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ABSTRACT

The widespread use of Multi-layer perceptrons (MLPs) often relies on a fixed acti-
vation function (e.g., ReLU, Sigmoid, Tanh) for all nodes within the hidden layers.
While effective in many scenarios, this uniformity may limit the network’s ability
to capture complex data patterns. We argue that employing the same activation
function at every node is suboptimal and propose leveraging different activation
functions at each node to increase flexibility and adaptability. To achieve this, we
introduce Local Control Networks (LCNs), which leverage B-spline functions to
enable distinct activation curves at each node. Our mathematical analysis demon-
strates the properties and benefits of LCNs over conventional MLPs. In addition,
we demonstrate that more complex architectures, such as Kolmogorov–Arnold
Networks (KANs), are unnecessary in certain scenarios, and LCNs can be a more
efficient alternative. Empirical experiments on various benchmarks and datasets
validate our theoretical findings. In computer vision tasks, LCNs achieve marginal
improvements over MLPs and outperform KANs by approximately 5%, while also
being more computationally efficient than KANs. In basic machine learning tasks,
LCNs show a 1% improvement over MLPs and a 0.6% improvement over KANs.
For symbolic formula representation tasks, LCNs perform on par with KANs,
with both architectures outperforming MLPs. Our findings suggest that diverse
activations at the node level can lead to improved performance and efficiency.

1 INTRODUCTION

Multi-layer perceptrons (MLPs) have achieved remarkable success across various domains, from
computer vision to natural language processing. Traditionally, networks have relied on a fixed ac-
tivation function throughout their architecture, with popular choices including ReLU, Sigmoid, and
Tanh (Dubey et al., 2022). The ReLU activation function has gained widespread popularity due to
its simplicity and effectiveness, especially in addressing the vanishing gradient problem (Petersen
& Voigtlaender, 2018). However, its non-smooth nature can lead to issues such as ”dead neurons,”
where neurons become inactive and no longer contribute to the learning process. On the other hand,
smooth activation functions such as sigmoid and tanh, while easier to optimize due to their differ-
entiability, are prone to the vanishing gradient problem, especially in deeper networks (Petersen &
Voigtlaender, 2018). In addition to the specific weaknesses of each activation function, applying the
same activation function across all nodes can limit flexibility and expressive power. This uniformity
means that all neurons process information in the same way, potentially restricting the network’s
ability to capture diverse and complex patterns in the data. Furthermore, using fixed activation
functions causes every weight to be updated whenever a new data point is introduced, affecting the
weights learned from previous training data.

The hypothesis of using different activation functions at distinct nodes has inspired the development
of Local Control Networks (LCNs), as proposed in this paper. Recently, KANs have been introduced
as a method to address the limitations of fixed activation functions by proposing learnable activa-
tion functions and putting it in the edge (Liu et al., 2024). However, while KANs offer increased
flexibility, they still face certain limitations in their application. In contrast, LCNs aim to further en-
hance flexibility and representational capacity by allowing multiple activation functions to coexist
within a single network, enabling the model to adapt more effectively to varying data characteristics
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(Hagg et al., 2017). This approach is based on the idea that different neurons or layers may benefit
from specific activation functions, depending on the features they are processing. To achieve this
diversity in activation functions, we chose the B-Spline as the activation function for LCNs. In our
network design, the parameters of the B-Spline activation functions are learnable, enabling LCNs to
adjust activation functions at individual nodes dynamically. Additionally, learnable B-spline func-
tions support localized adjustments. This means the B-spline curves can be updated locally to adapt
to new data without altering the entire function trained on previous data, thereby improving stabil-
ity and speeding up convergence. We also hypothesize that this use of diverse and locally adaptive
activation functions will not only enhance model performance but also improve interpretability. The
shape of the B-Spline function at each neuron reflects the data patterns the neuron captures, offering
insights into the specific contributions of individual neurons, enhancing the interpretability of the
network (Fakhoury et al., 2022). For instance, in image classification tasks, individual neurons can
specialize in detecting features like edges, textures, or shapes. The learned B-spline function at each
neuron directly reflects these localized patterns, making it easier to trace which neuron is responsible
for capturing specific features. This capability enhances transparency, as we can analyze individual
neuron responses to understand what each is detecting.

An overview of the limitations in conventional MLPs and the corresponding solutions of LCNs is
shown in Figure 1.

