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ABSTRACT

We study the problem of estimating the expected retrospective counterfactual out-
come for an individual with covariates x and observed outcome y, defined as
µ(x, y) = E[Y (1) | X = x, Y (0) = y], and constructing valid prediction in-
tervals under the Neyman–Rubin superpopulation model with i.i.d. units. This
quantity is generally unidentified without additional assumptions. To link the ob-
served and unobserved potential outcomes, we work with a cross-world correla-
tion function ρ(x) = cor(Y (1), Y (0) | X = x) that quantifies their dependence
given the covariates. Plausible bounds on ρ(x), often informed by domain knowl-
edge, enable a principled approach to this otherwise unidentified problem. Given
ρ, we develop an estimator µ̂ρ(x, y) and prediction intervals Cρ(x, y) that sat-
isfy P [Y (1) ∈ Cρ(X,Y (0))] ≥ 1 − α under standard causal assumptions and
Gaussian dependence structure. Almost all existing methods correspond to ei-
ther the case ρ = 0 (ignoring the factual outcome), or ρ = 1 (constant treatment
effects). We show that interpolating between these cases via cross-world depen-
dence yields estimators that are theoretically optimal under (asymptotic) Gaussian
assumptions. In practice, this leads to substantial empirical improvements across
a wide range of scenarios.

1 INTRODUCTION

At its core, causal inference pursues two goals: assessing what would have happened to an individ-
ual under an alternative treatment, and predicting how a new individual will benefit from treatment
(Rubin, 2005). For answering the second goal, the literature focuses on average treatment effects
(ATE) or conditional average treatment effects (CATE). However, estimating retrospective counter-
factuals (first goal) is often more challenging, as it requires untestable assumptions, connected to
the Pearl’s third ladder of causation (Pearl & Mackenzie, 2019). Estimates of counterfactuals are
critical in many fields: in medicine, they enable evaluating how a patient might have responded to a
different treatment (Imbens & Rubin, 2015); in criminal law, they underpin the “but-for” test of cau-
sation, which assesses liability based on whether harm would have occurred absent the defendant’s
action (Wright, 1985).

Consider a medical scenario in which a patient, James, arrives at a hospital with covariates X = x
(e.g., age, weight, and other characteristics), does not receive the treatment (T = 0), and experiences
an outcome Y (0) ∈ R. Estimating his retrospective counterfactual outcome Y (1) is central to
causal reasoning. In high-stakes settings such as healthcare, it is equally important to quantify the
uncertainty in individual treatment effects (ITEs); that is, to construct a set C ⊆ R that contains
Y (1) with high probability.

Existing methods primarily focus on estimating the CATE, defined as τ(x) = µ1(x) − µ0(x),
where µt(x) = E[Y (t) | X = x] for t = 0, 1 can be estimated via e.g. random forest (Wager
& Athey, 2018). The missing counterfactual is often imputed either by Ŷ (1) = Y (0) + τ̂(X), by
Ŷ (1) = µ̂1(X), or through a matching-based approach. Some notable exceptions are presented in
Section 2 and Appendix A.1.

Many existing approaches condition only on covariates X , overlooking the observed (factual) out-
come Y (0), which often contains valuable individual-specific information. For instance, if James
left the hospital healthy after not receiving treatment (T = 0), it is highly likely that he would also
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be healthy under the counterfactual scenario in which he received treatment (T = 1). Incorporating
the factual outcome alongside the covariates can therefore refine individual-level predictions and
improve the accuracy of estimated counterfactuals.

In this work, we propose leveraging covariates and the factual outcome to enhance counterfactual
prediction. Specifically, instead of estimating E[Y (1) | X = x], we aim to construct point estimates

µ̂ρ(x, y) for E [Y (1) | X = x, Y (0) = y] , (1)

and (1− α)-level prediction intervals Cρ(x, y) for the counterfactuals satisfying:

P (Y (1) ∈ Cρ(x, y) | X = x, Y (0) = y) ≥ 1− α, (2)

for α ∈ (0, 1) (typically α = 0.1). Conditioning on the factual outcome introduces a fundamental
challenge: since both potential outcomes are never observed for the same individual, the joint dis-
tribution of

(
Y (0), Y (1)

)
is unidentifiable without further assumptions. To address this, we adopt a

class of assumptions known as cross-world assumptions.

Definition 1 (Bodik et al. (2025)). In the Neyman–Rubin super-population model with i.i.d. units,
the dependence structure (conditional correlation) between the potential outcomes Y (1), Y (0), con-
ditioned on the observed covariates X , is defined as:

ρ(x) = cor
(
Y (1), Y (0) | X = x

)
.

We refer to an assumption about ρ as cross-world assumption.

The term “cross-world assumption” was first introduced in Bodik et al. (2025), and related ideas
have appeared in prior literature (see Section 2), often represented via an additive structural equation
model:

Y (0) = µ0(X) + ε0, Y (1) = µ1(X) + ε1, where cor(ε1, ε0) = ρ(X).

Although ρ is not identifiable from data, postulating plausible values or bounds from domain experts
is often both feasible and well-aligned with how humans make judgments. Observing one potential
outcome often conveys information about the other, beyond what is captured by covariates.

Our contributions. Given a specified value (or a set of plausible values) of ρ, we propose a con-
sistent counterfactual point estimator equation 1 and valid prediction intervals equation 2, under
standard causal assumptions and Gaussian copula. For clarity, we focus on the case T = 0 and
the counterfactual outcome is Y (1); the reverse case is analogous. While the formal definitions of
µ̂ρ(x, y) and Cρ(x, y) are given in Section 3, we present here the key property that motivates their
construction:

Theorem 1 (Motivation and optimality). Let x ∈ X and ρ(x) = cor
(
Y (0), Y (1) | X = x

)
∈

[−1, 1]. Assume an asymptotic scenario: µ̂t(x) = µt(x) and suppose that we found conditionally
valid prediction intervals:

P
(
Y (t) ≤ µ̂t(x) + ut(x) | X = x

)
= 0.95, P

(
Y (t) ≥ µ̂t(x)− lt(x) | X = x

)
= 0.95, t = 0, 1.

If
(
Y (1), Y (0)

)
| X = x is Gaussian, then Cρ prediction intervals, defined in Section 3, are optimal

in a sense that it is the smallest set satisfying:

P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y

)
≥ 0.9.

Moreover, µ̂ρ(x, y) is the optimal point predictor in the sense that it minimizes the mean squared
error:

µ̂ρ(x, y) = argmin
c∈R

E
[
(Y (1)− c)2 | X = x, Y (0) = y

]
.

Our proposed Cρ intervals are introduced in Section 3, following preliminaries in Section 2. In
Section 4, we discuss empirical evaluation compared to other methods. Section 5 concludes.
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2 PRELIMINARIES, RELATED WORK AND CROSS-WORLD ASSUMPTION

We adopt the Neyman-Rubin potential outcomes framework (Rubin, 2005), where each unit i has
potential outcomes Yi(1) and Yi(0), covariates Xi ∈ X ⊆ Rd, and treatment assignment Ti ∈
{0, 1}. The observed outcome is Yi = TiYi(1) + (1 − Ti)Yi(0) ∈ Y ⊆ R, while the ITEi =

Yi(1)− Yi(0) remains unobservable. We assume (Yi(1), Yi(0), Ti, Xi)
i.i.d.∼ (Y (1), Y (0), T,X), for

a generic random vector (Y (1), Y (0), T,X). The conditional average treatment effect (CATE) is
defined as τ(x) = µ1(x)− µ0(x) with µt(x) = E[Y (t) | X = x].

We impose strong ignorability and overlap, meaning (Y (1), Y (0)) ⊥⊥ T | X and 0 < π(x) < 1
for all x ∈ X , where π(x) = P(T = 1 | X = x) denotes the propensity score. These conditions en-
sure that treatment is as-if randomly assigned given covariates and that both treatments are feasible.
Under these assumptions, CATE is identified via µt(x) = E[Y | T = t,X = x](Wager, 2024).

We note that some authors use the terms “ITE” and “CATE” interchangeably, which can lead to
confusion. Here, ITE is a latent, unit-specific quantity, while the CATE is an unknown function,
defined as the conditional expectation of the ITE given covariates.

