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Abstract

In the field of equation learning, exhaustively considering all possible combinations derived
from a basis function dictionary is infeasible. Sparse regression and greedy algorithms have
emerged as popular approaches to tackle this challenge. However, the presence of strong
collinearities poses difficulties for sparse regression techniques, and greedy steps may inadver-
tently exclude important components of the true equation, leading to reduced identification
accuracy. In this article, we present a novel algorithm that strikes a balance between compre-
hensiveness and efficiency in equation learning. Inspired by stepwise regression, our approach
combines the coefficient of determination, R2, and the Bayesian model evidence, p(y|M), in
a novel way. Through three extensive numerical experiments involving random polynomials
and dynamical systems, we compare our method against two standard approaches, four
state-of-the-art methods, and bidirectional stepwise regression incorporating p(y|M). The
results demonstrate that our less greedy algorithm surpasses all other methods in terms
of identification accuracy. Furthermore, we discover a heuristic approach to mitigate the
overfitting penalty associated with R2 and propose an equation learning procedure solely
based on R2, which achieves high rates of exact equation recovery.

1 Introduction

Uncovering the underlying laws governing a system is essential for understanding its behavior, and mathemat-
ical equations serve as a concise representation of these laws. Equipped with such equations, predictions can
be made, and valuable insights can be derived analytically. The pursuit of inferring these governing equations
directly from observations has a long history, dating back to Johannes Kepler’s deduction of planetary motion
laws in 1609. In modern times, significant progress has been made in automated equation inference using
machine learning techniques, a discipline commonly referred to as "equation learning" or "symbolic regression."

In contrast to deep learning, equation learning focuses on maximizing model expressivity while minimizing
complexity to ensure interpretability. This delicate balance between interpretability and expressivity consti-
tutes the central challenge of equation learning. Other challenges include stable feature selection, solvability of
learnt equations, computational feasibility, and handling limited data. Greedy algorithms and regularization
techniques applied to regression models built from basis functions are commonly employed to address these
challenges.

Greedy algorithms, like stepwise regression, explore the model space iteratively by evaluating scores for
individual models. Although these methods are computationally efficient, they tend to significantly reduce
the size of the considered model space, often leading to the exclusion of the true model from consideration.
On the other hand, regularization transforms the search into an optimization problem, where all candidate
models serve as points in the objective function landscape. However, finding the global minimum that
corresponds to the true model is not guaranteed, and local minima may only accidentally lead to the true
model. Collinearities among basis functions further complicate optimization algorithms due to the jagged
nature of the optimization space.

In this work, we tackle the aforementioned challenges of equation learning by enhancing the stepwise regression
approach in a less greedy way and exploring multiple score functions. Our method begins with an elimination
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process that employs the computationally inexpensive coefficient of determination, R2, in order to assess
almost all individual candidate models belonging to a complexity class. Selecting the best models from that
process enables subsequent model selection based on the Bayesian model evidence. The model evidence
reflects the probability of a model being the true model for the given data, making it an ideal criterion
for penalizing overfitting and addressing the central challenge of equation learning: achieving the optimal
balance between interpretability and expressivity. By employing specifically tuned conjugate priors within an
empirical Bayes framework, we circumvent the computationally demanding estimation of the evidence and
instead derive it analytically.

To evaluate our approach, we employ artificially generated data from known models. This choice allows us
to assess whether our strategy can uncover the ground truth model, serving as a testament to its ability to
strike the delicate balance between expressivity and interpretability in realistic scenarios involving complex,
analytically challenging models. We compare our method against two standard techniques, least absolute
shrinkage and selection operator (LASSO) and least-angle regression (LARS), as well as four state-of-the-art
methods available in the PySINDy package: sparse relaxed regression (SR3), forward regression orthogonal
least squares (FROLS), sequentially thresholded least squares (STLSQ), and best subset selection via mixed-
integer optimized sparse regression (MIOSR). Additionally, we propose evidence-based bi-directional stepwise
regression (SR) for equation learning using our tuned model evidence. We evaluate the identification accuracy
of approximately 80 scenarios for each system and assess the forecasting accuracy based on 100 initial values
for each scenario and system, amounting to a total of around 8,000 tests. Our findings demonstrate that our
proposed methods outperform other approaches in terms of identifying the correct model and can achieve
competitive forecasting accuracy.

Our paper is organized as follows. We begin with a short overview of existing method in Section 2, and
introduce our approach and the methods we compare to in Section 3. In Section 4 we present our numerical
results, which we discuss in Section 5. We conclude in Section 6 and provide more details of our approach in
the appendix.

2 Related work

The literature on equation learning can be roughly divided into three approaches: evolutionary algorithms,
tree and neural network representations, and regularized regression. A well-known example of evolutionary
algorithms is EUREQA, a commercial software used for symbolic regression Dubčáková (2011); Stoutemyer
(2013). A recent open source alternative to EUREQA also using evolutionary algorithms is the python
package pySR Cranmer (2023). Tree representations construct equations by combining basic operations
and are then employed to minimize regularized objective functions Vaddireddy et al. (2020), using posterior
sampling with sparsity-promoting priors Jin et al. (2019), or through mixed-integer linear programming
Neumann et al. (2020). Similarly, neural network architectures have been used to represent equations, where
network nodes are replaced by expression building blocks Martius & Lampert (2016); Sahoo et al. (2018);
Werner et al. (2021). These neural networks are trained with a regularized minimizer applied to objective
functions Rackauckas et al. (2020). Another approach, which allows for the incorporation of physics-informed
properties such as symmetries, has also been developed Udrescu & Tegmark (2020).

These methods find applications in complementing deep neural networks to enhance generalization Arabshahi
et al. (2018) and reducing the data requirement for training Yang et al. (2021). They are also utilized in the
analysis of spatio-temporal biological data Nardini et al. (2020) and uncovering complex ecosystem dynamics
Chen et al. (2019).

The above approaches are highly non-linear and typically involve complex optimization algorithms. A simpler
approach is based on linear regression models, where features are replaced by basis functions derived from
observed data. Regularized regression ensures sparse weight estimates on the basis functions Hastie et al.
(2009), resulting in concise mathematical expressions. One prominent and widely used method for sparse
regression is the LASSO with `1-regularization Tibshirani (1996). The advantage of `1-regularization is the
convexity of the objective functions, which allows for efficient optimization. However, as we will discuss
later, while sparse regression performs well with independent features in reconstruction tasks, the correlations
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introduced by basis function expansion can lead to detrimental instability in equation learning. Recent
advancements of LASSO, such as SR3, can be found in Zheng et al. (2019); Tibshirani & Friedman (2020).