Figure 1: Limitations of conventional DNNs and the corresponding improvements from LCNs.

To validate our hypothesis, we conducted a theoretical analysis and empirical experiments on a Local
Control Networks (LCNs) and compared it with other alternatives, such as conventional Multi-Layer
Perceptrons (MLPs) and Kolmogorov–Arnold Networks (KANs). The analysis and experimental
results reveal that utilizing different activations and the local support property within LCNs enhances
not only the network’s ability to capture complex data patterns but also its stability, convergence
speed, and interpretability. The remainder of this paper is organized as follows: Section 2 provides
an overview of the related work. Section 3 introduces the mathematical analysis and design of
LCNs. Section 4 highlights the effectiveness of LCNs over conventional MLPs and KANs. Section
5 demonstrates the experimental setup, results and discussion. We end the paper with conclusion
and insights in Section 6.

2 RELATED WORK

The development and optimization of activation functions have been extensively studied in the field
of neural networks. Conventional activation functions such as ReLU, Sigmoid, and Tanh have been
pivotal in the success of deep learning models. However, each of these functions comes with inherent
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limitations. ReLU, for example, mitigates the vanishing gradient problem but suffers from dead
neurons and lacks the smoothness needed for capturing subtle patterns (Dubey et al., 2022; Petersen
& Voigtlaender, 2018; Laurent & Brecht, 2018). Smoother functions like Sigmoid and Tanh face
slow convergence and vanishing gradients, especially in deep architectures.

To address the limitations of those activation functions, various researchers have proposed adaptive
or learnable activation functions. For instance, Swish (Ramachandran et al., 2017) and Mish (Misra,
2019) are non-monotonic and smooth activations that have demonstrated improvements in a variety
of tasks. These functions improve gradient flow and generalization, highlighting the need for more
adaptable activation mechanisms. Furthermore, the concept of learning activation functions during
training has been explored (Arora et al., 2018), allowing networks to adapt activation behaviors to
specific datasets.

Using varied activation functions within the same network leverages their combined strengths. Hagg
et al. (2017) extended the NEAT algorithm to evolve networks with heterogeneous activation func-
tions, demonstrating that such networks can outperform homogeneous ones while remaining smaller
and more efficient. Dushkoff & Ptucha (2016) introduced networks where each neuron can select its
activation function from a predefined set, learning both weights and activations during training.

The use of spline-based activation functions introduces a new level of flexibility to neural networks.
B-spline activations stand out for their ability to smoothly approximate complex data distributions.
B-splines, known for their flexibility and precision in numerical analysis and computer graphics, are
ideal for neural networks that need to accurately model intricate patterns. Recent research highlights
their effectiveness in various machine learning tasks. For example, Bohra et al. (2020) developed a
framework for optimizing spline activation functions during training, improving both accuracy and
interpretability. Similarly, the ExSpliNet model Fakhoury et al. (2022) combines Kolmogorov net-
works, probabilistic trees, and multivariate B-splines for improved interpretability and performance.
This research demonstrates the potential of spline-based activations to enhance both performance
and clarity in deep learning models.

Despite their capacity to overfit, deep networks often generalize well, challenging traditional views
like the bias-variance trade-off (Belkin et al., 2019). Studies show networks can fit random labels yet
generalize on real data (Zhang et al., 2017). The Lottery Ticket Hypothesis (Frankle & Carbin, 2019)
and research on intrinsic dimensionality (Li et al., 2018) further explain how over-parameterized
models generalize effectively, prompting a reevaluation of complexity in neural networks.

The Kolmogorov–Arnold representation theorem underpins the expressive power of neural networks
and their approximation abilities. Liu et al. (2024) expanded on this theorem by introducing Kol-
mogorov–Arnold Networks (KANs), which leverage spline-based activation functions to achieve
higher levels of accuracy and interpretability compared to traditional models. Kolmogorov–Arnold
theorem is particularly notable for their ability to overcome the curse of dimensionality by decom-
posing complex high-dimensional functions into compositions of simpler one-dimensional functions
(Schmidt-Hieber, 2021). This approach allows KANs to build more compact and interpretable mod-
els, making them a promising direction for future research in deep learning.