2.1 RELATED WORK: CROSS-WORLD ASSUMPTION

In the potential outcomes framework, the joint distribution of
(
Y (1), Y (0)

)
| X is unidentifiable

because only one potential outcome is observed per unit. While CATE can be identified without
assumptions on this joint law, quantities such as variance, quantiles, or prediction intervals of ITE
generally depend on the cross-world correlation ρ(X) = cor

(
Y (1), Y (0) | X

)
(Rubin, 1990; Ding

et al., 2019). This has been studied in joint distribution modeling (Heckman et al., 1997; Fan &
Park, 2010), quantile treatment effect estimation (Firpo, 2007) and nonparametric bounds using
copulas (Zhang & Richardson, 2025a;b; Nelsen et al., 2001). Andrews & Didelez (2021) highlight
the implausibility of cross-world independence assumptions in mediation analysis; we complement
these by parameterizing cross-world dependence via ρ(x).

Bodik et al. (2025) and Cai et al. (2022) argue that in many real-world applications ρ is almost always
non-negative and often substantially positive due to shared latent factors affecting both potential
outcomes. Formally, consider a model where Y (1) = µ1(X)+H+ε̃1 and Y (0) = µ0(X)+H+ε̃0,
where X ∈ Rd are observed covariates, H ⊥⊥ (X,T ) is an unobserved factor influencing both
potential outcomes, and ε̃0 ⊥⊥ ε̃1 are idiosyncratic noise terms. Conditioning on X , it is easy
to derive that ρ(X) = cor(Y (1), Y (0) | X) = var(H)√

var(ε̃0) var(ε̃1)
≥ 0. Whenever var(H) > 0,

the shared influence of H induces strictly positive correlation between Y (1) and Y (0), even after
adjusting for X . Moreover, if the treatment has no or very small effect, then Y (1) ≈ Y (0) and
hence ρ ≈ 1.

Following Bodik et al. (2025), the choice of ρ(x) can be guided by practitioners by asking: “What
proportion of the outcome variability is driven by latent factors that influence both potential out-
comes in a similar way?” In other words, what values are plausible for var(shared latent effects)

var(idiosyncratic noise) . In many
complex systems, it is reasonable to expect a substantial contribution from shared latent compo-
nents, suggesting that ρ(x) may typically exceed 0.5. At the same time, ρ(x) is rarely close to 1,
since treatment effects generally exhibit heterogeneity even among individuals with the same ob-
served covariates X . This is not a universal rule, but a practical guideline grounded in the idea how
latent common causes in many real-world systems influence both Y (0) and Y (1).

As an example, consider a clinical trial testing a new drug for reducing blood pressure, where the
treatment is randomly assigned and standard causal assumptions hold. Let Yi(1) denote patient i’s
blood pressure after receiving the drug and Yi(0) after receiving a placebo. Even though baseline
covariates such as age, weight, and existing conditions are observed, unmeasured factors like genetic
predisposition can strongly influence both potential outcomes. A patient with naturally resilient car-
diovascular health will likely exhibit relatively low blood pressure regardless of treatment, whereas
a patient with severe underlying issues will tend to have higher readings in both scenarios. These
persistent latent traits induce a positive dependence between Yi(1) and Yi(0) even after adjusting
for observed covariates. Given this medical knowledge, it is reasonable to assume ρ(x) is not only
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positive but possibly large, likely above 0.5. See Bodik et al. (2025) for more examples when some
domain knowledge about ρ is available.

2.2 RELATED WORK: RETROSPECTIVE COUNTERFACTUALS FOR IN-STUDY UNITS

Inferring individual counterfactual outcomes is fundamentally a missing data problem (Ding & Li,
2018). Many methods for counterfactual prediction use CATE-adjusted imputation Ŷi(1) = Yi(0)+
τ̂(Xi), where τ̂ is estimated using doubly-robust estimator, random forests or S/T-learner (Wager,
2024; Künzel et al., 2019; Athey et al., 2019). Other approaches directly model the treated outcome
as Ŷi(1) = µ̂1(Xi), thereby ignoring information contained in the observed outcome Yi(0) (possibly
using control group only for the propensity estimation, Lei & Candès (2021)).

Classic counterfactual prediction methods target E[Y (T ) | X] without conditioning on Y (0). For
instance, Kim et al. (2022) propose a doubly robust estimator for counterfactual classification that
directly models the treated outcome distribution, and McClean et al. (2024) develop nonparametric
estimators for conditional incremental effects (based on stochastic propensity interventions) with
a similar goal of directly estimating E[Y (1) | X]. More recently, Kim (2025) introduces a semi-
parametric counterfactual regression framework that likewise estimates E[Y (1) | X] using flexible
machine learning. These approaches forego individual-level imputation using Y (0), instead relying
on robust modeling of the treated outcome. Most existing methods focus on minimizing the Preci-
sion in Estimation of Heterogeneous Effects (PEHE), defined as EX

(
τ̂(X)−τ(X)

)2
, which targets

CATE recovery. However, optimizing PEHE is not well suited for inference about counterfactuals.

There are a few notable exceptions where the construction of Ŷi(1) follows a different principle.
Adversarial approaches: Yoon et al. (2018) introduce GANITE, which employs adversarial train-
ing to generate Ŷi(1). Although GANITE innovatively bypasses strict model assumptions, it focuses
on PEHE and relies on black-box adversarial neural networks without explicitly modeling the joint
distribution of potential outcomes. It typically performs well with large dimensions but poorly with
small ones. Bayesian causal inference: Missing counterfactuals are treated as latent variables, and
uncertainty is integrated through the posterior distribution. For example, Alaa & van der Schaar
(2017) propose a Bayesian multitask Gaussian process to jointly model

(
Y (1), Y (0)

)
| X , pro-

ducing posterior distributions over the potential outcomes. While Bayesian methods offer coherent
uncertainty quantification, they rely on strong modeling assumptions and can be sensitive to prior
specifications (Li et al., 2022). Moreover, they can be restrictive when aiming to leverage flexi-
ble modern machine learning techniques. Matching methods: Matching-based approaches (Hur &
Liang, 2024) estimate counterfactual outcomes by pairing individuals i, j with similar covariates but
different treatments, and approximating the ITE as Yj(1) − Yi(0). However, this construction im-
plicitly assumes independence between the potential outcomes (ρ = 0). To our knowledge, existing
matching methods do not incorporate matching mechanisms that depend directly on the value of Yi.

More detailed literature review can be found in Appendix A.1.

3 CONSTRUCTING COUNTERFACTUAL ESTIMATE UNDER CROSS-WORLD
ASSUMPTIONS

Our goal is to construct a point estimate and prediction interval for the counterfactual outcome. If
both Yi(1) and Yi(0) were observable for some individuals, the problem would reduce to classical
regression with the factual outcome as an additional covariate. Since this is not possible, inferring
counterfactual outcomes remains fundamentally challenging.

A natural starting point is to separately construct point estimates and prediction intervals for the
treated group and the control group. For point prediction, any machine learning method, such as
random forests or neural networks, can be used. For interval estimation, any conformal or other
uncertainty quantification approach can be applied. We refer to Appendix A.2 for details on classical
methods and their properties. Suppose their form is as follows:

µ̂0(x) and µ̂1(x) are estimates of µ0(x) and µ1(x), respectively, and

C̃0(x) = [µ̂0(x)− l0(x), µ̂0(x) + u0(x)], C̃1(x) = [µ̂1(x)− l1(x), µ̂1(x) + u1(x)],
(3)

4
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Figure 1: Proposed counterfactual estimator Ŷ (1) := µ̂ρ(x, y) and interval Cρ(x, y), combining
baseline predictions with cross-world dependence. Here, ρ = 0 corresponds to ignoring the factual
outcome, while ρ = 1 assumes perfect dependence. Illustrated on five highlighted units.

where lt, ut ≥ 0 are the (lower and upper) widths of prediction intervals for Y (t), t = 0, 1. This is
visualized in Figure 1. Ideally, C̃t satisfy either marginal or conditional coverage:

P
(
Y (t) ∈ C̃t(X)

)
≥ 0.9, or P

(
Y (t) ∈ C̃t(x) | X = x

)
≥ 0.9,

where marginal coverage is automatically satisfied for conformal methods, while conditional cover-
age typically requires large sample sizes or strong assumptions in case of high-dimensional X . We
combine these quantities to construct a point estimate µ̂ρ and a prediction interval Cρ as follows:

Definition 2. Let ρ ∈ [−1, 1]. Consider baseline estimates in the form equation 3. We first define
the point predictors:

µ̂t
ρ(x, y) =


µ̂1(x) + ρ · λ(x) · (y − µ̂0(x)) , if t = 0,

µ̂0(x) + ρ · 1

λ(x)
· (y − µ̂1(x)) , if t = 1,

where λ(x) = l1(x)+u1(x)
l0(x)+u0(x)

is the relative width of the baseline prediction intervals. Given these
point predictors, we define the Cρ intervals by

Ct
ρ(x, y) =


[
µ̂t
ρ(x, y)−

√
1− ρ2 · l1(x), µ̂t

ρ(x, y) +
√
1− ρ2 · u1(x)

]
, if t = 0,[

µ̂t
ρ(x, y)−

√
1− ρ2 · l0(x), µ̂t

ρ(x, y) +
√
1− ρ2 · u0(x)

]
, if t = 1.

