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ABSTRACT

Large language models (LLMs) have demonstrated remarkable in-context learning
(ICL) abilities. However, existing theoretical analysis of ICL primarily exhibits
two limitations: (a) Limited i.i.d. Setting. Most studies focus on supervised
function learning tasks where prompts are constructed with i.i.d. input-label pairs.
This i.i.d. assumption diverges significantly from real language learning scenarios
where prompt tokens are interdependent. (b) Lack of Emergence Explanation.
Most literature answers what ICL does from an implicit optimization perspective
but falls short in elucidating how ICL emerges and the impact of pre-training
phase on ICL. In our paper, to extend (a), we adopt a more practical paradigm,
auto-regressive next-token prediction (AR-NTP), which closely aligns with the
actual training of language models. Specifically, within AR-NTP, we emphasize
prompt token-dependency, which involves predicting each subsequent token based
on the preceding sequence. To address (b), we formalize a systematic pre-training
and ICL framework, highlighting the layer-wise structure of sequences and topics,
alongside a two-level expectation. In conclusion, we present data-dependent, topic-
dependent and optimization-dependent PAC-Bayesian generalization bounds for
pre-trained LLMs, investigating that ICL emerges from the generalization of
sequences and topics. Our theory is supported by experiments on numerical linear
dynamic systems, synthetic GINC and real-world language datasets.

1 INTRODUCTION

Large language models (LLMs) have exhibited intriguing emergent capabilities in in-context learning
(ICL) (Brown et al., 2020), which allows effective predictions on downstream tasks only based on a
short context without any parameter fine-tuning (Black et al., 2022; Rae et al., 2021). Since then,
more scholars have increasingly focused on the intrinsic mechanisms of ICL (Chan et al., 2022; Garg
et al., 2022; Von Oswald et al., 2023), aiming to gain a better understanding of LLMs.

For relatively simple supervised function learning tasks, the analysis framework for ICL has been
well-established, where independently and identically distributed (i.i.d.) input-label pairs are stacked
into a prompt so that the model directly gives the predicted label for query input without parameter
updates. Following that, empirically, Garg et al. (2022) demonstrates that pre-trained LLMs can
approximate linear functions with a performance that is nearly equivalent to the least squares estimator.
Theoretically, many studies reveal that ICL implicitly employs optimization algorithms. Among
these, a prominent viewpoint demonstrates that pre-trained LLMs performing ICL is equivalent to
mimicking a single step of gradient descent on linear regression tasks (Ahn et al., 2024; Akyürek
et al., 2022; Dai et al., 2023; Nichani et al., 2024; Von Oswald et al., 2023; Zhang et al., 2023a).
However, there are two main limitations in this literature: (a) Limited i.i.d. Setting. The i.i.d.
assumption in prompt tokens is potentially strong and unrealistic in language tasks where prompt
tokens are dependent, making it challenging to easily extend the aforementioned analysis framework
for supervised learning tasks to language modeling. (b) Lack of Emergence Explanation. Most
literature analysis answers what ICL does from an optimization algorithm perspective but falls short
in explaining how pre-trained LLMs can be good enough to emerge ICL ability as well as the impact
of pre-training phase on ICL. Therefore, the following fundamental questions remain relatively
underexplored:
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(a) How can we model language tasks with token-dependency, going beyond the i.i.d. limitation?1

(b) How can ICL emerge from pre-trained LLMs?

For question (a), in extending existing work on supervised function learning, we are eager to explore
research on the auto-regressive next-token prediction (AR-NTP) paradigm, which is key to the
success of modern LLMs (Achiam et al., 2023; Brown et al., 2020) in practical language tasks.
Specifically, there are generally successive tokens in both training sequences and ICL prompts, which
are drawn from the unsupervised corpus. Through AR-NTP, each subsequent token in sequences
or prompts is generated based on the preceding tokens. Drawing inspiration from the Bayesian
perspective in statistical field, we utilize conditional probability distribution (Han et al., 2023; Jiang,
2023; Li et al., 2023; Wang et al., 2023; Wei et al., 2022; Wu et al., 2023; Xie et al., 2021) to
theoretically model AR-NTP. In the line of Bayesian research, most view ICL as a process of implicit
Bayesian inference, where the pre-trained LLM is thought to subconsciously deduce a concept while
generating a prediction. These works assume generating tokens from Hidden Markov Models. In our
paper, we consider a more relaxed generation mode, AR-NTP, where each token depends on all the
preceding tokens rather than just one preceding token. Consequently, we emphasize that our core
task is to model language tasks, and the core challenge of modeling language tasks is to consider
prompt token-dependency.

To analyze question (b), we intuitively recognize that the prompt sequence may be new or unseen and
the corresponding ICL topic for the sequence is generally unknown. We desire a well-pretrained in-
context learner, i.e., the LLM can effectively utilize ICL to generate quality responses to any sequence
under any topic, regardless of whether the sequence and topic are seen or unseen during pre-training.
This necessitates examining population loss by considering expectations over distribution, rather
than focusing solely on empirical loss. A low population loss indicates that the model possesses
strong generalization ability for diverse sequences and topics, thereby facilitating the emergence
of ICL. Therefore, it is natural and reasonable to explore the origin of ICL from the perspective
of measuring generalization ability. Specifically, we formalize a systematic pre-training and ICL
framework that incorporates data distribution and topic distribution, allowing us to establish the
population loss with a two-level expectation. By adopting PAC-Bayesian generalization analysis
techniques, we gain a clearer understanding of how ICL emerges.

Based on the above analysis, we summarize our main contributions as follows.

1. Pre-training and ICL Framework under AR-NTP Paradigm. Towards practical AR-NTP
paradigm rather than i.i.d. setting, we establish a systematic pre-training and ICL framework
considering layer-wise structure of sequences and topics (Section 3.1). Meanwhile, we propose
two-level expectation over data and topic distribution to link pre-training and ICL phase, thereby
providing well-defined population loss based on empirical loss (Section 3.2 and 3.3).

2. ICL Emerges from Generalization. Our theoretical results of population loss reveal that
model generalization, tightly with ICL abilities, is influenced by model size, optimization iterations,
pre-training data and prompt length. This further demonstrates that ICL emerges from the excellent
generalization of sequences and topics (Section 4.1 and Section 4.2).

3. Generalization Analysis. By dealing with prompt token-dependency and employing continuous
mathematical techniques such as Stochastic Differential Equation (SDE), we present data-dependent
and topic-dependent, as well as optimization-dependent PAC-Bayesian generalization bounds for
population loss (Section 4.1, Section 4.2).

4. Empirical Verification of Theory. We perform experiments on numerical linear dynamic system,
synthetic GINC and real-word language datasets (Section 5 and Appendix C), thereby verifying our
theoretical results and offering practical implications (Appendix D).

2 RELATED WORK

Optimization Perspective on In-context Learning. The field of in-context learning (ICL) in
transformers has been extensively explored from various analytical perspectives. A prominent

1As suggested by Reviewer ARXg, we make a slight modification to avoid misunderstandings. The original
version was: ‘How can we break through the i.i.d. limitation and shift towards modeling language tasks?’.
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approach is to view ICL as an implicit execution of the gradient descent algorithm. This concept is
well-illustrated (Akyürek et al., 2022; Von Oswald et al., 2023), which demonstrates that pre-trained
transformers can mimic a single step of gradient descent on linear regression tasks. Additionally,
the studies by Dai et al. (2023); Zhang et al. (2023a) further reinforce this view by showing that
ICL can be similar to a process of meta-optimization, effectively performing implicit fine-tuning.
Huang et al. (2023); Zhang et al. (2023a) specifically provide evidence that learning linear models
via gradient flow aligns with transformers learning in-context, based on optimization convergence
analysis. However, all this literature falls short in explaining how LLMs develop the ability of ICL
and the connection between the pre-training and ICL phases.

Bayesian Perspective on In-context Learning. There is some existing work from Bayesian view
enriching the understanding of ICL (Han et al., 2023; Jiang, 2023; Wang et al., 2023; Wies et al.,
2023; Xie et al., 2021). Xie et al. (2021) interpreter ICL as implicit Bayesian inference, where the
pre-trained LLM is seen as intuitively deducing a concept during prediction. Following Xie et al.
(2021), the assumption that the pre-training distribution is a Hidden Markov Model, is relaxed in Wies
et al. (2023). The study by Li et al. (2023) closely aligns with our exploration into the generalization
analysis in ICL based on the algorithm stability technique. In comparison, we start studying the origin
of ICL from a generalization and statistical perspective. Further, Zhang et al. (2023a) consider the
pre-training and ICL phase and assume that prior and posterior satisfy a uniform distribution. In our
study, we adopt data-dependent and topic-dependent prior without relying on some predetermined
distribution assumptions. A topic distribution is considered in our pre-training and ICL framework,
which weakens the assumption that the ICL topic distribution is covered by the pre-training topic
distribution in Zhang et al. (2023a) to some extent.

From Multi-Task Learning to Meta-Learning. Training LLMs to perform ICL can be viewed as
an approach for addressing the wider tasks of meta-learning or learning-to-learn (Naik & Mammone,
1992; Schmidhuber, 1987). In pre-training phase, the LLM is trained on multiple tasks. We expect
that a well-pretrained LLM serves as a good meta-learner possessing the ICL ability to generalize to
new unseen tasks, not only as a multi-task learner (Radford et al., 2019). Theoretical analysis of
meta-learning has received significant attention (Chua et al., 2021; Denevi et al., 2018; Ji et al., 2020;
Tripuraneni et al., 2020). Drawing inspiration from the assumption of an unknown task distribution
in meta-learning analysis, we establish a pre-training and ICL framework with topic/task distribution
and data distribution, to describe the model’s generalization ability to new test prompts and unseen
topics (Details in Section 3.1). However, it is worth emphasizing that our ICL generalization analysis
under AR-NTP cannot be equivalent to meta-learning generalization, since the expectation over
sequence would be specially spilt into two parts due to the prompt token-dependency (Details in
Section 3.3). We defer more discussion in Appendix E.

3 PROBLEM SETUP

In this section, for question (a), Section 3.1 establishes the pre-training and ICL framework under
AR-NTP and presents an intuitive example. Following that, to address the question (b), Section 3.2
and 3.3, formalize the optimization objective and generalization of pre-trained LLMs, to illustrate
how pre-trained LLMs can be good enough to emerge ICL ability.

Notations. Let E[·] be the expectation of random variables. The KL divergence between distribution
µ and ν is DKL(µ ∥ ν) = Eθ∼µ[logµ(θ)/ν(θ)] and total variation (TV) distance is DTV(µ, ν) =
1/2

∑
θ∈Θ |µ(θ)− ν(θ)|.The detailed notations is shown in Appdenix A Table 1.

3.1 AR-NTP PARADIGM AND PRE-TRAINING AND ICL FRAMEWORK

We model the practical AR-NTP paradigm in language learning tasks, where any training sequence
or ICL prompt consists of successive tokens drawn from the unsupervised corpus. Within AR-NTP,
each subsequent token in the sequence is generated based on the preceding tokens, referred to as
prefix sequences. Thus, the true distribution of each token is represented as a conditional probability
distribution in statistics. From the analysis to question (b), it’s necessary to consider the impact of
pre-training and formalize a systematic pre-training and ICL framework to facilitate the generalization
analysis where ICL emerges. The overview of the pre-training and ICL framework, including topic
distribution and data distribution, is shown in Figure 1.
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Figure 1: Overview of Pre-training and In-context Learning Framework.

Pre-training Phase. In pre-training phase, the training data typically encompasses sequences from
various topics. To model the training process more realistically, it’s essential to characterize and
distinguish the training sequences and their respective topics in detail. In the following, we describe
the generating process of all training sequences.

1. Generate One Training Sequence Under a Pre-training Topic: Under the assumption
of topic distribution PW and a fixed topic wk ∼ PW , the n-th sequence Ek,n satisfies
the true data distribution Pwk

, or denoted by P(· | wk). According to the auto-regressive
generating process, (t + 1)-th token xk,n

t+1 in Ek,n is generated depending on the prefix
sequence Ek,n

t = {xk,n
1 , xk,n

2 , · · · , xk,n
t }. It also means xk,n

t+1 ∼ P(· | Ek,n
t , wk). When the

token count reaches Tk,n, the sequence Ek,n = {(Ek,n
t , xk,n

t+1)}
Tk,n−1
t=1 is already formed.

2. Generate Nk Training Sequences Under a Pre-training Topic: Repeat step 1, Nk training
sequences following the same data distribution Pwk

or P(· | wk), are independently and
identically (i.i.d.) sampled. The pre-training sequences under topic wk can be denoted by
Ek = {Ek,n}Nk

n=1.

3. Generate Complete Training Sequences Under K Pre-training Topics: Considering that
the set of topics used for pre-training isWpre which contains K topics, then repeat Step 2,
the complete pre-training sequences can be denoted by E = {Ek}Kk=1 = {Ek,n}K,Nk

k,n=1.

Note that the number of sequences for different topics (Nk) and sequences length (Tk,n) are vary
from each other. We give more discussion for Nk and Tk,n in Remark F.2. In our main analysis, for
theoretical convenience, we unify N and T . Using pre-training data E containing a total of KN
sequences, the model gives predictions that still follow the AR-NTP methods. Then the LLM Pθ

parameterized by θ ∈ Θ is pre-trained by establishing AR-NTP loss.

Note: Throughout our paper, the subscripts or superscripts k, n, and t represent the topic index,
sequence index and token index, respectively.

ICL Phase. In ICL phase, for any ICL topic w which satisfies the same topic distribution PW as
pre-training topics, prompt = {x1, x2, · · · , xTp

} is generated from data distribution Pw (or P(· | w)).
Similarly to the above generation process of pre-training sequence Ek,n, xt ∼ P(promptt | w). The
goal for an ICL learner is to make the prediction Pθ(xTp | promptTp−1, w), given by the pre-trained
LLM Pθ, as close as possible to P(xTp | promptTp−1, w). To test the performance of ICL on different,
a set of ICL topicsWICL is adopted. We emphasize that different numbers of demonstrations may be
used in standard ICL. In our theoretical modeling, we consider directly concatenating demonstrations
into ICL prompts. The distinction between zero-shot ICL and few-shot ICL is reflected in the prompt
length Tp, and our theoretical results reveal the impact of prompt length on model generalization as
well as ICL emergence.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 OPTIMIZATION OBJECTIVE: EMPIRICAL LOSS

Considering the pre-training phase, finite topics and finite sequences are i.i.d. sampled from topic
distribution PW and data distribution Pwk

or P(· | wk). During the training process, for any sequence
Ek,n under topic wk, each token xk,n

t+1 can be predicted depending on the prefix sequence Ek,n
t ,

optimizing the negative log-likelihood loss − logPθ(x
k,n
t+1|E

k,n
t , wk) in practice. When with fixed

true data distribution P(· | wk), minimizing − logPθ(x
k,n
t+1|E

k,n
t , wk) is equivalent to minimize the

log
P(xk,n

t+1|E
k,n
t ,wk)

Pθ(x
k,n
t+1|E

k,n
t ,wk)

2. It is expected that the prediction of LLM could be close to the true sequence.

Under k-th topic, we average the prediction loss of all tokens for the n-th sequence and then average
this over N sequences, with the definition of LEk(θ, wk). Finally, averaging over K topics, the
optimization objection (empirical loss) of the pre-training phase is defined as

LE(θ,Wpre) =
1

K

K∑
k=1

(
1

NT

N∑
n=1

T∑
t=1

log
P(xk,n

t+1|E
k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

)
︸ ︷︷ ︸

L
Ek (θ,wk)

, (1)

where LEk,n(θ, wk) =
1
T

∑T
t=1 logP(x

k,n
t+1|E

k,n
t , wk)/Pθ(x

k,n
t+1|E

k,n
t , wk), represents the average

loss of one sequence. Define the minimum of empirical loss as

θ̂ = argminθ LE(θ,Wpre). (2)
In our theoretical analysis, LLMs perform Stochastic Gradient Descent (SGD) as optimization
algorithm to update parameters θ in order to get the minimum θ̂. We formalize optimization error ϵopt
with the logarithmic distribution distance between the pre-trained model Pθ and the ideal model Pθ̂,

1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

(
logPθ̂(x

k,n
t+1|E

k,n
t , wk)− logPθ(x

k,n
t+1|E

k,n
t , wk)

)
. (3)

3.3 GENERALIZATION ANALYSIS: TWO-LEVEL EXPECTATION

We expect a good ICL learner, which means that the pre-trained LLM has the ability to identify new
topics and predict new sequences. As introduced in Section 3.1, we hope that the pre-trained LLM
can infer unseen sequences under unseen ICL topics with the assumption of data distribution and
topic distribution. Therefore, it’s natural to define a two-level expectation, aiming to minimize the
expected / population loss.

The First-level Expectation over Sequence. The first-level expectation (i.e. inner expectation)
is taken over sequence Ek,n, indicating a sufficient number of sequences for each topic to facilitate
comprehensive learning in the ideal case so that the pre-trained model can perform excellently when
faced with new sequences under seen topics. In Equation 1, rather than using LEk(θ, wk) with N
sequences, we define L(θ,Wpre) with sufficient sequences as

L(θ,Wpre) =
1

K

K∑
k=1

EEk,n

[
log

P(xk,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]
.

More concretely, with the setting of AR-NTP, the prompt token-dependency (i.e. the tokens are depen-
dently generated in sequence Ek,n) motivates that the first-level expectation EEk,n needs to be divided
into two parts: expectation over each token when given prefix sequences Exk,n

t+1
∼ P(· | Ek,n

t , wk)

and expectation over prefix sequences EEk,n
t

. Then combining the definition of KL divergence, it

can be transformed into 1
K

∑K
k=1 EEk,n

t

[
DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)]
2. Using any

prefix sequence P to replace Ek,n
t , we simply the representation and the first-level expected loss

finally becomes,

L(θ,Wpre) =
1

K

K∑
k=1

EP [DKL (P(· | P,wk) ∥ Pθ(· | P,wk))] . (4)

2With a slight modification, we adjust the display equation to inline equation.
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The Second-level Expectation over Topic. The second-level expectation (i.e. outer expectation) is
taken over topic wk. A well-trained LLM with the objective of minimizing the population loss over
infinite topics will demonstrate good generalization of topics, which will be directly reflected in the
model’s accuracy in predicting test prompts under unseen topics during the ICL phase, provided
these unseen ICL topics satisfy the assumption of topic distribution. Therefore, in Equation 4, rather
than using K topics, we define L(θ) with sufficient topics as

L(θ) = EwEP [DKL (P(· | P,w) ∥ Pθ(· | P,w))] ,

which is called population loss with two-level expectation. To specifically align to the ICL phase and
test the impact of different prompt lengths, we calculate the average loss over each token, similar to
pre-training, i.e.,

L(θ) =
1

Tp

Tp∑
t=1

EwEpromptt [DKL (P(· | promptt, w) ∥ Pθ(· | promptt, w))] . (5)

4 ICL EMERGES FROM GENERALIZATION OF PRE-TRAINED LLMS

In this section, we sequentially present Theorems for the generalization of sequences and topics.
Specifically, Theorem 4.3 considers the generalization of sequences, providing the upper bound of
the first-level expected loss defined in Equation 4. Theorem 4.6 further considers the generalization
of topics and provides the upper bound of the two-level expected loss (i.e. population loss defined in
Equation 5) by integrating Theorem 4.3. Thus, we answer question (b) that ICL emerges from the
excellent generalization of sequences and topics.