Building upon these works, our proposed LCNs differ by enabling each neuron to have a unique,
learnable B-spline activation function, offering a higher degree of flexibility and local adaptability
compared to networks with fixed or globally adaptive activation functions. Unlike previous meth-
ods that may require complex architectures or evolutionary algorithms, LCNs maintain a standard
network structure with enhanced activation capabilities, making them practical for a wide range of
applications.

3 PROPOSED METHODOLOGY

In this paper, we introduce the Local Control Networks (LCNs), a neural network architecture that
leverages B-spline functions to enable different activation functions at each node. We provide a com-
prehensive mathematical analysis demonstrating the advantages of LCNs over conventional MLPs
and more complex architectures Kolmogorov–Arnold Networks (KANs). Our approach simplifies
network design while enhancing expressiveness, data capture flexibility, computational efficiency,
and generalization capabilities.
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3.1 BACKGROUNDS

MLPs are a class of feed forward artificial neural networks that have been widely used for function
approximation and pattern recognition tasks. In traditional MLPs, each neuron in a layer applies
a fixed activation function—commonly the ReLU or Sigmoid function—to its weighted input sum.
While these fixed activation functions simplify the network design and training process, they intro-
duce limitations in capturing complex and nuanced patterns in data. Specifically, fixed activations
can lead to issues such as vanishing gradients, lack of smoothness, and inability to model local-
ized features effectively (Dubey et al., 2022). Fixed activation functions impose a uniform response
across all neurons, which can hinder the network’s flexibility and expressiveness. This motivates
the exploration of more adaptable activation mechanisms that can enhance the network’s capacity to
model complex functions.

3.1.1 ACTIVATION FUNCTION DIVERSITY

To address the limitations of fixed activation functions, we propose using diverse activation functions
for each neuron, enabling the network to flexibly model a wider range of data patterns and capture
both global trends and local variations.

B-spline functions are well-suited for this purpose due to their smoothness, continuity, and local
support properties, which ensure that a neuron’s activation is influenced only by localized input
regions. These properties enhance the network’s ability to model complex, localized features ef-
fectively. B-splines, widely used in numerical analysis and approximation theory, offer smooth and
localized approximations, making them ideal for developing adaptive activation functions that im-
prove performance and pattern recognition (Bohra et al., 2020; Lyche et al., 2018; De Boor, 1978).

Let E = {E1, E2, . . . , Er} be the non-decreasing knot sequence where the knots satisfy E1 ≤ E2 ≤
· · · ≤ Er. The number of B-splines of degree p is defined as N = r − p − 1, where p ≥ 0 is the
degree of the B-spline and r is the number of knots.

Base Case: Degree p = 0 The B-spline of degree p = 0 is given by:

BE,0,n(x) =

{
1 if x ∈ [En, En+1),

0 otherwise.
(1)

Recursive Definition: Degree p ≥ 1 For p ≥ 1, the B-spline basis function is defined recursively
as:

BE,p,n(x) =
x− En

En+p − En
BE,p−1,n(x) +

En+p+1 − x

En+p+1 − En+1
BE,p−1,n+1(x). (2)

3.2 LOCAL CONTROL NETWORKS ARCHITECTURE

In Local Control Networks (LCN), the network employs B-spline-based activation functions across
multiple layers, which enable it to capture complex data structures more effectively compared to tra-
ditional activations like ReLU. B-splines provide smooth, continuous mappings, offering a more
accurate approximation of the underlying data manifold and avoiding sharp transitions inherent
in piecewise linear functions like ReLU. The Figure 2 visually represents how information flows
through each layer, with each neuron utilizing distinct B-spline activation functions.**

3.2.1 INPUT LAYER

The input to the network is denoted as x = [x1, x2, . . . , xD] ∈ [0, 1]D, where D represents the
dimensional of the input space. Each input feature xd belongs to a unit interval [0, 1].

3.2.2 HIDDEN LAYERS

The network consists of L hidden layers. Each hidden layer l ∈ {1, . . . , L} has Ml neurons, and the
activations in each layer are computed using B-spline functions as activation functions. For neuron
i in layer l, the activation is given by:
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Figure 2: Local Control Network Architecture with B-spline Activation Functions.

h
(l)
i =

Nl∑
n=1

wl,i,nBNl,pl,n(z
(l)
i ) (3)

where BNl,pl,n is the nth B-spline basis function of degree pl applied to z
(l)
i . wl,i,n are the learned

weights associated with the nth B-spline basis function for neuron i in layer l. z
(l)
i is the linear

transformation for the ith neuron in layer l. Nl is the number of B-spline basis functions used for
each neuron in layer l.