For notational simplicity, we omit the superscript and write Cρ(x, y) = Ct
ρ(x, y) and µ̂ρ(x, y) =

µ̂t
ρ(x, y) when evident from context (typically when t = 0 and the counterfactual Y (1) is of interest).

The choices for µ̂ρ and Cρ are motivated by Theorem 1. The intuition is simple: the larger ρ, the
more weight is put on the (centered) factual outcome. The role of λ(x) is to adjust for potential dif-
ferences in variance between treated and untreated groups; in settings where equal variances across
groups can be reasonably assumed, one may simply set λ(x) = 1. While a claim of optimality
in Theorem 1 is a strong statement, the result holds only under an idealized asymptotic scenario.
In practice, estimation error or non-Gaussianity can lead to suboptimal performance, while addi-
tional assumptions can lead us to a different optimal prediction intervals. Nonetheless, the theorem
provides valuable motivation: it shows that under ideal conditions, the Cρ construction yields the
smallest valid prediction set for a counterfactual.

3.1 CONSISTENCY

A direct consequence of Theorem 1 is that our estimators are consistent when the cross-world de-
pendence between Y (1) and Y (0) is correctly specified.
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Theorem 2 (Asymptotic consistency of µ̂ρ and Cρ). Let x ∈ X and suppose
(
Y (1), Y (0)

)
| X = x

is Gaussian with ρ = cor
(
Y (1), Y (0) | X = x

)
∈ [−1, 1].

Let µ̂t(x) be consistent estimators of µt(x), and assume the prediction interval widths lt(x), ut(x)
are asymptotically conditionally valid1 Then, for any fixed y ∈ R: µ̂ρ(x, y) is a consistent estimator
of the conditional mean,

µ̂ρ(x, y)
p−→ E

[
Y (1) | X = x, Y (0) = y

]
, as n → ∞.

The Cρ prediction intervals achieve asymptotic conditional coverage,

lim
n→∞

P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y

)
= 0.9.

The assumption of Gaussianity and ρ(x) are both modeling assumptions about how Y (1) and Y (0)
relate, and neither can be learned from data. The Gaussian copula simply translates a chosen value of
ρ(x) into a fully specified cross-world distribution, and any other copula could serve the same role.
This highlights the central challenge of retrospective counterfactual prediction: a full dependence
structure between the two potential outcomes must be specified, not estimated. Analogous consis-
tency and optimality results to Theorem 2 can be straightforwardly derived under any alternative
cross-world dependence structure.

3.2 SPECIAL CASES: ρ = 0 AND ρ = 1

When ρ = 0, our predictions do not depend on y: µρ(x, y) = µ̂1(x) and Cρ(x, y) = C̃1(x), as the
factual outcome Yi(0) provides no information about the missing potential outcome. The problem
then reduces to a standard regression setting, as discussed e.g. in Lei & Candès (2021). Under
Y (1) ⊥⊥ Y (0) | X , our Cρ intervals inherit the validity of the baseline C̃1 interval:

P(Y (1) ∈ C̃1(X) | X = x) ≥ 0.9 =⇒ P(Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y) ≥ 0.9. (4)

Moreover, Cρ is marginally valid even in finite samples, if C̃1 is marginally valid (which holds if a
conformal method is used).

When ρ = ±1 and λ(x) = 1, we have µ̂ρ(x, y) = y + τ̂(x) and Cρ(x, y) = {µ̂ρ(x, y)}, corre-
sponding to a constant treatment effect:

µρ(x, y0) = µ̂ρ(x, y0) =⇒ P(Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y) = 1. (5)

In practice, however, µρ(x, y0) is unknown and must be estimated, introducing bias and potentially
non-valid prediction intervals. Section 3.3 discusses how to extend Cρ intervals to account for the
additional uncertainty from this estimation.

3.3 FINITE SAMPLE BIAS CORRECTION: INTRODUCING C+CI
ρ PREDICTION INTERVALS

We enlarge Cρ prediction intervals by adding confidence intervals for µρ, estimated for instance via
bootstrapping.
Definition 3. Let ρ ∈ [−1, 1]. Consider prediction intervals for Y (1) and Y (0) of the form equa-
tion 3, and suppose we have confidence intervals CI(x, y) = [µ̂ρ(x, y) − rl(x, y), µ̂ρ(x, y) +
ru(x, y)]. We define the bias-corrected C+CI

ρ intervals as

C+CI
ρ (x, y) =

[
µ̂ρ(x, y)− c · rl(x, y)−

√
1− ρ2 · l1−Ti

(x), µ̂ρ(x, y) + c · ru(x, y) +
√
1− ρ2 · u1−Ti

(x)
]
,

where l1−Ti
(x) and u1−Ti

(x) select the appropriate prediction bounds depending on treatment
status Ti, and c ∈ [0, 1] is a hyperparameter. In simple terms, C+CI

ρ extends Cρ by adding a scaled
confidence interval around µ̂ρ(x, y), with scaling factor c. We consider the choice c = ρ2 following
the same argument as in (Bodik et al., 2025).

1This holds for many nonparametric estimators under mild smoothness assumptions, including random
forests for estimating µ̂t(x) and CQR using quantile random forests for prediction intervals. More details are
given in Appendix D.
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Following equation 4 and equation 5, when ρ = 0, no adjustment is needed, while for ρ = ±1, full
confidence intervals must be incorporated to guarantee correct coverage. This motivates the choice
c = ρ2, ensuring that C+CI

ρ smoothly interpolates between no correction (ρ = 0) and full correction
(ρ = 1). For this choice, we also have the following guarantee.
Consequence 1. If ρ = ±1 and confidence intervals satisfy P(µ(x, y0) ∈ µ̂ρ(x, y0) ± r(x, y0)) ≥
1− α, then P(Y (1) ∈ C+CI

ρ (X,Y (0)) | X = x, Y (0) = y) ≥ 1− α.

4 NUMERICAL EXPERIMENTS

We evaluate our method on synthetic, semi-synthetic, and real datasets using both point estimation
and prediction interval metrics, comparing against four baselines under varying cross-world corre-
lation ρ. A user-friendly implementation of our methods in both R and Python, along with scripts
to reproduce all experiments, is available at: [github link anonymized for review].

4.1 DETAILS

Datasets: We consider a variety of data-generating processes commonly used in the related litera-
ture; full details are provided in Appendix C.1. The synthetic datasets feature non-constant propen-
sity scores and randomly generated CATE functions based on smooth random polynomials. These
settings allow us to vary the dimensionality d = dim(X) and the cross-world correlation parame-
ter ρ, thus controlling both complexity and treatment-effect heterogeneity. In addition, we include
the IHDP dataset, which uses real covariates from a randomized trial and simulated counterfactual
outcomes, providing a semi-synthetic benchmark. The Twins dataset contains real covariates and
real paired outcomes corresponding to different treatment assignments, enabling the construction of
both factual and counterfactual outcomes for each unit.

Implementation details: To better reflect real-world scenarios where ρ is unknown, we report both
i) ρused = ρtrue and ii) ρused = ρtrue + Unif(−0.5, 0.5) capped at [−1, 1].

To construct the proposed Cρ and C+CI
ρ intervals, we use CQR (see Appendix A.2) to produce the

base intervals in equation 3. While more advanced methods often achieve better empirical results,
we adopt CQR as a simple, well-established baseline, following Lei & Candès (2021); Alaa et al.
(2023), and Bodik et al. (2025).

