

# 000 COUNTERFACTUAL PREDICTION WITH CROSS- 001 002 WORLD DEPENDENCE 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 008 ABSTRACT 009 010

011 We study the problem of estimating the expected retrospective counterfactual out-  
012 come for an individual with covariates  $x$  and observed outcome  $y$ , defined as  
013  $\mu(x, y) = \mathbb{E}[Y(1) \mid X = x, Y(0) = y]$ , and constructing valid prediction in-  
014 tervals under the Neyman–Rubin superpopulation model with i.i.d. units. This  
015 quantity is generally unidentified without additional assumptions. To link the ob-  
016 served and unobserved potential outcomes, we work with a cross-world corre-  
017 lation function  $\rho(x) = \text{cor}(Y(1), Y(0) \mid X = x)$  that quantifies their dependence  
018 given the covariates. Plausible bounds on  $\rho(x)$ , often informed by domain knowl-  
019 edge, enable a principled approach to this otherwise unidentified problem. Given  
020  $\rho$ , we develop an estimator  $\hat{\mu}_\rho(x, y)$  and prediction intervals  $C_\rho(x, y)$  that sat-  
021 isfy  $P[Y(1) \in C_\rho(X, Y(0))] \geq 1 - \alpha$  under standard causal assumptions and  
022 Gaussian dependence structure. Almost all existing methods correspond to ei-  
023 ther the case  $\rho = 0$  (ignoring the factual outcome), or  $\rho = 1$  (constant treatment  
024 effects). We show that interpolating between these cases via cross-world depen-  
025 dence yields estimators that are theoretically optimal under (asymptotic) Gaussian  
026 assumptions. In practice, this leads to substantial empirical improvements across  
027 a wide range of scenarios.

## 028 1 INTRODUCTION 029

030 At its core, causal inference pursues two goals: assessing what would have happened to an individ-  
031 ual under an alternative treatment, and predicting how a new individual will benefit from treatment  
032 (Rubin, 2005). For answering the second goal, the literature focuses on average treatment effects  
033 (ATE) or conditional average treatment effects (CATE). However, estimating retrospective counter-  
034 factuals (first goal) is often more challenging, as it requires untestable assumptions, connected to  
035 the Pearl’s third ladder of causation (Pearl & Mackenzie, 2019). Estimates of counterfactuals are  
036 critical in many fields: in medicine, they enable evaluating how a patient might have responded to a  
037 different treatment (Imbens & Rubin, 2015); in criminal law, they underpin the “but-for” test of cau-  
038 sation, which assesses liability based on whether harm would have occurred absent the defendant’s  
039 action (Wright, 1985).

040 Consider a medical scenario in which a patient, James, arrives at a hospital with covariates  $X = x$   
041 (e.g., age, weight, and other characteristics), does not receive the treatment ( $T = 0$ ), and experiences  
042 an outcome  $Y(0) \in \mathbb{R}$ . Estimating his retrospective counterfactual outcome  $Y(1)$  is central to  
043 causal reasoning. In high-stakes settings such as healthcare, it is equally important to quantify the  
044 uncertainty in individual treatment effects (ITEs); that is, to construct a set  $C \subseteq \mathbb{R}$  that contains  
045  $Y(1)$  with high probability.

046 Existing methods primarily focus on estimating the CATE, defined as  $\tau(x) = \mu_1(x) - \mu_0(x)$ ,  
047 where  $\mu_t(x) = \mathbb{E}[Y(t) \mid X = x]$  for  $t = 0, 1$  can be estimated via e.g. random forest (Wager  
048 & Athey, 2018). The missing counterfactual is often imputed either by  $\hat{Y}(1) = Y(0) + \hat{\tau}(X)$ , by  
049  $\hat{Y}(1) = \hat{\mu}_1(X)$ , or through a matching-based approach. Some notable exceptions are presented in  
050 Section 2 and Appendix A.1.

052 Many existing approaches condition only on covariates  $X$ , overlooking the observed (factual) out-  
053 come  $Y(0)$ , which often contains valuable individual-specific information. For instance, if James  
left the hospital healthy after not receiving treatment ( $T = 0$ ), it is highly likely that he would also

054 be healthy under the counterfactual scenario in which he received treatment ( $T = 1$ ). Incorporating  
 055 the factual outcome alongside the covariates can therefore refine individual-level predictions and  
 056 improve the accuracy of estimated counterfactuals.

057 In this work, we propose leveraging covariates *and* the factual outcome to enhance counterfactual  
 058 prediction. Specifically, instead of estimating  $\mathbb{E}[Y(1) | X = x]$ , we aim to construct point estimates  
 059

$$060 \hat{\mu}_\rho(x, y) \quad \text{for} \quad \mathbb{E}[Y(1) | X = x, Y(0) = y], \quad (1)$$

062 and  $(1 - \alpha)$ -level prediction intervals  $C_\rho(x, y)$  for the counterfactuals satisfying:

$$064 P(Y(1) \in C_\rho(x, y) | X = x, Y(0) = y) \geq 1 - \alpha, \quad (2)$$

065 for  $\alpha \in (0, 1)$  (typically  $\alpha = 0.1$ ). Conditioning on the factual outcome introduces a fundamental  
 066 challenge: since both potential outcomes are never observed for the same individual, the joint dis-  
 067 tribution of  $(Y(0), Y(1))$  is unidentifiable without further assumptions. To address this, we adopt a  
 068 class of assumptions known as cross-world assumptions.

069 **Definition 1** (Bodik et al. (2025)). *In the Neyman–Rubin super-population model with i.i.d. units,  
 070 the dependence structure (conditional correlation) between the potential outcomes  $Y(1), Y(0)$ , con-  
 071 ditioned on the observed covariates  $X$ , is defined as:*

$$073 \rho(x) = \text{cor}(Y(1), Y(0) | X = x).$$

075 We refer to an assumption about  $\rho$  as *cross-world assumption*.

076 The term “cross-world assumption” was first introduced in Bodik et al. (2025), and related ideas  
 077 have appeared in prior literature (see Section 2), often represented via an additive structural equation  
 078 model:

$$080 Y(0) = \mu_0(X) + \varepsilon_0, \quad Y(1) = \mu_1(X) + \varepsilon_1, \quad \text{where } \text{cor}(\varepsilon_1, \varepsilon_0) = \rho(X).$$

082 Although  $\rho$  is not identifiable from data, postulating plausible values or bounds from domain experts  
 083 is often both feasible and well-aligned with how humans make judgments. Observing one potential  
 084 outcome often conveys information about the other, beyond what is captured by covariates.

086 **Our contributions.** Given a specified value (or a set of plausible values) of  $\rho$ , we propose a con-  
 087 sistent counterfactual point estimator equation 1 and valid prediction intervals equation 2, under  
 088 standard causal assumptions and Gaussian copula. For clarity, we focus on the case  $T = 0$  and  
 089 the counterfactual outcome is  $Y(1)$ ; the reverse case is analogous. While the formal definitions of  
 090  $\hat{\mu}_\rho(x, y)$  and  $C_\rho(x, y)$  are given in Section 3, we present here the key property that motivates their  
 091 construction:

092 **Theorem 1** (Motivation and optimality). *Let  $x \in \mathcal{X}$  and  $\rho(x) = \text{cor}(Y(0), Y(1) | X = x) \in$   
 093  $[-1, 1]$ . Assume an asymptotic scenario:  $\hat{\mu}_t(x) = \mu_t(x)$  and suppose that we found conditionally  
 094 valid prediction intervals:*

$$095 \mathbb{P}(Y(t) \leq \hat{\mu}_t(x) + u_t(x) | X = x) = 0.95, \quad \mathbb{P}(Y(t) \geq \hat{\mu}_t(x) - l_t(x) | X = x) = 0.95, \quad t = 0, 1.$$

097 If  $(Y(1), Y(0)) | X = x$  is Gaussian, then  $C_\rho$  prediction intervals, defined in Section 3, are optimal  
 098 in a sense that it is the smallest set satisfying:

$$100 \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) | X = x, Y(0) = y) \geq 0.9.$$

102 Moreover,  $\hat{\mu}_\rho(x, y)$  is the optimal point predictor in the sense that it minimizes the mean squared  
 103 error:

$$104 \hat{\mu}_\rho(x, y) = \underset{c \in \mathbb{R}}{\text{argmin}} \mathbb{E}[(Y(1) - c)^2 | X = x, Y(0) = y].$$

106 Our proposed  $C_\rho$  intervals are introduced in Section 3, following preliminaries in Section 2. In  
 107 Section 4, we discuss empirical evaluation compared to other methods. Section 5 concludes.

108 **2 PRELIMINARIES, RELATED WORK AND CROSS-WORLD ASSUMPTION**  
109110  
111 We adopt the Neyman-Rubin potential outcomes framework (Rubin, 2005), where each unit  $i$  has  
112 potential outcomes  $Y_i(1)$  and  $Y_i(0)$ , covariates  $X_i \in \mathcal{X} \subseteq \mathbb{R}^d$ , and treatment assignment  $T_i \in$   
113  $\{0, 1\}$ . The observed outcome is  $Y_i = T_i Y_i(1) + (1 - T_i) Y_i(0) \in \mathcal{Y} \subseteq \mathbb{R}$ , while the  $ITE_i =$   
114  $Y_i(1) - Y_i(0)$  remains unobservable. We assume  $(Y_i(1), Y_i(0), T_i, X_i) \stackrel{i.i.d.}{\sim} (Y(1), Y(0), T, X)$ , for  
115 a generic random vector  $(Y(1), Y(0), T, X)$ . The conditional average treatment effect (CATE) is  
116 defined as  $\tau(x) = \mu_1(x) - \mu_0(x)$  with  $\mu_t(x) = \mathbb{E}[Y(t) | X = x]$ .117 We impose **strong ignorability** and **overlap**, meaning  $(Y(1), Y(0)) \perp\!\!\!\perp T | X$  and  $0 < \pi(x) < 1$   
118 for all  $x \in \mathcal{X}$ , where  $\pi(x) = \mathbb{P}(T = 1 | X = x)$  denotes the propensity score. These conditions en-  
119 sure that treatment is as-if randomly assigned given covariates and that both treatments are feasible.  
120 Under these assumptions, CATE is identified via  $\mu_t(x) = \mathbb{E}[Y | T = t, X = x]$  (Wager, 2024).121 We note that some authors use the terms “ITE” and “CATE” interchangeably, which can lead to  
122 confusion. Here, ITE is a latent, unit-specific quantity, while the CATE is an unknown function,  
123 defined as the conditional expectation of the ITE given covariates.  
124125 **2.1 RELATED WORK: CROSS-WORLD ASSUMPTION**  
126127  
128 In the potential outcomes framework, the joint distribution of  $(Y(1), Y(0)) | X$  is unidentifiable  
129 because only one potential outcome is observed per unit. While CATE can be identified without  
130 assumptions on this joint law, quantities such as variance, quantiles, or prediction intervals of ITE  
131 generally depend on the cross-world correlation  $\rho(X) = \text{cor}(Y(1), Y(0) | X)$  (Rubin, 1990; Ding  
132 et al., 2019). This has been studied in joint distribution modeling (Heckman et al., 1997; Fan &  
133 Park, 2010), quantile treatment effect estimation (Firpo, 2007) and nonparametric bounds using  
134 copulas (Zhang & Richardson, 2025a; b; Nelsen et al., 2001). Andrews & Didelez (2021) highlight  
135 the implausibility of cross-world independence assumptions in mediation analysis; we complement  
136 these by parameterizing cross-world dependence via  $\rho(x)$ .137 Bodik et al. (2025) and Cai et al. (2022) argue that in many real-world applications  $\rho$  is almost always  
138 non-negative and often substantially positive due to shared latent factors affecting both potential  
139 outcomes. Formally, consider a model where  $Y(1) = \mu_1(X) + H + \tilde{\varepsilon}_1$  and  $Y(0) = \mu_0(X) + H + \tilde{\varepsilon}_0$ ,  
140 where  $X \in \mathbb{R}^d$  are observed covariates,  $H \perp\!\!\!\perp (X, T)$  is an unobserved factor influencing both  
141 potential outcomes, and  $\tilde{\varepsilon}_0 \perp\!\!\!\perp \tilde{\varepsilon}_1$  are idiosyncratic noise terms. Conditioning on  $X$ , it is easy  
142 to derive that  $\rho(X) = \text{cor}(Y(1), Y(0) | X) = \frac{\text{var}(H)}{\sqrt{\text{var}(\tilde{\varepsilon}_0) \text{var}(\tilde{\varepsilon}_1)}} \geq 0$ . Whenever  $\text{var}(H) > 0$ ,  
143 the shared influence of  $H$  induces strictly positive correlation between  $Y(1)$  and  $Y(0)$ , even after  
144 adjusting for  $X$ . Moreover, if the treatment has no or very small effect, then  $Y(1) \approx Y(0)$  and  
145 hence  $\rho \approx 1$ .146 Following Bodik et al. (2025), the choice of  $\rho(x)$  can be guided by practitioners by asking: “What  
147 proportion of the outcome variability is driven by latent factors that influence both potential out-  
148 comes in a similar way?” In other words, what values are plausible for  $\frac{\text{var}(\text{shared latent effects})}{\text{var}(\text{idiosyncratic noise})}$ . In many  
149 complex systems, it is reasonable to expect a substantial contribution from shared latent compo-  
150 nents, suggesting that  $\rho(x)$  may typically exceed 0.5. At the same time,  $\rho(x)$  is rarely close to 1,  
151 since treatment effects generally exhibit heterogeneity even among individuals with the same ob-  
152 served covariates  $X$ . This is not a universal rule, but a practical guideline grounded in the idea how  
153 latent common causes in many real-world systems influence both  $Y(0)$  and  $Y(1)$ .154 As an example, consider a clinical trial testing a new drug for reducing blood pressure, where the  
155 treatment is randomly assigned and standard causal assumptions hold. Let  $Y_i(1)$  denote patient  $i$ ’s  
156 blood pressure after receiving the drug and  $Y_i(0)$  after receiving a placebo. Even though baseline  
157 covariates such as age, weight, and existing conditions are observed, unmeasured factors like genetic  
158 predisposition can strongly influence both potential outcomes. A patient with naturally resilient car-  
159 diovascular health will likely exhibit relatively low blood pressure regardless of treatment, whereas  
160 a patient with severe underlying issues will tend to have higher readings in both scenarios. These  
161 persistent latent traits induce a positive dependence between  $Y_i(1)$  and  $Y_i(0)$  even after adjusting  
for observed covariates. Given this medical knowledge, it is reasonable to assume  $\rho(x)$  is not only