B-spline functions offer smooth and continuous transitions, ensuring stability in learning and cap-
turing complex patterns in data. The local support property of B-splines enables selective activation,
which contributes to efficient learning and avoids global interference from irrelevant neurons.

3.2.3 OUTPUT LAYER

The output layer has O neurons (corresponding to the number of outputs), and the final output ŷ is
computed as:

ŷ = W (L+1)h(L) + b(L+1) (4)

where W (L+1) ∈ RO×NL is the weight matrix for the output layer. b(L+1) ∈ RO is the bias vector
for the output layer. h(L) is the activation vector from the last hidden layer.

3.3 GRADIENT COMPUTATION

Gradient computation plays a crucial role in training LCN, as it ensures efficient weight updates
during backpropagation. The use of B-splines introduces some unique properties in gradient com-
putation that we now explore.

3.3.1 LOSS FUNCTION

In neural networks, we generally minimize a loss function that measures the difference between
predicted and true values. For our formulation, let L(y, ŷ) represent a general convex loss function,
where y is the true label and ŷ is the predicted output. To simplify and demonstrate our methodology,
we employ the commonly used Mean Squared Error (MSE) as the loss function.

3.3.2 GRADIENT WITH RESPECT TO INPUT VARIABLES

The gradient of the loss function L with respect to the input variables provides insights into how
input changes affect the output. Using the chain rule, the gradient with respect to xd is computed as:

5
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∂L

∂xd
=

L∑
l=1

Ml∑
i=1

∂L

∂h
(l)
i

· ∂h
(l)
i

∂z
(l)
i

· ∂z
(l)
i

∂xd
(5)

which extends to:

∂L

∂xd
=

L∑
l=1

Ml∑
i=1

2

m
(ŷi − yi)

Nl∑
n=1

wl,i,n
∂BNl,pl,n(z

(l)
i )

∂z
(l)
i

W
(1)
id (6)

Key Observations:

a) Local Support of B-splines The derivative ∂BNl,pl,n
(z

(l)
i )

∂z
(l)
i

is non-zero only within a specific

interval due to the local support property of B-splines. This means that only a subset of neurons
contributes to the gradient at any given input.

b) Dependence on Input Weights The gradient depends directly on the weights from the input
layer to the neurons activated by the input.

c) Robustness to Input Changes Since the gradient depends only on the local region where the
B-spline is active, small changes or scaling in the input xd outside this region have minimal impact
on the loss. This leads to a network that is more robust to input perturbations.

d) Effective Dropout Mechanism The localized gradient naturally ignores irrelevant inputs, sim-
ilar to the effect of dropout. Neurons are selectively activated based on the input, enhancing the
network’s ability to generalize and reducing overfitting.

3.3.3 GRADIENT WITH RESPECT TO WEIGHT PARAMETERS

The gradient of the loss L with respect to the weight parameters W (l)
ij is computed as:

∂L

∂W
(l)
ij

=
∂L

∂h
(l)
i

· ∂h
(l)
i

∂z
(l)
i

· ∂z
(l)
i

∂W
(l)
ij

(7)

The final gradient of the loss with respect to the weight parameters W (l)
ij is showed:

∂L

∂W
(l)
ij

=
2

m
(ŷi − yi)

Nl∑
n=1

wl,i,n
∂BNl,pl,n(z

(l)
i )

∂z
(l)
i

· h(l−1)
j (8)

Key Observations:

a) Selective Activation Due to the local support, only certain neurons with activations within the
B-splines support contribute significantly.

b) Localized Weight Updates The gradient is substantial only for weights connected to neurons
that are both active and within the B-splines support region. Only relevant weights are updated
during backpropagation, reducing computational overhead and leading to faster convergence.

c) Sparse Updates for Efficiency Only a subset of weights receive significant updates during
backpropagation. This sparsity reduces computational overhead and leads to faster convergence
during training.

d) Smooth Optimization Landscape The smoothness of B-spline functions results in well-
behaved gradients, avoiding issues like vanishing or exploding gradients common in networks with
non-smooth activation functions.
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4 COMPARATIVE INSIGHTS

The Local Control Networks (LCNs) offers a unique balance between simplicity and expressiveness
in comparison to both traditional MLPs with fixed activation and more complex architecture such
as KANs. This section outlines the core insights derived from LCN’s design, highlighting its ad-
vantages in performance, generalization, and computational efficiency by comparing it to MLPs and
KANs.