Our algorithm jointly estimates conditional means and quantiles: in low dimensions (d ≤ 5) we
use GAM for the mean and qGAM (Fasiolo et al., 2017) for quantiles, while in higher dimensions
(d > 5) we switch to random forests for the mean and quantile random forests (Meinshausen &
Ridgeway, 2006) for quantiles, trading some low-dimensional efficiency for scalability. TabPFN
(Hollmann et al., 2023) is a good potential alternative.

Baseline methods: In Appendix A.1, we provide details of the existing methods used to estimate
counterfactuals. We consider four representative approaches. First, CATE-adjusted imputation
estimates the CATE via a T-learner (Künzel et al., 2019), DR-learner (doubly robust, Dukes et al.
(2024)) or Generalized Random Forest (Athey et al., 2019), and adjusts the observed outcome using
Ŷi(1) = Yi(0) + τ̂(Xi). We only report the T-learner as it yielded the best results on the considered
datasets. Note that while many other CATE estimators exist, the goal is to illustrate the core imputa-
tion approach, which remains fundamentally limited even with perfectly estimated CATE. Second,
Direct Outcome (DO) modeling fits the treatment-specific regression Ŷi(1) := µ1(Xi) using Ran-
dom Forests (Wager & Athey, 2018) or Generalized Additive Models (Fasiolo et al., 2017) (using
the same choices as in Cρ). Third, Matching-based imputation uses nearest-neighbor matching
with Mahalanobis distance to impute the missing potential outcome from similar units in the op-
posite treatment group. Fourth, adversarial generative modeling employs GANITE (Yoon et al.,
2018), a two-stage generative adversarial network that imputes and refines counterfactual predic-
tions, typically suitable only in high-dimensional, nonlinear settings.

Setup: We conducted experiments on datasets: synthetic (n = 1000), IHDP (n = 747), and Twins
(n = 11,983). Each synthetic and IHDP experiment was repeated 50 times to reduce Monte Carlo
variability, while the Twins dataset was analyzed once using the full sample. All methods used
an 80/20 train–calibration split for CQR and prediction intervals at level α = 0.1. Computing µρ

and Cρ is fast, as the main cost lies in fitting four quantile regressions; however, C+CI
ρ requires
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Figure 2: Mean squared error of different estimators across different datasets, averaged over 50
repetitions. In µρ, we use either ρ = ρtrue, or mimic misspecification by using ρ = ρtrue +
Unif(−0.5, 0.5). Standard deviations for each entry can be found in Appendix B.

computing bootstrap confidence intervals (we used 100 bootstraps), which is computationally more
intensive; running all datasets and repetitions took approximately four days on an Intel Core i5-
6300U (2.5 GHz, 16 GB RAM).

Metrics: To assess performance, we use MSE for point predictions and the Interval Score (metric
that combines coverage and width) for prediction intervals:

MSE = 1
n

n∑
i=1

(Ŷ cf
i − Y cf

i )2, ISα = 1
n

n∑
i=1

(Ui − Li) +
2
α

[
(Li − Y cf

i )+ + (Y cf
i − Ui)+

]
,

where [Li, Ui] are the estimated prediction intervals at level 1− α and z+ = max(z, 0).

4.2 RESULTS OF THE EXPERIMENTS

Figure 2 presents the MSE results of point predictions; Figure 5 in Appendix C.2 presents the in-
terval scores for prediction intervals. Both of the variants (correctly specified ρ and misspecified ρ)
strongly outperform other methods in scenarios where ρ ̸= 0 or 1; if ρ = 0 note that DO have al-
most identical performance as our method. If ρ = 1, the CATE-adjusted estimators have competitive
performance.

While it seems that GANITE has very bad performance, note that it was built for large dimensional
problems, and for large d and n it would perform often better. Our method is more suitable for low
dimensions, when the factual Y (T ) contains significant information beyond the information in the
observed covariates.

In a few real-world datasets, ρmisspec yields slightly better performance than ρcorrect, a consequence
of Monte Carlo variability. As shown in Figure 5, the corresponding confidence intervals are large
in these cases, and resolving these differences would require hundreds of repetitions to reduce sim-
ulation noise.
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Figure 3: Gap = MSEour−MSEoracle calculated across different misspecifications of ρ. Bias persists
when ρ is far from the truth, but vanishes asymptotically if ρ is specified correctly. This demonstrates
that incorporating even approximate knowledge of cross-world dependence improves counterfactual
predictions.

4.3 ADDITIONAL EXPERIMENTS: MISSPECIFIED ρ AND NON-GAUSSIANITY

We conduct two additional experiments, evaluating the Gap = MSEour−MSEoracle, where the oracle
estimator is equal to the true E[Y cf | X,Y obs, T ]. All details can be found in Appendix B.

• (Misspecifying ρ). Figure 3 reports experiments on synthetic data varying the true correla-
tion ρtrue in the data-generating process (DGP) and the assumed value ρest in our estimator.
Bias grows with misspecification |ρest − ρtrue|, and vanishes with larger n only when ρest
is close to ρtrue; otherwise, it persists even asymptotically. This shows that even rough
knowledge of ρ yields large gains over ignoring the factual outcome.

• (Robustness to non-Gaussianity). Appendix B.1 (Figure 4) contains experiments with
non-Gaussian outcome distributions (Y (0), Y (1)). In all cases the gap vanishes with n,
though convergence is slower under non-Gaussian noise. Discrepancies are most visible at
ρ = 1.

5 CONCLUSION AND FUTURE RESEARCH

The factual outcome carries valuable individual-level information that should not be ignored in
counterfactual prediction. We formalize the importance of the factual outcome through the cross-
world correlation parameter ρ, which determines how strongly observed and unobserved outcomes
are linked. By treating ρ as an explicit modeling choice, our approach interpolates between classical
extremes, with ρ = 0 discarding the factual outcome and ρ = 1 assuming constant effects, and
delivers predictions that are theoretically well motivated and empirically effective whenever even
approximate knowledge of ρ is available.

Although ρ is not identifiable from observed data, every existing method already makes a fixed,
implicit assumption about ρ. Our contribution is to make this dependence explicit, enabling practi-
tioners to incorporate domain knowledge or sensitivity analysis into counterfactual inference. This
transparency clarifies the assumptions underlying prediction and opens new possibilities for model-
ing cross-world dependence.

Future work should explore richer dependence structures, such as copula-based models, which
would enable a broader class of assumptions about how potential outcomes co-vary. This would
yield a more general framework for counterfactual prediction, accommodating settings where simple
correlation is inadequate. Another promising direction is to extend the methodology to continuous
treatments or dynamic settings such as time series, where cross-world assumptions could provide
structure for dose–response curves or evolving interventions, thereby enhancing both interpretability
and stability. Beyond methodological extensions, future research may also investigate applications
in domains where expert knowledge about cross-world dependence is available, such as medicine,
economics, or climate science.
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REPRODUCIBILITY STATEMENT AND USAGE OF LARGE LANGUAGE MODELS

All code and datasets used in this work are provided in the supplementary material to ensure full
reproducibility of our results. We declare that we used a large language model for grammar and
language polishing, as well as for limited coding assistance (e.g., boilerplate code and debugging).
All conceptual and theoretical contributions, experimental designs, and conclusions are our own.

REFERENCES

A. Abadie and G. Imbens. Large sample properties of matching estimators for average treatment
effects. Econometrica, 2006.

A. Agarwal, M. Xiao, R. Barter, O. Ronen, B. Fan, and B. Yu. PCS-UQ: Uncertainty quantification
via the predictability-computability-stability framework, 2025. URL https://arxiv.org/
abs/2505.08784.

A. Alaa and M. van der Schaar. Bayesian inference of individualized treatment effects using
multi-task gaussian processes. In Advances in Neural Information Processing Systems, vol-
ume 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf.

A. Alaa, Z. Ahmad, and M. van der Laan. Conformal meta-learners for predictive inference of
individual treatment effects. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=IwnINorSZ5.

R. M. Andrews and V. Didelez. Insights into the cross-world independence assumption of causal
mediation analysis. Epidemiology, 32(2):209–219, 2021. doi: 10.1097/EDE.0000000000001313.

A. N. Angelopoulos, R. F. Barber, and S. Bates. Theoretical foundations of conformal prediction,
2024. URL https://arxiv.org/abs/2411.11824.