positive but possibly large, likely above 0.5. See Bodik et al. (2025) for more examples when some domain knowledge about  $\rho$  is available.

## 2.2 RELATED WORK: RETROSPECTIVE COUNTERFACTUALS FOR IN-STUDY UNITS

Inferring individual counterfactual outcomes is fundamentally a missing data problem (Ding & Li, 2018). Many methods for counterfactual prediction use CATE-adjusted imputation  $\hat{Y}_i(1) = Y_i(0) + \hat{\tau}(X_i)$ , where  $\hat{\tau}$  is estimated using doubly-robust estimator, random forests or S/T-learner (Wager, 2024; Künnel et al., 2019; Athey et al., 2019). Other approaches directly model the treated outcome as  $\hat{Y}_i(1) = \hat{\mu}_1(X_i)$ , thereby ignoring information contained in the observed outcome  $Y_i(0)$  (possibly using control group only for the propensity estimation, Lei & Candès (2021)).

Classic counterfactual prediction methods target  $\mathbb{E}[Y(T) | X]$  without conditioning on  $Y(0)$ . For instance, Kim et al. (2022) propose a doubly robust estimator for counterfactual classification that directly models the treated outcome distribution, and McClean et al. (2024) develop nonparametric estimators for conditional incremental effects (based on stochastic propensity interventions) with a similar goal of directly estimating  $\mathbb{E}[Y(1) | X]$ . More recently, Kim (2025) introduces a semi-parametric counterfactual regression framework that likewise estimates  $\mathbb{E}[Y(1) | X]$  using flexible machine learning. These approaches forego individual-level imputation using  $Y(0)$ , instead relying on robust modeling of the treated outcome. Most existing methods focus on minimizing the Precision in Estimation of Heterogeneous Effects (PEHE), defined as  $\mathbb{E}_X (\hat{\tau}(X) - \tau(X))^2$ , which targets CATE recovery. However, optimizing PEHE is not well suited for inference about counterfactuals.

There are a few notable exceptions where the construction of  $\hat{Y}_i(1)$  follows a different principle. **Adversarial approaches:** Yoon et al. (2018) introduce GANITE, which employs adversarial training to generate  $\hat{Y}_i(1)$ . Although GANITE innovatively bypasses strict model assumptions, it focuses on PEHE and relies on black-box adversarial neural networks without explicitly modeling the joint distribution of potential outcomes. It typically performs well with large dimensions but poorly with small ones. **Bayesian causal inference:** Missing counterfactuals are treated as latent variables, and uncertainty is integrated through the posterior distribution. For example, Alaa & van der Schaar (2017) propose a Bayesian multitask Gaussian process to jointly model  $(Y(1), Y(0)) | X$ , producing posterior distributions over the potential outcomes. While Bayesian methods offer coherent uncertainty quantification, they rely on strong modeling assumptions and can be sensitive to prior specifications (Li et al., 2022). Moreover, they can be restrictive when aiming to leverage flexible modern machine learning techniques. **Matching methods:** Matching-based approaches (Hur & Liang, 2024) estimate counterfactual outcomes by pairing individuals  $i, j$  with similar covariates but different treatments, and approximating the ITE as  $Y_j(1) - Y_i(0)$ . However, this construction implicitly assumes independence between the potential outcomes ( $\rho = 0$ ). To our knowledge, existing matching methods do not incorporate matching mechanisms that depend directly on the value of  $Y_i$ .

More detailed literature review can be found in Appendix A.1.

## 3 CONSTRUCTING COUNTERFACTUAL ESTIMATE UNDER CROSS-WORLD ASSUMPTIONS

Our goal is to construct a point estimate and prediction interval for the counterfactual outcome. If both  $Y_i(1)$  and  $Y_i(0)$  were observable for some individuals, the problem would reduce to classical regression with the factual outcome as an additional covariate. Since this is not possible, inferring counterfactual outcomes remains fundamentally challenging.

A natural starting point is to *separately* construct point estimates and prediction intervals for the treated group and the control group. For point prediction, any machine learning method, such as random forests or neural networks, can be used. For interval estimation, any conformal or other uncertainty quantification approach can be applied. We refer to Appendix A.2 for details on classical methods and their properties. Suppose their form is as follows:

$$\hat{\mu}_0(x) \text{ and } \hat{\mu}_1(x) \text{ are estimates of } \mu_0(x) \text{ and } \mu_1(x), \text{ respectively, and} \quad (3)$$

$$\tilde{C}_0(x) = [\hat{\mu}_0(x) - l_0(x), \hat{\mu}_0(x) + u_0(x)], \quad \tilde{C}_1(x) = [\hat{\mu}_1(x) - l_1(x), \hat{\mu}_1(x) + u_1(x)],$$

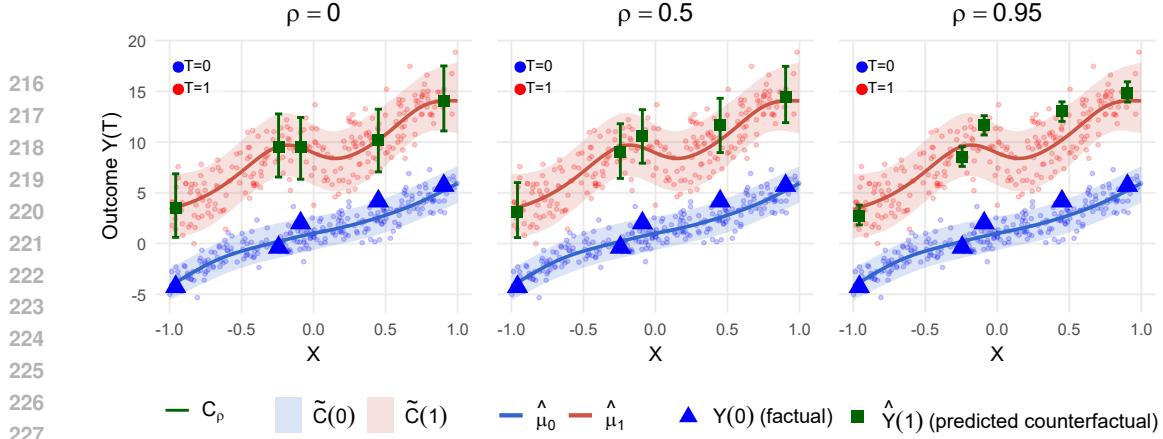


Figure 1: Proposed counterfactual estimator  $\hat{Y}(1) := \hat{\mu}_\rho(x, y)$  and interval  $C_\rho(x, y)$ , combining baseline predictions with cross-world dependence. Here,  $\rho = 0$  corresponds to ignoring the factual outcome, while  $\rho = 1$  assumes perfect dependence. Illustrated on five highlighted units.

where  $l_t, u_t \geq 0$  are the (lower and upper) widths of prediction intervals for  $Y(t), t = 0, 1$ . This is visualized in Figure 1. Ideally,  $\tilde{C}_t$  satisfy either marginal or conditional coverage:

$$P(Y(t) \in \tilde{C}_t(X)) \geq 0.9, \quad \text{or} \quad P(Y(t) \in \tilde{C}_t(x) \mid X = x) \geq 0.9,$$

where marginal coverage is automatically satisfied for conformal methods, while conditional coverage typically requires large sample sizes or strong assumptions in case of high-dimensional  $X$ . We combine these quantities to construct a point estimate  $\hat{\mu}_\rho$  and a prediction interval  $C_\rho$  as follows:

**Definition 2.** Let  $\rho \in [-1, 1]$ . Consider baseline estimates in the form equation 3. We first define the point predictors:

$$\hat{\mu}_\rho^t(x, y) = \begin{cases} \hat{\mu}_1(x) + \rho \cdot \lambda(x) \cdot (y - \hat{\mu}_0(x)), & \text{if } t = 0, \\ \hat{\mu}_0(x) + \rho \cdot \frac{1}{\lambda(x)} \cdot (y - \hat{\mu}_1(x)), & \text{if } t = 1, \end{cases}$$

where  $\lambda(x) = \frac{l_1(x) + u_1(x)}{l_0(x) + u_0(x)}$  is the relative width of the baseline prediction intervals. Given these point predictors, we define the  $C_\rho$  intervals by

$$C_\rho^t(x, y) = \begin{cases} \left[ \hat{\mu}_\rho^t(x, y) - \sqrt{1 - \rho^2} \cdot l_1(x), \hat{\mu}_\rho^t(x, y) + \sqrt{1 - \rho^2} \cdot u_1(x) \right], & \text{if } t = 0, \\ \left[ \hat{\mu}_\rho^t(x, y) - \sqrt{1 - \rho^2} \cdot l_0(x), \hat{\mu}_\rho^t(x, y) + \sqrt{1 - \rho^2} \cdot u_0(x) \right], & \text{if } t = 1. \end{cases}$$

For notational simplicity, we omit the superscript and write  $C_\rho(x, y) = C_\rho^t(x, y)$  and  $\hat{\mu}_\rho(x, y) = \hat{\mu}_\rho^t(x, y)$  when evident from context (typically when  $t = 0$  and the counterfactual  $Y(1)$  is of interest).