Greedy algorithms like SR, FROLS, and STLSQ have proven to be more successful than LASSO in equation
learning. The latter two algorithms are implemented in the Python package PySINDy, which is designed for
the sparse identification of nonlinear dynamics (SINDy) Brunton et al. (2016). SINDy, initially proposed in
Brunton et al. (2016) using STLSQ, has seen numerous extensions, including applications to partial differential
equations Rudy et al. (2017), improved noise robustness through automated differentiation Kaheman et al.
(2020), supplemented with a-posteriori (MAP) estimates Niven et al. (2020), re-weighted `1-regularization
Cortiella et al. (2021), relaxed regularization Champion et al. (2020), and most recently, best subset selection
using MIOSR Bertsimas & Gurnee (2023).

In Bayesian linear regression, sparsity-promoting priors are used instead of `0-regularization for equation
learning Nayek et al. (2021). Thresholded sparse regression also employs sparsity-promoting priors Zhang &
Lin (2018; 2021). By restricting basis functions to quadratic order, the linear structure of the models allows
for deterministic results even in the case of the more challenging `0-regularization Schaeffer et al. (2018).

3 Less greedy equation learning

The goal of equation learning is to find a function f(x) that accurately represents the relationship between
the input variables x and the output variable y. In the context of regression models, we consider a dataset
consisting of N observations, where the inputs are organized in a design matrix X and the corresponding
outputs are modeled by a random variable Y . We can express the relationship between x and y as follows:

Y = f(x) + σZ, (1)

where x is a row of X (a feature vector), Z is a standard normal random variable, and σ2 is the variance of
the noise term. Our goal is to represent the unknown function f(x) using a basis function expansion: We
assume that f(x) can be represented as a linear combination of p basis functions kn(x),

f(x) =
p∑

n=1
wnkn(x), (2)

where wn denotes the weights associated with each basis function. We can construct a basis function matrix
K, with elements Kjn = kn(xj). The ordinary least squares (OLS) estimates for the weights wn are given
by Montgomery et al. (2012):

ŵ = (KTK)−1KTy, (3)

where y represents a vector consisting of N samples of the output variable Y . With the estimated weights ŵ,
we can make predictions ŷ = Kŵ.

Common choices for the basis functions kn(x) involve products and powers of the individual features xj .
For example, we can have k1(x) = x2

1, k2(x) = x1x2, k3(x) = x1x3, and so on. By imposing restrictions on
the maximum power of individual factors and the total number of factors in each kn(x), we can control the
total number p of basis functions. Equation learning involves selecting a small subset of kn(x) for which the
corresponding weights wn are estimated, while setting the remaining weights to zero.

Once a choice of basis functions kn(x) is made, the actual learning of the model using equation equation 3 is
straightforward. However, the challenging part lies in the selection of the appropriate basis functions. On
one hand, we require the model to have enough flexibility (expressivity) to minimize bias, ensuring that it
captures the underlying relationship between x and y. On the other hand, we want to avoid overfitting, which
can lead to high variance in predictions. This trade-off between bias and variance guides the determination of
the number of non-zero weights, denoted as m, or equivalently, the model size. In addition to finding the
appropriate model size, we also aim to identify the “correct” set of basis functions kn(x), which corresponds
to recovering the true f(x) from data generated by equation equation 1.
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3.1 Regularized regression

A common way to avoid overfitting is to use regularization,

ŵ = arg min
w∈Rp

[∥∥Kw − y∥∥2
2 + λ‖w‖q

]
, (4)

where ‖w‖q = [
∑
n |wn|q]1/q, and λ is the Lagrange parameter that sets the strength of the `q penalty. The

standard, sparsity promoting choice is q = 1 which is known as the LASSO Tibshirani (1996). The choice
q = 0, for which ‖w‖0 =

∑
n δwn,0 is the number of non-zero weight estimates, is often called best subset

selection and requires specialized optimization algorithms Zhu et al. (2020); Hastie et al. (2020), like MIOSR
Bertsimas & Gurnee (2023).

A relaxed regularization like SR3 can be introduced by letting the penalty act on an auxiliary variable u,
where distance of u to the actual weights is controlled by an additional regularization term, e.g. ‖w − u‖q
Zheng et al. (2019).

3.2 Model selection

Taking a different route, sparse solutions of equation 3 may be realized by model selection. A computationally
cheap criteria for model selection is the coefficient of determination,

R2 = yTK (KTK)−1KT y

yTy
, (5)

here in a simplified form for standardized y Montgomery et al. (2012).

However, R2 is known for its lack of overfitting penalty as it would just increase with decreasing sparsity.
Alternatives like adjusted versions of R2 exist to incorporate an overfitting penalty, but here we make use of
the Bayesian model evidence

p(M) ∝ p(y|M) =
∫

dσ
∫

dw pli(y|w, σ,M) ppr(w, σ), (6)

where a selection of basis functions kn(x) defines a model M and a likelihood distribution pli(y|w, σ,M)
via equation 1 and equation 2. For a conjugate prior ppr(w, σ), the marginalization above can be done
analytically and p(y|M) is known exactly, as detailed in appendix B.

The use of p(y|M) is often motivated by its excellent overfitting penalizing properties, which can be ascribed
to the fact that p(y|M) is proportional to the probability p(M) of the modelM being the true model for
the data (y,X) Murphy (2012). The downside of using p(y|M) is the imperative to specify ppr(w, σ) even in
cases of scarce prior knowledge, which can have a significant impact on p(y|M). Here we use the empirical
Bayes method to fix ppr(w, σ) and exploit the normality property of linear regression which implies that
estimates ŵ are normally distributed with the mean given by the true values of w and the variance given by

σ̂2 = (y − ŷ)T(y − ŷ)
N − p

(7)

The details of this procedure is included in appendix A.

3.3 Stepwise regression (SR)

A standard greedy algorithm to select basis functions kn(x) is stepwise regression in which a criterion like
adjusted R2, F -statistics or other information criteria (e.g. AIC, BIC) are used Montgomery et al. (2012).
Here we promote the evidence p(y|M) as criterion, which is rarely used for SR due to its intricacies in terms
of prior selection and computational cost Hastie et al. (2009). Our stepwise procedure is bi-directional, that is,
we start with an empty model and select the kn(x) that maximizes p(y|M), add a second kn(x) maximizing
p(y|M), and so on (forward selection). Once p(y|M) cannot be increased further by adding more kn(x)
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Figure 1: Schematic representation of algorithm LG-R2 and LG-pM. Starting point is the set of candidate
models built from p basis functions kn(x). For fixed model size m, R2 is computed for all

(
p
m

)
candidate

models. Incrementing m, top models in terms of R2 are collected, from which basis functions kn(x) are rated
based on counts of kn(x) in these top models. Typically, incrementing m, new kn(s) with high rates are
found and selected for the inferred modelM∗ by algorithm LG-R2 while m is smaller than the true model
size. The iteration in m therefore terminates if no new kn(s) are selected forM∗. Basis functions kn(x that
are hardly selected are not considered for building candidate models in the next m-step. The top models
selected by R2 are scored again by p(M) of which the best model is the output of algorithm LG-p(M).

to the model, we start removing kn(x) in the same fashion until again p(y|M) is maximized (backward
selection). We continue forward and backward selection until p(y|M) cannot be increased in either selection
direction. From including the backward direction and due to the overfitting penalty of p(y|M) we expect our
procedure to be more parsimonious in terms of model size.