Summary of Challenges. Before diving into the details of Theorems, we summarize the challenges
in both modeling and theoretical proof, in comparison to previous research.

(1) The consideration of two-level expectation. In contrast to focusing solely on the ICL process,
we model the entire process of training and utilization, aiming to mirror real-world training scenarios
and explore the origin of ICL from the perspective of generalization. The consideration of two-level
expectation over sequence and topic under a reasonable pre-training and ICL framework significantly
amplifies our workload.

(2) The dealment of prompt token-dependency. Under the setting of AR-NTP, we make great
efforts to address the dependency between the current token and its preceding tokens by constructing
ghost sequences (see the detailed construction in Appendix G.2.1, where we summarize the proof
sketch), thereby enabling the possibility of taking expectation over each token within all possible
sequences. It’s worth noting that such a dependency is not present in the supervised function learning
tasks in other ICL research.

(3) The connection of negative logarithm likelihood, KL divergence and TV distance. We
examine the primary optimization objective: negative logarithm likelihood. Naturally, this leads to a
connection with KL divergence, thereby formalizing the expression of population loss. Furthermore,
in addressing the aforementioned token-dependency, we establish connections between TV distance
and the expectation over a single token when given its predecessors. Therefore, it’s necessary to
establish connections between the two key distribution metrics: TV distance and KL divergence (see
in Lemma G.7), to obtain our final generalization error bounds. The AR-NTP setup necessitates the
establishment of the above series of connections, which are not considered in the previous ICL work.

4.1 GENERALIZATION OF SEQUENCES: THE FIRST-LEVEL EXPECTATION

Under finite (K) pre-training topics, L(θ,Wpre) defined in Equation 4, represents the first-level
expected loss where infinite sequences per topic are utilized. It describes comprehensive learning
for each pre-training topic in the ideal case so that the pre-trained model can give excellent answers
for new sequences on the seen topics in ICL phase. In the following theorem, we present the upper
bound of L(θ,Wpre).

Based on basic notations of general PAC-Bayesian theory, in our discussion, we define the posterior
distribution of model parameters as µ(θ), which is obtained by training the LLM using K topics

6
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and N sequences per topic. Define the prior distribution of model as ν(θ), which is an assumed
probability distribution before some evidence is taken into account. In the formal Theorem for
L(θ,Wpre), we derive the KL distance between the posterior and prior in the upper bound, specifically
with a data-dependent prior (Li et al., 2019). Furthermore, continuous mathematical analysis tools
such as SDE are used to detail the KL divergence between posterior and data-dependent prior,
which further considers the optimization algorithm. Since then, we can provide data-dependent and
optimization-dependent generalization bounds for the first-level expected loss.

Data-Dependent Prior. We employ the following method for generating a data-dependent prior Li
et al. (2019). Let J include N ′ indexes uniformly sampled from [N ] without replacement and I is
[N ] \ J , splitting pre-training sequences under fixed topic wk into two parts Ek

I and Ek
J . Under all

pre-training topics, we have EI = {Ek
I }Kk=1 and EJ = {Ek

J}Kk=1. The prior distribution of model
parameters θ depends on the subset EJ , which is denoted by νJ and the posterior distribution of θ
depends on EI denoted by µ. Thus, a parallel training process with EJ are conducted, and after that,
a data-dependent prior νJ will be obtained. We emphasize that extracting a portion of training data to
learn the prior distribution of model parameters has significant implications for the KL divergence
between the posterior and prior distributions. Specifically, this approach allows the prior to adapt
to specific features and trends in the data, enhancing the model’s ability to capture and learn from
these nuances. In addition, even if we sacrifice a portion of the training data, the prior will lead to
a posterior distribution that is better aligned with the actual data distribution. In high-dimensional
spaces, a data-dependent prior provides a more informed starting point.

Assumption 4.1 (Bounded Loss Function). Given fixed topic wk and prefix sequence Ek,n
t ,

for the true data distribution P(· | wk) (or Pwk
) and pre-trained LLM Pθ, we have

logP(xk,n
t+1 | E

k,n
t , wk)/Pθ(x

k,n
t+1 | E

k,n
t , wk) ≤ S.

This assumption shows that the logarithm ratio of P(· | wk) and Pθ is bounded suggesting that the
learned model is expected to closely approximate the true data distribution. According to the true data
distribution, the probability of xk,n

t+1 tends to 1. Thus by scaling law (Kaplan et al., 2020), the training

loss for specific tokens − logPθ(x
k,n
t+1 | E

k,n
t , wk) equals to

(
Nc

Nparam

)αN

, where Nparam represents the
number of parameters in the model and Nc and αN are constants obtained through statistical fitting.

Thus, S can further be measured with
(

Nc

Nparam

)αN

.

Assumption 4.2 (Bounded Gradient). Suppose that for topic wk and model parameters θt at step t
(for any 0 ≤ t ≤ T ′, T ′ is the total iteration steps), we have ∥∇LEk,n(θt, wk)∥ ≤ L.

Assumption 4.2 is the classical L-Lipschitz continuous condition, which is widely used in generaliza-
tion analysis (Elisseeff et al., 2005; Li et al., 2019). This suggests that the gradient of an average loss
of one sequence (see in Equation 1) is bounded.
Theorem 4.3 (Data-Dependent and Optimization-Dependent Generalization Bound of the First-Level
Expected Loss). Let the auto-regressive LLM Pθ be the empirical solution of Equation 1, and P(· | w)
denotes the true data distribution under topic w. Under Assumptions 4.1 and 4.2, for any 0 < δ < 1,
with probability at least 1− δ, the first-level expected loss with K topics and infinite sequences per
topic, denoted by L(θ,Wpre) (see in Equation 4), satisfies,

Eµ [L(θ,Wpre)] = O

{√
log 1/δ

KNT
+

√
1

KNT

(
DKL(µ ∥ ν) + log

1

δ

)
− ϵopt

}
,

then considering data-dependent prior νJ and detailing the term DKL(µ ∥ νJ), L(θ,Wpre) is further
bounded by

O


√

log 1/δ

K(N −N ′)T
+

√√√√ 1

K(N −N ′)T

(
L2C( 1

Nparam
, T ′)

N ′ + log
1

δ

)
− ϵopt

 , (6)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
. ϵopt is the optimization error (see in Equation 3).

K, N(N ′) and T denote the number of topics, the number of sequences per topic and the sequence
length utilized in the optimization process of Equation 1. T ′ denotes the total training iterations.
Nparam denotes the number of model parameters.
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Remark 4.4. Theorem 4.3 reveals that when considering the first-level expectation over sequence,
the expected loss achieves O{1/

√
KNT} rate. This indicates that an increase in the number of

training topics (K), the number of sequences per topic (N ), and the sequence length (T ) leads to a
reduction in the first-level expected loss, aligning with both intuitive understanding and empirical
evidence. Furthermore, from the term C( 1

Nparam
, T ′), the expected loss is smaller with a larger model

size (i.e., larger Nparam). It reveals why LLMs outperform small language models in emerging ICL,
even though they adopt a similar AR-NTP paradigm. T ′ is related to the optimization process. As
T ′ increases, C(β, T ′) increases, i.e., the generalization error increases. This reflects the influence
of total training iterations T ′ on testing loss, corresponding to the classical viewpoint ‘train faster,
generalize better’ (Hardt et al., 2016; Lei & Ying, 2020; Zhang et al., 2022). We defer more detailed
discussion to Appendix F.4 and proof to Appendix G.2.1 and G.2.2.

4.2 GENERALIZATION OF SEQUENCES AND TOPICS: TWO-LEVEL EXPECTATION

Up to now, we have analyzed the first-level expected loss with K topics and infinite sequences per
topic. With small first-level expected loss, the pre-trained LLM can perform excellently on the new
test prompt under seen topics in ICL. In this section, we use similar techniques to further consider
the second-level expectation with infinite topics, so that the pre-trained LLM with small population
loss can perform well on unseen topics. At this moment, ICL emerges from the generalization of
sequences and topics.

In the following theorem for the two-level expected loss (population loss) L(θ), similarly, we derive
the KL distance between the posterior µ and prior ν in the upper bound, specifically propose a
topic-dependent prior whose core idea comes from data-dependent prior Li et al. (2019), i.e., a
portion of K topics will be used for calculating model prior and other topics will be used for
obtaining posterior. Based on SDE analysis, we detail the KL divergence between posterior and
topic-dependent prior. Since then, we can provide data-dependent, topic-dependent and optimization-
dependent generalization bound for the population loss.

Topic-Dependent Prior. We employ the following method for generating a topic-dependent prior,
similar to data-dependent prior (Li et al., 2019). We split topics into two parts and let J include
K ′ indexes uniformly sampled from [K] without replacement and let I be [K] \ J , then the total
sequences are divided into EI = {Ek}k∈Wpre,I and EJ = {Ek}k∈Wpre,J . Assume that the posterior
distribution of model parameters θ depends on EI denoted by µ and the prior distribution of θ
depends on the topic subset EJ denoted by νJ . A parallel training process is performed with EJ

based on the same LLM architecture, and after that, a topic-dependent prior νJ will be obtained.
Assumption 4.5 (Bounded Expected Gradient). Suppose that for topic wk and model parameters θt
at step t (for any 0 ≤ t ≤ T ′, T ′ is the total iteration steps), we have ∥EEk,n [∇LEk,n(θt, wk)]∥ ≤ σ.

Note that LEk,n denotes the average loss of one sequence (Equation 1). Then EEk,n [∇LEk,n(θt, wk)]
denotes the gradient averaging over all possible sequences Ek,n, therefore σ is less than the common
Lipschitz constant L, which bounds the gradient at individual sample points.
Theorem 4.6 (Data-Dependent, Topic-Dependent and Optimization-Dependent Generalization Bound
of the Two-Level Expected Loss.). Let the auto-regressive LLM Pθ be the empirical solution of
Equation 1, and P(· | w) is the true data distribution under topic w. Under Assumptions 4.1, 4.2 and
4.5, for any 0 < δ < 1, with probability at least 1− δ, the two-level expected loss (population loss)
with infinite topics and infinite sequences per topic, denoted by L(θ) (see in Equation 5), satisfies,

Eµ [L(θ)] = O

{√
1

KTp

(
DKL(µ ∥ ν) + log

1

δ

)
+ U(Wpre,K,N,N ′, T )

}
,

then considering data-dependent and topic-dependent prior νJ and detailing the term DKL(µ ∥ νJ),
L(θ) is further bounded by

O

{√
1

(K −K ′)Tp

(
σ2C( 1

Nparam
, T ′)

K ′ + log
1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
, (7)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
, R = K

K−K′ , U(Wpre,K,N,N ′, T ) denotes Equa-

tion 6. K(K ′), N(N ′) and T denote the number of topics, the number of sequences per topic and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the sequence length utilized in the optimization process of Equation 1. T ′ denotes the total training
iterations. Nparam denotes the number of model parameters.
Remark 4.7 (Optimality Analysis). The term U(Wpre,K,N,N ′, T ) comes from Theorem 4.3 whose
analysis can refer to Remark 4.4. As for the first term in the result, with order O{1/

√
KTp}, it

illustrates the impact of training with a finite number of topics on the model’s predictive ability for
unseen topics in ICL. In addition, by directly concatenating demonstrations into the ICL prompt
in our setting, ICL prompt length reflects the distinction between zero-shot ICL and few-shot ICL.
Our theorem exhibits that longer prompts (i.e. larger Tp) with more demonstrations lead to smaller
population loss, facilitating the emergence of ICL. In total, our guarantees reveal the impact of
pre-training on the generalization performance on unseen topics and sequences in ICL, with order
O{C( 1

Nparam
, T ′)(1/

√
KTp + 1/

√
KNT )}. In comparison, Li et al. (2023) derive a generalization

bound on unseen topics based on algorithm stability technique, with order O{1/
√
T + 1/

√
nMT}

where n,M, T denote the sequence length, number of sequences per topic and number of source
topics. Our bound is tighter than Li et al. (2023) in the first term, with a compatible second term. We
defer the proof to Appendix G.3.1 and G.3.2.

More Insights Beyond Recent ICL Research. Our PAC-Bayesian approach offers statistical insights
into model performance, emphasizing the impact of pre-training topics, sequences and sequence
length. The data-dependent and topic-dependent prior uniquely enhances optimization and may
provide more practical guidance on model training, data selection and deduplication, distinguishing
our work from related generalization studies (Li et al., 2023; Zhang et al., 2023b). Detailed practical
implications are discussed in Appendix D 3.

5 EXPERIMENTS

Experiments on Synthetic Language Dataset GINC4. Inspired by Xie et al. (2021), we first
perform experiments on a synthetic language dataset GINC to verify our theory. GINC is a small-scale
language dataset generated from uniform Hidden Markov Models (HMMs) over topics, where distinct
state transition matrices represent the unique topics for each HMM, without defining topics explicitly.
We train the GPT-2 model with GINC dataset using a single 24GB NVIDIA GeForce RTX 3090.
Detailed data-generating process, model and Hyperparameter settings are provided in Appendix C.2.

In the following, we arrange groups of comparative experiments to explore the separate effects of the
number of topics (K), number of sequences per topic (N ), sequence length (T ) and prompt length
(Tp). We also provide an interesting case where ICL failed.

Observation (1): Separate Effects of K, N , T and Tp. In Figure 2, we first present four groups
of experiments 2(a)-2(d) to analyze the impact of different factors on generalization. In Figure 2(a):
For pre-training, take K = 10 topics and generate N ∈ {20, 40, 60, 80, 100} pre-training sequences
per topic with varying sequence length T ∈ {1280, 2560, 5120, 10240}. The ICL performance of
pre-trained model is then tested with Tp = 64 prompt length. Each line exhibits a growing trend,
indicating a better generalization performance with increasing sequences per topic. Comparing
the four lines, a larger sequence length also brings better generalization. From Figure 2(b)-2(d),
we vary K ∈ {10, 20, 30}. Under each K, keep T = 10240, adjust N ∈ {20, 40, 60, 80, 10}
and Tp ∈ {8, 16, 32, 64}. Combining these experiments, we validate the effects of K,N, Tp on
generalization to emerge ICL ability, closely aligning our Theorems.

Observation (2): An Interesting Case that ICL Fails. In Figure 2(e), when the pre-training data
contains random transitions, the model observes all token transitions, yet ICL fails. This suggests
that the pre-trained models cannot extract information when data distributions do not match the topic,
thus failing to achieve ICL.

Experiments on Real-world Language Dataset5. We further perform experiments on real-world
language datasets, inspired by (Min et al., 2021; Wang et al., 2023). We train the GPT2-large

3As suggested by reviewers, we outline more insights and complement it the Appendix D.
4As suggested by reviewers, we move the GINC experiments from Appendix C.2 in the earlier version to this

section and ensure more discussion in the main text.
5As suggested by reviewers, we supplement more experiments with more diverse data, observing K,N ,

optimization process and prior model initialization.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

20 40 60 80 100
# Sequences per topic

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Ac
cu

ra
cy

T=1280
T=2560
T=5120
T=10240

(a)

20 40 60 80 100
# Sequences per topic

0.12

0.14

0.16

0.18

0.20

0.22

Ac
cu

ra
cy

Tp=8
Tp=16
Tp=32
Tp=64

(b)

20 40 60 80 100
# Sequences per topic

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Tp=8
Tp=16
Tp=32
Tp=64

(c)

20 40 60 80 100
# Sequences per topic

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Tp=8
Tp=16
Tp=32
Tp=64

(d)

20 40 60 80 100
# Sequences per topic

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ac
cu

ra
cy

Tp=8
Tp=16
Tp=32
Tp=64

(e)

0 5000 10000 15000 20000 25000 30000
Global step

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Tr
ai

ni
ng

 lo
ss

logN=8
logN=10
logN=12
logN=14

(f)

0 5000 10000 15000 20000 25000 30000
Global step

3.4

3.6

3.8

4.0

4.2

4.4

Tr
ai

ni
ng

 lo
ss

T=48
T=64
T=128
T=256

(g)

0 5000 10000 15000 20000 25000 30000
Global step

3.4

3.6

3.8

4.0

4.2

Tr
ai

ni
ng

 lo
ss

Random Initialization
Prior Model Initialization

(h)

Figure 2: Experiments on GINC and Real-world Language Datasets.

model over 20 diverse pre-training datasets covering sentiment analysis, question answering and
reasoning tasks. We defer the detailed description of datasets, model and Hyperparameter settings,
and observations on the effects of training data, to Appendix C.3. Here, we focus on more insightful
experiments regarding the effects of optimization on generalization, as well as potential benefits of
effective prior model initialization, guided by the KL term in generalization bounds.

Observation (1): Optimization Process. Through continuous analysis of optimization trajectory,
our generalization bounds are optimization-dependent, extending beyond the influence of training
data. In Figure 2(f), we present four training processes with varying N ∈ {28, 210, 212, 214}, while
keeping K = 20 and T = 256 fixed. We observe that larger N brings faster convergence in addition
to better performance. Similarly, in Figure 2(g), we take varied T ∈ {48, 64, 128, 256} and keep
K = 20 and T = 256 fixed. All these observations align with our Theorems that faster training leads
to better generalization.

Observation (2): Prior Model Initialization. Building on our generalization results with a data-
dependent prior, we design experiments to observe the effects of prior model initialization on
training and performance (detailed experimental designation is deferred to Appendix C.3). Our
results show that in the random initialization regime, where all pre-training data is used, training
for 30,000 steps takes nearly 7 hours on four A100 GPUs. In contrast, under the prior model
initialization regime, where a smaller model is used for warmup and serves as the prior for initializing
the larger model, training the GPT2-large model takes only 4 hours for the same 30,000 steps
on four A100 GPUs, with 0.5 hours required for training the GPT2-small model for 15,000 steps.
Furthermore, as shown in the optimization loss curve in Figure 2(h), prior model initialization not
only accelerates training but also stabilizes the training process (especially in the early stages), leading
to comparable model performance. This approach demonstrates the effectiveness of leveraging prior
knowledge in enhancing both training efficiency and model performance, supporting the KL term in
our generalization bounds and offering more practical insights.