4.1 LOCALIZED ACTIVATION AND SMOOTH GRADIENTS

One of the key features of LCN is the local support property of B-spline activation functions. This
provides several advantages over traditional activations such as ReLU:

• ReLU, being piecewise linear, introduces sharp transitions at zero, which can destabilize
training and result in gradients influenced by broad input ranges, reducing efficiency.

• B-splines, in contrast, ensure smooth transitions and localized support, confining input
influence to specific regions. This leads to sparse gradient updates, reduced computational
complexity, and improved stability during training, akin to an effective dropout mechanism.

Thus, LCN can handle subtle variations in data more efficiently than ReLU, providing stability and
robustness against noise and small perturbations in the input data.

4.2 EFFICIENCY AND COMPUTATIONAL LOAD

Kolmogorov–Arnold Networks (KAN) offer strong theoretical guarantees for function approxima-
tion but suffer from high computational complexity due to their reliance on combining multiple
univariate functions, leading to overparameterization and inefficiency in large-scale applications.

In contrast, LCN retains the simplicity of standard neural architectures while leveraging B-splines
for flexible, accurate approximations without the need for complex transformations. Localized
weight updates in LCN enhance computational efficiency by reducing simultaneous parameter up-
dates, resulting in faster convergence, sparser computations, and lower training time and memory
usage, all while effectively modeling complex patterns.

4.3 FUNCTION APPROXIMATION AND GENERALIZATION

LCN strikes a balance between expressiveness and generalization. The use of B-spline activations
allows LCN to approximate complex functions with smooth, localized responses, which reduces
the risk of overfitting. The localized support of B-splines ensures that the network focuses only on
relevant regions of the input space, effectively acting as a natural regularize. This leads to a model
that can generalize well across different datasets, even in cases where high-dimensional noise might
cause KAN to falter. LCN’s localized gradient updates also contribute to this generalization by
ensuring that irrelevant inputs are ignored, much like a built-in regularization mechanism.

4.4 SIMPLIFIED ARCHITECTURE FOR PRACTICAL USE

From a practical perspective, LCN offers a significant advantage over KAN by maintaining a stan-
dard neural network architecture augmented with B-spline activations. This results in a simpler
and more scalable design, which can be easily implemented in existing neural network frameworks
without requiring the complex setup associated with KAN’s univariate function combinations.

ReLU, though computationally efficient, is limited in its ability to model more nuanced data struc-
tures due to its lack of smoothness and piecewise linearity. LCN, on the other hand, provides a
smooth function approximation through B-splines, avoiding the sharp transitions characteristic of
ReLU, and enabling the network to model more intricate data manifolds. B-splines allow the net-
work to capture both small and large variations in the input space, leading to more robust learning
and eliminating the problem of neuron saturation commonly seen with ReLU.
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5 EXPERIMENT

We conducted experiments to validate our theoretical findings and evaluate the practical performance
of LCN compared to MLPs with fixed activations and KANs. We tested the models on various
benchmark datasets, focusing on accuracy, convergence speed, and computational efficiency.

5.1 EXPERIMENTAL SETUP

5.1.1 DATASETS

We selected a diverse set of datasets to cover different types of tasks, following the standards set in
(Yu et al., 2024):

• Basic Machine Learning Tasks: Bank Marketing, Bean Classification, Spam Detection,
and Telescope datasets.

• Computer Vision Tasks: MNIST and Fashion-MNIST (FMNIST) for image classification.
• Symbolic Representation Tasks: Synthetic datasets for symbolic regression.

5.1.2 MODEL CONFIGURATIONS

To ensure a fair comparison, we standardized the total number of parameters by adjusting the layers
and neurons across all models. LCN and KAN underwent hyperparameter tuning via grid search for
optimal performance.

5.2 RESULTS AND DISCUSSION

5.2.1 BASIC MACHINE LEARNING TASKS

In this section, we evaluate the performance of MLP, KAN, and LCN models on four different basic
machine learning tasks. Figure 3 shows that LCN consistently have higher accuracy than both MLP
and KAN while maintaining efficient use of parameters.

