combination leads to slight im-501
provements on some datasets but does not necessarily im-502
prove the performance compared to applying only one of503
the augmentations. On the Ruralscapes dataset, this combi-504
nation leads to slightly better results then the best augmen-505
tation in isolation. For object detection, the improvement is506
larger than both augmentations in isolation. While the com-507
bination still leads to an improvement on the KITTI dataset,508
it is worse than both augmentations in isolation.509

The second considered selection combines all augmenta-510
tions that lead to an improvement on both semantic segmen-511
tation datasets, namely ColorJitter, RGBShift, HueSatura-512
tionValue and ToSepia. Because of that, it is only evaluated513
on the semantic segmentation datasets. When combining514
these augmentations, it improves the median performance515
on both semantic segmentation datasets. While the median516
improvement using this combination is still smaller than517
some of the isolated augmentations on the KITTI dataset,518
it outperforms the previous best combination on the Ru-519
ralscapes dataset by more than 3%.520

The third considered combination is dataset-specific and521
contains all augmentations that lead to a median improve-522
ment on each dataset in isolation. Therefore, for each523
dataset, it contains the augmentations for which the me-524
dian improvement in Figs. 1 to 3 is greater than zero. The525
forth combination is model-specific and contains all aug-526
mentations that lead to an improvement of that model on the527
dataset. The results show that there is potential to be found.528
However, combining multiple augmentations seems to be a529
tricky task. While on the Ruralscapes dataset, the model-530
specific variant sees a median improvement larger than that531
of any augmentation in isolation, all the other models do not532
see improvements compared to augmentations in isolation.533
For half of the variants, the median of the model perfor-534
mance even deteriorates. Overall, this underscores that us-535
ing augmentations is a promising approach to improve the536
sim-to-real generalization but combining multiple augmen-537
tations is a tricky task that does not necessarily lead to im-538
proved results.539

5. Conclusion, and Future Work540

This work investigates the potential of basic pixel-level im-541
age augmentations to improve the generalization capabil-542
ities of DL perception models from synthetic training to543
real-world evaluation images. It evaluates the influence of544
25 augmentations on five semantic segmentation models on545

two datasets as well as three object detection models on one 546
object detection dataset. Overall, this work shows that us- 547
ing augmentations is a promising approach to improve the 548
sim-to-real generalization. Even when using only one aug- 549
mentation, the median real-world performance of the mod- 550
els improves by more than 5% on all considered dataset. 551
Some models even reach maximum improvements of 26.8% 552
on the object detection, 12.8% on the autonomous driving, 553
and 12.3% on the UAS dataset when using only one aug- 554
mentation during training. 555

Furthermore, the results of this work underline that dif- 556
ferences in coloration seem to have a significant influence 557
on the problem of DL models to generalize from synthetic 558
to real-world images, as RGBShift and ColorJitter are the 559
only augmentations improving the median performance of 560
the models on all three dataset. Furthermore, the perfor- 561
mance of all transformer models improves using these two 562
augmentations during training, indicating that color differ- 563
ences do seem to have a significant influence on the sim- 564
to-real generalization problems for these architectures, al- 565
though current literature states that transformer architec- 566
tures pay more attention to shape than to texture. 567

This work further confirms findings from current litera- 568
ture that adding noise and blur may improve the general- 569
ization from synthetic to real-world images. However, we 570
show that this depends on the considered dataset and that the 571
added effects have to reflect the conditions that the model 572
will face when deployed. For example, adding glass blur 573
for models that will never see through glass may help to in- 574
crease the diversity of the training dataset but does not seem 575
to help improve final performance when deployed. While 576
not all considered datasets improve with the addition of blur 577
augmentations, the usage of blur should especially be con- 578
sidered when faced with situations in which the camera or 579
the observed objects move a lot. 580

While this work shows many positive effects of us- 581
ing augmentations on the sim-to-real generalization, it also 582
shows that not all augmentations improve the model per- 583
formance on real-world images. Furthermore, combining 584
augmentations without careful consideration may harm the 585
real-world performance and in general combining augmen- 586
tations in a useful way is a difficult task. Because of that, 587
future work should investigate possible benefits and strate- 588
gies of combining multiple augmentations and the influence 589
of their parametrization further. As the number of possi- 590
ble combinations grows exponentially, using optimization 591
frameworks or learning optimal augmentation strategies for 592
synthetic images seem to be promising directions. 593

Overall, while increasing photorealism is still a promis- 594
ing outlook to increase the sim-to-real generalization in the 595
long-run, image augmentations provide a simple-to-use way 596
to improve the generalization when using existing state-of- 597
the-art game-engines today. 598
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