S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. The Annals of Statistics, 47(2):
1148–1178, 2019.

I. Azizi, J. Bodik, J. Heiss, and B. Yu. Clear: Calibrated learning for epistemic and aleatoric risk,
2025. URL https://arxiv.org/abs/2507.08150.

K. Bairaktari, R. Izbicki, and E. J. Candès. Kandinsky conformal prediction: Beyond class- and
covariate-conditional coverage. In Proceedings of the 42nd International Conference on Machine
Learning (ICML), 2025. URL https://arxiv.org/abs/2502.17264.

R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. The limits of distribution-free condi-
tional predictive inference, 2020. URL https://arxiv.org/abs/1903.04684.

I Bica, J Jordon, and M van der Schaar. Estimating the effects of continuous-valued interventions us-
ing generative adversarial networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16434–16445.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/bea5955b308361a1b07bc55042e25e54-Paper.pdf.

J. Bodik and V. Chavez-Demoulin. Structural restrictions in local causal discovery: identifying direct
causes of a target variable. Biometrika, 2025. URL https://arxiv.org/abs/2307.
16048.

J. Bodik, Y. Huang, and B. Yu. Cross-world assumption and refining prediction intervals for individ-
ual treatment effects. ArXiv preprint ArXiv:2507.12581, 2025. URL https://arxiv.org/
abs/2507.12581.

M. Cai, S. Buuren, and V. Gerko. How to relate potential outcomes: Estimating individual treatment
effects under a given specified partial correlation, 2022. URL https://arxiv.org/abs/
2208.12931.

10

https://arxiv.org/abs/2505.08784
https://arxiv.org/abs/2505.08784
https://proceedings.neurips.cc/paper_files/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf
https://openreview.net/forum?id=IwnINorSZ5
https://arxiv.org/abs/2411.11824
https://arxiv.org/abs/2507.08150
https://arxiv.org/abs/2502.17264
https://arxiv.org/abs/1903.04684
https://proceedings.neurips.cc/paper_files/paper/2020/file/bea5955b308361a1b07bc55042e25e54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/bea5955b308361a1b07bc55042e25e54-Paper.pdf
https://arxiv.org/abs/2307.16048
https://arxiv.org/abs/2307.16048
https://arxiv.org/abs/2507.12581
https://arxiv.org/abs/2507.12581
https://arxiv.org/abs/2208.12931
https://arxiv.org/abs/2208.12931


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR2026

K. E. Colson et al. Optimizing matching and analysis combinations for estimating causal effects.
Scientific Reports, 2016.

A. Dieng et al. Interpretable almost-exact matching for causal inference. Journal of Causal Infer-
ence, 2019.

P. Ding and F. Li. Causal inference: A missing data perspective. Statistical Science, 33(2):214–237,
2018. doi: 10.1214/18-STS645. URL https://doi.org/10.1214/18-STS645.

P. Ding, A. Feller, and L. Miratrix. Decomposing treatment effect variation. Journal of the American
Statistical Association, 114(525):304–317, 2019.

O. Dukes, S. Vansteelandt, and D. Whitney. On doubly robust inference for double machine learning
in semiparametric regression. Journal of Machine Learning Research, 25(279):1–46, 2024. URL
http://jmlr.org/papers/v25/22-1233.html.

Y. Fan and S. S. Park. Sharp bounds on the distribution of treatment effects and their statistical
inference. Econometric Theory, 26(3):931–951, 2010. doi: 10.1017/S0266466609990168.

M. Fasiolo, Y. Goude, R. Nedellec, and S. Wood. Fast calibrated additive quantile regression, 2017.
Available at https://arxiv.org/abs/1707.03307.

S. P. Firpo. Efficient semiparametric estimation of quantile treatment effects. Econometrica, 75(1):
259–276, 2007.

I. Gibbs, J. J. Cherian, and E. J. Candès. Conformal prediction with conditional guarantees. Journal
of the Royal Statistical Society Series B: Statistical Methodology, pp. qkaf008, 03 2025. ISSN
1369-7412. doi: 10.1093/jrsssb/qkaf008. URL https://doi.org/10.1093/jrsssb/
qkaf008.

J. J. Heckman, J. Smith, and N. Clements. Making the most out of program evaluations and social
experiments: Accounting for heterogeneity in program impacts. Review of Economic Studies, 64
(4):487–535, 1997.

J. L. Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1):217–240, 2011. doi: 10.1198/jcgs.2010.08162.

N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. Tabpfn: A transformer that solves small
tabular classification problems in a second, 2023. URL https://arxiv.org/abs/2207.
01848.

Y. Hur and T. Liang. A convexified matching approach to imputation and individualized inference,
2024. URL https://arxiv.org/abs/2407.05372.

G. W. Imbens and D. B. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences: An
Introduction. Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781139025751.

F. Johansson, U. Shalit, and D. Sontag. Learning representations for counterfactual inference. In
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pp. 3020–3029, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.press/v48/johansson16.html.

J. Jonkers, J. Verhaeghe, G. Wallendael, L. Duchateau, and S. Hoecke. Conformal convolution and
monte carlo meta-learners for predictive inference of individual treatment effects, 2024. URL
https://arxiv.org/abs/2402.04906.

S. Joshi, A. Korba, T. Trogdon, and E. Candès. Conformal inference under high-dimensional co-
variate shifts via likelihood-ratio regularization. arXiv preprint arXiv:2502.13030, 2025. URL
https://arxiv.org/abs/2502.13030.

N. Kallus. A Framework for Optimal Matching for Causal Inference. In Aarti Singh and Jerry Zhu
(eds.), Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pp. 372–381. PMLR, 20–22 Apr 2017.

11

https://doi.org/10.1214/18-STS645
http://jmlr.org/papers/v25/22-1233.html
https://arxiv.org/abs/1707.03307
https://doi.org/10.1093/jrsssb/qkaf008
https://doi.org/10.1093/jrsssb/qkaf008
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2407.05372
https://proceedings.mlr.press/v48/johansson16.html
https://arxiv.org/abs/2402.04906
https://arxiv.org/abs/2502.13030


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR2026
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Appendix

A LITERATURE REVIEW: DETAILS

A.1 COUNTERFACTUAL ESTIMATION METHODS: OTHER APPROACHES

We consider four classes of approaches for estimating the unobserved potential outcome Yi(1) for
units with Ti = 0 (and analogously Yi(0) for Ti = 1).

CATE-adjusted imputation (CATE-adj). This approach first estimates CATE τ(Xi) and then
shifts the observed control outcome by this estimated effect:

Ŷi(1) = Yi(0) + τ̂(Xi).

We use three alternative CATE estimators: the T-learner (Künzel et al., 2019), the Generalized
Random Forest (GRF) (Athey et al., 2019), and a doubly robust (DR) estimator (Dukes et al., 2024).
Closely related meta-learners include the S-learner, which fits a single model with treatment as an
input feature, and the X-learner, which augments the T-learner with imputed treatment effects for the
opposite treatment group and often performs well under treatment imbalance (Künzel et al., 2019).
These alternative meta-learners share the same conceptual foundation. Johansson et al. (2016);
Lacombe & Sebag (2025) use deep learning alternatives; balancing counterfactual regression or
adding assymetrical latend represnetation.

To quantify uncertainty, confidence intervals are computed using standard procedures, obtaining
prediction intervals in a form Ŷi(1) = Yi(0)+τ̂(Xi)±conf.int(τ̂(Xi)). In our experiments, we only
considered T-learner, GRF and DR estimators for CATE-adjusted imputation, as other approaches
are typically significantly more performative only in high-dimensional datasets or when treated and
untreated units differ substantially, which is not the case in our datasets.

Direct outcome modeling (DO). Here we model the treatment-specific regression function
µ1(x) = E[Y | X = x, T = 1] directly from the treated sample and use Ŷi(1) = µ̂1(Xi) for coun-
terfactual prediction. We consider two implementations: Random Forests (RF) (Wager & Athey,
2018) and Generalized Additive Models (GAM) (Fasiolo et al., 2017). Unlike the CATE-adjusted
approach, these methods do not require access to the observed control outcome Yi(0) for the unit,
relying entirely on model-based extrapolation from treated units. To quantify uncertainty, we use
the same prediction intervals as in equation 3.

