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ABSTRACT

Groups with complex set intersection relations are a natural way to model a wide
array of data, from the formation of social groups to the complex protein interac-
tions which form the basis of biological life. While graphs are a natural way to
represent complex networks and are well studied, typical approaches to modeling
group membership using graphs are lossy. Moreover, a simple graph based ap-
proach cannot be used for prediction and classification over a collection of entities.
Hypergraphs are a more natural way to represent such “higher order” relationships,
but efforts to apply machine learning techniques to hypergraph structured datasets
have been limited thus far. In this paper, we address the problem of link prediction
in knowledge hypergraphs as well as simple hypergraphs and develop a novel,
simple, and effective optimization architecture to solve this task. Additionally,
we study how integrating data from node-level labels can improve the results of
our system. Our self-supervised approach achieves significant improvement over
state of the art results on several hyperedge prediction and knowledge hypergraph
completion benchmarks.

1 INTRODUCTION

There is a significant demand for applying learning to graph structured data over the past couple of
years. While graphs can accurately model binary relations between entities, they are not a natural
representation of n-ary relations between entities. For example, a protein complex network cannot be
represented by a graph since a protein complex might be created only in a presence of more than two
proteins Giurgiu et al. (2019). In this paper, we set out to answer complex queries that go beyond a
simple graph i.e. the current graph learning algorithms cannot solve such problems without major
modifications. In particular, we study Learning on Hypergraphs.

Hypergraphs are a generalization of graphs for representing such n-ary relations. Formally, a
hypergraph H is a tuple (V,E) where V is a set of nodes; E ⊆ 2|V | is a set of nonempty subsets of
V called hyperedges. Similarly, a knowledge hypergraph is a generalization of a knowledge graph
where relations are between any number of entities. Recent research shows that hypergraph models
produce more accurate results even in problems in which graphs are used to represent n-ary relations
Zhou et al. (2006); Feng et al. (2020); Fatemi et al. (2019).

In this paper, we aim to solve the task of hyperedge prediction on both simple and knowledge
hypergraphs. Hyperedge prediction in simple hypergraphs is analogous to link prediction in graphs,
and can be formally defined as follows: given a hypergraph H = (V,E) and a k-tuple of nodes
(v1, v2, ..., vk), predict whether this tuple forms a hyperedge or not. While link prediction in graphs is
a well-studied problem, hyperedge prediction has not received adequate attention in spite of its many
applications. For example, it can be used to predict new protein complexes, drug-drug interactions,
new collaborations in citation networks, discover new chemical reactions in metabolic networks,
etc.Yadati et al. (2020); Giurgiu et al. (2019); Piñero et al. (2019). Hyperedge prediction is a more
challenging problem than link prediction in graphs. Formulating this problem as a link prediction
problem in graphs is a lossy operation, reducing the accuracy of predictions Kirkland (2017); Tu
et al. (2018).

In knowledge hypergraphs, it is often necessary to not only predict new hyperedges but also their
type. For example, in a protein-drug genomics knowledge hypergraph, it is important to predict

1



Under review as a conference paper at ICLR 2023

High order 
hyperedge 
embedding

Prediect Type

???

Bird HEdge A
Cat HEdge A

Dog HEdge A

HEdge A

HEdge B

HEdge C

Cat HEdge B

Negative Type Label

Figure 1: The HyperQuery Inference Problem: In this paper, we prefer to work with the
star-expansion representation of a hypergraph (left). We are interested in studying hypergraphs and
knowledge hypergraphs with categorical labels (types) stored on the edges (center). Our primary

objective is to create a system that predicts the existence of a hyperedge and its type.

not only drug-drug interactions but also the type of these interactions that describes the side effects
Zitnik et al. (2018). This generalized hyperedge prediction problem can be described formally as
follows: given a knowledge hypergraph KH = (E ,R) and a tuple of entities (e1, e2, ..., ek), we
want to predict if this tuple forms a hyperedge and if so, what its type is. This problem setting is
illustrated in figure 1.

This paper makes the following contributions.