The choices for  $\hat{\mu}_\rho$  and  $C_\rho$  are motivated by Theorem 1. The intuition is simple: the larger  $\rho$ , the more weight is put on the (centered) factual outcome. The role of  $\lambda(x)$  is to adjust for potential differences in variance between treated and untreated groups; in settings where equal variances across groups can be reasonably assumed, one may simply set  $\lambda(x) = 1$ . While a claim of optimality in Theorem 1 is a strong statement, the result holds only under an idealized asymptotic scenario. In practice, estimation error or non-Gaussianity can lead to suboptimal performance, while additional assumptions can lead us to a different optimal prediction intervals. Nonetheless, the theorem provides valuable motivation: it shows that under ideal conditions, the  $C_\rho$  construction yields the smallest valid prediction set for a counterfactual.

### 3.1 CONSISTENCY

A direct consequence of Theorem 1 is that our estimators are consistent when the cross-world dependence between  $Y(1)$  and  $Y(0)$  is correctly specified.

270 **Theorem 2** (Asymptotic consistency of  $\hat{\mu}_\rho$  and  $C_\rho$ ). *Let  $x \in \mathcal{X}$  and suppose  $(Y(1), Y(0)) \mid X = x$  is Gaussian with  $\rho = \text{cor}(Y(1), Y(0) \mid X = x) \in [-1, 1]$ .*

273 *Let  $\hat{\mu}_t(x)$  be consistent estimators of  $\mu_t(x)$ , and assume the prediction interval widths  $l_t(x), u_t(x)$  are asymptotically conditionally valid<sup>1</sup> Then, for any fixed  $y \in \mathbb{R}$ :  $\hat{\mu}_\rho(x, y)$  is a consistent estimator of the conditional mean,*

$$276 \quad \hat{\mu}_\rho(x, y) \xrightarrow{p} \mathbb{E}[Y(1) \mid X = x, Y(0) = y], \quad \text{as } n \rightarrow \infty.$$

278 *The  $C_\rho$  prediction intervals achieve asymptotic conditional coverage,*

$$279 \quad \lim_{n \rightarrow \infty} \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) = 0.9.$$

282 The assumption of Gaussianity and  $\rho(x)$  are both modeling assumptions about how  $Y(1)$  and  $Y(0)$  relate, and neither can be learned from data. The Gaussian copula simply translates a chosen value of  $\rho(x)$  into a fully specified cross-world distribution, and any other copula could serve the same role. This highlights the central challenge of retrospective counterfactual prediction: a full dependence structure between the two potential outcomes must be specified, not estimated. Analogous consistency and optimality results to Theorem 2 can be straightforwardly derived under any alternative cross-world dependence structure.

### 289 3.2 SPECIAL CASES: $\rho = 0$ AND $\rho = 1$

291 When  $\rho = 0$ , our predictions do not depend on  $y$ :  $\mu_\rho(x, y) = \hat{\mu}_1(x)$  and  $C_\rho(x, y) = \tilde{C}_1(x)$ , as the 292 factual outcome  $\tilde{Y}_1(0)$  provides no information about the missing potential outcome. The problem 293 then reduces to a standard regression setting, as discussed e.g. in Lei & Candès (2021). Under 294  $Y(1) \perp\!\!\!\perp Y(0) \mid X$ , our  $C_\rho$  intervals inherit the validity of the baseline  $\tilde{C}_1$  interval:

$$295 \quad \mathbb{P}(Y(1) \in \tilde{C}_1(X) \mid X = x) \geq 0.9 \implies \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) \geq 0.9. \quad (4)$$

297 Moreover,  $C_\rho$  is marginally valid even in finite samples, if  $\tilde{C}_1$  is marginally valid (which holds if a 298 conformal method is used).

300 When  $\rho = \pm 1$  and  $\lambda(x) = 1$ , we have  $\hat{\mu}_\rho(x, y) = y + \hat{\tau}(x)$  and  $C_\rho(x, y) = \{\hat{\mu}_\rho(x, y)\}$ , corresponding 301 to a constant treatment effect:

$$302 \quad \mu_\rho(x, y_0) = \hat{\mu}_\rho(x, y_0) \implies \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) = 1. \quad (5)$$

304 In practice, however,  $\mu_\rho(x, y_0)$  is unknown and must be estimated, introducing bias and potentially 305 non-valid prediction intervals. Section 3.3 discusses how to extend  $C_\rho$  intervals to account for the 306 additional uncertainty from this estimation.

### 308 3.3 FINITE SAMPLE BIAS CORRECTION: INTRODUCING $C_\rho^{+CI}$ PREDICTION INTERVALS

309 We enlarge  $C_\rho$  prediction intervals by adding *confidence intervals* for  $\mu_\rho$ , estimated for instance via 310 bootstrapping.

312 **Definition 3.** *Let  $\rho \in [-1, 1]$ . Consider prediction intervals for  $Y(1)$  and  $Y(0)$  of the form equation 313 3, and suppose we have confidence intervals  $CI(x, y) = [\hat{\mu}_\rho(x, y) - r_l(x, y), \hat{\mu}_\rho(x, y) + 314 r_u(x, y)]$ . We define the bias-corrected  $C_\rho^{+CI}$  intervals as*

$$315 \quad C_\rho^{+CI}(x, y) = \left[ \hat{\mu}_\rho(x, y) - c \cdot r_l(x, y) - \sqrt{1 - \rho^2} \cdot l_{1-T_i}(x), \hat{\mu}_\rho(x, y) + c \cdot r_u(x, y) + \sqrt{1 - \rho^2} \cdot u_{1-T_i}(x) \right],$$

317 where  $l_{1-T_i}(x)$  and  $u_{1-T_i}(x)$  select the appropriate prediction bounds depending on treatment 318 status  $T_i$ , and  $c \in [0, 1]$  is a hyperparameter. In simple terms,  $C_\rho^{+CI}$  extends  $C_\rho$  by adding a scaled 319 confidence interval around  $\hat{\mu}_\rho(x, y)$ , with scaling factor  $c$ . We consider the choice  $c = \rho^2$  following 320 the same argument as in (Bodik et al., 2025).

322 <sup>1</sup>This holds for many nonparametric estimators under mild smoothness assumptions, including random 323 forests for estimating  $\hat{\mu}_t(x)$  and CQR using quantile random forests for prediction intervals. More details are given in Appendix D.

Following equation 4 and equation 5, when  $\rho = 0$ , no adjustment is needed, while for  $\rho = \pm 1$ , full confidence intervals must be incorporated to guarantee correct coverage. This motivates the choice  $c = \rho^2$ , ensuring that  $C_\rho^{+CI}$  smoothly interpolates between no correction ( $\rho = 0$ ) and full correction ( $\rho = 1$ ). For this choice, we also have the following guarantee.

**Consequence 1.** *If  $\rho = \pm 1$  and confidence intervals satisfy  $\mathbb{P}(\mu(x, y_0) \in \hat{\mu}_\rho(x, y_0) \pm r(x, y_0)) \geq 1 - \alpha$ , then  $\mathbb{P}(Y(1) \in C_\rho^{+CI}(X, Y(0)) \mid X = x, Y(0) = y) \geq 1 - \alpha$ .*

## 4 NUMERICAL EXPERIMENTS

We evaluate our method on synthetic, semi-synthetic, and real datasets using both point estimation and prediction interval metrics, comparing against four baselines under varying cross-world correlation  $\rho$ . A user-friendly implementation of our methods in both R and Python, along with scripts to reproduce all experiments, is available at: [github link anonymized for review].

### 4.1 DETAILS

**Datasets:** We consider a variety of data-generating processes commonly used in the related literature; full details are provided in Appendix C.1. The **synthetic** datasets feature non-constant propensity scores and randomly generated CATE functions based on smooth random polynomials. These settings allow us to vary the dimensionality  $d = \dim(\mathbf{X})$  and the cross-world correlation parameter  $\rho$ , thus controlling both complexity and treatment-effect heterogeneity. In addition, we include the **IHDP** dataset, which uses real covariates from a randomized trial and simulated counterfactual outcomes, providing a semi-synthetic benchmark. The **Twins** dataset contains real covariates and real paired outcomes corresponding to different treatment assignments, enabling the construction of both factual and counterfactual outcomes for each unit.

**Implementation details:** To better reflect real-world scenarios where  $\rho$  is unknown, we report both i)  $\rho_{used} = \rho_{true}$  and ii)  $\rho_{used} = \rho_{true} + Unif(-0.5, 0.5)$  capped at  $[-1, 1]$ .

To construct the proposed  $C_\rho$  and  $C_\rho^{+CI}$  intervals, we use CQR (see Appendix A.2) to produce the base intervals in equation 3. While more advanced methods often achieve better empirical results, we adopt CQR as a simple, well-established baseline, following Lei & Candès (2021); Alaa et al. (2023), and Bodik et al. (2025).

Our algorithm jointly estimates conditional means and quantiles: in low dimensions ( $d \leq 5$ ) we use GAM for the mean and qGAM (Fasiolo et al., 2017) for quantiles, while in higher dimensions ( $d > 5$ ) we switch to random forests for the mean and quantile random forests (Meinshausen & Ridgeway, 2006) for quantiles, trading some low-dimensional efficiency for scalability. TabPFN (Hollmann et al., 2023) is a good potential alternative.

**Baseline methods:** In Appendix A.1, we provide details of the existing methods used to estimate counterfactuals. We consider four representative approaches. First, **CATE-adjusted imputation** estimates the CATE via a T-learner (Künzel et al., 2019), DR-learner (doubly robust, Dukes et al. (2024)) or Generalized Random Forest (Athey et al., 2019), and adjusts the observed outcome using  $\hat{Y}_i(1) = Y_i(0) + \hat{\tau}(X_i)$ . We only report the T-learner as it yielded the best results on the considered datasets. Note that while many other CATE estimators exist, the goal is to illustrate the core imputation approach, which remains fundamentally limited even with perfectly estimated CATE. Second,

**Direct Outcome (DO) modeling** fits the treatment-specific regression  $\hat{Y}_i(1) := \mu_1(X_i)$  using Random Forests (Wager & Athey, 2018) or Generalized Additive Models (Fasiolo et al., 2017) (using the same choices as in  $C_\rho$ ). Third, **Matching-based imputation** uses nearest-neighbor matching with Mahalanobis distance to impute the missing potential outcome from similar units in the opposite treatment group. Fourth, **adversarial generative modeling** employs GANITE (Yoon et al., 2018), a two-stage generative adversarial network that imputes and refines counterfactual predictions, typically suitable only in high-dimensional, nonlinear settings.