5.2.2 COMPUTER VISION TASKS

On the MNIST and FMNIST datasets, LCN achieved slight improvements over MLP and outper-
formed KAN by approximately 5%. LCN also demonstrated better computational efficiency, partic-
ularly in handling high-dimensional input spaces, while KAN struggled to scale effectively. Figure
4 presents a comparison of the accuracy trends on these datasets for MLP, KAN, and LCN models.

Figures 3 and 4 use a range of different model parameters to examine each model’s performance
scaling relative to its architecture. To approximate fairness, we carefully adjust width, depth, and
key architectural components (e.g., B-spline grids and order parameters in KANs and LCNs). By
varying parameters in a controlled manner, Figures 3 and 4 highlight how each model type lever-
ages parameter increases, offering valuable insights into the scalability and efficiency of different
architectures. The number of parameters for MLPs is capped because they achieve convergence at
lower parameter counts than LCNs and KANs, beyond which their performance does not improve.
Extending the parameter range for MLPs would add no additional insights since their accuracy
plateaus.

5.2.3 SYMBOLIC REPRESENTATION TASKS

We evaluate the performance of MLP, KAN, and LCN models on symbolic regression tasks, which
involve approximating mathematical functions. Figure 5 compares their accuracy against the number
of parameters.

KAN excels due to its univariate function decomposition but has higher computational costs and
slower convergence. LCN matches or surpasses KAN’s accuracy with fewer parameters and faster
convergence, thanks to its localized B-spline activation functions. The B-spline’s localized support
enables efficient learning and scalability, making LCN a practical alternative for tasks requiring both
accuracy and efficiency.

8
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(a) Bank Marketing (b) Bean Classification

(c) Spam Detection (d) Telescope Detection

Figure 3: Comparison of accuracy over the number of parameters for MLP, KAN, and LCN models
on four datasets.

(a) MNIST (b) FMNIST

Figure 4: Comparison of accuracy over the number of parameters for MLP, KAN, and LCN models
on MNIST and FMNIST datasets.

5.2.4 CONVERGENCE SPEED AND LEARNING CURVES

Despite starting with a lower initial accuracy, LCN exhibited faster learning, reaching higher ac-
curacy within the first few epochs compared to MLP and KAN models. This rapid convergence
demonstrates LCN’s ability to efficiently capture data patterns using its localized activation func-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of accuracy over the number of parameters for MLP, KAN, and LCN models
on symbolic functions.

tions. In contrast, KAN showed slower convergence and lower overall accuracy, likely due to its
more complex and computationally demanding architecture.

5.2.5 DISCUSSION

The marginal improvements of LCNs over MLPs and KANs reflect the simplicity of the datasets
used, which follow the standards in (Yu et al., 2024). On these basic tasks, MLPs already achieve
strong performance, leaving limited room for improvement for LCNs and KANs. However, the flex-
ibility and localized activations of LCNs are expected to show greater advantages on more complex
datasets with higher-dimensional inputs or intricate patterns. In the future work, we will focus on
such challenging tasks to better demonstrate the potential of LCNs.

6 CONCLUSION

The use of diverse activation functions in Local Control Networks (LCNs) represents a major inno-
vation in neural network design. Unlike traditional models that use a uniform activation function,
LCNs allow each neuron to dynamically select the most suitable activation function, enhancing
adaptability and expressiveness. This flexibility enables LCNs to effectively capture both global and
localized data patterns, improving accuracy and efficiency across various tasks.

LCNs also achieve faster learning and better generalization by tailoring activation functions to dif-
ferent input regions. This dynamic adjustment leads to quicker convergence and makes LCNs a
computationally efficient alternative to complex models like KANs, without requiring their intricate
architectures.

In summary, LCNs enhance performance and scalability by leveraging flexible activation functions,
providing a simpler yet powerful solution for diverse machine learning tasks.
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A APPENDIX

A.1 THE CONSCIOUSNESS PRIOR

Bengio (2017) introduced the concept of the Consciousness Prior, suggesting that deep learning
models could benefit from mechanisms that mimic the conscious selection and broadcasting of in-
formation, akin to human cognitive processes. This idea proposes a hierarchical structure within
neural networks, where specific elements are made globally available to influence perception and
decision-making processes. While still a theoretical construct, the Consciousness Prior points to
the potential for neural networks to incorporate more sophisticated, human-like decision-making
processes, opening new avenues for research in AI.