• HyperQuery: We describe HyperQuery, a neural message passing based framework that is
designed to find embeddings of hyperedges in a semi-supervised fashion.

• Novel feature extraction: We use clustering to extract global features of nodes and hyper-
edges.

• Higher order link prediction: We solve hyperedge prediction on simple hypergraphs as
well as knowledge hypergraphs.

The pipeline of our system is shown in figure 4.

2 RELATED WORK

Link prediction in graphs: There are two ways to address the link prediction problem in networks.
One approach is to learn an embedding of the nodes of a graph and then apply a function on these
embeddings to obtain the embedding of an edge. We call this approach an indirect approach to solve
hyperedge prediction. For example, node2vec Grover & Leskovec (2016), and deepwalk Perozzi
et al. (2014) are random-walk based approaches and Vashishth et al. (2019); Davidson et al. (2018)
are GNN-based approaches for graphs that learn the embedding of the nodes and then use a binary
operator such as average to compute the embedding of an edge i.e. given two nodes u, and v, they
apply binary operator o to generate an embedding of g(u, v) such that g : V × V −→ Rd where
d is the dimension of the embedding. Direct approaches in graphs learn the embedding of edges
directly and apply that to the link prediction problem. Examples of this approach includes path-based
approaches such as Zhu et al. (2021); Sadeghian et al. (2019). One popular task in knowledge graphs
is to predict missing relations between entities. This task is called knowledge graph completion and
one could think of it as a generalization of link prediction in graphs. The problem of knowledge
graph completion has been studied extensively for example: Zhu et al. (2021); Wang et al. (2020);
Rossi et al. (2022).

Hyperedge prediction: Link prediction in hypergraphs can also be done indirectly by first com-
puting the embedding of the nodes of the hypergraph and then applying a function g to the tuple
(v1, v2, ..., vk) to obtain the embedding of the tuple i.e. hyperedge. The difficulty with such models
is that for hypergraphs, function g must be nonlinear to capture higher-order proximity of nodes in
the hypergraph Tu et al. (2018). This means it is not a good design choice to use an operator such as
average to obtain the embedding of a hyperedge from its nodes. Related works HyperSAGNN and
NHP have used non-linear functions such graph neural networks Zhang et al. (2020); Yadati et al.
(2020) to compute the embedding of a hyperedge from its nodes. Directly learning the embedding of
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a hyperedge and applying hyperedge prediction to that embedding has not been studied. To the best
of our knowledge, we are the first to approach the problem in this manner.

Link prediction in knowledge hypergraphs is relatively under explored. Most approaches generalizes
knowledge graph based methods to work with n-ary relations. More recent work on this area propose
novel methods that directly works with knowledge hypergraphs such as Fatemi et al. (2019); Wang
et al. (2021).

Random Walk Based Feature Generation for hypergraphs: In problems in which nodes do not
have features, the first step is to generate features for the nodes. The most common approach is
to use node2vec. For example, HyperSAGNN Zhang et al. (2020) first generates features using
node2vec and then passes these features through an attention layer. During inference, the embedding
of a proposed tuple of nodes is computed using a one layer, position-wise feed-forward network.
They can also use the corresponding row of the adjacency matrix to extract features. Similarly, NHP
runs node2vec on the clique expansion of a hypergraph and then uses a GCN layer to improve these
features. Finally, they pass these embeddings to a scoring layer Yadati et al. (2020).

Clustering Based Feature Generation: Random-walk based approaches are one way to generate
features for a hypergraph, but they only exploit the local connectivity of nodes in the hypergraph. In
this paper, we investigate the effectiveness of hypergraph clustering algorithms for feature extraction.