Other stepwise regression procedures are FROLS and STLSQ. In FROLS, only forward selection is applied,
but taking equation 4 with q=2 (Ridge regression) as criterion to be minimized Billings (2013). Similarly,
but in a backward selection procedure, STLSQ starts with the full model, and alternates between Ridge
regression and removing terms kn(x) with weights wn below a pre-defined threshold Brunton et al. (2016). A
similar stepwise algorithm is least-angle regression (LARS) where the correlation between kn(x) and residuals
is used to build the model in a forward procedure.

3.4 Less greedy (LG)

A non-greedy algorithm would consider all 2p−1 combinations of kn(x) which obviously is computationally
infeasible. However, since we are interested in parsimonious models, we may choose a small model size m
and explore all

(
p
m

)
possible combinations of kn(x) within that budget. For a fixed model size, overfitting
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penalty is not important, and we may use R2 which is particularly cheap to compute for standardized data,
c.f. equation 5. In this way, we can single out the best models in terms of R2 for different budgets m.

To find the best model size m, we employ the overfitting penalty property of the model evidence p(y|M).
Starting with m= 1, we compute p(y|M) for the best models selected by R2, and continue to do so for
increasing m until a stopping criterion is reached.

As a stopping criterion, we may use the first decrease of p(y|M), but we propose a heuristic criterion purely
based on R2 which proved superior in our study. The R2 criterion we propose builds on the observation that
the true kn(x) have a tendency to be consistently selected in the top R2 models. We therefore keep increasing
m until no new kn(x) is selected consistently, and then build the inferred model from those consistently
selected terms. Since

(
p
m

)
still becomes very large for larger model sizes, we add an additional pruning step,

in which all kn(x) that have consistently not been selected are removed from the basis expansion.

The stopping criterion and the pruning step classifies our procedure as a greedy algorithm. However, due to
the exhaustive search for each considered m, we consider a drastically larger model space than other greedy
algorithms and are as such significantly less greedy.

While this is a heuristically developed method, it is motivated by the reasonable assumption that the
maximization of R2 is dominated by the true kn(x). Therefore, as soon as we look at the R2 values of models
one term larger than the true model, the procedure is forced to randomly select one extra term in addition to
the consistently selected true terms.

For a direct comparison of this rather heuristic selection method with an established method, we also select
the model that maximizes p(y|M) out of the top models selected by R2 across all model sizes. To the first
method solely based on R2 we refer to as LG-R2, to the second method using a final selection via p(y|M)
we refer to as LG-p(M). We illustrate our procedure in figure 1. More details, explicit algorithms, and an
illustration of the claims made can be found in appendix C.

It is worth noting that our procedure can also be used in cases where p(y|M) needs to be estimated by
computationally costly evidence estimators, as we effectively reduce the pool of candidate models to just a
few.

3.5 Model class

Apart from the equations that can directly be written in the form of equation 2, a prominent application of
equation learning is the learning of dynamical systems,

ẋ(t) = f(x(t)), (8)

where ẋ(t) denotes the time derivative of x(t). To map this problem to equation 2, the response variable can
be computed from finite differences yi = xi+1−xi

∆t for a fixed time step ∆t.

A restriction for the regression models to stay linear in its parameters is that parameters of basis functions
may only enter as weights w. Basis functions like eax, ln(a + x), cos ax, xa, 1

(a+x)m , . . . with internal
parameter a are not suitable.

This restriction might seem quite limiting. On the other hand, the function f(x(t),w) defining a dynamical
system typically is linear in its parameters w. The reason for that is that these functions often reproduce
when differentiated, which can be used to eliminate these functions, retrieving the standard linear form in
equation 2. Some special functions like Bessel, Hankel, Struve and Meijer functions are even defined as
solutions of differential equations linear in their coefficients. In general, by considering the differentiated
response variable, y 7→ dy

dx '
y(xi+1)−y(xi)
xi+1−xi , if necessary to higher order, we can learn a surprisingly broad

class of equations relating y and x, even relations that do not exist in closed form.

4 Numerical experiments

We compare all introduced methods (LASSO, LARS, LG-R2, LG-p(M), SR, SR3, FROLS, STLSQ, MIOSR)
in three numerical experiment. For LASSO and LARS, we use the python package scikit-learn Pedregosa
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Table 1: Equation learning techniques used in this study building on regression models as in equations 1, 2.
Acronym Full name Description Reference

LASSO Least absolute shrink-
age and selection oper-
ator

Regularized regression as in equation 4 for q=1. Tibshirani
(1996).

LARS Least angle regression Forward stepwise regression using correlations
between basis functions kn and residuals.

Efron et al.
(2004).

LG–R2 Less-greedy R2 elimina-
tion

For an increasing model size m, the R2 score
is calculated for all candidate models. Based
on the number of times basis functions kn con-
tribute to the models with largest R2, kernel
functions kn are rated and the lowest rated kn
are excluded. Once no new highly rated R2 are
found, the iteration in m terminates and the
model with largest R2 is returned.

This work,
appendix C.

LG–p(M) Less-greedy Bayesian
model selection

Same as LG–R2, but a selection of models is
returned based on maximal Bayesian model
evidence p(M).

This work,
appendix C.

SR Bi-directional stepwise
regression

Iterated forward and backward selection using
the model evidence Bayesian model evidence
p(M) as score.

Hastie et al. (2009),
this work for p(M),
appendix B..

SR3 Sparse relaxed regres-
sion

The regularization is put on an auxiliary vari-
able u and an extra distance term like ‖w−u‖q
is added to equation 4.

Zheng et al.
(2019).

FROLS Forward regression or-
thogonal least-squares

Forward selection stepwise regression with
score given by equation 4 for q=2.

Billings
(2013)

STLSQ Sequentially thresh-
olded least squares

Backward selection stepwise regression using
results of regularized regression for q = 2 in
equation 4.

Brunton et al.
(2016)

MIOSR Best subset selection
via mixed-integer opti-
mized sparse regression

Formulation of regularized regression equa-
tion 4 for q= 0 as a mixed-integer linear pro-
gram and specialized algorithms.