**Setup:** We conducted experiments on datasets: synthetic ( $n = 1000$ ), IHDP ( $n = 747$ ), and Twins ( $n = 11,983$ ). Each synthetic and IHDP experiment was repeated 50 times to reduce Monte Carlo variability, while the Twins dataset was analyzed once using the full sample. All methods used an 80/20 train-calibration split for CQR and prediction intervals at level  $\alpha = 0.1$ . Computing  $\mu_\rho$  and  $C_\rho$  is fast, as the main cost lies in fitting four quantile regressions; however,  $C_\rho^{+CI}$  requires

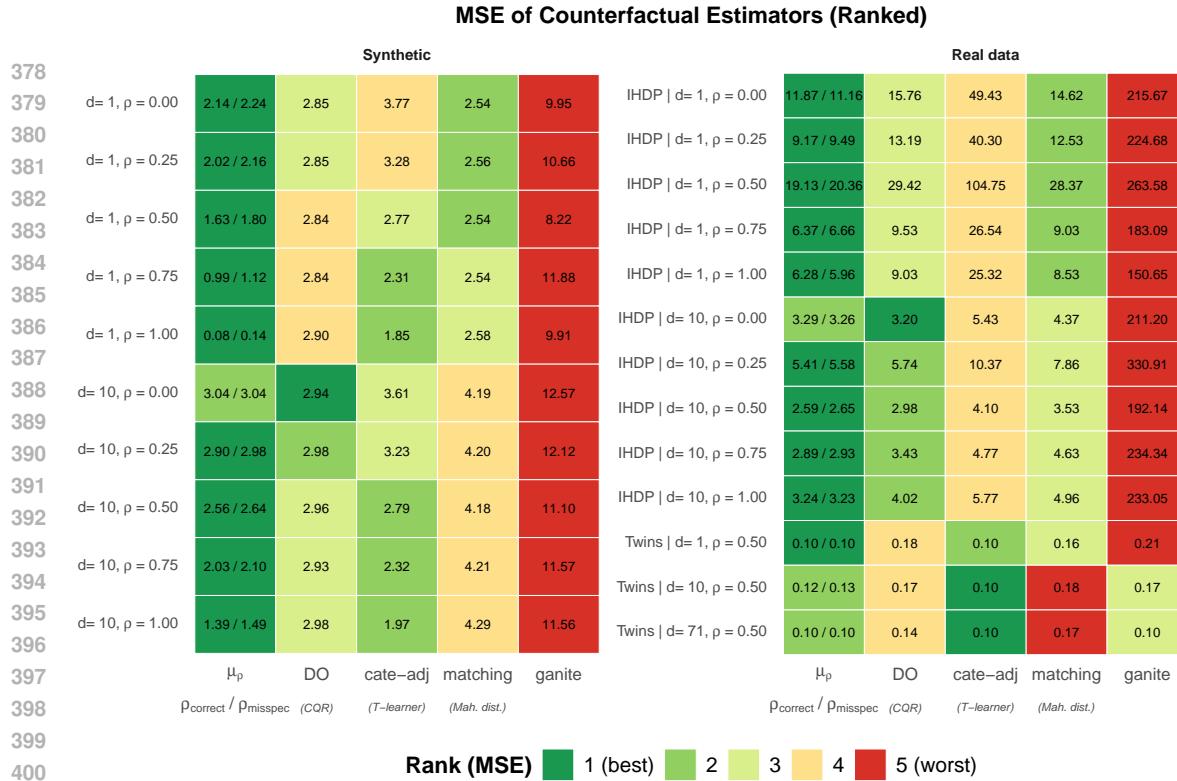


Figure 2: Mean squared error of different estimators across different datasets, averaged over 50 repetitions. In  $\mu_p$ , we use either  $\rho = \rho_{true}$ , or mimic misspecification by using  $\rho = \rho_{true} + Unif(-0.5, 0.5)$ . Standard deviations for each entry can be found in Appendix B.

computing bootstrap confidence intervals (we used 100 bootstraps), which is computationally more intensive; running all datasets and repetitions took approximately four days on an Intel Core i5-6300U (2.5 GHz, 16 GB RAM).

410 **Metrics:** To assess performance, we use MSE for point predictions and the Interval Score (metric  
411 that combines coverage and width) for prediction intervals:

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^n (\hat{Y}_i^{cf} - Y_i^{cf})^2, \quad \text{IS}_{\alpha} = \frac{1}{n} \sum_{i=1}^n (U_i - L_i) + \frac{2}{\alpha} [(L_i - Y_i^{cf})_+ + (Y_i^{cf} - U_i)_+],$$

where  $[L_i, U_i]$  are the estimated prediction intervals at level  $1 - \alpha$  and  $z_+ = \max(z, 0)$ .

## 4.2 RESULTS OF THE EXPERIMENTS

Figure 2 presents the MSE results of point predictions; Figure 5 in Appendix C.2 presents the interval scores for prediction intervals. Both of the variants (correctly specified  $\rho$  and misspecified  $\rho$ ) strongly outperform other methods in scenarios where  $\rho \neq 0$  or 1; if  $\rho = 0$  note that DO have almost identical performance as our method. If  $\rho = 1$ , the CATE-adjusted estimators have competitive performance.

While it seems that GANITE has very bad performance, note that it was built for large dimensional problems, and for large  $d$  and  $n$  it would perform often better. Our method is more suitable for low dimensions, when the factual  $Y(T)$  contains significant information beyond the information in the observed covariates.

429 In a few real-world datasets,  $\rho_{\text{misspec}}$  yields slightly better performance than  $\rho_{\text{correct}}$ , a consequence  
 430 of Monte Carlo variability. As shown in Figure 5, the corresponding confidence intervals are large  
 431 in these cases, and resolving these differences would require hundreds of repetitions to reduce sim-  
 ulation noise.

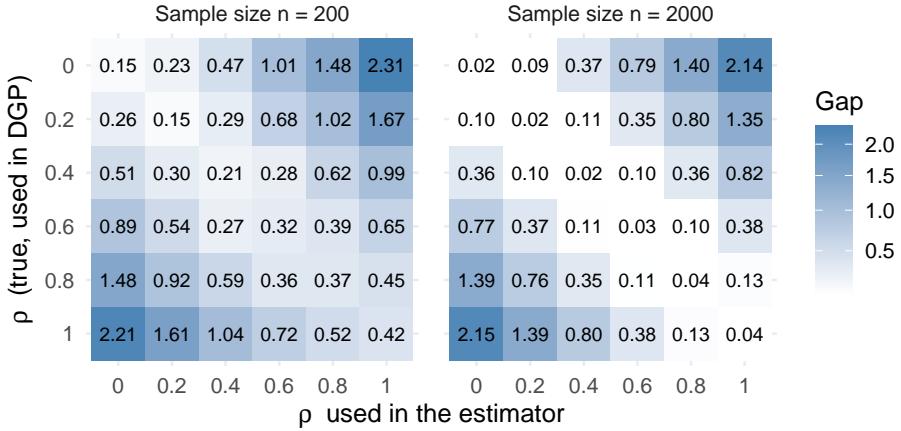


Figure 3: Gap =  $\text{MSE}_{\text{our}} - \text{MSE}_{\text{oracle}}$  calculated across different misspecifications of  $\rho$ . Bias persists when  $\rho$  is far from the truth, but vanishes asymptotically if  $\rho$  is specified correctly. This demonstrates that incorporating even approximate knowledge of cross-world dependence improves counterfactual predictions.

#### 4.3 ADDITIONAL EXPERIMENTS: MISSPECIFIED $\rho$ AND NON-GAUSSIANITY

We conduct two additional experiments, evaluating the Gap =  $\text{MSE}_{\text{our}} - \text{MSE}_{\text{oracle}}$ , where the oracle estimator is equal to the true  $\mathbb{E}[Y^{cf} | X, Y^{obs}, T]$ . All details can be found in Appendix B.

- **(Misspecifying  $\rho$ ).** Figure 3 reports experiments on synthetic data varying the *true* correlation  $\rho_{\text{true}}$  in the data-generating process (DGP) and the *assumed* value  $\rho_{\text{est}}$  in our estimator. Bias grows with misspecification  $|\rho_{\text{est}} - \rho_{\text{true}}|$ , and vanishes with larger  $n$  only when  $\rho_{\text{est}}$  is close to  $\rho_{\text{true}}$ ; otherwise, it persists even asymptotically. This shows that even rough knowledge of  $\rho$  yields large gains over ignoring the factual outcome.
- **(Robustness to non-Gaussianity).** Appendix B.1 (Figure 4) contains experiments with non-Gaussian outcome distributions ( $Y(0), Y(1)$ ). In all cases the gap vanishes with  $n$ , though convergence is slower under non-Gaussian noise. Discrepancies are most visible at  $\rho = 1$ .

## 5 CONCLUSION AND FUTURE RESEARCH

The factual outcome carries valuable individual-level information that should not be ignored in counterfactual prediction. We formalize the importance of the factual outcome through the cross-world correlation parameter  $\rho$ , which determines how strongly observed and unobserved outcomes are linked. By treating  $\rho$  as an explicit modeling choice, our approach interpolates between classical extremes, with  $\rho = 0$  discarding the factual outcome and  $\rho = 1$  assuming constant effects, and delivers predictions that are theoretically well motivated and empirically effective whenever even approximate knowledge of  $\rho$  is available.

Although  $\rho$  is not identifiable from observed data, *every existing method already makes a fixed, implicit assumption about  $\rho$* . Our contribution is to make this dependence explicit, enabling practitioners to incorporate domain knowledge or sensitivity analysis into counterfactual inference. This transparency clarifies the assumptions underlying prediction and opens new possibilities for modeling cross-world dependence.

Future work should explore richer dependence structures, such as copula-based models, which would enable a broader class of assumptions about how potential outcomes co-vary. This would yield a more general framework for counterfactual prediction, accommodating settings where simple correlation is inadequate. Another promising direction is to extend the methodology to continuous treatments or dynamic settings such as time series, where cross-world assumptions could provide structure for dose-response curves or evolving interventions, thereby enhancing both interpretability and stability. Beyond methodological extensions, future research may also investigate applications in domains where expert knowledge about cross-world dependence is available, such as medicine, economics, or climate science.

486 REPRODUCIBILITY STATEMENT AND USAGE OF LARGE LANGUAGE MODELS  
487

488 All code and datasets used in this work are provided in the supplementary material to ensure full  
489 reproducibility of our results. We declare that we used a large language model for grammar and  
490 language polishing, as well as for limited coding assistance (e.g., boilerplate code and debugging).  
491 All conceptual and theoretical contributions, experimental designs, and conclusions are our own.  
492

493 REFERENCES  
494

495 A. Abadie and G. Imbens. Large sample properties of matching estimators for average treatment  
496 effects. *Econometrica*, 2006.

497 A. Agarwal, M. Xiao, R. Barter, O. Ronen, B. Fan, and B. Yu. PCS-UQ: Uncertainty quantification  
498 via the predictability-computability-stability framework, 2025. URL <https://arxiv.org/abs/2505.08784>.

500 A. Alaa and M. van der Schaar. Bayesian inference of individualized treatment effects using  
501 multi-task gaussian processes. In *Advances in Neural Information Processing Systems*, volume 30, 2017.  
502 URL [https://proceedings.neurips.cc/paper\\_files/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf).

503 A. Alaa, Z. Ahmad, and M. van der Laan. Conformal meta-learners for predictive inference of  
504 individual treatment effects. In *Thirty-seventh Conference on Neural Information Processing  
505 Systems*, 2023. URL <https://openreview.net/forum?id=IwnINorSZ5>.

506 R. M. Andrews and V. Didelez. Insights into the cross-world independence assumption of causal  
507 mediation analysis. *Epidemiology*, 32(2):209–219, 2021. doi: 10.1097/EDE.0000000000001313.

508 A. N. Angelopoulos, R. F. Barber, and S. Bates. Theoretical foundations of conformal prediction,  
509 2024. URL <https://arxiv.org/abs/2411.11824>.

510 S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. *The Annals of Statistics*, 47(2):  
511 1148–1178, 2019.

512 I. Azizi, J. Bodik, J. Heiss, and B. Yu. Clear: Calibrated learning for epistemic and aleatoric risk,  
513 2025. URL <https://arxiv.org/abs/2507.08150>.

514 K. Bairaktari, R. Izbicki, and E. J. Candès. Kandinsky conformal prediction: Beyond class- and  
515 covariate-conditional coverage. In *Proceedings of the 42nd International Conference on Machine  
516 Learning (ICML)*, 2025. URL <https://arxiv.org/abs/2502.17264>.

517 R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. The limits of distribution-free condi-  
518 tional predictive inference, 2020. URL <https://arxiv.org/abs/1903.04684>.