Clustering has been used to understand the structure of complex networks. A cluster in a hypergraph
is a partition of nodes into sets that are similar to each other and dissimilar from the rest of the
hypergraph. Intuitively, a cluster is a group where nodes are densely inter-connected and sparsely
connected to other parts of the network. Placing the embedding of such nodes closely in the
embedding space can be useful in many graph mining tasks such as clustering, node classification,
network reconstruction and link prediction Bhowmick et al. (2020). A classic clustering algorithm
in hypergraphs is the FM Fiduccia & Mattheyses (1982) algorithm: given an initial assignment of
nodes to clusters, this algorithm moves a node to the cluster that results in the largest reduction
in connectivity between clusters. Multi-level clustering approaches such as Karypis et al. (1999);
Devine et al. (2006); Maleki et al. (2021) build on this algorithm and improve the performance of FM
algorithm by successively coarsening the hypergraph, finding clusters in the smallest hypergraph,
and then interpolating these to the coarser hypergraphs, applying the FM algorithm at each level. In
this paper, we use a recent work called BiPart, Maleki et al. (2021), for clustering to generate initial
features of the hyperedges as well as nodes of a hypergraph.

3 HYPEREDGE CONVOLUTION OPERATOR

We begin with the question of how one might build a system to “answer” HyperQueries. Given a
collection of nodes, our HyperQuery oracle will answer questions such as whether these nodes are
related. Ultimately, our goal is to perform prediction and classification on a collection of nodes.

In this section, we start by studying the question of inference in knowledge hypergraphs, where
a vector of data is stored on entities and relations. We present an approach for defining trainable
convolutions on hyperedges which is well suited for performing inference for knowledge hypergraph
completion. In the next section, we will discuss the pre-processing approach that completes our
framework for performing hyperedge prediction on simple hypergraphs.

A basic approach for defining a HyperEdge convolution operator proceeds in two steps. First, we
set out to aggregate and summarize the known label data in the neighborhood of the hyperedge e or
query set of node v in question. Then, we apply learned weight matrix W k and pass it through the
non linearity function σ.

hk
e = σ(W k · Ω{hk−1

v ∀v ∈ N (e)}) (1)

To fully unlock the power of modern machine learning, we set out to create a trainable system. In fact,
we improve on Equation 1 and propose something more general. A flexible, composable, trainable,
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Figure 2: HyperEdge Convolution Operator. A HyperQuery can be passed by specifying a set of
nodes q into the system (left). For each node, we first aggregate over its neighboring hyperedges to
update its embedding, then for each hyperedge we perform summary function Ω, to compute what we
call the harmonic statistic of HQ. (right) By adding a fully connected layer W k and a nonlinearity σ

in series with this calculation, we arrive at our proposed HyperEdge convolution operator.

hyperedge message-passing based (i.e. scalable) operation for learning to answer HyperQueries:

hk
v = AGG(hk−1

e ,∀e ∈ N (v)) (2)

hske = Ω({hk
v∀v ∈ N (e)}) (3)

hk
e = σ(W k · hske) (4)

For each node v in hyperedge e, we aggregate along it’s hyperedge neighbor features to calculate hv .
Then, for each hyperedge e, we aggregate the messages from its nodes (i.e., hv∀v ∈ N (e)), using a
summarization function Ω(.) as shown above. Finally, we have a hidden “deconvolution” layer and a
non-linearity. The hk

vi above amounts to a “mean-field” embedding of each node vi as the average of
a sampling of the data stored on the hyperedges it is connected to.

This concludes the first part of our approach to learning useful representations of HyperQueries.
Intuitively, this message passing based aggregation and summarization process can be thought of
a diffusion process or a flow, which averages and symmetrizes the edge level data by effectively
performing a step of Laplacian smoothing.

In a knowledge hypergraph, we can effectively learn the hidden weights W k by choosing the initial
feature h0

e of a hyperedge he to be the one hot vector of its type, and building up an autoencoder
style problem. By repeating this iteration twice, we already arrive at an effective tool for knowledge
hypergraph completion which generalizes to unseen data far better than benchmark approaches. In
Table 6, we outline our performance relative to other benchmarks. We achieve this performance with
a straightforward model, we simply treat the output h2

e as a predicted class label P(e). From there
we minimize the loss below as a function of hidden layer weights W 1 and W 2.

L =
∑
e∈D

J (P(e),G(e)) (5)

In our objective function, we take J (.) to be the cross entropy loss, e to be a hyperedge in the
training dataset D, P(e) is the predicted type of hyperedge e, and G(e) is the actual ground truth type
(relation) of hyperedge e in the dataset.