We defer more experiments on linear dynamic systems, synthetic language dataset GINC and real-
world language datasets to Appendix C.

6 CONCLUSION

In this paper, under the AR-NTP paradigm, we consider a systematic pre-training and ICL framework
with a layer-wise structure of sequences and topics, alongside a two-level expectation. By employing
PAC-Bayesian analysis and continuous mathematical techniques like SDE, we provide a comprehen-
sive analysis of data-dependent, topic-dependent and optimization-dependent generalization bounds,
demonstrating that ICL emerges for the excellent generalization of sequences and topics. Ultimately,
our work aims to take an initial exploration of the origin of ICL ability from the perspective of
generalization, supported by both theoretical and experimental results.
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A TABLE OF NOTATIONS

Table 1: Table of Notations.

Notation Description
K Number of pre-training topics
K ′ Number of pre-training topics used to compute topic-dependent prior
N Number of pre-training sequences per topic
N ′ Number of pre-training sequences per topic used to compute data-

dependent prior
T Pre-training Sequence length
Tp ICL Prompt length

wk A pre-training topic with index k
w A ICL topic
Wpre The set of pre-training topics
WICL The set of ICL topics
PW Topic distribution, each topic wk ∈ Wpre, w ∈ WICL is i.i.d drawn from

the topic distribution.

Ek,n The n-th pre-training sequence under the k-th topic
Ek,n

t The subsequence consisting of the first t tokens of Ek,n

Ek The set of pre-training sequences under the k-th topic, |Ek| = N .
E The set of all pre-training sequences, E = {Ek}Kk=1 = {Ek,n}K,N

k,n=1,
|E| = KN .

ETp
ICL prompt under ICL topic w

Pwk
or P(· | wk) Data distribution, each pre-training sequence Ek,n ∈ Ek is i.i.d. drawn

from the Data distribution.
Pw or P(· | w) Data distribution, ICL prompt ETp is drawn from the Data distribution.

xk,n
t+1 The t+ 1-th token of pre-training sequence Ek,n, generated depending

on the prefix sequence Ek,n
t .

xt The t-th token of ICL prompt ET

θ The parameters of the pre-trained LLM
θ̂ The optimal parameters of the pre-trained LLM
P(xk,n

t+1 | E
k,n
t , wk) The true data distribution of token xk,n

t+1 when given topic wk and the
prefix sequence Ek,n

t .
Pθ(x

k,n
t+1 | E

k,n
t , wk) The prediction of token xk,n

t+1, made from the pre-trained model, when
given topic wk and the prefix sequence Ek,n

t .
Pθ̂(x

k,n
t+1 | E

k,n
t , wk) The prediction of token xk,n

t+1, made from the ideal optimal pre-trained
model, when given topic wk and the prefix sequence Ek,n

t .

LE(θ,Wpre) The empirical loss of all pre-training sequences in E, see in Equation 1.
LEk(θ, wk) The loss of sequences in Ek, see in Equation 1.
LEk,n(θ, wk) The loss of sequence Ek,n, see in Equation 1.
L(θ,Wpre) The first-level expected loss, take expectation over sequence, see in

Equation 4.
L(θ) The population loss, take expectation over topic and sequence, see in

Equation 5.
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B OVERVIEW OF TWO-LEVEL EXPECTATION

An Example of Pre-training and ICL Framework. To illustrate the process introduced in Section
3.1 more clearly, let’s use a practical example 6: Imagine the realm of global knowledge as a vast
library filled with diverse topics.

In pre-training phase, five topics (K = 5) are randomly sampled from the library constructingWpre.
For each topic inWpre, it is assumed that there are ten sequences (N = 10, here for simplicity, the
number of sequences is the same across different topics). For example a sequence ‘good flavor!
they were fresh and delicious!’ under topic Amazon Fine Food Reviews (1), there are tokens {x1 =
‘good’, x2 = ‘flavor’, x3 = ‘they’, x4 = ‘were’, x5 = ‘fresh’, x6 = ‘and’, x7 = ‘delicious’}, the
LLM makes auto-regressive predictions for token {x2 = ‘flavor’} based on {x1 = ‘good’}, token
{x3 = ‘they’} based on {x1 = ‘good’, x2 = ‘flavor’}, and so on. Then the LLM is pre-trained
employing AR-NTP loss.

In ICL phase following pre-training, to test whether the pre-trained LLM can perform well on various
seen or unseen topics, we also sample several topics rather that just one topic from the library. Across
random sampling,WICL with both seen and unseen topics is constructed. The user provides zero or
few demonstrations concatenated in a prompt under a ICL topic, expecting a satisfactory next token
based on the prompt. Therefore, similarly to the pre-training phase, for example one sequence ‘Albert
Einstein is best known for developing the theory of relativity’ under a ICL topic, the pre-trained LLM
outputs the subsequent tokens, accomplishing tasks like text generation.

Table 2: Table of Notations in Figure 3.

Notation Description
LE(θ,Wpre) LE(θ,Wpre) Averaging LEk(θ, wk) over K topics, see in Equation 9.

LEk(θ, wk) Averaging LEk,n(θ, wk) over N sequences per topic.
LEk,n(θ, wk) Averaging Lx(θ, wk) over sequence length.

Lx(θ, wk) Negative logarithmic likelihood loss log
P(xk,n

t+1|E
k,n
t ,wk)

Pθ(x
k,n
t+1|E

k,n
t ,wk)

.

L′(θ,Wpre) L′(θ,Wpre) Averaging L′
Ek(θ, wk) over K topics, see in Equation 11.

L′
Ek(θ, wk) Averaging L′

Ek,n(θ, wk) over N sequences per topic.
L′
Ek,n(θ, wk) Averaging L′

x(θ, wk) over sequence length.
L′
x(θ, wk) Taking the partial first-level expectation over token xk,n

t+1 ∼ P(· |
Ek,n

t , wk).

L(θ,Wpre) L(θ,Wpre) Averaging L(θ, wk) over K topics, see in Equation 13.
L(θ, wk) Taking the complete first-level expectation over prefix sequence

Ek,n
t and token xk,n

t+1 ∼ P(· | Ek,n
t , wk).

L′
x(θ, wk) The partial first-level expectation over token xk,n

t+1.

L(θ) L(θ) Taking the second-level expectation over topic wk of L(θ, wk),
see in Equation 15.

L(θ, wk) The first-level expectation over sequence Ek,n.

Decomposition of Population Loss No matter the inner or outer expectation, the expected loss
L(θ) is incalculable since the data distribution Pwk

and topic distribution PW are both unknown (as
introduced in Section 3.2, finite sequences and topics are utilized to optimize the empirical loss in
practical). ICL ability can be measured by population loss, which can be decomposed by simply
adding and subtracting three terms LE(θ,Wpre), L′(θ,Wpre) and L(θ,Wpre) in Equation 8. A good
ICL learner means a small population loss, i.e. a small value in all four parts. The overview of
two-level expectation is shown in Figure 3 and the table of notations is shown in Table 2.

L(θ) = L(θ)− L(θ,Wpre)︸ ︷︷ ︸
Part IV: gentopic

+L(θ,Wpre)− L′(θ,Wpre)︸ ︷︷ ︸
Part III: genseq-2

+L′(θ,Wpre)− LE(θ,Wpre)︸ ︷︷ ︸
Part II: genseq-1

+ LE(θ,Wpre)︸ ︷︷ ︸
Part I: empirical loss

(8)

6As suggested by reviewers, we have moved some analysis from Section 3.1 in the earlier version to this
section.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

: The second-level expectation over
topic  of .

: Averaging   over
 topics.

: Averaging 
 over  topics.

 (Upper Bound of , See in Theorem 4.1 or 5.6)  (Upper Bound of , See in Theorem 5.3)

Population Loss 

infinite topics & infinite sequences  topics & infinite sequences  topics &   sequences

Optimization Objective

[See in Equation (16)] [See in Equation (14)] [See in Equation (10)]

[See in Equation (10)]

: Averaging 
over  topics.

 topics &  sequences
[See in Equation (12)]

[See in Equation (12)]

: The partial first-level expectation of  . 

: Negative logarithmic likelihood loss  . 

:  Averaging   over 
sequences per topic and sequence length .

:  Averaging   over 
sequences per topic and sequence length .

:  The first-level expectation  over
sequence  of .

Figure 3: Overview of Two-Level Expectation. From a horizontal perspective: The first
box (from top to bottom): according to Equation 8, the population loss is decomposed into
four parts. We ultimately obtain the upper bound of the population loss by separately defining
the upper bound for each part. Combining Part I, Part II and Part III, we obtain Theorem 4.3;
further combining with Part IV, we obtain Theorem 4.6. The second box: comparing L(θ) and
L(θ,Wpre), we aim to describe the second-level expectation defined over topic. The third box:
comparing L(θ, wk) and L′

x(θ, wk), we aim to describe the complete first-level expectation defined
over sequence. The fourth box: comparing L′

x(θ, wk) and Lx(θ, wk), L′
Ek,n(θ, wk) is a partial

first-level expectation over token xk,n
t+1 conditioned on Ek,n

t . The fifth box: Negative logarithmic
likelihood loss, the optimization objective for a token. From a vertical perspective, the formulas
described in the four columns can be found in Equation 15, 13, 11 and 9, respectively. The first
column: the chain of L(θ) → L(θ, wk) → L′

x(θ, wk) → Lx(θ, wk). The second column: the
chain of L(θ,Wpre) → L(θ, wk) → L′

x(θ, wk) → Lx(θ, wk). The third column: the chain
of L′(θ,Wpre) → L′

Ek(θ, wk) → L′
x(θ, wk) → Lx(θ, wk). The fourth column: the chain of

LE(θ,Wpre)→ LEk(θ, wk)→ Lx(θ, wk).

Part I: empirical loss. For Part I, the training of the LLM takes into account K topics and N
sequences per topic. In this setting, finite topics and finite sequences could affect the performance
of model so that the training loss is called as empirical loss (optimization objective). For a detailed
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explanation of empirical loss, the same as Equation 1,

LE(θ,Wpre) =
1

K

K∑
k=1

LEk (θ, wk),

LEk (θ, wk) =
1

N

N∑
n=1

LEk,n(θ, wk), (9)

LEk,n(θ, wk) =
1

T

T∑
t=1

Lx(θ, wk),

Lx(θ, wk) = log
P(xk,n

t+1 | Ek,n
t , wk)

Pθ(x
k,n
t+1 | Ek,n

t , wk)
.

Part II : genseq-1. Through Part I, we have obtained the empirical loss with finite sequences and
finite topics. To address the first-level expectation, it’s necessary to evaluate the expected loss over
sequence, that is, utilizing an infinite number of sequences for each pre-training topic. Given that
the sequential dependence in token generation or prediction, where each subsequent token relies
on the preceding tokens, our approach involves initially calculating the expectation of token xk,n

t+1

conditioned on Ek,n
t in this Part II. It’s a partial generalization error for the first-level expected loss.

This is followed by taking expectation over Ek,n
t in the Part III, thereby achieving the comprehensive

first-level expectation over sequence Ek,n.

According to the definition of KL divergence, the partial first-level expectation over sequences
Exk,n

t+1∼P(·|Ek,n
t ,wk)

[Lx(θ, wk)] can be related to DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)
, i.e.

E
x
k,n
t+1∼P(·|Ek,n

t ,wk)
[Lx(θ, wk)] = E

x
k,n
t+1∼P(·|Ek,n

t ,wk)

[
log

P(xk,n
t+1 | Ek,n

t , wk)

Pθ(x
k,n
t+1 | Ek,n

t , wk)

]
= DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)
≜ L′

x(θ, wk). (10)

Then, taking average of all tokens in a sequence, N sequences per topic and K topics and combining
with Equation 10, we define a partial first-level expected loss L′(θ,Wpre) as

L′(θ,Wpre) =
1

K

K∑
k=1

L′
Ek (θ, wk),

L′
Ek (θ, wk) =

1

N

N∑
n=1

L′
Ek,n(θ, wk), (11)

L′
Ek,n(θ, wk) =

1

T

T∑
t=1

L′
x(θ, wk),

L′
x(θ, wk) = DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)
.

Finally, a partial generalization error for the first-level expected loss can be described as

genseq-1 = L′(θ,Wpre)− LE(θ,Wpre). (12)

Part III : genseq-2. Through Part II, we derived a partial first-level expected loss L′(θ,Wpre).
Subsequently, in this part, by taking expectation over Ek,n

t , we will achieve a comprehensive first-
level expectation over prefix sequence Ek,n. Utilizing infinite sequences per topic rather than N
sequences, the first-level expected loss L(θ,Wpre) can be more concretely described as

L(θ,Wpre) =
1

K

K∑
k=1

L(θ, wk),

L(θ, wk) = E
E

k,n
t

[
L′

x(θ, wk)
]
. (13)
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Compared with L(θ,Wpre) and L′(θ,Wpre), the difference lies in the second line of Equation 13 and
11 with infinite sequences or N sequences. This difference represents the complete generalization
error of sequences which can be denoted as genseq-2,

genseq-2 = L(θ,Wpre)− L′(θ,Wpre). (14)

Part IV : gentopic. In this part, we further consider the second-level expectation over topic, that is,
considering the population loss with infinite sequences and infinite topics. According to the difference
between Equation 13 and population loss lies in the number of topics with infinite or K, we have the
population loss,

L(θ) = Ewk
[L(θ, wk)] . (15)

After which ICL will emerge from the good generalization of sequences and topics. It can be denoted
as gentopic,

gentopic = L(θ)− L(θ,Wpre). (16)

C MORE EXPERIMENTS

C.1 EXPERIMENTS ON LINEAR DYNAMIC SYSTEM

We conduct numerical experiments of linear dynamic system. Our experimental setup follows Li
et al. (2019): All ICL experiments are trained and evaluated using the same GPT-2 architecture with
12 layers, 8 attention heads, and 256 dimensional embeddings, on NVIDIA 3090 GPUs.

For a partially-observed dynamical system, the mathematical model can be represented by state and
observation equation. Consider the state equation xt+1 = Wxt + ζt, where xt represents the state
vector at time t in a d-dimensional space. This is analogous to the tokens in our analysis. W denotes
the state transition matrix and ζt is the process noise satisfyingN (0, σ2Id). The observation equation
is given by yt+1 = Cxt+1, where C is the observation matrix, indicating that only partial dimensions
of the state vector are observable. The uniqueness of different topics is reflected in the parameters
W and C. Within this linear dynamic system setting, we examine how the number of pre-training
topics (K), the number of sequences per topic (N), and the sequence length (T ) significantly affect
the generalization performance of auto-regressive LLMs. Additionally, we highlight the advantages
of both data-dependent and topic-dependent priors.
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Figure 4: Experiments on Linear Dynamic System. Left: The comparison of overall loss and in-
context learning loss. Right: The comparison of experiments conducted on complete set and subset
of topics.

The comparison of overall loss and in-context learning loss. Before embarking on our main
experiments, we conduct a preliminary comparison between the absolute values of the overall loss and
the in-context learning (ICL) loss. In the pre-training phase, we predict all tokens in a sequence and
consider the average of these predictions as the overall loss. According to our theoretical proof, this
average prediction loss can be naturally generalized to the ICL phase to represent the ability of ICL.
Although in more scenarios, the focus often shifts to the predicted outcome of the last token, here the
prediction loss of the last token is denoted as ICL loss. In the left of Figure 4, our observations reveal
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Figure 5: Experiments on Linear Dynamic System: The effect of the number of pre-training topics
(K), the number of sequences per topic (N ) and sequence length (T ).

that the ICL loss is consistently lower than the overall loss with a different number of sequences per
topic. It’s because the prediction loss decreases as the sequence length increases, corresponding to
our theory. Consequently, our theoretical bounds hold validity and significance under both overall
and ICL loss assessments.

The effect of K,N and T . In our experimental design, we manipulate the variables K, N , and T
independently and the experimental results are shown in Figure 5. In Figure 5(a), with fixed number
of sequences per topic and sequence length (T = 11) for each line (N = 10, 20, 30, 40), we vary the
number of topics within the range of K = 210 ∼ 217. As K increases, it’s noticeable that the ICL
loss consistently show a downward trend across all four lines. Furthermore, the sharp drops in ICL
loss observed in these cases suggests that LLMs exhibit emerging abilities when the accumulated
topic count reaches certain thresholds. In Figure 5(b), holding the number of topics and sequence
length (T = 11) constant for each line (with topics set at K = 213, 214, 215, 216), we adjust the
number of sequences per topic, varying it within a range of N = 5 ∼ 40. Comparing the four cases,
the ICL loss diminishes as N grows. Notably, in cases with less sufficient topics (like K = 213 and
214), a larger N leads to significant reductions in ICL loss. Specially, the decrease trend of ICL loss
is particularly evident in the magnified view of the case where K = 216. In Figure 5(c), maintaining
a constant number of topics (K = 214) and sequence per topic (N = 40), we modify the sequence
length, allowing it to vary within a range of T = 11 ∼ 51. We can find that ICL loss clearly decreases
as the sequence length grows.

The advantages of both data-dependent and topic-dependent priors. As introduced before, data-
dependent and topic-dependent priors provide a chance to make the generalization bound computable.
To illustrate this, we take the example of topic-dependent prior and two experiments are conducted:
one with a complete set of topics (K = 216) and another with its subset (K ′ = 215). Observing the
results in the right of Figure 4, both training processes eventually converge to nearly identical steady
states. This suggests that using a subset of topics to obtain a topic-dependent prior in preliminary
experiments yields a prior that is closer to the posterior than a randomly selected prior. Then for the
KL divergence between prior and posterior distribution of model parameters in our generalization
bounds, assume these distributions are either uniform or Gaussian allows us to derive the closed-form
expressions for the KL divergence.

C.2 EXPERIMENTS ON GINC SYNTHETIC LANGUAGE DATASET

Inspired by Xie et al. (2021), we first perform experiments on a synthetic language dataset GINC to
verify our theory.