Bertsimas
& Gurnee
(2023)

et al. (2011), for LG-R2, LG-p(M) and SR we use our own implementation, and for SR3, FROLS, STLSQ,
MIOSR we use the python package PySINDy de Silva et al. (2020); Kaptanoglu et al. (2022). As mixed-integer
optimizer for MIOSR we used gurobi with an academic license Gurobi Optimization, LLC (2023). For all
methods from scikit-learn and PySINDy we used 5-fold cross validation and 3 refinement steps to determine
optimal hyperparameters for each application separately. Our own methods, LG-R2 and LG-p(M), are not
very sensitive to hyperparameters and we worked out the universally best values which, in contrast to the
methods we compare to, were used for all applications. The SR method we implemented comes without
hyperparameters. Table 1 gives an overview over all considered methods. More details can be found in
appendix C.
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Figure 2: Identification accuracy of learning 100 random polynomials measured in terms of the difference
Ndiff between the number of true terms found and wrong terms found. We generated polynomials with 2, 3
and 4 terms (left to right), which also constitutes the highest possible value for Ndiff and is indicated by a
gray horizontal line. The percentages above this line indicate how often all exact terms and no wrong terms
have been recovered.

In all experiments, the data is artificially generated, with the advantage that we know the true model. In the
first experiment, we assess the identification accuracy of 100 random polynomials. Since PySINDy is tailored
to learning dynamical systems and cannot directly be applied to learning polynomials, we omitted those
methods in this experiment. In the second and third experiment the methods are applied to two (chaotic)
dynamical systems, where, for the sake of readability, we omitted LARS due to its similar performance
compared to LASSO.

In all experiments we have three features x = (x1, x2, x3), and we used a basis function expansion of
polynomials where the power of individual factors was limited to a maximum of 4, and the combined power
of terms kn(x) to a maximum of 6. For instance, k(x) = x3

1 x2 x
2
3 would be a valid basis function, while

k(x) = x5
1 x2 would be excluded for exceeding the individual power limit of 4, as would k(x) = x4

1 x2 x
2
3 for

exceeding the combined power limit of 6. The resulting feature dimension of K is p = 72.

The results of each experiment are illustrated statistically by boxplots, where the box indicates the interquartile
range, the whiskers extend by a factor 1.5 beyond the box, and outcomes exceeding the whiskers are shown
as individual symbols. The median is shown as a darker horizontal line, the mean as a circle.

4.1 Random polynomials

We randomly generated 100 polynomials with 2, 3, and 4 non-zero weights respectively. We restricted the
terms of the polynomials to have a maximum collective power M2 = 4, where individual features are restricted
to maximum power M1 = 2. The non-zero weights are randomly selected with equal probabilities and their
values are uniformly sampled from the set [−4,−1]∪ [1, 4]. We generated artificial data X for each polynomial
by sampling from normal distributions with means randomly selected from the interval [−20, 20] and standard
deviations such that 5% of their probability mass overlap respectively. For the polynomials sized 2, 3, and 4
we generated N = 20 and N = 65 and N = 95 datapoints, respectively. Plugging X into equation 1 with
f(xi) given by the random polynomial, and corrupting the output with normal noise with standard deviation
σ = 0.01, we generate data for the response variable yi.

The statistics of the identification accuracy for the 100 polynomials are shown in figure 2.

4.2 Lorenz system

As a first dynamical system to test our method, we use the chaotic Lorenz system defined as

ẋ(t) = ε
(
y(t)− x(t)

)
,

ẏ(t) = x
(
ρ− z(t)

)
− y,

ż(t) = x(t)y(t)− βz(t). (9)
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Figure 3: Statistical results for models learnt from data created by solving the Lorenz system equation 9. In
each row of the nine plots a different metric is display: the number of equations identified correctly, the MAE
to solutions of the true model, the MAE multiplied by the size of the learnt model. The first column uses the
statistics across all scenarios, the second column splits it up in terms of number of datapoints N , and the
third column in terms of timestep width ∆t.

The parameters are fixed to its standard values ε = 10, ρ = 28 and β = 8/3. As initial condition, we use
(x0 = −8, y0 = 8, z0 = 27). We obtain between N = 200 and N = 10000 data points by solving equation 9
numerically for timestep widths between ∆t = 0.001 and ∆t = 0.1. We corrupt the solutions with normal
noise levels between σ = 0.001 and σ = 0.1. Forcing the simulation time to be larger than T = 2, we thus
have 80 different scenarios with varying N , ∆t, σ and T . We apply the equation learning methods to all
scenarios to obtain some statistics on identification accuracy and mean-absolute error (MAE).

We measure the identification accuracy as the number of correctly identified equations comprising the model
equation 9. The MAE is obtained by solving the learnt dynamical system equations numerically for randomly
selected initial values, and comparing the result with the solution we get solving the true equations 9 for the
same initial condition.

To further increase the sample size for the statistical evaluation of the methods, and to exclude the possibility
to have a particular initial condition that suits a certain method by chance, we sample 100 initial values from
the Lorenz attractor and solve each learnt model from all scenarios and equation learning models for the
same 100 initial values.
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In figure 3 we show the statistical results of our experiment. To emphasize the goal to parsimoniously learn
models, we also plot the statistics of the MAE multiplied by the size Nmodel of the learnt model. In addition
to the overall statistics, we also show the dependency on N and ∆t (splitting the data up in terms of σ or T
did not reveal any insights).

4.3 Rabinovich-Fabrikant equations

Figure 4: Statistical results from models learnt from data created by solving the Rabinovich-Fabrikant system
equation 10. The plots have the same structure as in figure 3: each row shows a different metric, whereas the
columns show the overall statistics or split up in terms of datapoints N or ∆t.
As a second dynamical system, we use the Rabinovich-Fabrikant equations

ẋ(t) = y(t)
(
z(t)− 1 + x(t)2)+ γx(t),

ẏ(t) = x(t)
(
3z(t) + 1− x(t)2)+ γy(t),

ż(t) = −2z(t)
(
α+ x(t)y(t)

)
. (10)

We choose the parameter values α = 0.14 and γ = 0.1, and the initial conditions (x0 = −1.5, y0 = 0, z0 = 1).
We consider 84 scenarios comprising values N = 1000 to N = 16000, ∆t = 0.001 to ∆t = 0.1, and σ = 0.0001
and σ = 0.01, where we enforce T ≥ 5. We solve equation 10 numerically and corrupt the solutions with
noise as for the Lorenz system.

The results are shown in figure 4 in the same fashion as for the Lorenz system.

The python code to reproduce these results have been included in the supplementary material.
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5 Discussion

In this section, we discuss the results of the numerical experiments shown in the previous section.

We begin with the learning of the random polynomials and stress the difficulty of this task, which consists in
various aspects: i) Randomly generated polynomials are not hand-picked examples where some fine-tuning is
possible. ii) The artificially generated data was not tested to represent the polynomial uniquely. iii) Even
if an inferred polynomial deviating from the the true polynomial would describe the data well, it does not
contribute positively to the identification accuracy.

With these aspects in mind, it is quite remarkable that overall many of the polynomials could be recovered,
as shown in figure 2. Particularly striking is the success rate of LG-R2 solely based on R2, whereas the
LASSO and LARS clearly overfit in terms of model size. However, the overall accuracy clearly declines with
increasing number of non-zero terms. This can be explained with a higher chance of terms being selected
spuriously leading to too early or too late stopping of exploring the required number of terms. Also the risk
of erroneously removal of true terms from K increases. We are confident that more refined stopping and
removal criteria can overcome these inaccuracies. In combining several criteria, we see an opportunity to
improve the accuracy even further.