4 ANSWERING HYPERQUERIES ON SIMPLE HYPERGRAPHS

Our main focus in this paper is the task of hyperedge prediction, i.e. given an simple hypergraph and
set of nodes (v1, .., vn), predict whether this tuple forms a hyperedge.

In this setting, there is no additional label data such as knowledge hypergraphs and thus inference
must be computed entirely from the hypergraph structure. Thus if we want to make use of a flow
based approach, we need a way of computing a useful initialization. Our insight is that useful initial
categorical embeddings can be found by existing clustering algorithms, which works by recursively
finding balanced cuts of a hypergraph.
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Figure 3: Generating Useful Labels using clustering: Not all hypergraph data comes with labels (left),
but so far our approach has depended on having categorical labels on the edges and nodes. We

leverage hypergraph clustering to first assign cluster id as labels to the nodes, obtaining an initial
cluster assignment ℓ0v (center), which we then propagate to the hyperedges via Max Pooling (right)

in order to obtain the edge cluster assignment ℓ0e. We use ℓ0e as the data in L(h).

4.1 FEATURE EXTRACTION USING CLUSTERING

One way to learn an embedding that captures meaningful structural information about a hypergraph is
to run random-walk based algorithms such as node2vec Grover & Leskovec (2016). Previous works
on hyperedge prediction such as HyperSAGNN Zhang et al. (2020) and NHP Yadati et al. (2020) use
node2vec to first learn feature vectors for nodes of a hypergraph represented in a variety of ways.
Then, they improve these features using attention-based methods. However, such methods have a
number of drawbacks:

1. They do not learn the correlation between nodes that do not appear in the same random walk,
might require many samples to capture effects of weak correlations.

2. Random walks explore only the local properties of the hypergraph, optimization might get
stuck in local minima.

3. Random walks on hypergraphs mix very quickly and thus even if an algorithm converges to
a good answer, will likely require many samples/computation to converge.

4. The published methods learn node based features and they do not learn feature vector of
hyperedges directly, couldn’t be directly applied to our architecture.

It occurred to us that instead, it is possible to use state-of-the-art partitioning based clustering tools as
an alternative approach for pre-computing features. While clustering is a well studied problem in
ML, for instance it has been used in prediction as early as in 2015 Deylami & Asadpour (2015), it is
not used by any of the state-of-the-art prediction tools today, and therefore, it merits revisiting, given
the simplicity and effectiveness of the approach we evaluate in this paper.

In particular, for our HyperQuery flow, we want an initial label assignment that is “smooth” in a way
that is well defined for the given hypergraph topology. To do this, we run a clustering algorithm that
partitions the nodes of the hypergraph into clusters. Each cluster of nodes is given a unique integer id.
To transfer these labels onto hyperedges, we perform a max-pooling step (described in more detail in
Figure 3).

Cut-Metric for Hypergraphs. For our purpose, we can use any clustering algorithm. In our
experiments, we use a multilevel clustering algorithm that partitions nodes into a given number of
clusters while minimizing the hyperedge cut, defined below. While there is not a unique canonical
way to define a hyper-edge cut, this approach worked well and exposes the number of clusters as a
hyper-parameter to the system.

cut(H,C) =
∑
e

(λe(H,C)− 1) (6)

Here, H is the hypergraph, C is the partition of nodes into clusters, and λe(H,C) is the number of
clusters that hyperedge e spans. Intuitively, nodes that belong to the same cluster are considered
similar. This is similar to approaches like node2vec in which nodes that appear in the same random
walk are considered to be similar.

5 OPTIMIZING THE HYPEREDGE CONVOLUTION OPERATOR

Here we outline a few important technical details that significantly improve our framework.
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Figure 4: Learning W 1. Given a hypergraph with labels on nodes and edges, we experiment with a
zoo of choices for Ω. In this illustration, we convolve once, multiply by W 1 and σ and then pass

through a fully connected layer to return to a space of the same dimension of hyperedge types.
Finally we then train as an autoencoder.