There is also a large number of similar approaches besides RF and GAM, also adjusting for the
distribution shift between the treated/untreated groups. Yao et al. (2018) employ deep representation
learning to estimate Ŷi(1−T ) = g(f(Xi), Ti) where f, g are neural networks based preserving local
similarity between the treated groups.

Matching-based imputation (Matching). This approach imputes missing potential outcomes us-
ing outcomes from similar units in the opposite treatment group, selected via a distance metric
in covariate space (Stuart, 2010; Abadie & Imbens, 2006). Beyond nearest-neighbor and optimal
matching, advances include kernel-based matching to minimize estimation error (Kallus, 2017) and
full or genetic matching combined with double-robust analysis for improved bias and efficiency
(Colson et al., 2016). For high-dimensional or categorical data, algorithms like DAME prioritize
relevant covariates (Dieng et al., 2019). Similar ideology was also used in ALRITE (Lacombe &
Sebag, 2025), where the authors imputed counterfactuals based on the closest distance in a latent
space, in order to improve CATE estimation.

We implemented nearest-neighbor matching with a uniform kernel and optional replacement, using
either the Mahalanobis distance between standardized covariates or the absolute difference in logit
propensity scores (the former led to better results so we only report that). The propensity scores
is estimated by standard classification forest. For a treated unit, the counterfactual Ŷi(0) is the
average outcome among its matched controls, and vice versa for control units. This nonparametric
approach relies on local overlap in covariates and assumes conditional independence of potential
outcomes and treatment given covariates. To quantify uncertainty, we construct unit-level prediction
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intervals for the counterfactuals using the empirical variance of the donor outcomes: for a unit with
K ≥ 2 matches, the half-width is given by t1− α/2,K − 1 ·s/

√
K, where s is the sample standard

deviation of the matched donor outcomes, yielding (Ŷ cf
i ± half-width); if K = 1, the half-width

is zero. This approach implicitly assumes conditional independence of potential outcomes (ρ = 0,
similarly to DO) and independent treatment given covariates.

Adversarial generative modeling (GANITE). GANITE (Yoon et al., 2018) employs a two-stage
generative adversarial network (GAN) framework tailored to causal inference. In the first stage,
a generator–discriminator pair is trained to impute the missing counterfactual outcomes by making
the generated outcomes indistinguishable from observed ones given covariates and treatment assign-
ment. In the second stage, a separate adversarial network refines these predictions to improve estima-
tion of individualized treatment effects, encouraging accurate recovery of both potential outcomes
simultaneously. This approach is particularly suited to high-dimensional, nonlinear settings. Some
extentions were also proposed that work better under some alternative scenarios (e.g. SCIGAN-ITE
by Bica et al. (2020)).

Other approaches. Some other approaches exist, such as Bayesian causal inference, where
the missing counterfactuals are treated as latent variables, and uncertainty is integrated through the
posterior distribution. For example, Alaa & van der Schaar (2017) propose a Bayesian multitask
Gaussian process to jointly model

(
Y (1), Y (0)

)
| X , producing posterior distributions over the po-

tential outcomes. While Bayesian methods offer coherent uncertainty quantification, they often rely
on strong modeling assumptions and can be sensitive to prior specifications (Li et al., 2022). More-
over, they can be restrictive when aiming to leverage flexible modern machine learning techniques.

A.2 UNCERTAINTY QUANTIFICATION AND PREDICTION INTERVALS IN CLASSICAL
REGRESSION

In a standard regression framework, we observe data (Xi, Yi) ∼ PX × PY |X for i = 1, . . . , n, and
seek a prediction set C(X) for future responses that satisfies a coverage property. Two common
notions of coverage are:

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α (marginal coverage),

P
(
Yn+1 ∈ C(Xn+1) | Xn+1 = x

)
≥ 1− α (conditional coverage).

Conditional coverage is a stronger requirement but is generally unattainable in a distribution-free,
finite-sample setting without strong assumptions or asymptotics (Barber et al., 2020). By contrast,
marginal coverage can be attained without modeling assumptions via conformal prediction (An-
gelopoulos et al., 2024). Recent work has also explored data-driven techniques to improve condi-
tional coverage, such as combining epistemic+aleatoric sources of uncertainty (Azizi et al., 2025),
rectifying conformity scores (Plassier et al., 2025), or optimizing subgroup-conditional guarantees
through flexible frameworks like Kandinsky conformal prediction (Bairaktari et al., 2025). These
developments are consistent with the broader principles of Predictability, Computability, and Stabil-
ity (PCS) advocated for trustworthy data science (Agarwal et al., 2025; Yu & Barter, 2024).

Conformal methods produce prediction intervals with exact finite-sample marginal coverage under
exchangeability of the observed and future data points (Vovk et al., 2005; Angelopoulos et al., 2024).
These methods typically split the data into training and calibration subsets, construct a preliminary
predictor on the training set, and adjust it on the calibration set to guarantee coverage. A prominent
example is Conformalized Quantile Regression (CQR), which uses estimated conditional quantiles
to build tighter prediction intervals (Romano et al., 2019).

Estimation procedure for CQR. The key idea of CQR is to combine quantile regression with
conformal calibration:

1. Split the data. Randomly divide the dataset into a training set Dtrain and a calibration set
Dcalib. The split fraction is typically 80/20.

2. Fit quantile regression models. On Dtrain, estimate the conditional lower and upper quan-
tile functions q̂α/2(x) and q̂1−α/2(x), often quantile random forest (Meinshausen & Ridge-
way, 2006), qGAM (Fasiolo et al., 2017) or neural networks to approximate conditional
quantiles for levels α/2 and 1− α/2.
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3. Compute conformity scores. For each (Xi, Yi) ∈ Dcalib, compute the nonconformity
score:

si = max{q̂α/2(Xi)− Yi, Yi − q̂1−α/2(Xi), 0}.
This measures how far Yi lies outside the estimated conditional quantile interval.

4. Calibrate using empirical quantiles. Let Q1−α(s1, . . . , sm) be the (1 − α)-empirical
quantile of the scores from the calibration set (m = |Dcalib|).

5. Construct prediction intervals. For a new point x, the CQR prediction set is:

C̃(x) =
[
q̂α/2(x)−Q1−α, q̂1−α/2(x) +Q1−α

]
.

This adjustment ensures that the final interval achieves marginal coverage at level 1 − α in finite
samples under exchangeability, while leveraging conditional quantile estimates for tighter intervals.

However, exchangeability (slightly weaker assumption than i.i.d.) can fail in the presence of covari-
ate shift, e.g., in observational studies comparing treated and untreated units. In such settings, even
defining marginal coverage requires specifying the target covariate distribution: should coverage
be with respect to PX|T=1 (treated), PX|T=0 (untreated), or a mixture PX? This point is empha-
sized in Lei & Candès (2021). If one could attain conditional coverage, covariate shift would not
pose a problem (recall that conditional coverage implies marginal coverage under any PX ) but such
guarantees remain scarce (Gibbs et al., 2025).

To address distributional shift, weighted conformal prediction adjusts calibration via importance
weights derived from the likelihood ratio between covariate distributions; when this ratio is known,
one can guarantee exact marginal coverage for the chosen target population (Tibshirani et al., 2019).
When the ratio (or propensity score π(x)) is estimated, asymptotically valid marginal coverage is
still achievable, with strong empirical performance (Lei & Candès, 2021). Recent approaches re-
fine this idea by incorporating likelihood-ratio regularization for high-dimensional covariates (Joshi
et al., 2025) or leveraging unlabeled test data to adapt coverage under label scarcity (Kasa et al.,
2025). For settings with both covariate shift and posterior drift, weighted conformal classifiers have
been proposed (Wang & Qiao, 2025).
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B ADDITIONAL EXPERIMENTS: MISSPECIFIED ρ AND NON-GAUSSIANITY

B.1 HOW VITAL IS THE ASSUMPTION OF GAUSSIANITY?