519 I. Bica, J Jordon, and M van der Schaar. Estimating the effects of continuous-valued interventions us-  
520 ing generative adversarial networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and  
521 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 16434–16445.  
522 Curran Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/bea5955b308361a1b07bc55042e25e54-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/bea5955b308361a1b07bc55042e25e54-Paper.pdf).

523 J. Bodik and V. Chavez-Demoulin. Structural restrictions in local causal discovery: identifying direct  
524 causes of a target variable. *Biometrika*, 2025. URL <https://arxiv.org/abs/2307.16048>.

525 J. Bodik, Y. Huang, and B. Yu. Cross-world assumption and refining prediction intervals for individ-  
526 ual treatment effects. *ArXiv preprint ArXiv:2507.12581*, 2025. URL <https://arxiv.org/abs/2507.12581>.

527 M. Cai, S. Buuren, and V. Gerk. How to relate potential outcomes: Estimating individual treatment  
528 effects under a given specified partial correlation, 2022. URL <https://arxiv.org/abs/2208.12931>.

540 K. E. Colson et al. Optimizing matching and analysis combinations for estimating causal effects.  
 541 *Scientific Reports*, 2016.

542

543 A. Dieng et al. Interpretable almost-exact matching for causal inference. *Journal of Causal Inference*, 2019.

544

545 P. Ding and F. Li. Causal inference: A missing data perspective. *Statistical Science*, 33(2):214–237,  
 546 2018. doi: 10.1214/18-STS645. URL <https://doi.org/10.1214/18-STS645>.

547

548 P. Ding, A. Feller, and L. Miratrix. Decomposing treatment effect variation. *Journal of the American  
 549 Statistical Association*, 114(525):304–317, 2019.

550

551 O. Dukes, S. Vansteelandt, and D. Whitney. On doubly robust inference for double machine learning  
 552 in semiparametric regression. *Journal of Machine Learning Research*, 25(279):1–46, 2024. URL  
 553 <http://jmlr.org/papers/v25/22-1233.html>.

554

555 Y. Fan and S. S. Park. Sharp bounds on the distribution of treatment effects and their statistical  
 556 inference. *Econometric Theory*, 26(3):931–951, 2010. doi: 10.1017/S026646609990168.

557

558 M. Fasiolo, Y. Goude, R. Nedellec, and S. Wood. Fast calibrated additive quantile regression, 2017.  
 Available at <https://arxiv.org/abs/1707.03307>.

559

560 S. P. Firpo. Efficient semiparametric estimation of quantile treatment effects. *Econometrica*, 75(1):  
 259–276, 2007.

561

562 I. Gibbs, J. J. Cherian, and E. J. Candès. Conformal prediction with conditional guarantees. *Journal  
 563 of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008, 03 2025. ISSN  
 564 1369-7412. doi: 10.1093/rssb/qkaf008. URL [https://doi.org/10.1093/rssb/  
 565 qkaf008](https://doi.org/10.1093/rssb/qkaf008).

566

567 J. J. Heckman, J. Smith, and N. Clements. Making the most out of program evaluations and social  
 568 experiments: Accounting for heterogeneity in program impacts. *Review of Economic Studies*, 64  
 (4):487–535, 1997.

569

570 J. L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational and  
 571 Graphical Statistics*, 20(1):217–240, 2011. doi: 10.1198/jcgs.2010.08162.

572

573 N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. TabPFN: A transformer that solves small  
 574 tabular classification problems in a second, 2023. URL [https://arxiv.org/abs/2207.  
 575 01848](https://arxiv.org/abs/2207.01848).

576

577 Y. Hur and T. Liang. A convexified matching approach to imputation and individualized inference,  
 2024. URL <https://arxiv.org/abs/2407.05372>.

578

579 G. W. Imbens and D. B. Rubin. *Causal Inference for Statistics, Social, and Biomedical Sciences: An  
 580 Introduction*. Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781139025751.

581

582 F. Johansson, U. Shalit, and D. Sontag. Learning representations for counterfactual inference. In  
 583 *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pp. 3020–3029, New York, New York, USA, 20–22 Jun  
 2016. PMLR. URL <https://proceedings.mlr.press/v48/johansson16.html>.

584

585 J. Jonkers, J. Verhaeghe, G. Wallendael, L. Duchateau, and S. Hoecke. Conformal convolution and  
 586 monte carlo meta-learners for predictive inference of individual treatment effects, 2024. URL  
 587 <https://arxiv.org/abs/2402.04906>.

588

589 S. Joshi, A. Korba, T. Trogdon, and E. Candès. Conformal inference under high-dimensional co-  
 590 variate shifts via likelihood-ratio regularization. *arXiv preprint arXiv:2502.13030*, 2025. URL  
 591 <https://arxiv.org/abs/2502.13030>.

592

593 N. Kallus. A Framework for Optimal Matching for Causal Inference. In Aarti Singh and Jerry Zhu  
 (eds.), *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*,  
 594 volume 54 of *Proceedings of Machine Learning Research*, pp. 372–381. PMLR, 20–22 Apr 2017.

594 K. Kasa, A. Ranganath, and Á. Cuevas. Adapting prediction sets to distribution shifts without  
 595 labels. In *International Conference on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=k2gGy2hpx>.

596

597 K. Kim. Semiparametric counterfactual regression. *arXiv preprint arXiv:2504.02694*, 2025.

598

599 K. Kim, E. H. Kennedy, and J. R. Zubizarreta. Doubly robust counterfactual classification. In  
 600 *Advances in Neural Information Processing Systems*, volume 35, pp. 34831–34845, 2022.

601

602 S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. Metalearners for estimating heterogeneous  
 603 treatment effects using machine learning. *Proceedings of the National Academy of Sciences*, 116  
 604 (10):4156–4165, 2019.

605

606 A. Lacombe and M. Sebag. Asymmetrical latent representation for individual treatment effect mod-  
 607 eling, 2025. URL <https://arxiv.org/abs/2501.14006>.

608

609 L. Lei and E. J. Candès. Conformal inference of counterfactuals and individual treatment ef-  
 610 fects. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 83(5):911–938,  
 November 2021. doi: 10.1111/rssb.12445.

611

612 F. Li, P. Ding, and F. Mealli. Bayesian causal inference: A critical review, 2022. URL <https://arxiv.org/abs/2206.15460>.

613

614 C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling. Causal effect inference  
 615 with deep latent-variable models. In *Proceedings of the 31st International Conference on Neural  
 616 Information Processing Systems*, NIPS’17, pp. 6449–6459, 2017.

617

618 A. McClean, Z. Branson, and E. H. Kennedy. Nonparametric estimation of conditional incremental  
 619 effects. *Journal of Causal Inference*, 12(1):20230024, 2024. doi: 10.1515/jci-2023-0024.

620

621 N. Meinshausen and G. Ridgeway. Quantile regression forests. *Journal of Machine Learning Re-  
 622 search*, 7(6), 2006.

623

624 R. B. Nelsen, J. Quesada-Molina, J. Antonio Rodríguez-Lallena, and M. Úbeda Flores. Bounds on  
 625 bivariate distribution functions with given margins and measures of association. *Communications  
 in Statistics - Theory and Methods*, 30(6):1055–1062, 2001. doi: 10.1081/STA-100104355.

626

627 J. Pearl and D. Mackenzie. *The Book of Why*. Penguin Books, 2019. URL <http://bayes.cs.ucla.edu/WHY/>.

628

629 K. Perlin. An image synthesizer. *Siggraph Comput. Graph.*, 19(0097-8930):287–296, 1985.

630

631 V. Plassier, O. Bouhali, and N. El Karoui. Rectifying conformity scores for better conditional cov-  
 632 erage. *arXiv preprint arXiv:2502.16336*, 2025. URL <https://arxiv.org/abs/2502.16336>.

633

634 Y. Romano, E. Patterson, and E. Candès. Conformalized quantile regression. In *Advances in Neural  
 635 Information Processing Systems*, pp. 3538–3548, 2019.

636

637 D. Rubin. Causal inference using potential outcomes. *Journal of the American Statistical Associa-  
 638 tion*, 100(469):322–331, 2005. doi: 10.1198/016214504000001880.

639

640 D. B. Rubin. Comment: Neyman (1923) and causal inference in experiments and observational  
 641 studies. *Statistical Science*, 5(4):472–480, November 1990. doi: 10.1214/ss/1177012032.

642

643 E. A. Stuart. Matching methods for causal inference: A review and a look forward. *Statistical  
 644 Science*, 2010.

645

646 R. J. Tibshirani, R. F. Barber, E. Candès, and A. Ramdas. Conformal prediction under covariate  
 647 shift. *Advances in Neural Information Processing Systems*, pp. 2530–2540, 2019.

648

649 V. Vovk, A. Gammerman, and G. Shafer. *Algorithmic Learning in a Random World*. Springer  
 650 Science & Business Media, 2005.

648 S. Wager. Causal inference: A statistical learning approach, 2024. URL [https://web.stanford.edu/~swager/causal\\_inf\\_book.pdf](https://web.stanford.edu/~swager/causal_inf_book.pdf). Stanford University.

649

650

651 S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random

652 forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

653 B. Wang and X. Qiao. Conformal prediction under generalized covariate shift with posterior drift.

654 In *Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AIS-*

655 *TATS*), 2025. URL <https://arxiv.org/abs/2502.17744>.

656

657 R. W. Wright. Causation in tort law. *California Law Review*, 73(6):1735–1828, 1985. doi: 10.2307/

658 3480056.

659 L. Yao, S. Li, Y. Li, M. Huai, J. Gao, and A. Zhang. Representation learning for

660 treatment effect estimation from observational data. In *Advances in Neural In-*

661 *formation Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL

662 [https://proceedings.neurips.cc/paper\\_files/paper/2018/file/a50abba8132a77191791390c3eb19fe7-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2018/file/a50abba8132a77191791390c3eb19fe7-Paper.pdf).

663

664 J. Yoon, J. Jordon, and M. van der Schaar. GANITE: Estimation of individualized treatment effects

665 using generative adversarial nets. In *International Conference on Learning Representations*, 2018.

666 URL <https://openreview.net/forum?id=ByKWUeWA->.

667

668 B. Yu and R. L. Barter. *Veridical Data Science: The Practice of Responsible Data Analysis and*

669 *Decision Making*. Adaptive Computation and Machine Learning Series. MIT Press, 2024. ISBN

670 0262379708, 9780262379700.

671 Z. Zhang and T. S. Richardson. Bounds on the distribution of a sum of two random variables:

672 Revisiting a problem of kolmogorov with application to individual treatment effects, 2025a. URL

673 <https://arxiv.org/abs/2405.08806>.

674

675 Z. Zhang and T. S. Richardson. Individual treatment effect: Prediction intervals and sharp bounds,

676 2025b. URL <https://arxiv.org/abs/2506.07469>.

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702  
 703  
 704  
**Appendix**

705  
**A LITERATURE REVIEW: DETAILS**

707  
**A.1 COUNTERFACTUAL ESTIMATION METHODS: OTHER APPROACHES**

709  
 710  
 We consider four classes of approaches for estimating the unobserved potential outcome  $Y_i(1)$  for  
 units with  $T_i = 0$  (and analogously  $Y_i(0)$  for  $T_i = 1$ ).

711  
**CATE-adjusted imputation (CATE-adj).** This approach first estimates CATE  $\tau(X_i)$  and then  
 712 shifts the observed control outcome by this estimated effect:

714  

$$\hat{Y}_i(1) = Y_i(0) + \hat{\tau}(X_i).$$

715  
 We use three alternative CATE estimators: the T-learner (Künzel et al., 2019), the Generalized  
 716 Random Forest (GRF) (Athey et al., 2019), and a doubly robust (DR) estimator (Dukes et al., 2024).  
 717 Closely related meta-learners include the S-learner, which fits a single model with treatment as an  
 718 input feature, and the X-learner, which augments the T-learner with imputed treatment effects for the  
 719 opposite treatment group and often performs well under treatment imbalance (Künzel et al., 2019).  
 720 These alternative meta-learners share the same conceptual foundation. Johansson et al. (2016);  
 721 Lacombe & Sebag (2025) use deep learning alternatives; balancing counterfactual regression or  
 722 adding assymetrical latend represnetation.