5.1 NODE CLUSTER AS A FEATURE

The initial aggregation step AGG in our convolution operator comes from the idea that a reasonable
first way to think about creating embeddings for hyperedges is to simply average node embeddings.
However, this simple measure fails to capture important information regarding the distribution of
node embeddings within a hyperedge.

To fix this problem, we augment every node feature vector with the a one-hot encoding of the node
cluster id, as seen in Equation 7:

hk
v = CONCAT{AGG{hk−1

e ,∀e ∈ N (v)}, xv} (7)

where AGG(.) is an aggregation function, and xv is the one-hot partition id of a node. If nodes of a
hypergraph have features themselves, these features can also be concatenated with xv .

5.2 CHOOSING THE RIGHT Ω

In this work, we evaluate three different types of summary statistics for Ω (Figure 4, center). A
component-wise mean and variance, and a sort of “robust variance” estimator we call minmax
(element-wise difference of maximum and the minimum values of the vectors) similar to the one used
in NHP Yadati et al. (2020) to achieve state of the art performance. Intuitively, when Ω is the mean,
convolution maps hyperedges to the average embedding of constituent nodes, whereas the variance
measures how correlated different nodes are with each other. In our experiments in Section 6, we find
that for the hyperedge prediction, minmax/variance performed better as a choice of Ω whereas in
knowledge hypergraph completion, mean worked better.

We also augment these aggregations to better capture the correlation between different labels/com-
munities by introducing a bilinear aggregation layer Zhu & Koniusz (2021). Bilinear aggregation
has significantly improved visual concepts recognition Koniusz et al. (2017), and in practice also
generally improves the accuracy of our results. Specifically, we create an auto-correlation matrix by
multiplying a hyperedge feature vector by itself. This matrix has dimension d× d, which we flatten.

5.3 AUGMENTED CONVOLUTION OPERATOR

Our final scheme for hyperedge message passing is the following:

Ωk
e = Ω{hk

v ,∀v ∈ N (e)} (8)

hk
e = σ(W k · flat(Ωk

eΩ
kT

e )) (9)

Where hk
v is computed using Equation 7, Ω is an aggregation function, flat(.) flattens the correlation

matrix and stores it in a column vector, AGG(.) takes the element-wise mean of the hyperedge
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feature vector, xv is the feature vector of node v, and W k is the trainable weight matrix. The effect
of using different aggregation functions Ω is explored empirically in Table 4.

Time complexity. We analyze the time complexity of our framework (Equations 7, 8,and 9) in
terms of the size of the hypergraph, assuming the number of relations (types) is independent of the
size of the hypergraph. Let m denote the number of hyperedges and n denote the number of nodes.
Let deg(vi) denote the degree of node vi and let ∆̃ denote max1≤i≤ndeg(vi). For Equation 7, our
framework takes O(n · ∆̃) time. For Equation 9, let deg(ei) denote the degree of hyperedge ei and
let ∆ denote max1≤i≤mdeg(ei). Equation 8 takes O(m ·∆) time. Finally, the time complexity of
Equation 9 is constant since the number of labels is independent of the size of the graph. Overall, our
framework takes O(m ·∆) +O(n · ∆̃).

5.4 MODEL EXPLAINABILITY

The ideal initial feature vector for a hyperedge should include local and global properties of the
hypergraph. In our model, clustering exposes global properties. Specifically, we keep track of the
cluster id of hyperedges as well as the distribution of labels on the nodes in the neighborhood of a
hyperedge. Intuitively, Hyperedges that are in the same cluster or have similar label distribution on
their nodes are similar to each other and by assumption, they are related. Previous work Grover
& Leskovec (2016); Perozzi et al. (2014) has shown that placing such similar nodes closely in the
embedding space will facilitate tasks such as node classification and link prediction. We follow the
same intuition.

The message-passing scheme of labels is conceptually similar to label propagation Raghavan et al.
(2007). The objective of the label propagation algorithm is to assign each node into a cluster with the
most number of its neighbouring nodes. Intuitively, this scheme also put hyperedges with the same
label/cluster closer in the embedding space facilitating hyperedge prediction for both knowledge
hypergraphs and simple hypergraphs.