A.2 B-SPLINE PRELIMINARY

B-splines are piecewise polynomial functions widely used in numerical analysis, computer graphics,
and approximation theory. Their key properties—smoothness, continuity, and local support—make
them valuable for enhancing neural network architectures, particularly in developing complex ac-
tivation functions. This can lead to improved performance and pattern recognition (Bohra et al.,
2020). We define B-splines and outline their properties for uniform partitions, drawing from (Lyche
et al., 2018) and (De Boor, 1978), to support the use in the LCN model.

A.2.1 PROPERTIES OF B-SPLINES

B-splines possess several key properties:

• Non-negativity and Partition of Unity: Bi,p(x) ≥ 0 for all x, and
∑

i Bi,p(x) = 1 for all
x.

• Local Support: Bi,p(x) is non-zero only on the interval [ξi, ξi+p+1), which leads to sparse
representations and efficient computations.

• Continuity: B-splines of degree p are Cp−1 continuous, providing smooth approximations.

• Derivative: For p ≥ 1, the derivative of a B-spline basis function is given by:

d

dx+
Bi,p(x) = p

(
Bi,p−1(x)

ξi+p − ξi
− Bi+1,p−1(x)

ξi+p+1 − ξi+1

)
. (9)

A.2.2 LINEAR COMBINATION OF B-SPLINES

A spline function S(x) can be expressed as a linear combination of B-spline basis functions:

S(x) =
∑
i

wiBi,p(x), (10)

where wi ∈ R are the coefficients (weights).

This formulation allows for the approximation of any continuous function on a closed interval by
adjusting the weights wi, the degree p, and the knot sequence {ξi} (De Boor, 1978).
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A.2.3 LINEAR TRANSFORMATION:

In each layer l, the input from the previous layer h(l−1) is linearly transformed using a weight matrix
W (l) and bias vector b(l). The linear transformation for the ith neuron in layer l is given by:

z
(l)
i =

Ml−1∑
j=1

W
(l)
ij h

(l−1)
j + b

(l)
i (11)

where:

• W
(l)
ij ∈ RMl×Ml−1 is the weight matrix connecting jth neuron in (l − 1)th layer to ith

neuron in lth layer,

• b(l) ∈ RMl is the bias vector for the lth layer,

• h
(l−1)
j is the activation of the jth neuron in the (l − 1)th layer,

• z
(l)
i is the pre-activation of the jth neuron in layer l.

• Ml is the number of neurons in layer l.

A.2.4 GRADIENT WITH RESPECT TO INPUT VARIABLES

The gradient of the loss function with respect to the input variables is crucial for understanding
how changes in the input affect the output prediction. We start by applying the chain rule, which
propagates gradients from the output layer back to the input layer.

The gradient of the loss L with respect to the input xd can be computed using the chain rule as
written as:

∂L

∂xd
=

L∑
l=1

Ml∑
i=1

∂L

∂h
(l)
i

· ∂h
(l)
i

∂z
(l)
i

· ∂z
(l)
i

∂xd
(12)

Breaking it down into three terms:

(a) Gradient of Loss with Respect to Activation:
∂L

∂h
(l)
i

=
2

m
(ŷi − yi) (13)

This term reflects the gradient of the loss function with respect to the activation h
(l)
i , which

represents the output of the activation function for neuron i in layer l.
(b) Gradient of Activation with Respect to Pre-activation: Since we are using B-spline

activations, the gradient of the activation h
(l)
i with respect to the pre-activation z

(l)
i is:

∂h
(l)
i

∂z
(l)
i

=

Nl∑
n=1

wl,i,n
∂BNl,pl,n(z

(l)
i )

∂z
(l)
i

(14)

The derivative of the B-spline basis function is given by:

∂BNl,pl,n(z
(l)
i )

∂z
(l)
i

= pl

(
BNl,pl−1,n(z

(l)
i )

ξn+pl
− ξn

− BNl,pl−1,n+1(z
(l)
i )

ξn+pl+1 − ξn+1

)
(15)

This term captures how the activation function changes in response to the linear combina-
tion of inputs before passing through the activation function.