723  
 To quantify uncertainty, confidence intervals are computed using standard procedures, obtaining  
 724 prediction intervals in a form  $\hat{Y}_i(1) = Y_i(0) + \hat{\tau}(X_i) \pm \text{conf.int}(\hat{\tau}(X_i))$ . In our experiments, we only  
 725 considered T-learner, GRF and DR estimators for CATE-adjusted imputation, as other approaches  
 726 are typically significantly more performative only in high-dimensional datasets or when treated and  
 727 untreated units differ substantially, which is not the case in our datasets.

729  
**Direct outcome modeling (DO).** Here we model the treatment-specific regression function  
 730  $\mu_1(x) = \mathbb{E}[Y | X = x, T = 1]$  directly from the treated sample and use  $\hat{Y}_i(1) = \hat{\mu}_1(X_i)$  for coun-  
 731 terfactual prediction. We consider two implementations: Random Forests (RF) (Wager & Athey,  
 732 2018) and Generalized Additive Models (GAM) (Fasiolo et al., 2017). Unlike the CATE-adjusted  
 733 approach, these methods do not require access to the observed control outcome  $Y_i(0)$  for the unit,  
 734 relying entirely on model-based extrapolation from treated units. To quantify uncertainty, we use  
 735 the same prediction intervals as in equation 3.

736  
 There is also a large number of similar approaches besides RF and GAM, also adjusting for the  
 737 distribution shift between the treated/untreated groups. Yao et al. (2018) employ deep representation  
 738 learning to estimate  $\hat{Y}_i(1-T) = g(f(X_i), T_i)$  where  $f, g$  are neural networks based preserving local  
 739 similarity between the treated groups.

741  
**Matching-based imputation (Matching).** This approach imputes missing potential outcomes us-  
 742 ing outcomes from similar units in the opposite treatment group, selected via a distance metric  
 743 in covariate space (Stuart, 2010; Abadie & Imbens, 2006). Beyond nearest-neighbor and optimal  
 744 matching, advances include kernel-based matching to minimize estimation error (Kallus, 2017) and  
 745 full or genetic matching combined with double-robust analysis for improved bias and efficiency  
 746 (Colson et al., 2016). For high-dimensional or categorical data, algorithms like DAME prioritize  
 747 relevant covariates (Dieng et al., 2019). Similar ideology was also used in ALRITE (Lacombe &  
 748 Sebag, 2025), where the authors imputed counterfactuals based on the closest distance in a latent  
 749 space, in order to improve CATE estimation.

750  
 We implemented nearest-neighbor matching with a uniform kernel and optional replacement, using  
 751 either the Mahalanobis distance between standardized covariates or the absolute difference in logit  
 752 propensity scores (the former led to better results so we only report that). The propensity scores  
 753 is estimated by standard classification forest. For a treated unit, the counterfactual  $\hat{Y}_i(0)$  is the  
 754 average outcome among its matched controls, and vice versa for control units. This nonparametric  
 755 approach relies on local overlap in covariates and assumes conditional independence of potential  
 outcomes and treatment given covariates. To quantify uncertainty, we construct unit-level prediction

756 intervals for the counterfactuals using the empirical variance of the donor outcomes: for a unit with  
 757  $K \geq 2$  matches, the half-width is given by  $t1 - \alpha/2, K - 1 \cdot s/\sqrt{K}$ , where  $s$  is the sample standard  
 758 deviation of the matched donor outcomes, yielding  $(\hat{Y}_i^{\text{cf}} \pm \text{half-width})$ ; if  $K = 1$ , the half-width  
 759 is zero. This approach implicitly assumes conditional independence of potential outcomes ( $\rho = 0$ ),  
 760 similarly to DO and independent treatment given covariates.  
 761

762 **Adversarial generative modeling (GANITE).** GANITE (Yoon et al., 2018) employs a two-stage  
 763 generative adversarial network (GAN) framework tailored to causal inference. In the first stage,  
 764 a generator–discriminator pair is trained to impute the missing counterfactual outcomes by making  
 765 the generated outcomes indistinguishable from observed ones given covariates and treatment assign-  
 766 ment. In the second stage, a separate adversarial network refines these predictions to improve estima-  
 767 tion of individualized treatment effects, encouraging accurate recovery of both potential outcomes  
 768 simultaneously. This approach is particularly suited to high-dimensional, nonlinear settings. Some  
 769 extinctions were also proposed that work better under some alternative scenarios (e.g. SCIGAN-ITE  
 770 by Bica et al. (2020)).

771 **Other approaches.** Some other approaches exist, such as **Bayesian causal inference**, where  
 772 the missing counterfactuals are treated as latent variables, and uncertainty is integrated through the  
 773 posterior distribution. For example, Alaa & van der Schaar (2017) propose a Bayesian multitask  
 774 Gaussian process to jointly model  $(Y(1), Y(0)) | X$ , producing posterior distributions over the po-  
 775 tential outcomes. While Bayesian methods offer coherent uncertainty quantification, they often rely  
 776 on strong modeling assumptions and can be sensitive to prior specifications (Li et al., 2022). More-  
 777 over, they can be restrictive when aiming to leverage flexible modern machine learning techniques.  
 778

## 779 A.2 UNCERTAINTY QUANTIFICATION AND PREDICTION INTERVALS IN CLASSICAL 780 REGRESSION

781 In a standard regression framework, we observe data  $(X_i, Y_i) \sim P_X \times P_{Y|X}$  for  $i = 1, \dots, n$ , and  
 782 seek a prediction set  $C(X)$  for future responses that satisfies a coverage property. Two common  
 783 notions of coverage are:

$$784 \mathbb{P}(Y_{n+1} \in C(X_{n+1})) \geq 1 - \alpha \quad (\text{marginal coverage}), \\ 785 \mathbb{P}(Y_{n+1} \in C(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha \quad (\text{conditional coverage}). \\ 786$$

787 Conditional coverage is a stronger requirement but is generally unattainable in a distribution-free,  
 788 finite-sample setting without strong assumptions or asymptotics (Barber et al., 2020). By contrast,  
 789 marginal coverage can be attained without modeling assumptions via conformal prediction (An-  
 790 gelopoulos et al., 2024). Recent work has also explored data-driven techniques to improve condi-  
 791 tional coverage, such as combining epistemic+aleatoric sources of uncertainty (Azizi et al., 2025),  
 792 rectifying conformity scores (Plassier et al., 2025), or optimizing subgroup-conditional guarantees  
 793 through flexible frameworks like Kandinsky conformal prediction (Bairaktari et al., 2025). These  
 794 developments are consistent with the broader principles of Predictability, Computability, and Stabil-  
 795 ity (PCS) advocated for trustworthy data science (Agarwal et al., 2025; Yu & Barter, 2024).

796 Conformal methods produce prediction intervals with exact finite-sample marginal coverage under  
 797 exchangeability of the observed and future data points (Vovk et al., 2005; Angelopoulos et al., 2024).  
 798 These methods typically split the data into training and calibration subsets, construct a preliminary  
 799 predictor on the training set, and adjust it on the calibration set to guarantee coverage. A prominent  
 800 example is Conformalized Quantile Regression (CQR), which uses estimated conditional quantiles  
 801 to build tighter prediction intervals (Romano et al., 2019).

802 **Estimation procedure for CQR.** The key idea of CQR is to combine quantile regression with  
 803 conformal calibration:

- 804 1. **Split the data.** Randomly divide the dataset into a training set  $\mathcal{D}_{\text{train}}$  and a calibration set  
 $\mathcal{D}_{\text{calib}}$ . The split fraction is typically 80/20.
- 805 2. **Fit quantile regression models.** On  $\mathcal{D}_{\text{train}}$ , estimate the conditional lower and upper quan-  
 $\text{tile functions } \hat{q}_{\alpha/2}(x) \text{ and } \hat{q}_{1-\alpha/2}(x)$ , often quantile random forest (Meinshausen & Ridge-  
 $\text{way, 2006), qGAM (Fasiolo et al., 2017) or neural networks to approximate conditional}$   
 $\text{quantiles for levels } \alpha/2 \text{ and } 1 - \alpha/2.$

810  
 811     3. **Compute conformity scores.** For each  $(X_i, Y_i) \in \mathcal{D}_{\text{calib}}$ , compute the nonconformity  
 812     score:

$$s_i = \max\{\hat{q}_{\alpha/2}(X_i) - Y_i, Y_i - \hat{q}_{1-\alpha/2}(X_i), 0\}.$$

813     This measures how far  $Y_i$  lies outside the estimated conditional quantile interval.  
 814

815     4. **Calibrate using empirical quantiles.** Let  $Q_{1-\alpha}(s_1, \dots, s_m)$  be the  $(1 - \alpha)$ -empirical  
 816     quantile of the scores from the calibration set ( $m = |\mathcal{D}_{\text{calib}}|$ ).  
 817     5. **Construct prediction intervals.** For a new point  $x$ , the CQR prediction set is:

$$\tilde{C}(x) = [\hat{q}_{\alpha/2}(x) - Q_{1-\alpha}, \hat{q}_{1-\alpha/2}(x) + Q_{1-\alpha}].$$

820     This adjustment ensures that the final interval achieves marginal coverage at level  $1 - \alpha$  in finite  
 821     samples under exchangeability, while leveraging conditional quantile estimates for tighter intervals.  
 822

823     However, exchangeability (slightly weaker assumption than i.i.d.) can fail in the presence of covariate  
 824     shift, e.g., in observational studies comparing treated and untreated units. In such settings, even  
 825     defining marginal coverage requires specifying the *target covariate distribution*: should coverage  
 826     be with respect to  $P_{X|T=1}$  (treated),  $P_{X|T=0}$  (untreated), or a mixture  $P_X$ ? This point is empha-  
 827     sized in Lei & Candès (2021). If one could attain conditional coverage, covariate shift would not  
 828     pose a problem (recall that conditional coverage implies marginal coverage under any  $P_X$ ) but such  
 829     guarantees remain scarce (Gibbs et al., 2025).

830     To address distributional shift, weighted conformal prediction adjusts calibration via importance  
 831     weights derived from the likelihood ratio between covariate distributions; when this ratio is known,  
 832     one can guarantee exact marginal coverage for the chosen target population (Tibshirani et al., 2019).  
 833     When the ratio (or propensity score  $\pi(x)$ ) is estimated, asymptotically valid marginal coverage is  
 834     still achievable, with strong empirical performance (Lei & Candès, 2021). Recent approaches re-  
 835     fine this idea by incorporating likelihood-ratio regularization for high-dimensional covariates (Joshi  
 836     et al., 2025) or leveraging unlabeled test data to adapt coverage under label scarcity (Kasa et al.,  
 837     2025). For settings with both covariate shift and posterior drift, weighted conformal classifiers have  
 838     been proposed (Wang & Qiao, 2025).