The Lorenz system has between 2 and 3 terms per equation, and as such was learnt quite successfully, as the
first row of figure 3 shows. The highest identification accuracy is again achieved by LG-R2, the LASSO was
not able to identify any equation, and of the SINDy methods the relaxed regularized regression SR3 and the
best subset-selection using mixed integer optimization MIOSR performed best. In terms of MAE, the LASSO
is among the best, but requires significantly larger models is shown by Nmodel MAE. Most of the methods
are relatively robust against N and ∆t. Interestingly, Nmodel MAE worsens with more datapoints in the case
of MIOSR but improves for the LASSO, signifying that `0 regression “sees” more in the data than there is
if given enough data, while `1 requires more data to produce smaller models (c.f. equation 4). Regarding
robustness against larger timesteps, it turns out that MIOSR is particularly sensitive with deteriorating
performance for smaller ∆t, as well as FROLS and the LASSO to a lesser extent.

The Rabinovich-Fabrikant system turned out to be particularly difficult to learn. The identification accuracy
for the LG methods, the SR using p(M) and the relaxed regularized SR3 was on average just below 1 equation,
while the other methods failed to identify any equation in all scenarios. No method was able to learn the
complete system of equations correctly. Interestingly, the MAE was still reasonable, in particular the LASSO
performed well. Splitting up in N and ∆t do not provide any additional insight in particular and are just
shown for completeness.

A particular problem in learning dynamical systems is that there is no guarantee that the learnt models are
solvable. In cases where the numerical solutions failed, we excluded the results from the statistics and kept a
record of how often this happened for the various equation learning methods. For the Lorenz system, LASSO,
SR3 and STLSQ failed at about 1%, MIOSR at about 20%, and the other methods always produced solvable
systems. This is a little different for the Rabinovich-Fabrikant system, where all methods produced unsolvable
models between about 1% and 15%, with STLSQ the most problematic followed by SR3 and LG-R2.

6 Conclusions

We extensively tested our methods LG-R2, LG-p(M) and the bi-directional SR employing p(M) against the
standard methods LASSO and LARS, as well as state-of-the-art methods SR3, FROLS, STLSQ and MIOSR.
To our knowledge, we are the first to explore equation learning based on an exhaustive candidate model
evaluation outperforming existing state-of-the-art methods in terms of identification accuracy, and at least on
equal terms regarding forecast quality.

A disadvantage of our less greedy approach is the higher computational cost and the absence of clear time
complexity measures. However, a direct advantage is that the model evaluation is trivially parallelizable. Also
the little amount of data needed for high success rates is striking – tests on two sets of random polynomials
where even done with less datapoints than rows in K. Testing candidate models individually also allows for
great flexibility when it comes to constraints or conditions on models such as solvability, as well as eliminating

11



Under review as submission to TMLR

the risk of getting stuck in local minima of an objective function. It also allows combining several criteria for
model and feature selection, in particular complementing existing methods in an independent way with the
potential of synergy effects.

The observation that learnt chaotic model comprising all true terms plus a few extra terms can decrease the
MAE has an interesting implication worth exploring in a future work: It seems possible to learn correction
terms from data that lead to a better forecast horizon than the true model itself.

Finally, we contributed towards the utilization of the Bayesian model evidence p(M) in equation learning.
Here, we benefit from using a conjugate prior for which p(M) can be computed analytically, and showed
in our numerical experiments that our choice of empirical prior is well suited for the tasks considered here.
However, in general, one would like to have the freedom to select any prior which may entail particularly
computationally costly evidence estimators. Performing the less greedy search with R2 (and possibly other
criteria) can boil down the number of candidate models to a feasible number, an approach planned to be
explored in a future work.

Considering these possibilities and the promising identification accuracy achieved, we hope to open a new
avenue of equation learning.
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A Linear regression

In this section, we show how linear regression can be applied to equation learning, which sets the basis of this
work. Details to regression can be found in Montgomery et al. (2012).

Starting point are N observations (yi, xij), where the index i denotes data points, and the index j denotes fea-
tures. We assume that the response (dependent) variable y is given as a function of explanatory (independent)
variable x,

y = f(x) + σz, (11)

where f(x) defines the model, z is a standard normal random variable, and σ2 is the variance of the noise
term. The explanatory observations are often organized in terms of a design matrix X, with features in
columns and datapoints in rows, Xij = xij .

We assume that f(x) can be given in terms of p basis functions kn(x),

f(x) =
p∑

n=1
wnkn(x), (12)

with weights wn, known as basis function expansion. Similar to the design matrix, we can define a basis
function design matrix K with elements Kin = kn(xi).

The ordinary least squares (OLS) estimates for wn are known to be

ŵ = arg min
w∈Rp

∥∥Kw − y∥∥2
2 = (KTK)−1KT y (13)

with the q-norm

‖w‖q =
[∑

n

|wn|q
]1/q

. (14)

Predictions based on the OLS estimates are then given by ŷ = Kŵ.

ŷ = Kŵ. (15)

From the normality of linear regression, it is known that the estimates ŵ follow a normal distribution with
the mean given by the true values for w and the variance given by σ̂2 = (y−ŷ)T(y−ŷ)

N−p . We will use these
properties later to empirically define the prior in the Bayesian description.

In view of equation 13, once a choice of kn(x) is made, the actual learning of the model is straight forward.
The difficult part is the choice of kn(x): on the one hand we require sufficient expressivity of the model to
minimize bias, on the other hand we want to avoid overfitting to minimize variance of predictions. This
bias-variance trade-off essentially dictates the number of kn(x), i.e. the effective dimension of feature space
or complexity. Apart from the appropriate model size, we also seek the "correct" kn(x), in the sense that the
true f(x) is recovered from data generated by equation 11.

A common approach to avoid overfitting is regularization,

ŵ = arg min
w∈RM

[∥∥Kw − y∥∥2
2 + λ‖w‖q

]
, (16)

where ‖w‖q = [
∑
n |wn|q]1/q, and λ is the Lagrange parameter that sets the strength of the `q penalty.