6 EXPERIMENTS

We evaluate our framework HyperQuery on knowledge hypergraph completion task as well as
hyperedge prediction and show that our architecture outperforms the state of the arts for these tasks.
Furthermore, we conduct an ablation study to understand the effectiveness of the major HyperQuery
kernels. The details of our setting are in Appendix A.

6.1 KNOWLEDGE HYPERGRAPH COMPLETION

We first evaluate our system for the task of link prediction for knowledge hyperedges i.e. knowledge
hypergraph completion. We evaluate our system on three datasets: FB-AUTO, M-FB15K, and JF17K.
We used the same test, train, and validation sets as Fatemi et al. (2019). We use MRR (mean reciprocal
rank) and Hit@1, 3 (hit ratio with cut-off values of 1 and 3) as our evaluation metrics.

Datasets: The datasets used in this section are standard knowledge hypergraph datasets from previous
work Fatemi et al. (2019). The summary of the knowledge hypergraphs are in Table 1. FB-AUTO,
M-FB15K Fatemi et al. (2019), and JF17K Wen et al. (2016) are knowledge hypergraphs with n-ary
relations that is collected from Freebase dataset.

Table 1: Knowledge hypergraph dataset

DATA SET |E| |R| #train #valid #test

FB-AUTO 3,410 8 6,778 2,255 2,180
M-FB15K 10,314 71 415,375 39,348 38,797
JF17K 29,177 327 77,733 15,822 24,915

We compare our results with the following baselines: HSimplE, and HypE two embedding based
approaches for knowledge hypergraphs introduced by Fatemi et al. (2019). Both methods find the
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Figure 5: Performance of HyperQuery for different numbers of clusters.

embedding of an entity based on its position in a relation. M-DistMult Yang et al. (2014) defines
a scoring function for each tuple (e1, r1, e2). We modify this so that each relation could have any
number of entities. M-TransH is a modified standard knowledge graph scoring function (TranshH)
that accepts beyond binary relations. Finally, M-CP Hitchcock (1927) is a tensor decomposition
approach. We apply a similar approach as Fatemi et al. (2019) to extend it beyond binary relations.

We used HyperQuery to perform knowledge hypergraph completion. Table6 summarizes the result
of our experiment. HyperQuery performs the best compared to all other baselines on all metrics.
Specifically, on metric Hit@1 against the best baseline, it improves up to 5% on dataset FB-AUTO,
18% on M-FB15K, and more than 50% on JF17K.

Table 2: Knowledge Hyperedge Completion.

FB-AUTO M-FB15K JF17K
MRR Hit@1 Hit@3 MRR Hit@1 Hit@3 MRR Hit@1 Hit@3

HYPERQUERY 91.5 83.1 99.9 95.1 90.5 99.7 99.9 99.1 99.9
HSIMPLE 79.8 76.6 82.1 73.0 66.4 76.3 47.2 37.8 52.0
HYPE 80.4 77.4 82.3 77.7 72.5 80.0 49.4 40.8 53.8
M-DISTMULT 78.4 74.5 81.5 70.5 63.3 74.0 46.3 37.2 51.0
M-TRANSH 72.8 72.7 72.8 62.3 53.1 66.9 44.4 37.0 47.5
M-CP 75.2 70.4 78.5 68.0 60.5 71.5 39.1 29.8 44.3

6.2 HYPEREDGE PREDICTION

The second task we study in this paper is hyperedge prediction. We evaluate our system on four
datasets: iAF1260b, iJO1366, USPTO, and DBLP. We used 70% of the hyperedges in these for test,
10% for validation and 20% for training. The summary of these datasets are in Table 3.