GINC Dataset7. GINC is a small-scale language dataset generated from a uniform mixture of
Hidden Markov Models (HMMs) over a family of topics/concepts (Xie et al., 2021). The generation
steps are as follows: (1) Prepare transition matrix for HMMs: The topic/concept determines the state

7As suggested by reviewers, we move GINC experiments to the main text and complement experimental
details on GINC experiments.
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Figure 6: Experiments on GINC Synthetic Language Dataset.

transition matrix in HMM. For simulation, the transition matrix is randomly generated for each topic
(each HMM), respectively; (2) Prepare vocabulary: The vocabulary is generated as combinations of
letters starting from a’ to z’, aa’ to az’, and so on. We can obtain vocabularies with different sizes;
(3) Prepare memory matrix: A unique matrix is created that records the mapping of vocabulary and
state; (4) Generate sequences: Given a fixed topic and an initial state, generate the next state based
on the transition matrix, and then obtain the observed token using the memory matrix. In total, each
sequence is sampled from a random HMM in the family.

Model and Hyperparameter Settings. Our transformer model is based on the GPT-2 architecture
with 4 layers, 12 attention heads, and 768-dimensional embeddings (Wolf, 2019). We train the model
for 5 epochs using the AdamW optimizer with a batch size of 8 and a linear learning rate schedule.
The schedule includes a warmup phase of 1000 steps, up to the learning rate of 8e-4. Notably, we
adopt a large portion of the code from Xie et al. (2021). All experiments on GINC are conducted
using a single 24GB NVIDIA GeForce RTX 3090.

In the following, We empirically explore the separate effects of the number of topics (K), number of
sequences per topic (N ), sequence length (T ) and prompt length (Tp). We detail K ∈ {10, 20, 30},
N ∈ {20, 40, 60, 80, 100}, T ∈ {1280, 2560, 5120, 10240}, Tp ∈ {8, 16, 32, 64}, where ranging
T with directly masking the token that exceeds the specified length and do not taking special
consideration. In totoal, we arrange groups of comparative experiments to verify that increasing
K,N, T, Tp individually improves the model’s generalization performance as demonstrated in our
Theorems. Additionally, we discuss the effect of vocabulary size and provide an interesting case
involving with a failed ICL.

Observation (1): Separate Effects of K, N , T and Tp. We first present four groups of experiments
6(a)-6(d) in Figure 6. In Figure 6(a): For pre-training data, take K = 10 topics and generate N ∈
{20, 40, 60, 80, 100} pre-training sequences/documents per topic, in addition with varying sequence
length T ∈ {1280, 2560, 5120, 10240}. Then with the pre-trained model, test ICL performance
on the prompt with Tp = 64 prompt length. Each line exhibits a growing trend, indicating a
better generalization performance with increasing sequences per topic. Comparing the four lines
from bottom to top, a larger sequence length also brings better generalization. From Figure 6(b)-
6(d), we vary K ∈ {10, 20, 30}. Under each K, keep sequence length T = 10240, with varying
N ∈ {20, 40, 60, 80, 10} and Tp ∈ {8, 16, 32, 64}. Combining these three groups of experiments,
we validate the effects of K,N, Tp on generalization, closely aligning our Theorems.

Observation (2): Effect of Vocabulary Size and an Interesting Case that ICL Fails. In Figure
6(b), 6(e) and 6(f), We vary the vocabulary size within {50, 100, 150}. With fixed K = 10 topics, we
vary N ∈ {20, 40, 60, 80, 10} and Tp ∈ {8, 16, 32, 64}. Apart from the observations similar to Figure
6(b)-6(d) about N,Tp, we surprisingly find that a larger vocabulary size leads to higher ICL prediction
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Figure 7: Experiments on Real-world Language Dataset.

accuracy. This aligns with our understanding that the number of possible token combinations in
sequences grows with increased vocabulary size. It also implies that more diverse training data
improves ICL performance. This is further implicitly supported by our theory, which suggests
increasing the training sample size as much as possible to ensure sample diversity. Furthermore,
we conduct an interesting experiment in Figure 6(g). When the pre-training data contains random
transitions, the model observes all token transitions, yet ICL fails. This suggests that the pre-trained
models cannot extract information when data distributions do not match the topic, thus failing to
achieve ICL.

C.3 EXPERIMENTS ON REAL-WORLD LANGUAGE DATASETS.

We further perform experiments on real-world language datasets, inspired by (Min et al., 2021; Wang
et al., 2023) 8.

Datasets, Model and Hyperparameter Settings. In the pre-training phase, we consider a mixture
of a series of language tasks, mainly including 20 datasets. Classified by task types, including
sentiment analysis (glue-sst2, poem sentiment, yelp polarity and emotion), linguistic analysis (glue-
cola, blimp), text classification (ag news, dbpedia 14, ethos), question answering (tweet qa) and
commonsense reasoning (swag). Different datasets are considered as different topics (reflected in
K from our framework). In ICL phase, we test ICL performance with different datasets. All the
datasets are obtained from Hugging Face. We train the GPT2-large model with a batch size of 16 and
a learning rate of 1e-4 for total 30,000 iterations. Notably, we adopt a large portion of the code from
Wang et al. (2023). All experiments are conducted using four 24GB NVIDIA GeForce RTX 3090
and 40GB A100 GPUs.

In the following, we empirically explore the separate effects of the number of topics (K), num-
ber of sequences per topic (N ) and sequence length (T ). By detailing K ∈ {5, 10, 15, 20},
N ∈ {28, 210, 212, 214}, T ∈ {48, 64, 128, 256}, we arrange groups of comparative experiments
to verify that increasing K,N, T individually improves the model’s generalization performance as
demonstrated in our Theorems. Additionally, we observe the impact of optimization process and
prior model initialization.

8As suggested by reviewers, we supplement more experiments (observing separate effects of K,N, T and
optimization process), beyond verifying sequence length T in the earlier version.
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Observation (1): Separate Effects of K, N and T . In Figure 7(a), we investigate the impact of
varying the number of topics K. Specifically, varying K ∈ {5, 10, 15, 20}, keeping fixed N = 214

sequences per topic and sequence length T = 256. The results show that for ICL test prompts
from different datasets, increasing K consistently improves ICL accuracy, as expected from our
theoretical analysis. In Figure 7(b), we examine the effect of varying N ∈ {28, 210, 212, 214}, with
fixed K = 20, T = 256. We observe that increasing N leads to better performance in ICL phases,
reinforcing the idea that more sequences per topic enhances model generalization and further benefits
ICL. Similarly, in Figure 7(c), we explore the impact of varying T ∈ {48, 64, 128, 256} while
keeping fixed K = 20 and N = 214. Increasing T also brings better ICL performance.

Observation (2): Optimization Process. Through continuous optimization trajectory analysis, our
generalization bounds are also optimization-dependent. Thus beyond the influence of training data,
we investigate whether optimization properties align with our theory. In Figure 7(d), we present four
different training processes where N ∈ {28, 210, 212, 214} is varied, with fixed K = 20 and T = 256.
This setting mirrors Figure 7(b) where we have demonstrated that increasing N leads to better
generalization performance. Furthermore, we observe that larger N also brings faster convergence
during training. This aligns with our Theorems that with a smaller number of training iterations T ′ to
converge, i.e., the model trains faster, and further generalizes better. Similarly, Figure 7(f) takes the
same configuration with Figure 7(c), which also exhibits the connection between optimization and
generalization that ‘trains faster, generalize better’.

Observation (3): Prior Model Initialization. Based on our generalization analysis with a data-
dependent prior, we propose that leveraging prior model initialization could accelerate model training.
Specifically, consider the following setup: our training data consists of K = 20 pre-training topics,
N = 214 training sequences per topic and sequence length T = 256.

• Step 1: Train the GPT2-small model for 15,000 steps using K = 5 pre-training topics,
N = 214 training sequences per topic and sequence length T = 256.

• Step 2: Transfer the weights from GPT2-small model to the corresponding weight matrices
of GPT2-large, ensuring dimension compatibility. Initialize the weights randomly for the
additional transformer layers in GPT2-large.

• Step 3: Train the GPT2-large model for an additional 30,000 steps using the full pre-training
data (K = 20, N = 214, T = 256)

According to our experimental results, the random initialization regime with all pre-training data
requires nearly 7 hours on four A100 GPUs to complete 30,000 steps. However, under the prior
model initialization regime, where a smaller model is used for warmup and serves as the prior model
initialization for the larger model, training the GPT2-large model takes only 4 hours for 30,000
steps on four A100 GPUs under the same setting of K,N, T (with 0.5 hours needed for training the
GPT2-small model for 15,000 steps).

Furthermore, as shown in the optimization loss curve in Figure 7(f), the prior model initialization not
only accelerates training but also stablizes the training process (especially at the early stage), leading
to comparable or even improved model performance. This approach demonstrates how effectively
leveraging prior knowledge can contribute to the training process and performance, supporting the
KL term in our generalization bounds and presenting more practical insights.

D PRACTICAL IMPLICATIONS

We first provide guidance for the quantitative selection of K, N and T based on the upper bound of
expected loss described by theoretical results.

Increase the Number of Pre-training Topics. For the ICL ability of LLMs, it relies on examples
within a given prompt to adjust its behavior, so more topics (or tasks) provide richer information
and learning opportunities. As the number of tasks increases, the model is able to learn from a
broader range of contexts, thereby enhancing its generalization ability. This is different from general
multi-task learning that it aims to learn multiple tasks simultaneously and if the tasks are too different
or unrelated, it may lead to task interference, thereby reducing overall performance (i.e., under
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multitask learning, having more topics does not necessarily lead to better model generalization
performance). Instead, our defined topics satisfy the assumption of topic distribution, implying a
correlation between pre-training and ICL topics. This also leads to our conclusion that ”more topics
lead to better model generalization performance,” which differs from general multi-task learning.
Furthermore, when increasing the number of topics, our goal is to cover as many different types
of topics as possible, to guarantee the diversity of topics, which will enrich the model’s learning
experience and help the model better understand new contexts with unseen topics. It potentially
explains why one can improve ICL performance by selecting appropriate kind of ‘few-shot’ examples
or exemplars to optimize performance (i.e. retrieving shots best suited to the topic/task).

Expand the Scale of Pre-training Sequences. Using a large amount of training sequences per
topic can provide more topic information, which helps the model better understand the language
patterns for this topic. This guarantees the ability to perform well on the new sequences with a seen
topic. This opinion is similar to the classical machine learning problem, where more training data
helps the model perform excellently on the test data.

Increase Sequence Length or Prompt Length. Training the model to process longer sequences
can enable it to better understand the context and details of lengthy texts, especially for topics or
tasks that require an in-depth understanding of long articles, such as text summarization and extended
question answering. We hold that longer sequence length help the model maintain coherence and
completeness of information when dealing with complex problems.

Furthermore, in our PAC-Bayesian generalization bounds, the key term DKL(µ ∥ ν) surely offers
possibilities to quantify the information contained in the model and data, thereby providing practical
guidance for model training, training data selection and deduplication.9

Practical Guidance for Model Training. (1) Prior Model Initialization: Typically, randomly
initialized parameters follow uniform or standard normal distributions, which lack any specific
information about the data. In contrast, during pre-training, we begin with a small-scale subset of data
to train a prior model. The parameters of this prior model can then serve as an informative starting
point for longer and more sufficient training with greatly-large-scale pre-training data. When using a
data-dependent prior rather than random initializations, this results in a smaller DKL(µ ∥ ν), which
in our theorems represents the distance between model posterior µ and prior ν, contributing to a
better generalization. Furthermore, a lower DKL(µ ∥ ν) also enhances the optimization, by detailing
this term with continuous optimization trajectory analysis. Specifically for example in Theorem 4.6,
when with topic-dependent prior νJ ,

DKL(µ ∥ νJ) ≈
σ2C( 1

Nparam
, T ′)

K ′ ,

where C( 1
Nparam

, T ′) = β
2 e

8βS(1− e−
T ′

exp(8βS) ). A smaller DKL(µ ∥ νJ) means that this favorable
initialization brings a stable training (with reduced gradient norm σ) and avoids exploring the entire
parameter space (with fewer optimization iterations T ′). This aligns with our understanding that data
patterns guide the model toward appropriate directions during training, reducing the likelihood of
encountering unsuitable local minima or saddle points.

In total, using a data-dependent and topic-dependent prior for model initialization can significantly
improve training stability, model convergence, and generalization. This approach is particularly
useful in multi-task learning, where it helps establish relevant priors for each task/topic in advance.
Although employing more strategies to choose the subset K ′ can further refine the prior, excessive
refinement may introduce new computational costs and efficiency trade-offs. We emphasize that even
without careful data selection for prior model learning, a data-dependent prior generally outperforms
random initialization. Particularly, when random initialization does not yield good performance, a
data-dependent prior model may provide a new opportunity.

(2) Using Small Model Training as Warm-up for Large Models: The prior model initialization
strategy discussed above considers training the model once in advance with the same architecture

9As suggested by Review y9tb, we have complemented with more possible practical guidance beyond the
quantitative selection of K,N, T .
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as the formal training. This approach can be further extended to provide insights for training large
models. Specifically, prior knowledge can be acquired by first training a relatively smaller model
with a different architecture. It enables effective initial parameters at a lower computational cost,
providing a solid foundation for larger models and avoiding the instability and non-convergence
issues that may arise from random initialization. The detailed analysis of DKL(µ ∥ ν) presented
earlier serves as the theoretical understanding for the ”small model warm-up” strategy. Such strategies
have been successfully applied in engineering practices, including AutoML (He et al., 2021), Neural
Architecture Search (NAS) (Elsken et al., 2019) and current LLMs training.

(3) Gradual Expansion of Training Data: The strategy of expanding the training data involves
beginning training with a small subset and gradually increasing the dataset size. In this process, the
model’s initial learning can be seen as based on a ‘data-dependent prior’, and each expansion of
the training data can be understood as the injection of a new model prior. Based on the theoretical
analysis of DKL(µ ∥ νJ) above, gradual expansion of training data similarly leads to improved
generalization, faster convergence and better handling of complex features. This guiding principle is
also reflected in Curriculum Learning (Bengio et al., 2009) and Progressive Networks (Rusu et al.,
2016).

Practical Guidance for Training Data Selection and Deduplication. It is well-known that the
vast amount of data obtained from the internet serves as input for compressing world knowledge into
LLMs (Delétang et al., 2023). In the redundant data, the quality determines the upper limit of the
performance of LLMs. Therefore, considering a data-dependent pre-training and ICL generalization
framework has immense potential for guiding data. In our theory, to explicitly show the impact of
data, we adopt a data-dependent and topic-dependent prior νJ and further detail DKL(µ ∥ ν) with
optimization analysis. We have discussed this in detail before: in ‘Practical Guidance for Model
Training’ part, we emphasize the advantages of prior model initialization over random initialization
in model training. Here, we aim to further explore its guidance for training data from the perspective
of compression.

Specifically, we select a subset of size K ′ from the K pre-training topics to estimate a prior distribu-
tion. If a smaller K ′ can estimate a prior that is very close to the posterior distribution, it indicates
that the information from the K topics can actually be compressed into a smaller subset of K ′

topics. This reflects the compressibility of the data, and can thus backward guide pre-training data
to further undergo data selection and deduplication, such as through topic clustering, data diversity,
or information gain metrics (e.g., DKL(ν(D) ∥ ν(Di)), if this value is small, the data block Di is
considered redundant and can be reduced in weight or removed to decrease the model’s reliance
on redundant information.) The reprocessed pretraining data may exclude some noise interference,
further improving model performance, saving computational resources, and facilitating training for
new models.

Potential challenges of AR-NTP for practical implementation. The AR-NTP paradigm indeed
brings some challenges for practical implementation. It generates the next token step by step in an
auto-regressive manner, which means that the model must handle the context of the current token at
each step. Especially for long sequences, this leads to a significant increase in computational and
memory overhead. As the sequence length increases, the complexity of computing dependencies
grows exponentially, which can make the training process extremely slow and resource-intensive.
Furthermore, long sequences bring long-range dependency issues for models like RNNs, also for
multi-layer transformers, when processing extremely long sequences, gradients may explode as they
propagate through multiple layers.

Possible handling methods of AR-NTP practical challenges guided by our theory. To address
the challenges posed by long-range token dependencies, including optimization stability, practical
storage and computational efficiency, we propose the potential methods guided by our theory.

(1) Optimizing sample order. In ICL, the prompt sequence consists of several concatenated
exemplars. When a large number of exemplars are provided, the sequence can become excessively
long. By optimizing the sample order, we can enhance the optimization process and maintain model
generalization and ICL performance. Our theory provides a theoretical understanding for this:
We model the token generation process using the conditional probability P(xt+1 | Et, wk), indicating
that the prediction depends not only on the current input but also on the preceding context. During
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the model’s processing of in-context examples, if the sequence abruptly switches from a sample
closely related to the query to one with very low relevance, it introduces significant fluctuations. This
forces the model to continually adjust its internal parameters to adapt to the new input, potentially
causing increased gradient fluctuations and training instability. According to our theoretical analysis,
specifically Assumption 4.5, we use σ to represent the upper bound of the expected gradient variance.
A large σ implies uncontrolled gradient magnitude changes during updates, reflecting instability in
the optimization process, which can subsequently harm the model’s generalization performance from
our generalization bounds. Thus, optimizing the sample order (e.g., reducing irrelevant samples in
the context) can stabilize convergence and better satisfy Assumption 4.5, i.e., with a reduced σ. This,
in turn, results in a tighter generalization upper bound and improved model generalization and ICL
performance.

(2) Local Attention Mechanism. Building on the above discussion regarding optimizing sample
order, when samples more closely related to the query are grouped together (a well sample-order
prompt sequence), the dependencies between adjacent tokens become stronger. It enables the design
of a local attention mechanism, which focuses only on a fixed-length prefix sequence of the current
token during computation. This approach reduces the memory and efficiency overhead associated
with long-range token dependencies. Although our theoretical analysis of token dependency assumes
reasoning over the entire sequence of preceding tokens, the existing framework can be extended to
handle scenarios where the prefix sequence Et in P(xt+1 | Et, wk) is constrained to a certain length,
akin to an n-gram model. Furthermore, the theoretical techniques for addressing token-dependency
remain applicable. It provides great inspiration for future work that we can indeed extend the current
theory to computation-limited scenarios!

E MORE RELATED WORK

From Multi-Task Learning to Meta-Learning. Although drawing inspiration from the assumption
of an unknown task distribution in meta-learning analysis, it is worthy to emphasize that ICL
generalization analysis under auto-regressive next-token prediction cannot be equivalent to meta-
learning generalization. We conduct our analysis under the unique setup of auto-regressive pre-trained
LLMs. The prompt token-dependency issue brought by auto-regressive language modeling implies
that we cannot directly apply the general meta-learning analysis to ICL generalization analysis.
Specifically, the study in Bai et al. (2024) directly applied the general approach of meta-learning,
assuming that a prompt consists of N + 1 independently and identically distributed (i.i.d.) samples,
which is unreasonable for AR-NTP problem we investigate. For a prompt (x1, x2, · · · , xT ) under
AR-NTP, we do not require x1 ∼ xT to be independent of each other; instead, subsequent tokens
depend on previously generated tokens. As mentioned in Section 4.2, addressing prompt token-
dependency is one of the significant contributions and challenges compared to other works, including
meta-learning works in non-ICL domains. This is the key distinction from traditional meta-learning
approach.