Common choices for q are q = 2 (Ridge regression), q = 1 (the standard, sparsity promoting choice known
as the LASSO), or combinations such as elastic net. A special case of regularization is q = 0, for which
‖w‖0 =

∑
n δwn,0 is the number of non-zero weight estimates – the regression procedure with this penalty is

often called best subset selection and requires specialized optimization algorithms.
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A standard measure for goodness of fit is the coefficient of determination, R2, which relates the variance
explained by the prediction ŷ to the variance of the response variable y,

R2 = 1− (y − ŷ)T(y − ŷ)
(y − ȳ)T(y − ȳ) (17)

Assuming standardized y, R2 can be simplified to

R2 = 1− yTy − yTKŵ − ŵTKTy + ŵTKTKŵ

(y − ȳ)T(y − ȳ) (18)

= 1− yTy − yTKŵ

(y − ȳ)T(y − ȳ) (19)

= 1− yTy − ŵTKTy

(y − ȳ)T(y − ȳ) (20)

= 1− yTy − ŵTKTy

yTy
(21)

= yTK (KTK)−1KT y

yTy
, (22)

where we plugged in equation 15 in the first line, in the 2nd line we used that KTy = KTKŵ, in the 3rd line
that yTKŵ =

∑
jk yjKjkŵk =

∑
jk ŵkKjkyj = ŵTKTy, in the 4th line we assumed that the mean ȳ = 0

due to centering to zero, and in the last line we used ŵ = (KTK)−1KTy.R2 is essentially is a quadratic
form for y where the coefficient matrix is K multiplied with its pseudo-inverse. For sparse weight estimates
ŵ, R2 is extremely efficient to compute.

A value of R2 close to 1 signifies good predictions ŷ. However, it is well known that R2 can always be brought
closer to 1 by increasing the number of features in the model, thus essentially lacking any overfitting penalty
if used naively.

For the purpose of adequate model selection, it is helpful to formulate regression in a Bayesian setting. The
main step to this end is defining the likelihood distribution for y. In the simple case of equation 11, y is
normally distributed,

pli(y|w, σ) = N (µ, σ), (23)

where the mean vector is given by µi = f(xi). Maximization of the log-likelihood reproduces the OLS
result equation 13. Encoding existing information on the weights wn as a prior distribution ppr(w, σ), Bayes’
formula implies for the posterior distribution

ppo(w, σ|y) = pli(y|w, σ) ppr(w, σ)
p(y) , (24)

where the normalization factor p(y) is known as the evidence or marginal likelihood.

The distributions in equation 24 also depend on the choice of modelM given by the representation of f(xi)
in terms of K. AddingM as a condition, and rewriting Bayes’ formula on the level of models,

ppo(M|y) = p(y|M) ppr(M)
p(y) , (25)

we see that the evidence p(y) is in fact the model-likelihood p(y|M) and as such proportional to the model-
posterior (assuming constant model-prior ppr(M) for simplicity). Therefore, if we could maximize p(y|M)
overM, we would in fact identify the model M̂ that most likely explains the observations y.

From equation 24 it follows that the evidence is given by

p(y|M) =
∫

dσ
∫

dw pli(y|w, σ,M) ppr(w, σ), (26)
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which in general is not solvable analytically, and also poses a particularly tough numerical challenge Von Der
Linden et al. (1999); Knuth et al. (2015). Fortunately, by choosing ppr(w, σ) conjugate to pli(y|w, σ,M), the
integral becomes solvable analytically. The conjugate prior, however, is not necessarily the sensible choice
from the inference point of view. In fact, making a good choice for the prior is a much debated problem
Fortuin (2021). Here, we demonstrate that for the purpose of linear equation learning, the conjugate prior is
a suitable choice, if hyper-parameters are distilled from data. The question whether other choices for the
prior would perform significantly better is left for future research.

The conjugate prior for the likelihood equation 23 is the gamma-normal distribution O’Hagan & Kendall
(1994)

p(w, τ |µ,M , k, ϑ) =
√

detM
(2π)p/2Γ(k)ϑk

τp/2+k−1 e−
τ
2 (w−µ)TM(w−µ)−τ/ϑ (27)

with mean vector µ and precision matrix M for the weights w, and shape k and scale ϑ for the precision
τ = 1/σ2. Plugging equation 27 and equation 23 into equation 26 and performing the integration, we obtain
for the log-evidence per data-point the closed expression

1
N

ln p(y|M) = 1
2N ln detM

detA −
1
2 ln 2π −

(1
2 + k

N

)
ln
(ξ

2 + 1
ϑ

)
− k

N
lnϑ+ 1

N
ln Γ

(N
2 +k

)
− 1
N

ln Γ(k) (28)

with A = KTK +M , b = KTy +Mµ, and ξ = yTy + µTMµ− bTA−1b.

A = KTK +M , (29)
b = KTy +Mµ, (30)
ξ = yTy + µTMµ− bTA−1b (31)

We detail the calculations in appendix B.

Owing to the normality of linear regression, and from standardizing the data, it is reasonable to assume the
following parameters for the prior: For the mean vector, we choose µ = ŵ, and the precision matrix is M is
taken to be diagonal with elements diag(M) = 1−p/N

yTy−ŵTKTy
, resulting in normal distributions broadened by

a factor N to make the prior more uninformative. The gamma distribution entering equation 27 has the
mode (k − 1)ϑ, which we set to 1 due to standardized y. The scale is set to ϑ = 1/2 which appears to be
broad enough for an uninformative prior.

For completeness, we mention a few more selection criteria used for comparison in this work. The adjusted
R2 Montgomery et al. (2012)

R2
adj = 1− N − 1

N − p− 1 (1−R2) (32)

equips the usual R2 with an overfitting penalty. The Akaike information criterion (AIC) measures the loss of
information by using the inferred model instead of the (unknown) true model Murphy (2012), and similarly
but derived from the model evidence equation 26 in the big data limit, follows the Bayesian (Schwarz)
information criterion,

AIC = 2pli(y|ŵ, σ̂)− 2p , BIC = pli(y|ŵ, σ̂)− 2p lnN (33)

Similarly, but derived from the model evidence equation 34 in the big data limit, is the Bayesian (Schwarz)
information criterion,

BIC = pli(y|ŵ, σ̂)− 2p lnN. (34)

Apart from the equations that can directly be written in the form of equation 12, a prominent application of
linear equation learning is the sparse identification of dynamical systems,

ẋ(t) = f(x(t)), (35)
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where ẋ(t) denotes the time derivative of x(t). To map this problem to equation 12, the response variable
can be computed from finite differences yi = xi+1−xi

∆t for a fixed time step ∆t.

A restriction for the regression models to stay linear in its parameters is that the parameters of basis functions
only enter as weights w. Basis functions like

eax, ln(a+ x), cos ax, xa, 1
(a+ x)m , . . . (36)

with internal parameter a are not suitable.

This restriction might seem quite limiting. On the other hand, the function f(x(t),w) defining a dynamical
system typically is linear in its parameters w. The reason for that is that functions shown in equation 36
often reproduce when differentiated, which can be used to eliminate these functions, retrieving the standard
form shown in equation 12 and equation 11. being linear in parameters. Some special functions like Bessel,
Hankel, Struve and Meijer functions are even defined as solutions of differential equations.

In general, by considering the differentiated response variable,

y 7→ dy
dx '

y(xi+1)− y(xi)
xi+1 − xi

, (37)

if necessary to higher order, we can learn a surprisingly broad class of equations relating y and x, even
relations that do not exist in closed form. Here, we restrict ourselves to dynamical systems and leave the full
exploration of learning in this broad model class for future work.