We evaluate the sensitivity of our counterfactual estimation method to violations of the Gaussianity
assumption in the joint distribution of potential outcomes. Specifically, we use the Synthetic dataset
described in Appendix C.2, but replace the Gaussian error terms with non-Gaussian marginals cou-
pled through different copulas. Formally, for each unit i, we generate

(ε0i , ε
1
i )

i.i.d∼ Copulaρ(F0, F1) ,

where Ft denotes the marginal distribution of εti (e.g., t = 0, 1 could follow Student-t, Laplace,
or Chi-square distributions), and Copulaρ is a copula with correlation ρ. By Sklar’s theorem, this
ensures that the joint distribution of (ε0i , ε

1
i ) has the specified marginals while preserving the de-

sired correlation structure through Copulaρ. We experiment with Gaussian and Gumbel copulas to
capture symmetric as well as asymmetric dependence patterns.

We vary the following factors:

• Marginal distributions: Gaussian, Student-t (df = 3), Laplace, and Chi-square (df = 3),

• Copula families: Gaussian and Gumbel,

• Cross-world correlation: ρ ∈ {0, 0.5, 1},

• Sample size: n ∈ {100, 300, 500, 2000} with covariate dimension fixed at d = 1.

For each configuration, we generate 50 replications and compare our estimate µ̂ρ against the oracle
estimator

Ŷ cf
oracle := E[Y cf | X,Y obs, T ],

which leverages the true joint distribution. We report the performance gap

Gap = MSEour − MSEoracle, MSEour =
1
n

n∑
i=1

(Ŷ cf
i − Y cf

i )2, Ŷ cf
i = µ̂ρ.

Figure 4 summarizes the results. In all cases, the gap decreases with n, demonstrating that our
estimator converges to the oracle regardless of the marginal distribution or copula. The effect
of non-Gaussianity is therefore limited to finite samples: convergence is noticeably slower under
heavy-tailed or skewed marginals, particularly when ρ = 1, but the asymptotic behavior remains
unchanged. By contrast, under independence (ρ = 0), our estimator is nearly indistinguishable from
the oracle even in small samples.

In conclusion, violations of Gaussianity do not seem to threaten the validity of our method, but
they can slow finite-sample convergence; especially under large cross-world dependence.

B.2 DETAILS ABOUT FIGURE 3 AND MISSPECIFIED ρ

To study the effect of misspecifying the cross-world correlation ρ, we carried out a grid experiment
on synthetic data. For each design point, we distinguish between the true value ρtrue used in the
data-generating process (DGP), and the assumed value ρest used in our estimator µ̂ρ.

We consider the synthetic dataset (see Section C.1), a univariate covariate setting (d = 1), two
sample sizes (n = 200 and n = 2000), and repeated each experiment 50 times to reduce Monte
Carlo variability. The true correlation ρdgp was varied over a grid {0, 0.1, . . . , 1}, and for each value
we estimated counterfactuals under a grid of assumed correlations ρest ∈ {0, 0.1, . . . , 1}.

For each pair (ρtrue, ρest), we generated synthetic data, computed counterfactual estimates with our
method using ρest, and compared performance against the oracle estimator E[Y cf | X,Y obs, T ]. We
measured performance using the mean squared error (MSE) of counterfactual predictions, and sum-
marized results via the Gap = MSEour − MSEoracle. Results (Figure 3) show that the gap increases
systematically with the degree of misspecification |ρest − ρtrue|. When the assumed correlation is
close to the truth, the gap shrinks as n grows, and bias vanishes asymptotically. In contrast, for
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Figure 4: Gap = MSEour − MSEoracle calculated across different marginal–copula distributions of
potential outcomes

(
Y (0), Y (1)

)
. Here, we only considered correctly specified ρ in the estimation.

larger misspecifications, the bias persists even at large n, indicating that asymptotic consistency re-
quires ρest ≈ ρtrue. These results show the importance of approximate domain knowledge of ρ: even
approximate information about its value can yield large gains over methods that implicitly assume
ρ = 0 or ρ = 1.
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C APPENDIX: NUMERICAL EXPERIMENTS

We provide full details about our experiments below.

C.1 DATASETS

We investigate three types of data-generating mechanisms:

• Synthetic (taken from (Bodik et al., 2025)): For the univariate case (d = 1), we draw
X ∼ Unif(−1, 1). When d > 1, we follow the setup in Wager & Athey (2018); Alaa
et al. (2023); Lei & Candès (2021); Jonkers et al. (2024) and generate covariates X =
(X1, . . . , Xd), where each Xj = Φ(X̃j) and Φ is the standard normal CDF. The latent
vector (X̃1, . . . , X̃d) is sampled from a multivariate Gaussian distribution with zero mean
and constant pairwise correlation Cov(X̃j , X̃j′) = 0.25 for j ̸= j′. Treatment assignments
are drawn from a propensity score function

π(X) =
1 + |X1|

4
∈ [0.25, 0.5],

ensuring adequate overlap. The potential outcomes are defined as

Yi(0) = f0(Xi) + ε0i ,

Yi(1) = f0(Xi) + τ(Xi) + ε1i ,

with noise terms jointly distributed as

(ε0i , ε
1
i ) ∼ N

([
0
0

]
,

[
1 2ρ
2ρ 4

])
.

The treatment effect function τ(x) = τ(x1, x2) is a smooth random polynomial depending
on the first two covariates (or only on x1 when d = 1), generated using a Perlin noise gen-
erator (Perlin, 1985) following Bodik & Chavez-Demoulin (2025). The baseline function
is f0(x) = β⊤x with β drawn from a standard normal distribution.

• IHDP (semi-synthetic): Originally introduced in Hill (2011), this dataset contains 25 pre-
treatment covariates (e.g., birth weight, maternal age, education level) denoted by X. The
binary treatment T indicates whether the infant participated in the intervention program.
Potential outcomes represent cognitive test scores, were simulated in Hill (2011) as

Yi(0) = f0(Xi) + ε0i , (6)

Yi(1) = f1(Xi) + ε1i , (7)

where ε0i , ε
1
i

i.i.d.∼ N(0, 1). The functions f0 and f1 are either random linear (case “A”) or
nonlinear (case “B”). We only consider case “B”.
While the original setup fixes ρ = 0, we also consider a correlated noise version:(

ε0i
ε1i

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
.

which better reflects empirical situations in which the two potential outcomes are not inde-
pendent but share substantial underlying information.

• Twins (real-world): We use the U.S. twin birth records (1989–1991) described in Louizos
et al. (2017), restricted to same-sex twins with both birth weights below 2 kg. Each pair
comes with detailed perinatal covariates, including maternal risk factors, prenatal care in-
dicators, and demographic information. In this context, twins are viewed as natural coun-
terfactuals for one another, so the potential outcomes can be conceptually “observed” by
comparing mortality for the heavier twin (T = 1) and the lighter twin (T = 0) within
the same pair. The outcome variable is one-year mortality. In our analysis, we work with a
balanced sample containing a moderate number of individuals and a small set of covariates,
obtained after standard preprocessing.
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C.2 INTERVAL SCORES RESULTS: USE Cρ FOR ρ ≤ 0.5 AND C+CI
ρ FOR ρ > 0.5

Figures 5 and 6 report the Interval Scores (IS) of the competing methods across all datasets con-
sidered in our experiments. The Interval Score jointly evaluates interval width and coverage, with
lower values indicating more efficient and reliable prediction intervals. While GANITE is excluded
from these comparisons because it does not provide prediction intervals out of the box, one could
imagine extending it with Bayesian or conformalized post-processing layers to quantify uncertainty.
For instance, sampling-based approaches could be added to its adversarial generator, or conformal
calibration could be applied on top of GANITE outputs. However, such adaptations are not standard,
and we therefore omit GANITE from the interval score plots.