(c) Gradient of Pre-activation with Respect to Input: The gradient of the pre-activation z
(l)
i

with respect to the input variable xd for the first layer is:

∂z
(l)
i

∂xd
= W

(1)
id (16)
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Final Gradient with Respect to Input Variables Combining all the terms from the chain rule
equations 5, 13, 14, 15, 16 the gradient of the loss function L with respect to the input variable xd

is:

∂L

∂xd
=

L∑
l=1

Ml∑
i=1

2

m
(ŷi − yi)

Nl∑
n=1

wl,i,n
∂BNl,pl,n(z

(l)
i )

∂z
(l)
i

W
(1)
id (17)

The gradient of the pre-activation with respect to the weight is:

∂z
(l)
i

∂W
(l)
ij

= h
(l−1)
j (18)

A.3 FLOPS AND PARAMETER COMPARISON

This appendix analyzes the performance of MLP, KAN, and LCN models across various datasets in
terms of FLOPs (floating-point operations per second) and accuracy. The comparisons highlight the
computational efficiency and effectiveness of these architectures.

A.3.1 VISUALIZATION OF FLOPS AND ACCURACY

Figures 6 and 7 present the accuracy versus FLOPs for six datasets: Bank, Bean, Spam, Telescope,
MNIST, and FMNIST. These figures illustrate the trade-off between computational cost and perfor-
mance for MLP, KAN, and LCN models.

(a) Bank Dataset (b) Bean Dataset

(c) Spam Dataset (d) Telescope Dataset

Figure 6: Comparison of accuracy versus FLOPs for MLP, KAN, and LCN models on Bank, Bean,
Spam, and Telescope datasets.
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(a) MNIST Dataset (b) FMNIST Dataset

Figure 7: Comparison of accuracy versus FLOPs for MLP, KAN, and LCN models on MNIST and
FMNIST datasets.

A.3.2 INSIGHTS AND OBSERVATIONS

Bank and Bean Datasets For the Bank and Bean datasets, LCN consistently achieves higher
accuracy with fewer FLOPs compared to KAN. While MLP demonstrates efficiency in FLOPs, it
underperforms in accuracy, particularly on the Bean dataset. LCN’s localized activation functions
enable a better trade-off between computational efficiency and accuracy.

Spam and Telescope Datasets On the Spam and Telescope datasets, LCN surpasses both KAN
and MLP in accuracy. KAN’s higher FLOPs are a result of its complex architecture, while LCN
leverages its B-spline-based activations to achieve efficient learning with reduced computational
resources.

MNIST and FMNIST Datasets For MNIST and FMNIST, LCN demonstrates scalability and
adaptability to high-dimensional inputs, maintaining an advantage in accuracy with comparable or
lower FLOPs than KAN. MLP struggles to achieve the same level of performance, further empha-
sizing the effectiveness of LCN’s design.

A.3.3 CONCLUSION FROM FLOPS ANALYSIS

The FLOPs analysis highlights LCN’s ability to balance computational cost and accuracy effectively.
Across all datasets, LCN consistently outperforms KAN in efficiency and accuracy while achiev-
ing higher accuracy than MLP. This makes LCN a robust and scalable model for diverse machine
learning tasks.

15


	Introduction
	Related work
	Proposed Methodology
	Backgrounds
	Activation Function Diversity

	Local Control Networks Architecture
	Input layer
	Hidden Layers
	Output Layer

	Gradient Computation
	Loss Function
	Gradient with Respect to Input Variables
	Gradient with Respect to Weight Parameters


	Comparative Insights
	Localized Activation and Smooth Gradients
	Efficiency and Computational Load
	Function Approximation and Generalization
	Simplified Architecture for Practical Use

	Experiment
	Experimental Setup
	Datasets
	Model Configurations

	Results and Discussion
	Basic Machine Learning Tasks
	Computer Vision Tasks
	Symbolic Representation Tasks
	Convergence Speed and Learning Curves
	Discussion


	Conclusion
	Appendix
	The Consciousness Prior
	B-Spline preliminary
	Properties of B-splines
	Linear Combination of B-splines
	Linear Transformation:
	Gradient with Respect to Input Variables

	FLOPs and Parameter Comparison
	Visualization of FLOPs and Accuracy
	Insights and Observations
	Conclusion from FLOPs Analysis