The Relationship between Pre-training and Downstream Task. Existing research has focused
on how pretraining helps downstream tasks, mainly exploring how to obtain good embeddings from
the pretraining phase and fine-tune them for downstream tasks. However, there is little work on
modeling the relationship between pre-training and ICL. The main difference is that ICL does not
require adjusting model parameters compared with fine-tuning, and ICL is the emergent ability after
pre-training phase. We provide a comparison of relevant works with our work.

The study by Saunshi et al. (2020) aims to illustrate the benefits of language modeling for various
downstream tasks, with a specific focus on text classification tasks. By focusing on reformulating
classification task as sentence completion and assuming that the downstream distribution is covered
by the learned language model, they provide upper-bound guarantees for the loss of downstream
classification tasks, which is an interesting research. In contrast, our work differs in terms of research
goal, assumption and methodologies, as well as results. Specifically, we focus on AR-NTP in
language modeling, no matter in pre-training or ICL phase. Our goal is to explore the origin of
ICL based on generalization analysis. From the statistical perspective, we establish a framework
for pre-training and ICL with a topic distribution assumption which is weaker than Saunshi et al.
(2020). Thus, we complete a generalization analysis for two-level expected loss with describing the
KL divergence between the true data distribution and the learned distribution. And we conclude that
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ICL emerges from the generalization of sequences and topics. Additionally, in Wei et al. (2021), they
analyze how pretraining on generic language modeling tasks can improve performance on diverse
downstream tasks, suggesting that under certain strong assumptions, the downstream task could
predict properties of the posterior distribution over latent variables in an underlying generative model
(HMM or memory-augmented HMM). Here, latent variables are similar to latent concepts or topics.
Our work implicitly suggests this point as well: the model demonstrates good generalization and
prediction ability on seen topics. In contrast, they focus on how to learn latent topics under specific
generative models, emphasizing the optimization process. Conversely, we attempt to quantitatively
characterize the model’s learning performance, i.e. generalization performance, specifically exploring
the origin of ICL from the perspective of generalization error.

Generalization Analysis. Understanding the generalization error in learning algorithm which
meansures the model performance on unseen data with population loss, has led to the development
of several classic methods for establishing its upper bounds. Among these, uniform convergence
(including VC dimension, Rademacher complexity) (Bartlett et al., 2017; Shalev-Shwartz et al., 2010;
Vapnik et al., 1994), algorithm stability (Bousquet & Elisseeff, 2002; Feldman & Vondrak, 2018;
Hardt et al., 2016; Lei & Ying, 2020; Zhang et al., 2022), information-theoretic bounds (Russo &
Zou, 2016; 2019; Xu & Raginsky, 2017), and PAC-Bayesian (Catoni, 2007; Dziugaite & Roy, 2017;
McAllester, 1998) are prominent techniques.

For VC dimension, it depends solely on the hypothesis class which offers the worst-case analysis.
For Rademacher complexity, it depends both on the hypothesis class and on the unknown distribution
which can be understood as an average-case analysis. The above obtained bounds almost depend on
the size of hypothesis space, and become vacuous hence may be unable to explain generalization in
deep learning with over-parameterized neural network (Nagarajan & Kolter, 2019; Zhang et al., 2021).
Additionally, compared with algorithm stability theory, it considers worst-case and fails in analyzing
the relationship between input data and output model. Therefore, we turn to the PAC-Bayesian
approach for its unique data-dependent and hypothesis space-independent analysis. In our work,
we specifically incorporate a topic-dependent prior within the PAC-Bayesian framework, adding a
novel dimension to this analysis. Furthermore, by detailing the KL divergence when considering
the optimization process, we obtain optimization algorithm-dependent generalization error bound,
naturally combining the advantage of algorithm stability technique.

Continuous Langevin Dynamics and Continuous Mathematical Analysis Techniques. In the
realm of non-convex learning (obviously, the optimization of LLM falls within the domain of
non-convex learning), significant research has been directed towards gradient-based methods using
continuous Gaussian noise (Mou et al., 2018; Xu & Raginsky, 2017; Zhu et al., 2018). Our work
extends this concept by employing Continuous Langevin Dynamics (CLD) for model weight updates,
a refined version of Gradient Langevin Dynamics (GLD) with minimal step sizes (Li et al., 2019)
(see in Definition G.9). Thus, intuitively, for the main approximation of GLD/CLD, SGD can be
understood as adding additional stochastic noise to GD. According to Zhu et al. (2018), the anisotropic
gradient noise in SGD (superior to isotropic noise) can help escape local minima during optimization
to achieve regularization. Therefore, considering the specific form of noise is beneficial for practical
training. Separating the deterministic component and noise component of SGD, and considering the
continous form CLD, is natural and practical.

From the view of proof, the consideration of CLD rather than GLD, contributes to the usage of
mathematical techniques, primarily Stochastic Differential Equations (SDE). SDE can simultaneously
characterize the deterministic components and noise components that influence the optimization
process. Considering the complexity of LLMs, distinguish the deterministic signals and stochastic
noise during the optimization process is of significant importance. Additionally, SDE can relate
the stability of gradients during optimization to the generalization in ICL. The stability of gradients
can be directly assessed by performing backpropagation on a small set of multi topics data, thereby
enabling control over gradient stability based on data selection during training phase, ultimately
improving the generalization performance in ICL. More concretely, other techniques such as the
Fokker-Planck Equation (Mou et al., 2018) (see in Definition G.8) and the Log-Sobolev Inequality
(LSI) (Li et al., 2019) (see in Lemma G.10) are used to derive our generalization bounds. We provide
proof sketch of the use of these continous mathematical analysis techniques in Appendix G.2.2.
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F COMPLETE THEOREMS: ICL EMERGES FROM GENERALIZATION OF
PRE-TRAINED LLMS

In Section 4, we have introduced Theorem 4.3 and 4.6. Here, in the following Section F.1, we divide
Theorem 4.3 into two parts: Theorem F.1 and Theorem F.3. Similarly, in the following Section F.2,
we divide Theorem 4.6 into two parts: Theorem F.5 and Theorem F.7.

F.1 GENERALIZATION OF SEQUENCES: THE FIRST-LEVEL EXPECTATION

Under finite (K) pre-training topics, we consider the first-level expectation where infinite se-
quences per topic are utilized. It describes comprehensive learning for each pre-training topic
in the ideal case so that the pre-trained model can perform excellently on the seen topics in ICL
phase. For this first-level expected loss L(θ,Wpre) with two partial expectation, it’s represented

as 1
K

∑K
k=1 EEk,n

t

[
DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)]
(details see in Equation 13). The

following Theorem will give the upper bound of L(θ,Wpre).

In the following Theorem, we first give an general result that KL distance between posterior µ and
prior ν is kept in the upper bound of the first-level expected loss. Here, the prior is a general prior
distribution rather than a data-dependent prior.
Theorem F.1 (Generalization Bound of the First-Level Expected Loss). Let the auto-regressive LLM
Pθ be the empirical solution of Equation 1, and P(· | w) denotes the true data distribution under
topic w. Under Assumptions 4.1, for any 0 < δ < 1, with probability at least 1− δ, the first-level
expected loss with K topics and infinite sequences per topic, denoted by L(θ,Wpre) (see in Equation
4 or Equation 13), satisfies,

Eµ [L(θ,Wpre)] = O

{√
log 1/δ

KNT
+

√
1

KNT

(
DKL(µ ∥ ν) + log

1

δ

)
− ϵopt

}
,

where ϵopt is the optimization error (see in Equation 3). µ and ν are the posterior and prior
distribution of model parameters θ, respectively. K, N and T denote the number of topics, the
number of sequences per topic and the sequence length utilized in the optimization process of
Equation 1.
Remark F.2. Theorem F.1 reveals that when considering the first-level expectation over sequences,
the expected loss achieves 1√

KNT
rate. This indicates that an increase in the number of training

topics (K), the number of sequences per topic (N ), and the sequence length (T ) leads to a reduction
in the first-level expected loss, aligning with both intuitive understanding and empirical evidence.
Note that the length of different sequences Tk,n vary from each other which implies the potential
for sampling imbalanced sequences from various topics. Moreover, the number of sequences Nk

per topic can also be different. If sequences under a specific theme are notably short, balancing can
be achieved by sampling a greater number of these sequences, i.e. increasing Nk, ensuring that the
product of NkTk,n for all themes maintains a level of equilibrium. This approach ensures that the
final representation of NT conveys an averaged meaning. If certain themes yield fewer sequences,
it indicates a lower probability of occurrence for those themes. Under the framework of theme
distribution (as defined by the second level expectation), the contribution of such themes (smaller
NkTk,n) to NT won’t be dominant. In conclusion, themes with higher occurrence probabilities are
predominant and more sequences can be more readily sampled. Even if these sequences are shorter,
we can compensate by sampling more sequences to achieve an average level NT which corresponds
to our result.

In the next Theorem, we carefully consider a data-dependent prior (Li et al., 2019), replacing
DKL(µ ∥ ν) with DKL(µ ∥ νJ) in Theorem F.1 and further deriving a more detailed upper bound.

Data-Dependent Prior. We employ the following method for generating a data-dependent prior
(Li et al., 2019). Let J include N ′ indexes uniformly sampled from [N ] without replacement and I is
[N ] \ J , splitting pre-training sequences under fixed topic wk into two parts Ek

I and Ek
J . Under all

pre-training topics, we have EI = {Ek
I }Kk=1 and EJ = {Ek

J}Kk=1. The prior distribution of model
parameters θ depends on the subset EJ , which is denoted by νJ and the posterior distribution of θ
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depends on EI denoted by µ. Thus, a parallel training process with EJ are conducted, and after that,
a data-dependent prior νJ will be obtained. We emphasize that extracting a portion of training data to
learn the prior distribution of model parameters has significant implications for the KL divergence
between the posterior and prior distributions. Specifically, this approach allows the prior to adapt
to specific features and trends in the data, enhancing the model’s ability to capture and learn from
these nuances. In addition, even if we sacrifice a portion of the training data, the prior will lead
to a posterior distribution that is better aligned with the actual data distribution. In many cases,
especially in high-dimensional spaces, learning the data distribution directly can be challenging. A
data-dependent prior provides a more informed starting point for such complex distribution learning.
Theorem F.3 (Data-Dependent and Optimization-Dependent Generalization Bound of the First-Level
Expected Loss). Under the conditions maintained in Theorem F.1 and Assumption 4.2, when con-
sidering data-dependent prior µJ , for any 0 < δ < 1, with probability at least 1− δ, the first-level
expected loss with K topics and infinite sequences per topic, denoted by L(θ,Wpre) (see in Equation
4 or Equation 13), satisfies,

Eµ [L(θ,Wpre)] = O

{√
log 1/δ

K(N −N ′)T
+

√
1

K(N −N ′)T

(
DKL(µ ∥ νJ) + log

1

δ

)
− ϵopt

}
,

then detailing the term DKL(µ ∥ νJ), L(θ,Wpre) further satisfies,

O


√

log 1/δ

K(N −N ′)T
+

√√√√ 1

K(N −N ′)T

[
L2C( 1

Nparam
, T ′)

N ′ + log
1

δ

]
− ϵopt

 , (17)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
. ϵopt is the optimization error (see in Equation 3).

K, N(N ′) and T denote the number of topics, the number of sequences per topic and the sequence
length utilized in the optimization process of Equation 1. T ′ denotes the total training iterations.
Nparam denotes the number of model parameters.
Remark F.4. The PAC-Bayesian generalization error bound of the first-level expected loss can be
bounded by the KL divergence between the distribution of the model obtained by the real training
process and data-dependent prior, i.e. DKL(µ ∥ νJ). Analyzing the continuous Langevin dynamic
of model parameters θ, Fokker-Planck Equation is used to describe the KL distance between two
probability density function of two optimization processes, furthermore, referring to the proof
of Lemma G.5 in Li et al. (2019), we demonstrate that the integral of the gradient difference of∥∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)

∥∥2
2
. Consequently, we bound DKL(µ ∥ νJ) with

L2C( 1
Nparam

,T ′)

N ′ ,
which is related to optimization algorithm. As T ′ increases, C(β, T ′) increases, i.e., the generalization
error increases. This reflects the influence of total training iterations T ′ on testing loss, corresponding
to the classical viewpoint ‘train faster, generalize better’ (Hardt et al., 2016; Lei & Ying, 2020; Zhang
et al., 2022). In addition, the constant L related to optimization reflects that the upper bound of
the gradient of AR-NTP loss also impacts the generalization performance. Observing the derived

upper bound, we notice that the last term,
√

log 1/δ
K(N−N ′)T ∼

1√
K(N−N ′)T

, provides similar insights to
1√

KNT
in Theorem F.1. In total, by detailing the KL divergence, we establish a more refined bound

which is data-dependent and optimization-dependent.

In summary, the proof of Theorem 4.3 is provided in Appendix G.2.1 and Appendix G.2.2.

F.2 GENERALIZATION OF SEQUENCES AND TOPICS: TWO-LEVEL EXPECTATION

Up to now, we have analyzed the first-level expected loss with K topics and infinite sequences per
topic. In this ideal case, the pre-trained LLM can perform excellently on the new test prompt under
seen topics in ICL. In this section, we use similar techniques to further consider the second level
expectation with infinite topics, so that the pre-trained LLM could perform well on unseen topics
under the topic distribution assumption. At this moment, ICL emerges from the generalization of
sequences and topics.

In a more detailed approach, using the similar definitions of posterior and prior distribution as
introduced before, ρ(θ) is denoted as the posterior distribution of model parameters θ and π(θ) is
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the prior distribution. We first give a general result in Theorem F.5 with DKL(ρ(θ) ∥ π(θ)), which
extends beyond Theorem F.3 by incorporating infinite topics.
Theorem F.5 (Data-Dependent and Optimization-Dependent Generalization Bound of the Two-Level
Expected Loss). Let the auto-regressive LLM Pθ be the empirical solution of Equation 1, and P(· | w)
is the true data distribution under topic w. Under Assumptions 4.1, 4.2 and 4.5, for any 0 < δ < 1,
with probability at least 1− δ, the two-level expected loss (population loss) with infinite topics and
infinite sequences per topic, denoted by L(θ) (see in Equation 5), satisfies,

Eµ[L(θ)] = O
{√

1

KTp

(
DKL(µ ∥ ν) + log

1

δ

)
+ U(Wpre,K,N,N ′, T )

}
,

where U(Wpre,K,N,N ′, T ) denotes the right hand of equality 6 or equality 37. µ and ν are the
posterior and prior distribution of model parameters θ, respectively. K, N(N ′) and T denote
the number of topics, the number of sequences per topic and the sequence length utilized in the
optimization process of Equation 1.
Remark F.6. The term U(Wpre,K,N,N ′, T ) comes from Theorem F.3 whose analysis can refer
to Remark F.4. As for the first term in the result, with order O{ 1√

KTp

}, it illustrates the impact of

training with a finite number of topics on the model’s predictive ability for unseen topics in ICL. In
addition with larger prompt length, ICL emerges much easier from the generalization of pre-trained
LLMs.

Next, we propose topic-dependent prior whose core idea comes from data-dependent prior (Li et al.,
2019), i.e., a portion of K topics will be used for calculating model prior and other topics will be used
for obtaining posterior. DKL(ρ ∥ π) in Theorem F.5 will be replaced by DKL(ρ ∥ πJ) and further
derives a more detailed upper bound. Since then, we can provide data-dependent, topic-dependent
and optimization algorithm-dependent generalization error bound of the two-level expected loss.

Topic-Dependent Prior. We employ the following method for generating a topic-dependent prior,
similar to data-dependent prior (Li et al., 2019). We split topics into two parts and let J include
K ′ indexes uniformly sampled from [K] without replacement and let I be [K] \ J , then the total
sequences are divided into EI = {Ek}k∈Wpre,I and EJ = {Ek}k∈Wpre,J . Assume that the posterior
distribution of model parameters θ depends on EI denoted by ρ and the prior distribution of θ depends
on the topic subset EJ , which is denoted by πJ . A parallel training process is performed with EJ

based on the same LLM architecture, and after that, a topic-dependent prior πJ will be obtained.
Theorem F.7 (Data-Dependent, Topic-Dependent and Optimization-Dependent Generalization Error
Bound of the Two-Level Expected Loss.). Under the conditions maintained in Theorem F.5 and
Assumption 4.5, when further considering topic-dependent prior, for any 0 < δ < 1, with probability
at least 1− δ, the two-level expected loss (population loss) with infinite topics and infinite sequences
per topic, denoted by L(θ) (see in Equation 5), satisfies,

Eµ [L(θ)] = O
{√

1

(K −K ′)Tp

(
DKL(µ ∥ νJ) + log

1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
,

then detailing the term DKL(µ ∥ νJ), L(θ) further satisfies,

O
{√

1

(K −K ′)T

(
σ2C( 1

Nparam
, T ′)

K ′ + log
1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
,

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
, R = K

K−K′ , U(Wpre,K,N,N ′, T ) denotes the
right hand of equality 6 or equality 37. µ and νJ are the posterior and topic-dependent prior
distribution of model parameters θ, respectively. K(K ′), N(N ′) and T denote the number of topics,
the number of sequences per topic and the sequence length utilized in the optimization process of
Equation 1. T ′ denotes the total training iterations. Nparam denotes the number of model parameters.
Remark F.8. In Theorem F.7, we establish a comprehensive upper bound of population loss combin-
ing the results in Theorem F.1, F.3 and F.5.

In summary, the proof of Theorem 4.6 is provided in Appendix G.3.1 and Appendix G.3.2.
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G PROOF OF THEOREMS

G.1 USEFUL DEFINITIONS, LEMMAS AND PROPOSITIONS

Definition G.1 (Entropy). For random variable θ, which takes value in Θ and its probability distribu-
tion is µ, the entropy of random variable θ is

H(θ) = −
∑
θ∈Θ

µ(θ) logµ(θ) = Eθ∼µ [− logµ(θ)] .

Definition G.2 (Kullback–Leibler Divergence). The Kullback–Leibler (KL) divergence between two
probability distributions µ and ν is defined by

DKL(µ ∥ ν) = Eθ∼µ

[
log

µ(θ)

ν(θ)

]
.