Results. When using the bias-corrected C+CI
ρ variant, our method achieves consistently strong

results, typically outperforming all baselines across datasets. The only exception is when ρ = 0,
in which case Direct Outcome (DO) estimators attain nearly identical performance. The main
drawback of C+CI

ρ lies in its computational cost, since constructing bootstrap confidence inter-
vals is substantially more demanding than computing Cρ. Moreover, when ρ is large, estimation
error in µ̂ρ can induce bias, leading to undercoverage and consequently poor Interval Scores. In
practice, we therefore recommend using the uncorrected Cρ intervals when ρ ≤ 0.5, while for
ρ > 0.5 the bias-corrected C+CI

ρ intervals are preferable, as they yield the greatest empirical gains.
Recommendation: Cρ is satisfactory if ρ ≤ 0.5, and ideally use C+CI

ρ if ρ > 0.5.
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5.77 / 5.91

6.92 / 6.94

5.63 / 5.88

6.81 / 6.86

5.10 / 5.57

6.35 / 6.52

4.04 / 5.61

5.62 / 6.17

1.10 / 1.94

5.12 / 5.19
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Figure 5: Interval Scores of different prediction interval methods across all datasets. Here, C+CI
ρ ,

the bias-corrected version of Cρ introduced in Section 3.3, is used. GANITE is excluded since it
does not provide a natural way of constructing prediction intervals.
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Figure 6: Interval Scores of different prediction interval methods across all datasets. Here, the
uncorrected Cρ intervals, as defined in Section 3, are used.
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Figure 7: Extended version of Figure 2, additionally displaying the standard deviations of the MSE
estimates within each cell.
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D PROOFS

Theorem 1 (Motivation and optimality under a perfect (asymptotic) scenario). Let x ∈ X , and
ρ = cor

(
Y (0), Y (1) | X = x

)
∈ [−1, 1]. Assume a perfect scenario:

(
Y (1), Y (0)

)
| X = x is

Gaussian, µ̂t(x) = µt(x) and suppose that we found conditionally valid prediction intervals:

P
(
Y (t) ≤ µ̂t(x) + ut(x) | X = x

)
= 0.95, P

(
Y (t) ≥ µ̂t(x)− lt(x) | X = x

)
= 0.95, t = 0, 1.

Then, Cρ prediction intervals from Definition 2 are optimal in a sense that it is the smallest set
satisfying:

P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y

)
≥ 0.9,

for any y ∈ R. Moreover, µ̂ρ(x, y) is the optimal point predictor in the sense that it minimizes the
mean squared error:

µ̂ρ(x, y) = argmin
c∈R

E
[
(Y (1)− c)2 | X = x, Y (0) = y

]
.

Proof. We use the following fact:

For a bivariate Gaussian random variables (Z1, Z0):(
Z0

Z1

)
∼ N

((
µ0

µ1

)
,

(
σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

))
,

it is well known that:

Z1 | Z0 = z ∼ N
(
µ1 + ρ

σ1

σ0
(z − µ0), σ

2
1(1− ρ2)

)
.

Moreover, the shortest prediction interval with a given coverage is symmetric around the mean.

First, we introduce some notation:

• Let c := Φ−1(0.95) ≈ 1.6449 denote the 0.95 quantile of a standard Gaussian random
variable.

• Let σ2
t (x) := Var(Y (t) | X = x) denote the conditional variance.

• µt(x) + ut(x) = Quantile0.95(Y (t) | X = x).

• Since Y (t) | X = x is symmetrical around the mean, we have lt(x) = ut(x). Therefore,
ut(x) = c ·σt(x), by the standard form of the quantile function for a Gaussian distribution.
Therefore, λ(x) = σ1(x)

σ0(x)
.

Due to Gaussianity assumption, it holds that:

Y (1) | Y (0) = y,X = x ∼ N
(
µ1(x) + ρ

σ1(x)

σ0(x)
(y − µ0(x)), (1− ρ2)σ2

1(x)

)
which directly gives us

P(Y (1) ≤ µ1(x) + ρ
σ1(x)

σ0(x)
(y0 − µ0(x)) +

√
1− ρ2 · c · σ1(x) | X = x, Y (0) = y0) = 0.95.

Using our notation and previously established results, we get

P(Y (1) ≤ µ̂ρ(x, y0) +
√

1− ρ2 · u1(x) | X = x, Y (0) = y0) = 0.95,

and analogously

P(Y (1) ≥ µ̂ρ(x, y0)−
√
1− ρ2 · l1(x) | X = x, Y (0) = y0) = 0.95.
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Hence, we proved that
P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y0

)
= 0.9.

The fact that Cρ prediction interval is the smallest possible interval achieving the desired coverage
follows directly from symmetry+continuity of Gaussian variable.

The fact that µ̂ρ(x, y) is the optimal point predictor follows directly since

µ̂ρ(x, y) = E
[
Y (1) | X = x, Y (0) = y

]
.

Theorem 2. Let x ∈ X and suppose
(
Y (1), Y (0)

)
| X = x is Gaussian with ρ = cor

(
Y (1), Y (0) |

X = x
)
∈ [−1, 1].

Let µ̂t(x) be consistent estimators of µt(x), and assume the prediction interval widths lt(x), ut(x)
are asymptotically conditionally valid, i.e.,
lim
n→∞

P
(
Y (t) ≤ µ̂t(x)+ut(x) | X = x

)
= 0.95, lim

n→∞
P
(
Y (t) ≥ µ̂t(x)−lt(x) | X = x

)
= 0.95,

for t = 0, 1. Then, for any fixed y ∈ R:

1. µ̂ρ(x, y) is a consistent estimator of the conditional mean,

µ̂ρ(x, y)
p−→ E

[
Y (1) | X = x, Y (0) = y

]
, as n → ∞.

2. The Cρ prediction intervals achieve asymptotic conditional coverage,

lim
n→∞

P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y

)
= 0.9.

Proof. Under the Gaussian assumption, Theorem 1 implies

E
[
Y (1) | X = x, Y (0) = y

]
= µ1(x) + ρ

σ1(x)

σ0(x)

(
y − µ0(x)

)
. (8)

By consistency, µ̂t(x)
p−→ µt(x) for t = 0, 1. Moreover, since the upper and lower bounds converge

to the 0.95 and 0.05 conditional quantiles of Y (t) | X = x, their total width satisfies

lt(x) + ut(x)
p−→ Quantile0.95(Y (t) | X = x)−Quantile0.05(Y (t) | X = x) = 2z0.95σt(x).

Thus,

λ(x) =
l1(x) + u1(x)

l0(x) + u0(x)

p−→ σ1(x)

σ0(x)
.

Substituting into µ̂ρ(x, y),

µ̂ρ(x, y)
p−→ µ1(x) + ρ

σ1(x)

σ0(x)

(
y − µ0(x)

)
,

which coincides with equation 8, proving consistency of the point estimator.

For the prediction interval Cρ, Theorem 1 further states that, under Gaussianity, Cρ(X,Y (0)) is the
minimal set achieving 90% conditional coverage for Y (1) | X = x, Y (0) = y. Since lt(x) and
ut(x) converge to their true quantiles, the constructed interval converges to this optimal set. Hence,

lim
n→∞

P
(
Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y

)
= 0.9.

Lemma 1 (Special cases of ρ). • If ρ = 0 and C̃1(X) is marginally valid, then Cρ(X,Y (0))
is also marginally valid:

P(Y (1) ∈ C̃1(X)) ≥ 0.9 =⇒ P(Y (1) ∈ Cρ(X,Y (0))) ≥ 0.9.

If additionally Y (0) ⊥⊥ Y (1) | X = x and C̃1(X) is conditionally valid, then
Cρ(X,Y (0)) is also conditionally valid:

P(Y (1) ∈ C̃1(X) | X = x) ≥ 0.9 =⇒ P(Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y) ≥ 0.9,

for any x ∈ X , y ∈ Y .
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• If ρ = ±1 and µ(x, y0) = µ̂(x, y0), then

P(Y (1) ∈ Cρ(X,Y (0)) | X = x, Y (0) = y) = 1.

If we have confidence intervals satisfying P(µ(x, y0) ∈ µ̂(x, y0)± r(x, y0)) = 1− β, then

P(Y (1) ∈ C+CI
ρ (X,Y (0)) | X = x, Y (0) = y) = 1− β.

Proof. Case ρ = 0: By definition, Cρ(X,Y (0)) = C̃1(X), so marginal validity is preserved. If
Y (0) ⊥⊥ Y (1) | X , then conditioning on Y (0) does not affect the validity, hence conditional validity
also holds.

Case ρ = ±1: Perfect (anti-)correlation implies a deterministic linear relationship: for fixed X = x,
we have

Y (1) = ax + bxY (0) for some ax, bx ∈ R.
Thus,

Var(Y (1) | X = x, Y (0) = y) = 0 ⇒ P(Y (1) = µ(x, y) | X = x, Y (0) = y) = 1.

If µ(x, y) = µ̂(x, y), then Cρ(x, y) = {µ(x, y)}, implying perfect coverage. If instead µ(x, y) lies
in a confidence interval with coverage 1− β, then

P(Y (1) ∈ C+CI
ρ (x, y) | X = x, Y (0) = y) ≥ 1− β.
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