Table 3: Hyperedge prediction dataset

DATA SET NODES HYPEREDGES TYPE OF DATA

IAF1260B 1,668 2,084 METABOLIC REACTIONS
IJO1366 1,805 2,253 METABOLIC REACTIONS
USPTO 16,293 11,433 ORGANIC REACTIONS
DBLP 20,685 30,956 CO-AUTHORSHIP

iAF1260b1 a metabolic reaction dataset for specie E. coli. We use this dataset for hyperedge
prediction where our goal is to predict missing reactions i.e. hypereges. In this dataset each reaction
is considered as a hyperedge connecting its participating metabolites (nodes).

iJO1366 1 a metabolic reaction dataset similar to iAF1260b. USPTO 2 a organic reaction dataset.
We used a subset of chemical substances that only contains carbon, hydrogen, nitrogen, oxygen,
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phosporous, and sulphur. DBLP 3 a co-authorship publication dataset. We used a subset of papers
published in only AI conferences: AAAI, IJCAI, NeurIPS, ICML, CVPR, ICCV, ACL, NAACL, etc.
Each author in this dataset is a node and papers represent hyperedges connecting authors of a paper.

We compare our results with previous works: NHP Yadati et al. (2020), HyperSAGNN Zhang et al.
(2020), HyperGCN Yadati et al. (2019), and node2vec Grover & Leskovec (2016). The description
of these methods are in 2. We use a similar negative sampling strategy as NHP Yadati et al. (2020).
Motivated by NHP, we investigate another aggregation function Ω for our approach. We call this
aggregation function minmax which is the element wise difference of max and min values of the
embedding vectors in equation 7. Furthermore, we also experiment on using operator variance as
an aggregation function. These results is summarized in Table 4. We use 16 communities for this
experiment. In Section 6.3, we discuss the effect of different number of communities.

HyperQuery with minmax aggregation function performs the best on all datasets in this paper.
Comparing with NHP, on their minmax operator, HyperQuery minmax outperform them by up to 7%
on iAF1260b, 5% on iJO1366, 1.5% on USPTO, and 1.8% on DBLP; on mean aggregation operator,
HyperQuery outperforms NHP by up to 6% on iAF1260b, 4.6% on iJO1366, 12% on USPTO, and
13.6% on DBLP. HyperQuery outperforms HyperSAGNN on all datasets by more than 6%, and
HyperGCN by more than 4%. Finally, node2vec results show poor performance on hypergraph
datasets showing that graph based approaches are not suitable for hypergraphs.

6.3 ABLATION STUDY

We study the behaviour of each component of HyperQuery. First, we study the effect of bilinear
pooling on hyperedge prediction. Table 4, shows this effect. On the larger dataset, USPTO, the
bilinear pooling improves the quality of our framework by 5.6% for minmax. Similarly, for DBLP,
the improvement is about 2%. On the smaller datasets, bilinear pooling does not make a significant
change.

Next, we study the effect of the number of clusters in our dataset. Figure 5 shows how the performance
of our framework changes as we increase or decrease the number of clusters. For all datasets except
iJO1366, the performance improves as we increase the number of clusters up to 16 clusters and then
decreases. This behaviour is expected since as we increase the number of clusters, the quality of
these clusters decreases (i.e., the hyperedge cut increases). However, if the number of clusters is very
small, we are not exploring the global structure of our hypergraph enough which again decreases the
performance of our framework.

Table 4: Area Under Curve (AUC) scores for hyperedge prediction. NOPOOL refers to the model
without bilinear pooling. HQ is our proposed model.

IAF1260B IJO1366 USPTO DBLP
AUC AUC AUC AUC

HQ-MINMAX 72.2 68.5 75.7 72.0
HQ-MEAN 66.5 65.9 72.2 69.6
HQ-VAR 71.1 68.1 75.0 71.3

HQ-MINMAX-NOPOOL 72.7 68.9 70.1 70.4
HQ-MEAN-NOPOOL 67.6 65.7 70.6 65.7
HQ-VAR-NOPOOL 72.3 67.5 74.1 71.6

NHP-MINMAX 64.3 63.2 74.2 69.2
NHP-MEAN 60.5 61.2 65.5 56.4
HYPER-SAGNN 60.1 56.3 67.1 65.2
HYPERGCN-MINMAX 64.0 62.2 70.5 67.4
NODE2VEC-MINMAX 66.0 62.0 71.0 67.0

1https://github.com/muhanzhang/HyperLinkPrediction
2https://github.com/wengong-jin/nips17-rexgen
3https://github.com/muhanzhang/HyperLinkPrediction
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A DETAILS ON HYPERQUERY SETTINGS

Negative Sampling. We use a similar approach to Yadati et al. (2020) i.e for each hyperedge e in
our dataset, we create a hyperedge e′ by having half of the vertices sampled from e the remaining
half from V − e. This sampling method is motivated by the chemical reaction datasets where it is
unlikely that half of the substances of a valid reaction (from e) and randomly sampled substances
(from V − e) are involved in another valid reaction.