Lemma G.3 (Donsker–Varadhan representation in Belghazi et al. (2018) Theorem 1). The KL
divergence between probability distribution µ and ν obeys the following dual representation:

DKL(µ ∥ ν) = sup
T :A→R

{
Eµ

[
T
]
− log(Eν [e

T ])
}
,

where the compact setA ⊆ Rd is the support of distribution µ and ν, and the supremum is calculated
across all functions T for which both expectations are finite.

Let F be any class of functions T : A → R satisfying the integrability constraints of the lemma.
Then for any defined function T , it’s straightforward to get the lower-bound of the KL divergence
between µ and ν

DKL(µ ∥ ν) ≥ Eµ

[
T
]
− log(Eν [e

T ]),

which would be used in the proof of Theorem F.1.
Definition G.4 (Total Variation Distance in Levin & Peres (2017)). The total variation (TV) distance
between two probability distributions µ and ν on events set B is defined by

DTV(µ, ν) = max
B∈B
|µ(B)− ν(B)| .

This definition is explicitly probabilistic: It quantifies the divergence between µ and ν as the maximum
disparity in the probabilities assigned to a single event B by the two distributions.
Proposition G.5 (Total Variation Distance in Levin & Peres (2017)). Let µ and ν be two probability
distributions on A. Then

DTV(µ, ν) =
1

2

∑
a∈A
|µ(a)− ν(a)| .

Proof. Let A be any event and event B be B = {a : µ(a) ≥ ν(a)}. Since A = A ∩ (B ∪ Bc) =
(A ∩B) ∪ (A ∩Bc), then we have

µ(A)− ν(A) ≤ µ(A ∩B)− ν(A ∩B)

Since including more elements of B cannot decrease the difference in probability, we have

µ(A ∩B)− ν(A ∩B) ≤ µ(B)− ν(B)

Combine the above two inequality, we have

µ(A)− ν(A) ≤ µ(B)− ν(B)

Similarly,
ν(A)− µ(A) ≤ ν(Bc)− µ(Bc).

Thus
DTV(µ, ν) =

1

2
[µ(B)− ν(B) + ν(Bc)− µ(Bc)] =

1

2

∑
a∈A
|µ(a)− ν(a)| .
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Lemma G.6 (Lemma 22 in Agarwal et al. (2020)). For any two conditional probability distribution
µ and ν, we have

DTV (µ(·|x), ν(·|x))2 ≤ −2 logEy∼µ(·|x)

[
exp

(
−1

2
log

µ(y|x)
ν(y|x)

)]
.

This lemma provides an upper bound on the total variation distance, which is related to the expectation
of the logarithmic ratio of two conditional probability distributions. It would be used in the proof of
Theorem F.1.
Lemma G.7 (Upper Bound of KL divergence). For any two conditional probability distribution µ

and ν, if µ(a)
ν(a) ≤ C, we have

DKL(µ(a) ∥ ν(a)) ≤
2C logC

C − 1
DTV(µ(a), ν(a)).

This lemma provides the relationship between KL divergence and TV distance.

Proof. Let f(t) = log t, g(t) = | 1t − 1|. According to the definition of KL divergence and TV
distance (see in G.2 and G.5), we have

DKL(µ(a) ∥ ν(a)) = Ea∼µ

[
log

µ(a)

ν(a)

]
= Ea∼µ

[
f

(
µ(a)

ν(a)

)]
DTV(µ(a), ν(a)) =

1

2

∑
a

|µ(a)− ν(a)| = 1

2

∑
a

µ(a)

∣∣∣∣1− ν(a)

µ(a)

∣∣∣∣ = 1

2
Ea∼µ

[
g

(
µ(a)

ν(a)

)]
For 0 < t ≤ C(t ̸= 1) , we have

sup
0<t≤C,t̸=1

f(t)

g(t)
= sup

0<t≤C,t̸=1

log t

| 1t − 1|
= sup

1<t≤C

t log t

t− 1

Based on the derivative chain rule, we have that if 1 < t ≤ C, t log t
t−1 ≤

C logC
C−1 . Thus, we conclude

that
DKL(µ(a) ∥ ν(a)) ≤

2C logC

C − 1
DTV(µ(a), ν(a)).

Definition G.8 (Fokker-Planck Equation in Mou et al. (2018)). Let πt be the probability density
function of distribution µt, then Fokker-Planck Equation describes the evolution of πt:

∂πt

∂t
=

1

β
∆πt −∇ · (πt∇LE(θt−1,Wpre))

where ∇ is gradient operator and ∆ is Laplace operator.
Definition G.9 (Gradient Langevin Dynamics and Continuous Langevin Dynamic Li et al. (2019)).
LLMs perform Stochastic Gradient Descent (SGD) as optimization algorithm to update parameters θ
in order to get the minimum θ̂. SGD can be viewed as gradient descent addition with gradient noise
between full batch gradient and single/mini-batch gradient (Wang & Mao, 2022). The full batch
gradient with θt−1 can be denoted as∇LE(θt−1,Wpre), and assume that the gradient noise follows
an isotropic Gaussian distribution N (0, Id

β ), thus the training dynamic of LLMs can be defined as

θt ← θt−1 − ηt∇LE(θt−1,Wpre) +

√
ηt
β
N (0, Id), (18)

which is called Gradient Langevin Dynamics (GLD). When the step size ηt in GLD (see in equation
18) approaches zero, the Continuous Langevin Dynamics (CLD) is defined by the following Stochastic
Differential Equation (SDE),

dθt = −∇LE(θt−1,Wpre)dt+
√
β−1 dBt, θ0 ∼ µ0 (19)

where Bt is the standard brown emotion on Rd.
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Lemma G.10 (Log-Sobolev Inequality (LSI) for Continuous Langevin Dynamic (CLD) in Li et al.
(2019) Lemma 16). Under Equation 19, let qt be the probability density function of parameter θt
in CLD and the initial state obeys θ0 ∼ N (0, Id

β ). Let p be any probability density function which
is absolutely continuous with respect to qt. Assume that the optimization objective LE(θ,Wpre) is
C-bounded, then we have

DKL (p ∥ qt) ≤
exp(8βS)

2β

∫
Rd

∥∥∥∥∇ log
p(θ)

qt(θ)

∥∥∥∥2
2

p(θ)dθ.

Many existing LSIs primarily focus on characterizing the stationary distribution of the Markov
process. Contrastly, as shown in this lemma, we try to establish a LSI for µt, which denotes the
parameter distribution at each time step t > 0. It would be used in the proof of Theorem F.3 and F.7
which explores the upper bound of KL divergence carefully to get data-dependent and topic-dependent
generalization bound. According to Fokker-Planck Equation in Definition G.8, the KL divergence
between two probability density function can be built so that Lemma G.10 can be applied naturally.
Lemma G.11 (McDiarmid’s Inequality Variants for Markov Chains in Paulin (2015) Theorem 2.1).
Consider a Markov chain X = (X1, · · · , XN ), which is not necessarily time homogeneous, taking
values in a Polish state space Λ = Λ1 × · · · × ΛN , with mixing time τ(ϵ) (for 0 ≤ ϵ ≤ 1). Let

τmin := inf0≤ϵ<1 τ(ϵ) ·
(

2−ϵ
1−ϵ

)2
, c ∈ RN

+ . If f : Λ→ R satisfies f(x)− f(y) ≤
∑N

i=1 ci1[xi ̸= yi],
Then for any λ ∈ R, we have

logEX

[
exp

(
λ(EX [f(X)]− f(X))

)]
≤ λ2 · ∥c∥22 · τmin

8
.

Proposition G.12 (Refer to Zhang et al. (2023b)). Define f(X) = 1
N

∑N
i=1 f(Xi) where X =

(X1, · · · , XN ) is a Markov chain. With the condition in Lemma G.11, if |f(Xi)| ≤ C and f ∈ F ,
given a prior distribution ν on F , with probability at least 1− δ

Eµ [EX [f(X)]− f(X)] ≤

√
C2 · τmin

2N log 2

[
DKL(µ ∥ ν) + log

2

δ

]

Proof. With the assumption |f(Xi)| ≤ C, we have ci =
2C
N in f(x)− f(y) ≤

∑N
i=1 ci1[xi ̸= yi].

Then using Lemma G.11,

logEX

[
exp

(
λ(EX [f(X)]− f(X))

)]
≤ λ2C2 · τmin

2N

Eν

[
EX

[
exp

(
λ(EX [f(X)]− f(X))

)]]
≤ exp

(
λ2C2 · τmin

2N

)
EX

[
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)]]
≤ exp

(
λ2C2 · τmin

2N

)
(20)

According to Markov inequality P (X ≥ t) ≤ E[X]
t for random variable X and any t > 0, we have

P
(
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)]
≥ t
)
≤

EX

[
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)]]
t

(21)

then substitute inequality 20 into 21,

P
(
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)]
≥ t
)
≤

exp
(

λ2C2·τmin

2N

)
t

(22)

Let λ =
√

2N log 2
C2·τmin

and t = 2
δ for any 0 < δ < 1, inequality 22 can be transformed into

P

(
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)]
≥ 2

δ

)
≤ δ

According to Lemma G.3,

DKL(µ ∥ ν) ≥ Eµ

[
T
]
− log(Eν [e

T ])
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Let T = λ(EX [f(X)]− f(X)), then with probability at least 1− δ, we have

Eµ [λ(EX [f(X)]− f(X))] ≤ DKL(µ ∥ ν) + log
(
Eν

[
exp

(
λ(EX [f(X)]− f(X))

)])
Eµ [EX [f(X)]− f(X)] ≤ 1

λ

[
DKL(µ ∥ ν) + log

2

δ

]
Eµ [EX [f(X)]− f(X)] ≤

√
C2 · τmin

2N log 2

[
DKL(µ ∥ ν) + log

2

δ

]

Lemma G.13 (McDiarmid’s Inequality Variants in Luo et al. (2022)). Consider a function f :

[N ]N
′ → R+ that is order-independent, where |f(J) − f(J ′)| ≤ c holds for any adjacent sets

J, J ′ ∈ [N ]N
′

such that there is only one different elements in the two sets. Let J consist of N ′

indices sampled uniformly without replacement from [N ]. Then, for any t ≥ 0,

P (|f(J)− EJ [f(J)]| ≥ t) ≤ exp

(
−2t2

N ′c2

)
Proposition G.14. Define f(X) = 1

N

∑N
i=1 f(Xi) where X = (X1, · · · , XN ) is a Markov chain.

With the condition in Lemma G.11 and if |f(Xi)| ≤ C, then with probability at least 1− δ

EX [f(X)]− f(X) ≤

√
2C2 · τmin log

1
δ

N

Proof. With the assumption |f(Xi)| ≤ C, we have ci =
2C
N in f(x)− f(y) ≤

∑N
i=1 ci1[xi ̸= yi].

Then using Lemma G.11,

logEX

[
exp

(
λ(EX [f(X)]− f(X))

)]
≤ λ2C2 · τmin

2N

EX

[
exp

(
λ(EX [f(X)]− f(X))

)]
≤ exp

(
λ2C2 · τmin

2N

)
(23)

According to Chernoff bound P (X ≥ t) ≤ E[eλX ]
eλt for random variable X and any λ > 0, we have

P (EX [f(X)]− f(X) ≥ t) ≤
EX

[
exp

(
λ(EX [f(X)]− f(X))

)]
exp (λt)

(24)

then substitute inequality 23 into 24,

P (EX [f(X)]− f(X) ≥ t) ≤
exp

(
λ2C2·τmin

2N

)
exp (λt)

= exp

(
λ2C2 · τmin

2N
− λt

)
(25)

Let λ = Nt
C2·τmin

, inequality 25 can be transformed into

P (EX [f(X)]− f(X) ≥ t) ≤ exp

(
−Nt2

2C2 · τmin

)
Let t =

√
2C2·τmin log 1

δ

N for any 0 < δ < 1,

P

EX [f(X)]− f(X) ≥

√
2C2 · τmin log

1
δ

N

 ≤ δ

Finally, with probability at least 1− δ,

EX [f(X)]− f(X) ≤

√
2C2 · τmin log

1
δ

N

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G.2 GENERALIZATION OF SEQUENCES: THE FIRST-LEVEL EXPECTATION

G.2.1 PROOF OF THEOREM F.1

Theorem (Generalization Bound of the First-Level Expected Loss). Let the auto-regressive LLM
Pθ be the empirical solution of Equation 1, and P(· | w) denotes the true data distribution under
topic w. Under Assumptions 4.1, for any 0 < δ < 1, with probability at least 1− δ, the first-level
expected loss with K topics and infinite sequences per topic, denoted by L(θ,Wpre) (see in Equation
4 or Equation 13), satisfies,

Eµ [L(θ,Wpre)] = O

{√
log 1/δ

KNT
+

√
1

KNT

(
DKL(µ ∥ ν) + log

1

δ

)
− ϵopt

}
,

where ϵopt is the optimization error (see in Equation 3). µ and ν are the posterior and prior
distribution of model parameters θ, respectively. K, N and T denote the number of topics, the
number of sequences per topic and the sequence length utilized in the optimization process of
Equation 1.

Proof sketch. Before the formal proof, we introduce the processing route to obtain the generaliza-
tion error bound with handing the prompt token-dependency issue. First, we elaborate on the con-
struction of ghost sequences Ẽk, which are constructed auto-regressively depending on the original se-
quence Ek thus tokens in ghost sequences are independent. Additionally, we define the function T =

g(θ, wk) − logEẼk

[
exp(g(θ, wk)) | Ek

]
, where g(θ, wk) = 1

2

∑N
n=1

∑T
t=1 log

P(xk,n
t+1|E

k,n
t ,wk)

Pθ(x
k,n
t+1|E

k,n
t ,wk)

.

It can be observed that this function links the original sequence Ek (with dependent tokens), with
the ghost sequences Ẽk (with independent tokens). Substituting them into the Donsker-Varadhan
Inequality facilitates establishing a connection between ‘data’ and the KL distance between ‘model
prior’ and ‘model posterior based on training data’. Furthermore, regarding the coupling term
logEẼk

[
exp(g(θ, wk)) | Ek

]
in the function T , we handle this part using the lemma provided in

Agarwal et al. (2020), where this part is further transformed into a distribution measure of Total
Variance distance (TV distance). As we mentioned in Section 4, the primary optimization objective
‘negative logarithm likelihood’ naturally leads to ‘KL divergence’, thereby formalizing the expression
of population loss. Therefore, it’s necessary to introduce a relationship between TV distance and KL
divergence (See in Lemma G.7), for obtaining our generalization bound. Overall, the processing
route can be summarized as: ‘original sequences Ek → ghost sequences Ẽk → Donsker-Varadhan
Inequality→ TV distance→ KL divergence→ the upper bound of population loss based on KL
divergence’.

Proof. As we introduced before, all the pre-training sequences set is E = {Ek,n}K,N
k,n=1, each

sequence is denoted as Ek,n = {(Ek,n
t , xk,n

t+1)}
Tk,n−1
t=1 where xk,n

t+1 ∼ P(· | Ek,n
t , wk). To decouple

the dependence between tokens, we construct tangent/ghost sequences Ẽ = {Ẽk,n}K,N
k,n=1 and each

sequence is Ẽk,n = {(Ẽk,n
t , x̃k,n

t+1)}
Tk,n−1
t=1 where x̃k,n

t+1 is generated depending on the partial original
sequences Ek,n

t . The construction process of tangent/ghost sequences can be understood simply
as duplicate sequences generated based on the original sequences. This proprietary term has been
previously utilized in Agarwal et al. (2020); de la Peña et al. (1999); Kwapien & Woyczynski
(1991). Therefore, by introducing the ghost sequences into our analysis, this will help decouple the
token-dependency in auto-regressive sampling of sequences.

Notice that the following proof is first established under a fixed topic wk.

According to Donsker-Varadhan Inequality (Lemma G.3), let F be any class of functions T :
Ω→ R satisfying the integrability constraints of the lemma. Then for any defined function T , it’s
straightforward to get the lower-bound of the KL divergence between µ and ν

DKL(µ ∥ ν) ≥ Eµ

[
T
]
− log(Eν [e

T ]),

Under fixed topic wk, the posterior distribution of model parameter θ is depending on Ek (see in
Section 3.1) denoted by µ and the prior distribution of θ is denoted by ν. Then, a simple deformation

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

of Lemma G.3 leads to

Eµ[T ]−DKL(µ ∥ ν) ≤ logEν [exp(T )]

exp (Eµ[T ]−DKL(µ ∥ ν)) ≤ Eν [exp(T )]

Taking expectation over data distribution Ek ∼ P(· | wk), we have

EEk

[
exp {Eµ[T ]−DKL(µ ∥ ν)}

]
≤ EEkEν [exp(T )] (26)

Let T = g(θ, wk)− logEẼk

[
exp(g(θ, wk)) | Ek

]
where

g(θ, wk) =
1

2

N∑
n=1

T∑
t=1

log
P(xk,n

t+1|E
k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

Then for the right hand of inequality 26, we have

EEkEν [exp(T )] =EEkEν

[
exp

(
g(θ, wk)− logEẼk

[
exp(g(θ, wk)) | Ek

])]
=EνEEk

[
exp

(
g(θ, wk)− logEẼk

[
exp(g(θ, wk)) | Ek

])]
=EνEEk

[
exp (g(θ, wk))

EẼk [exp(g(θ, wk)) | Ek]

]
= 1

The last equality follows that the token in tangent sequence Ẽk is independent condi-
tional on Ek similarly to Agarwal et al. (2020), so we have EẼk

[
exp(g(θ, wk)) | Ek

]
=

Ex̃k,n
t+1∼P(·|Ek,n

t ,wk)

[∏N
n=1

∏T
t=1 exp

(
1
2 log

P(x̃k,n
t+1|E

k,n
t ,wk)

Pθ(x̃
k,n
t+1|E

k,n
t ,wk)

)]
. Thus, inequality 26 can be trans-

formed to

EEk

[
exp {Eµ[T ]−DKL(µ ∥ ν)}

]
≤ 1 (27)

With Markov Inequality P[X ≥ a] ≤ E[X]
a , we get the following high probability representation with

probability at least 1− δ,

let X = Eµ[T ]−DKL(µ ∥ ν)⇒ P[eX ≥ ea] ≤ E[eX ]

ea
≤ 1

ea
⇒ P(X ≤ log

1

δ
) ≥ 1− δ

Eµ [g(θ, wk)]− Eµ

[
logEẼk

[
exp(g(θ, wk)) | Ek

]]
≤ DKL(µ ∥ ν) + log

1

δ
(28)

For inequality 28, we mainly deal with the left hand in this Theorem and make more detailed analysis
of KL divergence in Theorem F.3 to get data-dependent and optimization algorithm-dependent
PAC-Bayesian generalization bound.