While many equations with non-linear parameters can be rewritten in linear form by differentiation as explained
above, some functions like xa, 1

(a+x)m can only be reduced to fractions or require many differentiations
which can give rise to numerical issues. Therefore, if we were able to include fractions in the basis function
expansion, we could expand the model class even further. The problem is that basis functions like 1

1+xn are
divergent for certain values of x, and are also quite limiting in their form.

It is, however, possible to modify the regression model to also incorporate fractions. In its simplest form, we
may consider

y =
∑p
n=1 wn kn(x) + σz∑p
m=1 vm km(x)

(38)

with different (sparse) weights vm but same set of basis functions for the denominator. For the next step, we
assume that kn(x) is part of the numerator, that is w1 6= 0, and we can rewrite

k1(x) =
p∑

m=1

vm
w1

ykm(x)−
p∑

n=2

wn
w1

kn(x). (39)

In this form, k1 takes the role of the response variable, and we have a second set of basis functions given
by ykm. For a given model of this form, the weights also follow deterministically from equation 13, only w1
needs to be determined from a 1-dimensional numerical root-finding algorithm.

A similar idea has been proposed in Kaheman et al. (2020), where a `0 regularized objective function needs to
be minimized for each possible basis function taking the role of k1 above. Our less greedy strategy naturally
includes this procedure as a straight forward possibility, which is planned to be investigated in future work.

B Exact Bayesian model evidence

The model is given by

yi =
∑
n

wnKin + zi/
√
τ (40)
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where Kin = Kn(xi) is the basis function design matrix, wn are the weights, τ = 1/σ2 is the precision, and
z ∼ N (0, 1). For the whole vector y of N responses, we can use the multivariate normal for the likelihood,

p(y |K,w, τ) = τN/2

(2π)N/2
exp

(
− τ

2 (y −Kw)T (y −Kw)
)
, (41)

where the precision matrix is diagonal with identical τ on the diagonal. Since the weight parameters wn enter
quadratically, we can rewrite this expression in normal form for w,

p(y|K,w, τ) = τN/2

(2π)N/2
exp

(
− τ

2 S
)

× exp
(
− τ

2 (w−ŵ)TKTK (w−ŵ)
)

(42)

with the residual sum of squares

S = (y−Kŵ)T(y−Kŵ) (43)
= yTy − ŵTKTy (44)
= yTy − yTK(KTK)−1KTy (45)

The mixed terms cancel after plugging in KTy = KTKŵ from the known OLS solution ŵ = (KTK)−1KTy.

The above is of the form of a gamma distribution for τ multiplied with a normal distribution for w conditioned
on τ . If we use a prior of the same form, we keep the form for the posterior, and thus have found the conjugate
prior.

As a prior for the weights w, we choose

p(w |µ,M) = τp/2
√

detM
(2π)p/2

exp
(
− τ

2 (w−µ)TM (w−µ)
)
, (46)

where τM is the precision matrix with τ split off, and µ is the mean vector of the multivariate normal prior.
Splitting off τ technical means that specifying M is relative to the unknown τ , but τ does not need to be
known for that, as we integrate over all possible τ values.

For the posterior, we are interested in the quadratic form involving w,

(w−ŵ)TKTK (w−ŵ) + (w−µ)TM (w−µ) (47)
= wTAw − 2wT b+ c (48)

with

A = KTK +M (49)
b = KTKŵ +Mµ

= KTy +Mµ (50)
c = ŵTKTKŵ + µTMµ

= ŵTKTy + µTMµ (51)
= yTK(KTK)−1KTy + µTMµ. (52)
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Put into this form, we can use the Gaussian integral
∫

dnx e− 1
2x

TAx+bTx =
√

(2π)n
detA e

1
2 b

TA−1b to marginalize,

p(y | τ) = p(y |K, τ,µ,M) (53)

=
∫

dw p(y |K,w, τ) p(w |µ,M) (54)

=
√
τN+p detM√

(2π)N+p
e−

τ
2 (S+c)

∫
dw e−

τ
2 (wTAw−2bTw) (55)

=
√
τN+p detM√

(2π)N+p
e−

τ
2 (S+c)

√
(2π)p√

τp detA
e
τ
2 b

TA−1b (56)

=

√
τN detM

(2π)N detA e−
τ
2 (yTy+µTMµ−bTA−1b). (57)

For the τ -integration, we choose the gamma distribution

p(τ |k, ϑ) = 1
Γ(k)ϑk τ

k−1 exp
(
− τ/ϑ

)
(58)

as the (conjugate) prior for τ , and define

ξ = yTy + µTMµ− bTA−1b. (59)

The remaining τ -integral follows then from
∫∞

0 dτ τ c0e−c1τ = c−c0−1
1 Γ(c0+1) as

p(y) = p(y |K,µ,M, k, ϑ) (60)

=
∫ ∞

0
dτ p(τ |k, ϑ) p(y | τ) (61)

= 1
Γ(k)ϑk(2π)N2

√
detM
detA

∫ ∞
0

dτ τ N2 +k−1 e−τ( z2 + 1
ϑ ) (62)

=
Γ(N2 +k)

Γ(k)ϑk(2π)N2

√
detM
detA

(z
2 + 1

ϑ

)−N2 −k (63)

and for the log-evidence per data-point we obtain

1
N

ln p(y) = 1
2N ln detM

detA −
1
2 ln 2π

−
(1

2 + k

N

)
ln
(ξ

2 + 1
ϑ

)
− k

N
lnϑ

+ 1
N

ln Γ
(N

2 +k
)
− 1
N

ln Γ(k). (64)

C Details and illustration of less greedy stepwise regression

To our knowledge, all equation learning approaches apart from stepwise regression include an optimization step
in various representation spaces of equations. Here, we propose a strategy that does without any numerical
optimization algorithms, and instead considers candidate models individually in an almost comprehensive
manner. Since already small dictionaries of basis functions can lead to tremendous numbers of candidate
models, a combination of cheap selection criteria and successive reduction of model space with a suitable
stopping criterion is required. We demonstrate how the simple criterion R2 can be used for such a semi-
comprehensive search.

In a first step, a dictionary of basis functions is generated using Algorithm 1. These basis functions consist
of all possible products of available features xj . In these products, the factors are raised to all possible
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Algorithm 1 Model ranking R2

1: Function DesignMatrix(X)
2: Input: data X with N datapoints, l features
3: Parameters: maximum degree M1 for individual features, maximum degree M2 for term
4: build all powers xmjij , mj = (1, ...,M1) . pre-computed for speed, limited to power M1

5: initialize counter p = 0
6: for all unique l-tuples (m1, ...,ml) do
7: if

∑
jmj ≤M2 then . ensure that collective power is limited to M2

8: p := p+ 1
9: K:,p :=

∏
jX

mj
:,j . Design matrix, candidate models in columns

10: end if
11: end for
12: Return: Design matrix K, shape N × p

combinations of powers (line 9), where we restrict individual powers to M1 (line 4) and the combined power
of a term to M2 (line 7). For example, for M1 = 3 and M2 = 5, the term x4

1x3 would not be allowed since
4>M1, and the term x2

1x2x
3
3 would not be allowed because 2+1+3>M2.