Hyper-parameters. The number of clusters used in the evaluation section of this paper is 16.
Furthermore, we showed the effect of using different number of clusters in Figure 5. We use 2 layers
of hyperedge convolution in our test implementation.

Operator Ω. for a given set of vectors x1, ..., xk ∈ Rd,

MINMAX(x1, ..., xk) = (max xsl −min xsl), s ∈ [k], l = 1, ..., d (10)
V AR(x1, ..., xk) = (variance(xsl)), s ∈ [k], l = 1, ..., d (11)

MEAN(x1, ..., xk) = (MEAN(xsl)), s ∈ [k], l = 1, ..., d (12)

B CLUSTERING ALGORITHM

In this paper we use BiPart Maleki et al. (2021) as our clustering algorithm. BiPart is a multilevel and
deterministic hypergraph partitioner. Given a number k, BiPart partitions the nodes of the hypergraph
into k disjoint blocks. In our framework, we use BiPart as a pre-processing step where we partition
the nodes of a hypergraph first and the we use the one hot vector of their partition id as the initial
feature of the nodes of the hypergraph. Finally, these initial features are used as an input to the
HyperQuery framework.

In practice, any hypergraph partitioning algorithm can be used to partition the nodes of the hypergraph.

C HYPEREDGE CLASSIFICATION

One neutral choice for our system would be to use it to solve hyperedge classification. In such
problems, a hypergraph H is a tuple (V,E,L) where V is a set of nodes; E ⊆ 2|V | is a set of
nonempty subsets of V called hyperedges; and L is a set of labels for hyperedges. Our task is given a
hypergraph and labels on a small subset of hyperedges, predict labels on the remaining hyperedges.

We evaluate our system on three datasets: Cora, Citeseer, and Pubmed 5. We used 20% of the
hyperedges in these datasets for test, 10% for validation and 70% for training (for 20 epochs). Since
there are no previous approaches for hyperedge classification, we modified existing methods as
baselines for our problem:

HyperNetVec Maleki et al. (2022): an unsupervised multi-level approach to generate the repre-
sentation of a hypergraph. This method uses an existing embedding system to generate an initial
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embedding and further improve these embeddings using a refinement algorithm. This methods gener-
ates embeddings for nodes of a hypergraph. We modified this method to also generate embeddings
for hyperedges.

node2vec(mean): a random walk based approach to generate representation of a graph in a semi-
supervised manner. In order to use node2vec, we convert our hypergraph to a graph and then generate
embeddings for the nodes of the hypergraph. We obtain embedding of a hyperedge by performing a
mean aggregation on the embedding of its nodes.

We used HyperQuery to run these experiments. Table 6 summarizes the result of our experiment.
HyperQuery performs the best compared to HyperNetVec and node2vec. It improves up to 2.3% on
dataset Cora, 18% on Citeseer, and 4% on Pubmed.

Table 5: Real world hypergraph dataset for classification

DATA SET NODES HYPEREDGES TYPE OF DATA CLASSES

CORA 2,709 1,963 CITATION 7
CITESEER 3,328 2,182 CO-AUTHORSHIP 6
PUBMED 19,717 12,971 CO-AUTHORSHIP 3

Table 6: Hyperedge classification. Accuracy in % and time in seconds.

CORA CITESEER PUBMED
ACCURACY TIME ACCURACY TIME ACCURACY TIME

HYPERQUERY-MEAN 78.5 10 75.3 12 82.4 25
HYPERNETVEC 76.2 28 57.1 45 78.1 33
NODE2VEC-MEAN 76.0 30 57.1 31 74.2 140
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