Eµ [g(θ, wk)]− Eµ

[
logEẼk

[
exp(g(θ, wk)) | Ek

]]
≥Eµ

[
1

2

N∑
n=1

T∑
t=1

log
P(xk,n

t+1|E
k,n
t , wk)

Pθ(x
k,n
t+1|S

k,n
t , wk)

]
− Eµ

[
N∑

n=1

T∑
t=1

logEẼk

[
exp

(
−1

2
log

Pθ(x̃
k,n
t+1|E

k,n
t , wk)

P(x̃k,n
t+1|E

k,n
t , wk)

)
| Ek

]]
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Using Lemma G.6, the second term in the right hand can be transformed to the total variation distance
(TV distance) of distribution Pθ and P.

Eµ [g(θ, wk)]− Eµ

[
logEẼk

[
exp(g(θ, wk))) | Ek

]]
≥Eµ

[
1

2

N∑
n=1

T∑
t=1

log
P(xk,n

t+1|E
k,n
t , wk)

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]
(29)

+ Eµ

[
1

2

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]

=
1

2

N∑
n=1

T∑
t=1

log
P(xk,n

t+1|E
k,n
t , wk)

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

+
1

2

N∑
n=1

T∑
t=1

Eµ

[
log

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]

+ Eµ

[
1

2

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]

≥1

2

N∑
n=1

T∑
t=1

Eµ

[
log

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]

+ Eµ

[
1

2

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]
(30)

where θ̂ is the minimum of empirical loss 1. Thus, substitute inequality 30 into 28,

Eµ

[
1

2

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]

+
1

2

N∑
n=1

T∑
t=1

Eµ

[
log

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]
≤ DKL(µ ∥ ν) + log

1

δ
(31)

The result of inequality 31 is analysised under a fixed topic wk, then combining all wk ∈ Wpre and
taking average

Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]

≤ 2

KNT

(
DKL(µ ∥ ν) + log

1

δ

)
− 1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

Eµ

[
log

Pθ̂(x
k,n
t+1|E

k,n
t , wk)

Pθ(x
k,n
t+1|E

k,n
t , wk)

]
︸ ︷︷ ︸

ϵopt

(32)

where the second term in the right hand is denoted as ϵopt measuring the logarithmic distribution
distance between the ideal minimum θ̂ and the trained model θ with empirical loss. Specially, we
defer the analysis of optimization error to future work. Here, we assume that the results of the actual
models obtained closely approximates the ideal minimum for empirical loss, implying that ϵopt is a
very small value so that this item will be kept in the upper bounds of the first-level expected loss and
two-level expected loss. Thus,

Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)]

≤

√√√√Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)2]

≤

√
2
(
DKL(µ ∥ ν) + log 1

δ

)
KNT

− ϵopt (33)
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Using Assumption 4.1, assume log
P(·|Ek,n

t ,wk)

Pθ(·|Ek,n
t ,wk)

is upper bounded by C. Thus using Proposition
G.14, with probability at least 1− δ,

Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

EEk,n
t

[
DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)]

− 1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)]
≤

√
2C2 · τmin log

1
δ

KNT
(34)

Finally, according to Equation 14, 13 and 1, the generalization error bound of the first-level expected
loss is genseq = L(θ,Wpre)−LE(θ,Wpre). Combining inequality 33, 34 and Lemma G.7, L(θ,Wpre)
can be bounded by

Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

EEk,n
t

[
DKL

(
P(· | Ek,n

t , wk) ∥ Pθ(· | Ek,n
t , wk)

)]]

≤2C logC

C − 1
· Eµ

[
1

KNT

K∑
k=1

N∑
n=1

T∑
t=1

EEk,n
t

[
DTV

(
Pθ(· | Ek,n

t , wk),P(· | Ek,n
t , wk)

)]]

≤2C logC

C − 1

√2C2 · τmin log
1
δ

KNT
+

√
2
(
DKL(µ ∥ ν) + log 1

δ

)
KNT

− ϵopt


=O


√

log 1
δ

KNT
+

√
DKL(µ ∥ ν) + log 1

δ

KNT
− ϵopt

 (35)

Naturally, to simplify, for given any prefix sequence P , we have

Eµ

[
1

K

K∑
k=1

EP

[
DKL

(
P(· | P,wk) ∥ Pθ(· | P,wk)

)]]

=O


√

log 1
δ

KNT
+

√
1

KNT

(
DKL(µ ∥ ν) + log

1

δ

)
− ϵopt

 (36)

G.2.2 PROOF OF THEOREM F.3

Theorem (Data-Dependent and Optimization-Dependent Generalization Bound of the First-Level
Expected Loss). Under the conditions maintained in Theorem F.1 and Assumption 4.2, when con-
sidering data-dependent prior µJ , for any 0 < δ < 1, with probability at least 1− δ, the first-level
expected loss with K topics and infinite sequences per topic, denoted by L(θ,Wpre) (see in Equation
4 or Equation 13), satisfies,

Eµ [L(θ,Wpre)] = O

{√
log 1/δ

K(N −N ′)T
+

√
1

K(N −N ′)T

(
DKL(µ ∥ νJ) + log

1

δ

)
− ϵopt

}
,

then detailing the term DKL(µ ∥ νJ), L(θ,Wpre) further satisfies,

O


√

log 1/δ

K(N −N ′)T
+

√√√√ 1

K(N −N ′)T

[
L2C( 1

Nparam
, T ′)

N ′ + log
1

δ

]
− ϵopt

 , (37)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
. ϵopt is the optimization error (see in Equation 3).

K, N(N ′) and T denote the number of topics, the number of sequences per topic and the sequence
length utilized in the optimization process of Equation 1. T ′ denotes the total training iterations.
Nparam denotes the number of model parameters.
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Proof sketch of the use of continous mathematical analysis techniques. We analyse the training
dynamic of transformer via Continuous Langevin Dynamics (CLD) which is the continous form of
Gradient Langevin Dynamics (GLD). To bound the KL divergence of two distribution, we transform
the problem into measuring the KL divergence of pdfs. We first derive the derivative of KL divergence
w.r.t. time t. This derivative can be decomposed into two parts, corresponding to the time derivatives
of the two pdfs, which can be described by the Fokker-Planck Equation. Next, using Log-Sobolev
Inequality, we bound the logorithm distance of two pdfs. By solvin the SDE, we obtain an upper
bound for the KL divergence. Finally, referring to the proof of Lemma G.5 in Li et al. (2019), we
demonstrate that the integral of the gradient difference of

∥∥∇LEI
(θt,Wpre) −∇LEJ

(θt,Wpre)
∥∥2
2
.

Consequently, we get data-dependent and optimization algorithm-dependent generalization error
bound.

Proof. In this Theorem, we analysis KL divergence to get data-dependent and optimization algorithm-
dependent generalization bound. First, we analyse the training dynamic of transformer via Continuous
Langevin Dynamics (CLD),

dθt = −∇LEI
(θt−1,Wpre)dt+

√
β−1 dBt, θ0 ∼ µ0

where LEI
(θ,Wpre) =

1
K(N−N ′)T

∑K
k=1

∑N−N ′

n=1

∑T
t=1 log

P(xk,n
t+1|E

k,n
t ,wk)

Pθ(x
k,n
t+1|E

k,n
t ,wk)

, and Bt is the standard

brown emotion.

Split pre-training sequences under fixed topic wk into two parts Ek
I and Ek

J (where J is a random
sequence including N ′ indexes uniformly sampled from [N ] without replacement and I is [N ] \ J).
Under pre-training topics, we have EI = {Ek

I }Kk=1 and EJ = {Ek
J}Kk=1. Assume that the prior

distribution of model parameters θ is depending on the subset Ek
J , which is denoted by νJ and the

posterior distribution of θ is depending on Ek
I denoted by µ.

Let Θ = (θt)t≥0 and Θ′ = (θ′t)t≥0 be the trajectory trained on sequences Ek
I and Ek

J for fixed topic
wk, which are the parallel training process based on the same model architecture. Let µ and νJ be the
distribution of Θ and Θ′ respectively, pt and qt be the pdf of Θ and Θ′ and the total steps of iteration
is T ′. DKL(µ ∥ νJ) is equal to DKL(pT ′ ∥ qT ′). To bound DKL(pT ′ ∥ qT ′), we first apply Leibniz’s
rule and the chain rule on it:

d

dt
DKL(pt||qt) =

d

dt

∫
Rd

pt log
pt
qt
dθ

=

∫
Rd

(
dpt
dt

log
pt
qt

+ pt ·
qt
pt
·

dpt

dt qt − pt
dqt
dt

q2t
)dθ

=

∫
Rd

dpt
dt

log
pt
qt
dθ −

∫
Rd

pt
qt

dqt
pt

dθ +

∫
Rd

dpt
dt

dθ

=

∫
Rd

dpt
dt

log
pt
qt
dθ︸ ︷︷ ︸

(A)

−
∫
Rd

pt
qt

dqt
pt

dθ︸ ︷︷ ︸
(B)

,

where the last equality follows from that
∫

dpt

dt dθ = d
dt

∫
ptdθ = 0, since pt is a probability measure.

By Fokker-Planck Equation for pt, ∂pt

∂t = 1
β∆pt +∇ · (pt∇LEI

(θ,Wpre)).
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Then we bound term A,

A :=

∫
Rd

(
dpt
dt

log
pt
qt

)
dθ

=

∫
Rd

(
1

β
∆pt +∇ · (ptLEI

(θ,Wpre))

)
log

pt
qt
dθ

=
1

β

[∫
Rd

∆pt log
pt
qt
dθ

]
+

∫
Rd

∇ · (ptLEI
(θ,Wpre)) log

pt
qt
dθ

=
1

β

[
∇pt log

pt
qt
−
∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dθ

]
+

[
pt∇LEI

(θ,Wpre) log
pt
qt
−
∫
Rd

⟨∇ log
pt
qt
, ptLEI

(θ,Wpre)⟩dθ
]

=
−1
β

∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dθ −

∫
Rd

⟨∇ log
pt
qt
, ptLEI

(θ,Wpre)⟩dθ

Bound term B,

B :=

∫
Rd

(
pt
qt

dqt
dt

)
dw

=

∫
Rd

pt
qt

(
1

β
∆qt +∇ · (qt∇LEJ

(θ,Wpre))

)
dw

=
1

β

[∫
Rd

pt
qt
∆qtdw

]
+

∫
Rd

pt
qt
∇ · (qt∇LEJ

(θ,Wpre))dw

=
1

β

[
pt
qt
∇qt −

∫
Rd

⟨∇pt
qt
,∇qt⟩dw

]
+

[
pt
qt
qt∇LEJ

(θ,Wpre)−
∫
Rd

⟨∇pt
qt
, qt∇LEJ

(θ,Wpre)⟩dw
]

=
−1
β

∫
Rd

⟨∇pt
qt
,∇qt⟩dw −

∫
Rd

⟨∇pt
qt
, qt∇LEJ

(θ,Wpre)⟩dw

In summary, the deviation of DKL(pt||qt) can be bounded,

d

dt
DKL(pt||qt) =

−1
β

∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dw −

∫
Rd

⟨∇ log
pt
qt
, pt∇LEI

(θ,Wpre)⟩dw

+
1

β

∫
Rd

⟨∇pt
qt
,∇qt⟩dw +

∫
Rd

⟨∇pt
qt
, qt∇LEJ

(θ,Wpre)⟩dw

=
−1
β

∫
Rd

(
⟨∇ log

pt
qt
,∇pt⟩ − ⟨∇

pt
qt
,∇qt⟩

)
dw

−
∫
Rd

(
⟨∇ log

pt
qt
, pt∇LEI

(θ,Wpre)⟩ − ⟨∇
pt
qt
, qt∇LEJ

(θ,Wpre)⟩
)
dw

=
−1
β

∫
Rd

(
⟨∇pt
pt
− ∇qt

qt
,∇pt⟩ − ⟨

∇pt
qt
− pt∇qt

q2t
,∇qt⟩

)
dw

−
∫
Rd

(
⟨∇ log

pt
qt
, pt∇LEI

(θ,Wpre)⟩ −
pt
qt
⟨∇ log

pt
qt
, qt∇LEJ

(θ,Wpre)⟩
)
dw

=
−1
β

∫
Rd

pt
∥∥∇ log

pt
qt

∥∥2
2
dw +

∫
Rd

pt⟨∇ log
pt
qt
,∇LEI

(θ,Wpre)−∇LEJ
(θ,Wpre)⟩dw

Since for any constant c ̸= 0, vector α and β, we have the inequality ⟨ α√
c
, β
√
c⟩ ≤ ∥α∥2

2c + c∥β∥2

2 ,
then we can transform the last equality into

d

dt
DKL(pt||qt) ≤

−1
2β

∫
Rd

pt
∥∥∇ log

pt
qt

∥∥2
2
dw+

β

2

∫
Rd

pt
∥∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)

∥∥2
2
dw

According to Lemma G.10 (Log-Sobolev Inequality for CLD) and Assumption 4.1, then

|LE(θ,Wpre)| ≤ S and θ0 ∼ N (0, 1
β Id), we have

∫
Rd pt

∥∥∥∇ log pt

qt

∥∥∥2
2
dθ ≥ 2β

exp(8βS)DKL (pt||qt).
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Transform the first term in the right hand with the LSI inequality,

d

dt
DKL(pt||qt) ≤ −

1

exp(8βS)
DKL (pt||qt) +

β

2
Eθt

[
∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)

∥∥2
2

]
Let ϕ(t) = DKL(pt||qt), δ(t) = β

2Eθt

[
∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)

∥∥2
2

]
, α = 1

exp(8βS) ,
then we get the following difference equation:

ϕ′(t) = −αϕ(t) + δ(t), ϕ(0) = 0

Solve the equation:

DKL (pT ′ ∥ qT ′) ≤ β

2

∫ T ′

0

eα(t−T ′)Eθt

[
∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)∥22

]
dt, α =

1

exp(8βS)
.

Furthermore, in order to get the upper bound of integral in the right hand, we first define that

G(J) =

√√√√Eθt

[∫ T ′

0

eα(t−T ′)
[∥∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)

∥∥2
2

]
dt

]

Let J and J ′ be two neighboring collections, we first prove that G(J) − G(J ′) is small. Let
Xt = ∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre), Yt = ∇LEJ

(θt,Wpre)−∇LEJ′ (θt,Wpre). Then,

G(J ′)2 =Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt + Yt∥22 dt

]

=Eθt

[∫ T ′

0

eα(t−T ′)
(
X⊤

t Xt + Y ⊤
t Yt

)
dt

]
+ 2Eθt

[∫ T ′

0

eα(t−T ′)X⊤
t Ytdt

]

≤Eθt

[∫ T ′

0

eα(t−T ′)
(
∥Xt∥22 + ∥Yt∥22

)
dt

]

+ 2

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt∥22 dt

]√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]

=


√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt∥22 dt

]
+

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]2

=

G(J) +

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]2

For any fixed J and θt, under Assumption 4.2 that
∥∥∥∇LEk,n

t
(θt,Wpre)

∥∥∥ ≤ L, then∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt ≤
∫ T ′

0

eα(t−T ′) 4L2

(KN ′)
2 dt =

4L2(1− e−αT ′
)

(KN ′)
2
α

Then,

|G(J)−G(J ′)| ≤ 2L

KN ′

√
1− e−αT

α

Applying Lemma G.13 of concentration inequality and there are N ′ indexes in J or J ′,

PJ [G(J)− EJ [G(J)] ≥ ϵ] ≤ exp

 −2ϵ2

N ′ 4L2(1−e−αT ′ )

(KN ′)2α

 = exp

(
−K2N ′αϵ2

2L2(1− e−αT ′)

)
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We also have,

PJ

[
G(J)2 ≥ (EJ [G(J)] + ϵ)2

]
≤ exp

(
−K2N ′αϵ2

2L2(1− e−αT ′)

)
Then referring to Li et al. (2019), we can easily get the upper bound of variance of ∇LEJ

(θt,Wpre)

which is EJ

[
∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)∥22

]
≤ 4L2

N ′ , thus

EJ [G(J)] = EJ

√√√√Eθt

[∫ T ′

0

eα(t−T ′)
[
∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)∥22

]
dt

]

≤

√√√√Eθt

[∫ T ′

0

eα(t−T ′)EJ

[
∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)∥22

]
dt

]

≤

√∫ T ′

0

eα(t−T ′)
4L2

N ′

=
2L√
N ′

√
1− e−αT ′

α

Let exp
(

−K2N ′αϵ2

2L2(1−e−αT ′ )

)
= δ, then ϵ =

√
2L2(1−e−αT ′ ) log 1

δ

K2N ′α . It follows that with probability at least
1− δ

G(J)2 ≤

 2L√
N ′

√
1− e−αT ′

α
+

√
2L2(1− e−αT ′) log 1

δ

K2N ′α

2

Then,

Eθt

[∫ T ′

0

eα(t− T ′)
[
∥∇LEI

(θt,Wpre)−∇LEJ
(θt,Wpre)∥22

]
dt

]

≤

 2L√
N ′

√
1− e−αT ′

α
+

√
2L2(1− e−αT ′) log 1

δ

K2N ′α

2

=
4L2

N ′

1 +

√
log 1

δ

2K2

2

(1− e−αT ′
)

α

=
4L2

N ′

1 +

√
log 1

δ

2K2

2

e8βS
(
1− exp

(
− T ′

e8βS

))
We bound the KL-divergence.

DKL (pT ′ || qT ′) ≤

1 +

√
log 1

δ

2K2

2

2L2βe8βS(1− exp(− T ′

e8βS ))

N ′ (38)

=

1 +

√
log 1

δ

2K2

2

4L2C( 1
Nparam

, T ′)

N ′ (39)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
.

As introduced before, the prior distribution of model parameters θ is depending on the subset Ek
J ,

which is denoted by νJ and the posterior distribution of θ is depending on Ek
I denoted by µ. Then
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Theorem F.1 can be transformed to (modify N to N −N ′)

Eµ

[
1

K

K∑
k=1

EP

[
DKL

(
P(· | P,wk) ∥ Pθ(· | P,wk)

)]]

= O


√

log 1
δ

K(N −N ′)T
+

√
DKL(µ ∥ νJ) + log 1

δ

K(N −N ′)T
− ϵopt

 (40)

Finally, with inequality 40 and 38, we get data-dependent and optimization algorithm-dependent
PAC-Bayesian generalization error bound of the first-level expected loss.