The less greedy (LG) strategy we propose is based on this basis function expansion and described by Algorithm
3. It begins by considering all regression models with r non-zero weights wj (line 9), c.f. equation equation 12.
To this end, the auxiliary Algorithm 2 produces a list of models with top R2 values by looping through all
candidate models of size r. These models are returned as an index matrix M , indicating selected terms with
a 1 and deselected terms with a 0, where each column stands for a candidate model (lines 5,11). The models
are sorted in descending order with respect to R2 (line 13).

Back to Algorithm 3, we successively increase r starting from r=1 (lines 7,22). We found that for a fixed
r value, R2 performs particularly well in identifying the best model out of the millions of models (see for
instance the left plot in figure 5). To infer a value for r with just R2, we create a feature rating matrix F
defined as the weighted counts of terms being selected across s top models, where the weight is given by R2.
Based on F , we check for terms selected by R2 for two successive model sizes r and r−1 (lines 16-20). If for
both r and r−1 the same terms are selected consistently, we choose these two terms as part of the inferred
model and conclude the search.

As for larger values of r the number of candidate models can easily reach hundreds of millions, we implement
another strategy to divide out the list of candidate models. If terms have not been selected for two successive
model sizes r and r−1, we remove these terms from the design matrix K (lines 14-15). In this way, we
continuously reduce the model equation space as we go along.

The rationale for this selection and elimination strategy being solely based on R2 is the following: If the
true model has r terms, and we are testing all models with r−2 terms, then the models with largest R2 will
consistently be composed of the r−2 terms that contribute the most to explaining the variance of y. The
other 2 true terms will be selected sporadically but at least once, terms that have not been selected at all can
hence be removed from the candidate models. Testing in the next stage all models with r − 1 terms, one
more term will be consistently selected. The same holds for testing models with r terms, but when testing
models with r+1 terms, no new term can contribute consistently to explaining more of the variance of y.
The R2 measure will increase for models for r+1 terms, but compared to models with r terms, no extra term
will consistently be selected. Therefore, once no new term is selected consistently when incrementing the
number r of terms, we may conclude that all contributing terms have been found. An illustration of this
strategy can be found in figure 5, where a typical case with three two terms in the true equation is shown.

Since the cheap computation of R2 allows to go through millions of models in a matter of minutes on a
standard computer, together with the described less greedy strategy, we are able to consider or exclude all
candidate models that can be built from the basis function dictionary.
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Algorithm 2 Model ranking R2

1: Function TopRsq(y,K)
2: Input: response data y, design matrix K
3: Parameters: number r of terms and t of top models
4: initialize criterion c . flexible length, to store R2 for candidate models
5: initialize model indices M . p rows indicating terms part of models, flexible number of columns
6: initialize model number i = 0
7: for all n=(n1, ..., np) with nj ∈{0, 1},

∑
jnj=r do . possible selections of terms, for fixed r

8: i := i+1, append ci and M:,i = 0
9: reduce Kred := K:,n . extract design matrix for selected terms
10: determine R2 for Kred and y from equation 22
11: store ci := R2 and M:,i := n . each column of M indicates a model with R2 value ci

12: end for
13: sort columns of M and c according to c (descending) . first columns of M now indicate top models in terms of

R2

14: Return: top models M:,:t (shape p× t), criterion c:t (length t) . only return the t best models

Figure 5: An example of how candidate models with 3, 4, and 5 terms with largest R2 in each category
tend to consistently choose the true terms of the model. The indices of all terms in the dictionary (the
basis functions kn(x)) are shown on the left vertical axis. Each candidate model along the horizontal axis
is represented by squares indicating which terms make up the respective model. The ground truth model
in this example has 3 terms, indicated by two lighter squares on the left and the horizontal lines. The case
where the candidate model is the true model is indicated by a vertical line in the middle plot. The R2 value
in a logarithmic scale is shown as a line with closed circles, the values are given by the right vertical axis. It
can be seen that the true model is chosen by R2 among all models with 3 terms.
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Figure 6: In the plot on the left, the t best models in terms of R2 from each of the r-sized candidate models
in figure 5 have been combined and sorting according to their R2 value. Clearly, the models with more terms
are favored over models with fewer terms, and the true model is not selected. The plot on the rights shows
the best models now in terms of the Bayesian model evidence p(y|M), where now the true model is selected
illustrating the adequate overfitting penalty held by p(y|M).

Algorithm 3 Semi-comprehensive search with R2

1: Function SC-Search(y,X)
2: Input: data y,X
3: Parameters: maximum number rmax of terms, number s of top models and threshold cmin for feature

selection

4: K, p := DesignMatrix(X)
5: initialize feature rating F of shape p× rmax . rate importance of terms for different model sizes r

6: initialize search := True
7: initialize number of terms r := 1
8: while search and r ≤ rmax do
9: M , c := TopRsq(y,K, r) . obtain list of models and with their R2 values for fixed model size r

10: append M to Mall . append models to index matrix keeping models for all r

11: F:,r :=
∑s
j cjM:,j . counts how often terms are selected in s top models, weighted by R2 criterion

12: normalize F:,r := F:,r / max(F:,r) . to have ratings between 0 and 1
13: if r ≥ 2 then
14: index i0 := (F:,r + F:,r−1 = 0) . i0=True if terms not selected for two successive model sizes
15: remove K[:, i0] from K . reduce model equation space by those terms
16: index i1 := (F:,r ≥ cmin) . indexes terms with significant rating across best s models of size r

17: index i2 := (F:,r−1 ≥ cmin) . same for previously considered model size r−1
18: if i1 = i2 then
19: search := False . if term is selected twice in a row like this, conclude search
20: end if
21: end if
22: r := r + 1
23: end while
24: Compute criteria { p(y|M),AIC,BIC, R2

adj } for Mall

25: Return: Mall along with criteria
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In a final step, the list of top models from the R2 evaluation can be combined and each tested with other
selection criteria like p(y|M), AIC, BIC or R2

adj. The best choice turned out to be the Bayesian model
evidence p(y|M) (c.f. B). In figure 6 the complexity selection power of p(y|M) is demonstrated.

The hyperparameters of our procedure are the number s of models used to count consistent selection of
basis functions kn(x) together with the threshold cmin the (normalized) count of a feature must exceed to be
selected, the number t of the best models in terms of R2 that are combined in a new list of top models for
re-evaluation with p(y|M) (or other criteria), and the maximum number if iterations, rmax. We found that
the universally best values are s = p/2, where p is the feature dimension, cmin = 0.75, t = 25, and rmax = 8
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