839  
 840  
 841  
 842  
 843  
 844  
 845  
 846  
 847  
 848  
 849  
 850  
 851  
 852  
 853  
 854  
 855  
 856  
 857  
 858  
 859  
 860  
 861  
 862  
 863

864 **B ADDITIONAL EXPERIMENTS: MISSPECIFIED  $\rho$  AND NON-GAUSSIANITY**  
865866 **B.1 HOW VITAL IS THE ASSUMPTION OF GAUSSIANITY?**  
867

868 We evaluate the sensitivity of our counterfactual estimation method to violations of the Gaussianity  
869 assumption in the joint distribution of potential outcomes. Specifically, we use the Synthetic dataset  
870 described in Appendix C.2, but replace the Gaussian error terms with non-Gaussian marginals cou-  
871 pled through different copulas. Formally, for each unit  $i$ , we generate

$$872 \quad (\varepsilon_i^0, \varepsilon_i^1) \stackrel{i.i.d.}{\sim} \text{Copula}_\rho(F_0, F_1),$$

873 where  $F_t$  denotes the marginal distribution of  $\varepsilon_i^t$  (e.g.,  $t = 0, 1$  could follow Student- $t$ , Laplace,  
874 or Chi-square distributions), and  $\text{Copula}_\rho$  is a copula with correlation  $\rho$ . By Sklar's theorem, this  
875 ensures that the joint distribution of  $(\varepsilon_i^0, \varepsilon_i^1)$  has the specified marginals while preserving the de-  
876 sired correlation structure through  $\text{Copula}_\rho$ . We experiment with Gaussian and Gumbel copulas to  
877 capture symmetric as well as asymmetric dependence patterns.

878 We vary the following factors:  
879

- 880 • Marginal distributions: Gaussian, Student- $t$  ( $df = 3$ ), Laplace, and Chi-square ( $df = 3$ ),
- 881 • Copula families: Gaussian and Gumbel,
- 882 • Cross-world correlation:  $\rho \in \{0, 0.5, 1\}$ ,
- 883 • Sample size:  $n \in \{100, 300, 500, 2000\}$  with covariate dimension fixed at  $d = 1$ .

884 For each configuration, we generate 50 replications and compare our estimate  $\hat{\mu}_\rho$  against the oracle  
885 estimator

$$886 \quad \hat{Y}_{\text{oracle}}^{\text{cf}} := \mathbb{E}[Y^{\text{cf}} \mid X, Y^{\text{obs}}, T],$$

887 which leverages the true joint distribution. We report the performance gap  
888

$$889 \quad \text{Gap} = \text{MSE}_{\text{our}} - \text{MSE}_{\text{oracle}}, \quad \text{MSE}_{\text{our}} = \frac{1}{n} \sum_{i=1}^n (\hat{Y}_i^{\text{cf}} - Y_i^{\text{cf}})^2, \quad \hat{Y}_i^{\text{cf}} = \hat{\mu}_\rho.$$

890 Figure 4 summarizes the results. In all cases, the gap decreases with  $n$ , demonstrating that our  
891 estimator converges to the oracle regardless of the marginal distribution or copula. The effect  
892 of non-Gaussianity is therefore limited to finite samples: convergence is noticeably slower under  
893 heavy-tailed or skewed marginals, particularly when  $\rho = 1$ , but the asymptotic behavior remains  
894 unchanged. By contrast, under independence ( $\rho = 0$ ), our estimator is nearly indistinguishable from  
895 the oracle even in small samples.

896 **In conclusion, violations of Gaussianity do not seem to threaten the validity of our method, but  
897 they can slow finite-sample convergence; especially under large cross-world dependence.**

900 **B.2 DETAILS ABOUT FIGURE 3 AND MISSPECIFIED  $\rho$** 

901 To study the effect of misspecifying the cross-world correlation  $\rho$ , we carried out a grid experiment  
902 on synthetic data. For each design point, we distinguish between the **true** value  $\rho_{\text{true}}$  used in the  
903 data-generating process (DGP), and the **assumed** value  $\rho_{\text{est}}$  used in our estimator  $\hat{\mu}_\rho$ .

904 We consider the *synthetic* dataset (see Section C.1), a univariate covariate setting ( $d = 1$ ), two  
905 sample sizes ( $n = 200$  and  $n = 2000$ ), and repeated each experiment 50 times to reduce Monte  
906 Carlo variability. The true correlation  $\rho_{\text{dgp}}$  was varied over a grid  $\{0, 0.1, \dots, 1\}$ , and for each value  
907 we estimated counterfactuals under a grid of assumed correlations  $\rho_{\text{est}} \in \{0, 0.1, \dots, 1\}$ .

908 For each pair  $(\rho_{\text{true}}, \rho_{\text{est}})$ , we generated synthetic data, computed counterfactual estimates with our  
909 method using  $\rho_{\text{est}}$ , and compared performance against the oracle estimator  $\mathbb{E}[Y^{\text{cf}} \mid X, Y^{\text{obs}}, T]$ . We  
910 measured performance using the mean squared error (MSE) of counterfactual predictions, and sum-  
911 marized results via the  $\text{Gap} = \text{MSE}_{\text{our}} - \text{MSE}_{\text{oracle}}$ . Results (Figure 3) show that the gap increases  
912 systematically with the degree of misspecification  $|\rho_{\text{est}} - \rho_{\text{true}}|$ . When the assumed correlation is  
913 close to the truth, the gap shrinks as  $n$  grows, and bias vanishes asymptotically. In contrast, for

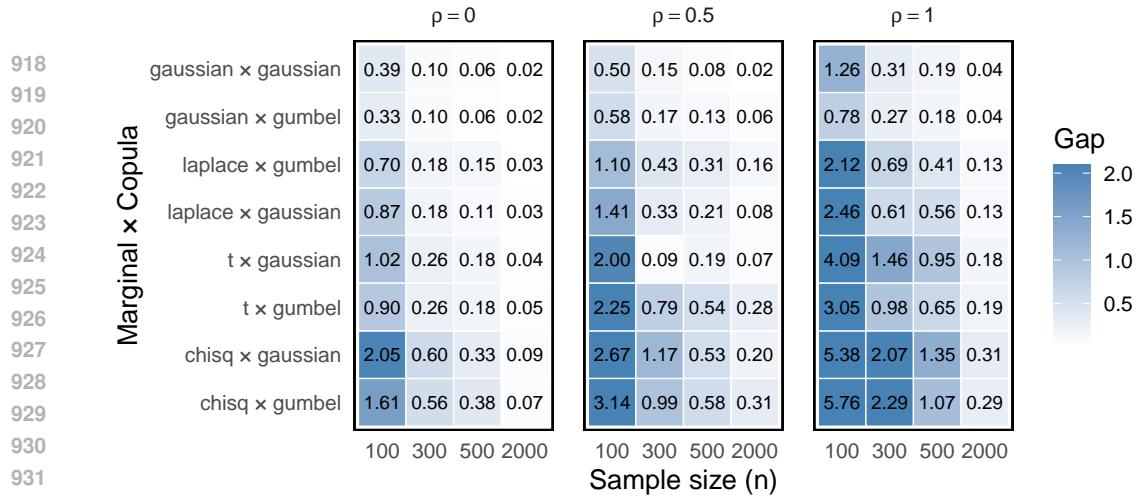


Figure 4:  $\text{Gap} = \text{MSE}_{\text{our}} - \text{MSE}_{\text{oracle}}$  calculated across different marginal-copula distributions of potential outcomes  $(Y(0), Y(1))$ . Here, we only considered correctly specified  $\rho$  in the estimation.

larger misspecifications, the bias persists even at large  $n$ , indicating that asymptotic consistency requires  $\rho_{\text{est}} \approx \rho_{\text{true}}$ . These results show the importance of approximate domain knowledge of  $\rho$ : even approximate information about its value can yield large gains over methods that implicitly assume  $\rho = 0$  or  $\rho = 1$ .

941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

972 C APPENDIX: NUMERICAL EXPERIMENTS  
973974 We provide full details about our experiments below.  
975976 C.1 DATASETS  
977978 We investigate three types of data-generating mechanisms:  
979

- **Synthetic** (taken from (Bodik et al., 2025)): For the univariate case ( $d = 1$ ), we draw  $X \sim \text{Unif}(-1, 1)$ . When  $d > 1$ , we follow the setup in Wager & Athey (2018); Alaa et al. (2023); Lei & Candès (2021); Jonkers et al. (2024) and generate covariates  $\mathbf{X} = (X_1, \dots, X_d)$ , where each  $X_j = \Phi(\tilde{X}_j)$  and  $\Phi$  is the standard normal CDF. The latent vector  $(\tilde{X}_1, \dots, \tilde{X}_d)$  is sampled from a multivariate Gaussian distribution with zero mean and constant pairwise correlation  $\text{Cov}(\tilde{X}_j, \tilde{X}_{j'}) = 0.25$  for  $j \neq j'$ . Treatment assignments are drawn from a propensity score function

$$\pi(\mathbf{X}) = \frac{1 + |X_1|}{4} \in [0.25, 0.5],$$

990 ensuring adequate overlap. The potential outcomes are defined as

$$\begin{aligned} Y_i(0) &= f_0(\mathbf{X}_i) + \varepsilon_i^0, \\ Y_i(1) &= f_0(\mathbf{X}_i) + \tau(\mathbf{X}_i) + \varepsilon_i^1, \end{aligned}$$

994 with noise terms jointly distributed as

$$(\varepsilon_i^0, \varepsilon_i^1) \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 2\rho \\ 2\rho & 4 \end{bmatrix}\right).$$

998 The treatment effect function  $\tau(\mathbf{x}) = \tau(x_1, x_2)$  is a smooth random polynomial depending  
999 on the first two covariates (or only on  $x_1$  when  $d = 1$ ), generated using a Perlin noise generator  
1000 (Perlin, 1985) following Bodik & Chavez-Demoulin (2025). The baseline function  
1001 is  $f_0(x) = \beta^\top x$  with  $\beta$  drawn from a standard normal distribution.

- **IHDP (semi-synthetic):** Originally introduced in Hill (2011), this dataset contains 25 pre-treatment covariates (e.g., birth weight, maternal age, education level) denoted by  $\mathbf{X}$ . The binary treatment  $T$  indicates whether the infant participated in the intervention program. Potential outcomes represent cognitive test scores, were simulated in Hill (2011) as

$$Y_i(0) = f_0(X_i) + \varepsilon_i^0, \tag{6}$$

$$Y_i(1) = f_1(X_i) + \varepsilon_i^1, \tag{7}$$

1010 where  $\varepsilon_i^0, \varepsilon_i^1 \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$ . The functions  $f_0$  and  $f_1$  are either random linear (case “A”) or  
1011 nonlinear (case “B”). We only consider case “B”.

1012 While the original setup fixes  $\rho = 0$ , we also consider a correlated noise version:

$$\begin{pmatrix} \varepsilon_i^0 \\ \varepsilon_i^1 \end{pmatrix} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right).$$

1016 which better reflects empirical situations in which the two potential outcomes are not independent  
1017 but share substantial underlying information.

- **Twins (real-world):** We use the U.S. twin birth records (1989–1991) described in Louizos et al. (2017), restricted to same-sex twins with both birth weights below 2 kg. Each pair comes with detailed perinatal covariates, including maternal risk factors, prenatal care indicators, and demographic information. In this context, twins are viewed as natural counterfactuals for one another, so the potential outcomes can be conceptually “observed” by comparing mortality for the heavier twin ( $T = 1$ ) and the lighter twin ( $T = 0$ ) within the same pair. The outcome variable is one-year mortality. In our analysis, we work with a balanced sample containing a moderate number of individuals and a small set of covariates, obtained after standard preprocessing.

1026  
1027C.2 INTERVAL SCORES RESULTS: USE  $C_\rho$  FOR  $\rho \leq 0.5$  AND  $C_\rho^{+CI}$  FOR  $\rho > 0.5$ 1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035

Figures 5 and 6 report the Interval Scores (IS) of the competing methods across all datasets considered in our experiments. The Interval Score jointly evaluates interval width and coverage, with lower values indicating more efficient and reliable prediction intervals. While GANITE is excluded from these comparisons because it does not provide prediction intervals out of the box, one could imagine extending it with Bayesian or conformalized post-processing layers to quantify uncertainty. For instance, sampling-based approaches could be added to its adversarial generator, or conformal calibration could be applied on top of GANITE outputs. However, such adaptations are not standard, and we therefore omit GANITE from the interval score plots.