Eµ

[
1

K

K∑
k=1

EP

[
DKL

(
P(· | P,wk) ∥ Pθ(· | P,wk)

)]]

= O


√

log 1/δ

K(N −N ′)T
+

√√√√ 1

K(N −N ′)T

[(
1 +

√
log 1/δ

K2

)2
4L2C(β, T ′)

N ′ + log
1

δ

]
− ϵopt


= O

{√
log 1/δ

K(N −N ′)T
+

√
1

K(N −N ′)T

(
L2C(β, T ′)

N ′ + log
1

δ

)
− ϵopt

}

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
.

G.3 GENERALIZATION OF SEQUENCES AND TOPICS: TWO-LEVEL EXPECTATION

G.3.1 PROOF OF THEOREM F.5

Theorem (Data-Dependent and Optimization-Dependent Generalization Bound of the Two-Level
Expected Loss). Let the auto-regressive LLM Pθ be the empirical solution of Equation 1, and P(· | w)
is the true data distribution under topic w. Under Assumptions 4.1, 4.2 and 4.5, for any 0 < δ < 1,
with probability at least 1− δ, the two-level expected loss (population loss) with infinite topics and
infinite sequences per topic, denoted by L(θ) (see in Equation 5), satisfies,

Eµ[L(θ)] = O
{√

1

KTp

(
DKL(µ ∥ ν) + log

1

δ

)
+ U(Wpre,K,N,N ′, T )

}
,

where U(Wpre,K,N,N ′, T ) denotes the right hand of equality 6 or equality 37. µ and ν are the
posterior and prior distribution of model parameters θ, respectively. K, N(N ′) and T denote
the number of topics, the number of sequences per topic and the sequence length utilized in the
optimization process of Equation 1.

Proof. In this part, since we have gotten the generalization error bound when considering infinite
sequences in Theorem F.1 and Theorem F.3. Our analysis is based on that there will be a sufficient
number of sequences for each topic to enable thorough learning so that in the ideal case, the well-
pretrained model can perform excellently on the seen topics. We try to get the upper bound of the
two-level expected loss (population loss) so that the pre-trained model can also perform well on the
unseen topics under the assumption of topic distribution.

For an ICL prompt prompt, we also establish auto-regressive loss based on the prefix sequence
promptt. Then according to Theorem 4.6, for topic w, we first have

Eµ

 1

KTp

K∑
k=1

Tp∑
t=1

Epromptt

[
DKL

(
P(· | promptt, wk) ∥ Pθ(· | promptt, wk)

)]
= O


√

log 1/δ

K(N −N ′)T
+

√√√√ 1

K(N −N ′)T

(
L2C( 1

Nparam
, T ′)

N ′ + log
1

δ

)
− ϵopt


= O

{
U(Wpre,K,N,N ′, T )

}
(41)
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Using Proposition G.12 and Assumption 4.1 of log P(·|Ek,n
t ,wk)

Pθ(·|Ek,n
t ,wk)

is upper bounded by C, thus with
probability at least 1− δ, we consider the generalization of topic so that ICL emerges,

Eµ

[
1

Tp

Tp∑
t=1

EwEpromptt

[
DKL

(
P(· | promptt, w) ∥ Pθ(· | promptt, w)

)]
− 1

KTp

K∑
k=1

Tp∑
t=1

Epromptt

(
DKL

(
P(· | promptt, wk) ∥ Pθ(· | promptt, wk)

))]

≤

√
C2 · τmin

2KTp log 2

(
DKL(µ ∥ ν) + log

2

δ

)
= O

{√
1

KTp

[
DKL(µ ∥ ν) + log

1

δ

]}
(42)

Finally, we measure the generalization error of an auto-regressive pre-trained LLM, after which the
ability of ICL will emerge with good generalization. It can be denoted as gentopic = L(θ)−L(θ,Wpre),
then the two-level expected loss (population loss) L(θ) can be bounded by

Eµ

 1

Tp

Tp∑
t=1

EwEpromptt

[
DKL

(
P(· | promptt, w) ∥ Pθ(· | promptt, w)

)]
= O

{√
1

KTp

[
DKL(µ ∥ ν) + log

1

δ

]
+ U(Wpre,K,N,N ′, T )

}
(43)

where U(Wpre,K,N,N ′, T ) is the right hand of inequality 6.

G.3.2 PROOF OF THEOREM F.7

Theorem (Data-Dependent, Topic-Dependent and Optimization-Dependent Generalization Error
Bound of the Two-Level Expected Loss.). Under the conditions maintained in Theorem F.5 and
Assumption 4.5, when further considering topic-dependent prior, for any 0 < δ < 1, with probability
at least 1− δ, the two-level expected loss (population loss) with infinite topics and infinite sequences
per topic, denoted by L(θ) (see in Equation 5), satisfies,

Eµ [L(θ)] = O
{√

1

(K −K ′)Tp

(
DKL(µ ∥ νJ) + log

1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
,

then detailing the term DKL(µ ∥ νJ), L(θ) further satisfies,

O
{√

1

(K −K ′)T

(
σ2C( 1

Nparam
, T ′)

K ′ + log
1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
,

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
, R = K

K−K′ , U(Wpre,K,N,N ′, T ) denotes the
right hand of equality 6 or equality 37. µ and νJ are the posterior and topic-dependent prior
distribution of model parameters θ, respectively. K(K ′), N(N ′) and T denote the number of topics,
the number of sequences per topic and the sequence length utilized in the optimization process of
Equation 1. T ′ denotes the total training iterations. Nparam denotes the number of model parameters.

Proof. In this Theorem, we try to give a detail analysis of DKL(ρ ∥ π) to get data-dependent,
topic-dependent and optimization algorithm-dependent generalization bound. Similarly, we analyse
the training dynamic of transformer via Gradient Langevin Dynamics (GLD)

θt ← θt−1 − ηt∇L(θt−1,Wpre,I) + σtN (0, Id).

when the step size approaches zero,

dθt = −∇L(θt−1,Wpre,I)dt+
√
β−1 dBt, θ0 ∼ µ0
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where ∇L(θ,Wpre,I) = 1
(K−K′)T

∑K−K′

k=1

∑T
t=1 EEk,n

t
[log

P(xk,n
t+1|E

k,n
t ,wk)

Pθ(x
k,n
t+1|E

k,n
t ,wk)

], and Bt is the stan-

dard brown emotion.

Split pre-training topics into two partsWpre,I andWpre,J (where J is a random sequence including
K ′ indexes uniformly sampled from [K] without replacement and I is [K] \ J). Then the total
sequences are divided into EI = {Ek}k∈Wpre,I and EJ = {Ek}k∈Wpre,J . Assume that the prior
distribution of model parameters θ is depending on the topic subset EJ , which is denoted by πJ and
the posterior distribution of θ is depending on EI denoted by ρ.

Let Θ̃ = (θt)t≥0 and Θ̃′ = (θ′t)t≥0 be the trajectory trained onWpre,I andWpre,J (the total sequences
are divided into EI = {Ek}k∈Wpre,I and EJ = {Ek}k∈Wpre,J ). Let ρ and πJ be the distribution
of Θ̃ and Θ̃′ respectively, pt and qt be the pdf of Θ̃ and Θ̃′ and the total steps of iteration is T ′.
DKL(ρ ∥ πJ) is equal to DKL(pT ′ ∥ qT ′). To bound DKL(pT ′ ||qT ′), we first apply Leibniz’s rule
and the chain rule on it:

d

dt
DKL(pt||qt) =

d

dt

∫
Rd

pt log
pt
qt
dθ

=

∫
Rd

(
dpt
dt

log
pt
qt

+ pt ·
qt
pt
·

dpt

dt qt − pt
dqt
dt

q2t
)dθ

=

∫
Rd

dpt
dt

log
pt
qt
dθ −

∫
Rd

pt
qt

dqt
pt

dθ +

∫
Rd

dpt
dt

dθ

=

∫
Rd

dpt
dt

log
pt
qt
dθ︸ ︷︷ ︸

(A)

−
∫
Rd

pt
qt

dqt
pt

dθ︸ ︷︷ ︸
(B)

,

where the last equality follows from that
∫

dpt

dt dθ = d
dt

∫
ptdθ = 0, since pt is a probability measure.

By Fokker-Planck Equation for pt, ∂pt

∂t = 1
β∆pt +∇ · (pt∇L(θ,Wpre,I)).

Then we bound term A,

A :=

∫
Rd

(
dpt
dt

log
pt
qt

)
dθ

=

∫
Rd

(
1

β
∆pt +∇ · (pt∇L(θ,Wpre,I))

)
log

pt
qt
dθ

=
1

β

[∫
Rd

∆pt log
pt
qt
dθ

]
+

∫
Rd

∇ · (pt∇L(θ,Wpre,I)) log
pt
qt
dθ

=
1

β

[
∇pt log

pt
qt
−
∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dθ

]
+

[
pt∇L(θ,Wpre,I) log

pt
qt
−
∫
Rd

⟨∇ log
pt
qt
, pt∇L(θ,Wpre,I)⟩dθ

]
=
−1
β

∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dθ −

∫
Rd

⟨∇ log
pt
qt
, pt∇L(θ,Wpre,I)⟩dθ

Bound term B,

B :=

∫
Rd

(
pt
qt

dqt
dt

)
dw

=

∫
Rd

pt
qt

(
1

β
∆qt +∇ · (qt∇L(θ,Wpre,J))

)
dw

=
1

β

[∫
Rd

pt
qt
∆qtdw

]
+

∫
Rd

pt
qt
∇ · (qt∇L(θ,Wpre,J))dw

=
1

β

[
pt
qt
∇qt −

∫
Rd

⟨∇pt
qt
,∇qt⟩dw

]
+

[
pt
qt
qt∇L(θ,Wpre,J)−

∫
Rd

⟨∇pt
qt
, qt∇L(θ,Wpre,J)⟩dw

]
=
−1
β

∫
Rd

⟨∇pt
qt
,∇qt⟩dw −

∫
Rd

⟨∇pt
qt
, qt∇L(θ,Wpre,J)⟩dw
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In summary, the deviation of DKL(pt||qt) can be bounded,

d

dt
DKL(pt||qt) =

−1
β

∫
Rd

⟨∇ log
pt
qt
,∇pt⟩dw −

∫
Rd

⟨∇ log
pt
qt
, pt∇L(θ,Wpre,I)⟩dw

+
1

β

∫
Rd

⟨∇pt
qt
,∇qt⟩dw +

∫
Rd

⟨∇pt
qt
, qt∇L(θ,Wpre,J)⟩dw

=
−1
β

∫
Rd

(
⟨∇ log

pt
qt
,∇pt⟩ − ⟨∇

pt
qt
,∇qt⟩

)
dw

−
∫
Rd

(
⟨∇ log

pt
qt
, pt∇LEI

(θ,Wpre)⟩ − ⟨∇
pt
qt
, qt∇L(θ,Wpre,J)⟩

)
dw

=
−1
β

∫
Rd

(
⟨∇pt
pt
− ∇qt

qt
,∇pt⟩ − ⟨

∇pt
qt
− pt∇qt

q2t
,∇qt⟩

)
dw

−
∫
Rd

(
⟨∇ log

pt
qt
, pt∇L(θ,Wpre,I)⟩ −

pt
qt
⟨∇ log

pt
qt
, qt∇L(θ,Wpre,J)⟩

)
dw

=
−1
β

∫
Rd

pt
∥∥∇ log

pt
qt

∥∥2
2
dw +

∫
Rd

pt⟨∇ log
pt
qt
,∇L(θ,Wpre,I)−∇L(θ,Wpre,J)⟩dw

Since for any constant c ̸= 0, vector α and β, we have the inequality ⟨ α√
c
, β√

c
⟩ ≤ ∥α∥2

2c + c∥β∥2

2 , then
we can transform the last equality into

d

dt
DKL(pt||qt) ≤

−1
2β

∫
Rd

pt
∥∥∇ log

pt
qt

∥∥2
2
dw +

β

2

∫
Rd

pt
∥∥∇L(θ,Wpre,I)−∇L(θ,Wpre,J)

∥∥2
2
dw

According to Lemma G.10 (Log-Sobelev Inequality), we have
∫
Rd pt

∥∥∥∇ log pt

qt

∥∥∥2
2
dw ≥

2β
exp(8βS)DKL (pt||qt), then transform the first term in the right hand of the above inequality,

d

dt
DKL(pt||qt) ≤ −

1

exp(8βS)
DKL (pt||qt) +

β

2
Eθt

[∥∥∇L(θ,Wpre,I)−∇L(θ,Wpre,J)
∥∥2
2

]

Let ϕ(t) = DKL(pt||qt), δ(t) = β
2Eθt

[∥∥∇L(θ,Wpre,I)−∇L(θ,Wpre,J)
∥∥2
2

]
, α = 1

exp(8βS) , then
we get the following difference equation:

ϕ′(t) = −αϕ(t) + δ(t), ϕ(0) = 0

Solve the equation:

DKL (pT ′ || qT ′) ≤ β

2

∫ T ′

0

eα(t−T ′)Eθt

[∥∥∇L(θ,Wpre,I)−∇L(θ,Wpre,J)
∥∥2
2

]
dt, α =

1

exp(8βS)
.

We first define that

G(J) =

√√√√Eθt

[∫ T ′

0

eα(t− T ′)
[∥∥∇L(θ,Wpre,I)−∇L(θ,Wpre,J)

∥∥2
2

]
dt

]
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Let J and J ′ be two neighboring collections, we first prove that G(J) − G(J ′) is small. Let
Xt = ∇L(θ,Wpre,I)−∇L(θ,Wpre,J), Yt = ∇L(θ,Wpre,J)−∇L(θ,Wpre,J′). Then,

G(J ′)2 =Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt + Yt∥22 dt

]

=Eθt

[∫ T ′

0

eα(t−T ′)
(
X⊤

t Xt + Y ⊤
t Yt

)
dt

]
+ 2Eθt

[∫ T ′

0

eα(t−T ′)X⊤
t Ytdt

]

≤Eθt

[∫ T ′

0

eα(t−T ′)
(
∥Xt∥22 + ∥Yt∥22

)
dt

]

+ 2

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt∥22 dt

]√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]

=


√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Xt∥22 dt

]
+

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]2

=

G(J) +

√√√√Eθt

[∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt

]2

For any fixed J and θt, using the Assumption 4.5 that ∥∇L(θt, wk)∥ ≤ σ, then∫ T ′

0

eα(t−T ′) ∥Yt∥22 dt ≤
∫ T ′

0

eα(t−T ′) 4σ
2

K ′2
dt =

4σ2(1− e−αT ′
)

K ′2α

Then,

|G(J)−G(J ′)| ≤ 2σ

K ′

√
1− e−αT ′

α
Applying lemma of concentration inequality and there are K ′ indexes in J or J ′,

PJ [G(J)− EJ [G(J)] ≥ ϵ] ≤ exp

(
−2ϵ2

K ′ 4σ2(1−e−αT ′ )
K′2α

)
= exp

(
−K ′αϵ2

2σ2(1− e−αT ′)

)
We also have,

PJ

[
G(J)2 ≥ (EJ [G(J)] + ϵ)2

]
≤ exp

(
−K ′αϵ2

2σ2(1− e−αT ′)

)
then

EJ [G(J)] = EJ

√√√√Eθt

[∫ T ′

0

eα(t− T ′)
[
∥∇L(θt,Wpre,I)−∇L(θt,Wpre,J)∥22

]
dt

]

≤

√√√√Eθt

[∫ T ′

0

eα(t− T ′)EJ

[
∥∇L(θt,Wpre,I)−∇L(θt,Wpre,J)∥22

]
dt

]

≤

√∫ T ′

0

eα(t−T ′)
4σ2

K ′

=
2σ√
K ′

√
1− e−αT ′

α

Let exp
(

−K′αϵ2

2σ2(1−e−αT ′ )

)
= δ, then ϵ =

√
4σ2(1−e−αT ′ ) log 1

δ

2K′α . It follows that with probability at least
1− δ

G(J)2 ≤

 2σ√
K ′

√
1− e−αT ′

α
+

√
4σ2(1− e−αT ′) log 1

δ

2K ′α

2
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Then,

Eθt

[∫ T ′

0

eα(t− T ′)
[
∥∇L(θt,Wpre,I)−∇L(θt,Wpre,J)∥22

]
dt

]

≤

 2σ√
K ′

√
1− e−αT ′

α
+

√
4σ2(1− e−αT ′) log 1

δ

2K ′α

2

=
4σ2

K ′

(
1 +

√
log

1

δ

)2
(1− e−αT ′

)

α

=
4σ2

K ′

(
1 +

√
log

1

δ

)2

e8βS
(
1− exp

(
− T ′

e8βS

))
We bound the KL-divergence.

DKL (pT ′ || qT ′) ≤

(
1 +

√
log

1

δ

)2
2σ2βe8βS(1− exp(− T ′

e8βS ))

K′ =

(
1 +

√
log

1

δ

)2
4σ2C( 1

Nparam
, T ′)

K′

(44)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
.

As introduced before, the prior distribution of model parameters θ is depending on the subset EJ ,
which is denoted by νJ and the posterior distribution of θ is depending on EI denoted by µ. Then let
R = K

K−K′ , Theorem F.5 can be slightly changed.

Eµ

 1

Tp

Tp∑
t=1

EwEpromptt

[
DKL

(
P(· | promptt, w) ∥ Pθ(· | promptt, w)

)]
≤

√
C2 · τmin

2(K −K′)Tp log 2

(
DKL(µ ∥ ν) + log

2

δ

)
(45)

+ Eµ

 1

(K −K′)Tp

K−K′∑
k=1

Tp∑
t=1

Epromptt

[
DKL

(
P(· | promptt, wk) ∥ Pθ(· | promptt, wk)

)]
=O

{√
1

(K −K′)Tp

(
DKL(µ ∥ ν) + log

1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
(46)

Finally, with inequality 44 and 46, we get data-dependent, topic-dependent and optimization
algorithm-dependent PAC-Bayesian generalization error bound of the two-level expected loss, i.e.
L(θ) is bounded by

Eµ

 1

Tp

Tp∑
t=1

EwEpromptt

[
DKL

(
P(· | promptt, wk) ∥ Pθ(· | promptt, wk)

)]
= O


√

1

(K −K ′)Tp

(1 +√log
1

δ

)2
4σ2C( 1

Nparam
, T ′)

K ′ + log
1

δ

+R · U(Wpre,K,N,N ′, T )


= O

{√
1

(K −K ′)Tp

(
σ2C( 1

Nparam
, T ′)

K ′ + log
1

δ

)
+R · U(Wpre,K,N,N ′, T )

}
(47)

where C( 1
Nparam

, T ′) = β
2 e

8βS
(
1− e−

T ′
exp(8βS)

)
, R = K

K−K′ .
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