1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045

**Results.** When using the bias-corrected  $C_\rho^{+CI}$  variant, our method achieves consistently strong results, typically outperforming all baselines across datasets. The only exception is when  $\rho = 0$ , in which case Direct Outcome (DO) estimators attain nearly identical performance. The main drawback of  $C_\rho^{+CI}$  lies in its computational cost, since constructing bootstrap confidence intervals is substantially more demanding than computing  $C_\rho$ . Moreover, when  $\rho$  is large, estimation error in  $\hat{\mu}_\rho$  can induce bias, leading to undercoverage and consequently poor Interval Scores. In practice, we therefore recommend using the uncorrected  $C_\rho$  intervals when  $\rho \leq 0.5$ , while for  $\rho > 0.5$  the bias-corrected  $C_\rho^{+CI}$  intervals are preferable, as they yield the greatest empirical gains.

**Recommendation:**  $C_\rho$  is satisfactory if  $\rho \leq 0.5$ , and ideally use  $C_\rho^{+CI}$  if  $\rho > 0.5$ .

1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

| Interval Scores of different prediction intervals (Ranked) |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|--------------|-----------|-------------------------------------------------|-------------------------|----------------------|----------------------|--------------|-------|
| Synthetic                                                  |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              | Real data |                                                 |                         |                      |                      |              |       |
| 1080                                                       | d= 1, p = 0.00                                                                                                                                                                                                                                                                       | 5.77 / 5.91             | 5.81                 | 13.27                | 10.21        | NaN       | IHDP   d= 1, p = 0.00                           | 8.02 / 7.85             | 8.15                 | 48.14                | 13.69        | NaN   |
| 1081                                                       | d= 1, p = 0.25                                                                                                                                                                                                                                                                       | 5.63 / 5.88             | 5.84                 | 11.67                | 10.26        | NaN       | IHDP   d= 1, p = 0.25                           | 7.73 / 7.90             | 8.28                 | 43.84                | 13.99        | NaN   |
| 1082                                                       | d= 1, p = 0.50                                                                                                                                                                                                                                                                       | 5.10 / 5.57             | 5.86                 | 10.03                | 10.24        | NaN       | IHDP   d= 1, p = 0.50                           | 8.56 / 9.24             | 9.42                 | 55.64                | 15.50        | NaN   |
| 1083                                                       | d= 1, p = 0.75                                                                                                                                                                                                                                                                       | 4.04 / 5.61             | 5.83                 | 8.72                 | 10.15        | NaN       | IHDP   d= 1, p = 0.75                           | 6.95 / 9.85             | 7.70                 | 37.03                | 12.85        | NaN   |
| 1084                                                       | d= 10, p = 0.00                                                                                                                                                                                                                                                                      | 6.92 / 6.94             | 6.98                 | 9.03                 | 11.79        | NaN       | IHDP   d= 10, p = 0.00                          | 13.10 / 9.48            | 7.27                 | 34.58                | 12.07        | NaN   |
| 1085                                                       | d= 10, p = 0.25                                                                                                                                                                                                                                                                      | 6.81 / 6.86             | 7.04                 | 8.37                 | 11.77        | NaN       | IHDP   d= 10, p = 0.25                          | 6.10 / 6.05             | 6.33                 | 10.17                | 9.98         | NaN   |
| 1086                                                       | d= 10, p = 0.50                                                                                                                                                                                                                                                                      | 6.35 / 6.52             | 7.00                 | 7.71                 | 11.68        | NaN       | IHDP   d= 10, p = 0.50                          | 5.55 / 5.65             | 6.26                 | 8.58                 | 9.63         | NaN   |
| 1087                                                       | d= 10, p = 0.75                                                                                                                                                                                                                                                                      | 5.62 / 6.17             | 6.99                 | 7.13                 | 11.75        | NaN       | IHDP   d= 10, p = 0.75                          | 5.42 / 6.08             | 6.58                 | 9.06                 | 10.17        | NaN   |
| 1088                                                       | d= 10, p = 1.00                                                                                                                                                                                                                                                                      | 5.12 / 5.19             | 7.02                 | 6.84                 | 11.81        | NaN       | IHDP   d= 10, p = 1.00                          | 6.84 / 6.25             | 6.67                 | 9.23                 | 10.20        | NaN   |
| 1089                                                       | C <sub>p</sub> <sup>+CI</sup>                                                                                                                                                                                                                                                        | DO                      | cate-adj             | matching             | ganite       |           | C <sub>p</sub> <sup>+CI</sup>                   | DO                      | cate-adj             | matching             | ganite       |       |
| 1090                                                       | $\rho_{\text{correct}} / \rho_{\text{misspec}}$                                                                                                                                                                                                                                      | (CQR)                   | ( <i>T</i> -learner) | (Mah. dist.)         |              |           | $\rho_{\text{correct}} / \rho_{\text{misspec}}$ | (CQR)                   | ( <i>T</i> -learner) | (Mah. dist.)         |              |       |
| 1091                                                       | Rank (IS)  1 (best) 2 3 4 (Missing)                                                                                                                                                                 |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1092                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1093                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1094                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1095                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1096                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1097                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1098                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1099                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1100                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1101                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1102                                                       | Figure 5: Interval Scores of different prediction interval methods across all datasets. Here, $C_p^{+CI}$ , the bias-corrected version of $C_p$ introduced in Section 3.3, is used. GANITE is excluded since it does not provide a natural way of constructing prediction intervals. |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1103                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1104                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1105                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1106                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1107                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1108                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1109                                                       | Synthetic                                                                                                                                                                                                                                                                            |                         |                      |                      |              |           | Real data                                       |                         |                      |                      |              |       |
| 1110                                                       | d= 1, p = 0.00                                                                                                                                                                                                                                                                       | 5.79                    | 5.94                 | 5.81                 | 13.26        | 10.21     | IHDP   d= 1, p = 0.00                           | 8.05                    | 7.96                 | 8.15                 | 47.97        | 13.69 |
| 1111                                                       | d= 1, p = 0.25                                                                                                                                                                                                                                                                       | 5.64                    | 5.94                 | 5.84                 | 11.66        | 10.26     | IHDP   d= 1, p = 0.25                           | 7.77                    | 7.96                 | 8.28                 | 43.72        | 13.99 |
| 1112                                                       | d= 1, p = 0.50                                                                                                                                                                                                                                                                       | 5.11                    | 6.16                 | 5.86                 | 10.06        | 10.24     | IHDP   d= 1, p = 0.50                           | 12.36                   | 10.04                | 9.42                 | 55.75        | 15.50 |
| 1113                                                       | d= 1, p = 0.75                                                                                                                                                                                                                                                                       | 4.04                    | 7.36                 | 5.83                 | 8.71         | 10.15     | IHDP   d= 1, p = 0.75                           | 65.07                   | 13.70                | 7.70                 | 37.17        | 12.85 |
| 1114                                                       | d= 10, p = 0.00                                                                                                                                                                                                                                                                      | 6.95                    | 7.00                 | 6.98                 | 9.04         | 11.79     | IHDP   d= 10, p = 0.00                          | 55.13                   | 14.12                | 7.27                 | 34.48        | 12.07 |
| 1115                                                       | d= 10, p = 0.25                                                                                                                                                                                                                                                                      | 6.84                    | 7.20                 | 7.02                 | 8.37         | 11.77     | IHDP   d= 10, p = 0.25                          | 6.17                    | 6.12                 | 6.36                 | 10.22        | 9.98  |
| 1116                                                       | d= 10, p = 0.50                                                                                                                                                                                                                                                                      | 6.40                    | 8.27                 | 7.00                 | 7.71         | 11.68     | IHDP   d= 10, p = 0.50                          | 6.68                    | 6.88                 | 7.11                 | 12.18        | 11.09 |
| 1117                                                       | d= 10, p = 0.75                                                                                                                                                                                                                                                                      | 5.75                    | 8.91                 | 6.98                 | 7.13         | 11.75     | IHDP   d= 10, p = 0.75                          | 5.67                    | 6.72                 | 6.25                 | 8.60         | 9.63  |
| 1118                                                       | d= 10, p = 1.00                                                                                                                                                                                                                                                                      | 5.56                    | 11.97                | 7.02                 | 6.85         | 11.81     | IHDP   d= 10, p = 1.00                          | 7.32                    | 11.52                | 6.72                 | 9.22         | 10.20 |
| 1119                                                       | C <sub>p</sub>                                                                                                                                                                                                                                                                       | C <sub>p</sub>          | DO                   | cate-adj             | matching     |           | C <sub>p</sub>                                  | C <sub>p</sub>          | DO                   | cate-adj             | matching     |       |
| 1120                                                       | $\rho_{\text{correct}}$                                                                                                                                                                                                                                                              | $\rho_{\text{misspec}}$ | (CQR)                | ( <i>T</i> -learner) | (Mah. dist.) |           | $\rho_{\text{correct}}$                         | $\rho_{\text{misspec}}$ | (CQR)                | ( <i>T</i> -learner) | (Mah. dist.) |       |
| 1121                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1122                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1123                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1124                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1125                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1126                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1127                                                       | Rank (IS, lower = better)  1 (best) 2 3 4 5 (worst)                                                                                                                                               |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1128                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1129                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1130                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1131                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1132                                                       | Figure 6: Interval Scores of different prediction interval methods across all datasets. Here, the uncorrected $C_p$ intervals, as defined in Section 3, are used.                                                                                                                    |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |
| 1133                                                       |                                                                                                                                                                                                                                                                                      |                         |                      |                      |              |           |                                                 |                         |                      |                      |              |       |



Figure 7: Extended version of Figure 2, additionally displaying the standard deviations of the MSE estimates within each cell.

1188 **D PROOFS**  
 1189

1190 **Theorem 1** (Motivation and optimality under a perfect (asymptotic) scenario). *Let  $x \in \mathcal{X}$ , and*  
 1191  *$\rho = \text{cor}(Y(0), Y(1) | X = x) \in [-1, 1]$ . Assume a perfect scenario:  $(Y(1), Y(0)) | X = x$  is*  
 1192 *Gaussian,  $\hat{\mu}_t(x) = \mu_t(x)$  and suppose that we found conditionally valid prediction intervals:*

1193  $\mathbb{P}(Y(t) \leq \hat{\mu}_t(x) + u_t(x) | X = x) = 0.95, \quad \mathbb{P}(Y(t) \geq \hat{\mu}_t(x) - l_t(x) | X = x) = 0.95, \quad t = 0, 1.$

1194 Then,  $C_\rho$  prediction intervals from Definition 2 are optimal in a sense that it is the smallest set  
 1195 satisfying:

1196 
$$\mathbb{P}(Y(1) \in C_\rho(X, Y(0)) | X = x, Y(0) = y) \geq 0.9,$$

1197 for any  $y \in \mathbb{R}$ . Moreover,  $\hat{\mu}_\rho(x, y)$  is the optimal point predictor in the sense that it minimizes the  
 1198 mean squared error:

1199 
$$\hat{\mu}_\rho(x, y) = \underset{c \in \mathbb{R}}{\text{argmin}} \mathbb{E}[(Y(1) - c)^2 | X = x, Y(0) = y].$$

1200 *Proof.* We use the following fact:

1201 For a bivariate Gaussian random variables  $(Z_1, Z_0)$ :

1202 
$$\begin{pmatrix} Z_0 \\ Z_1 \end{pmatrix} \sim \mathcal{N} \left( \begin{pmatrix} \mu_0 \\ \mu_1 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \rho\sigma_0\sigma_1 \\ \rho\sigma_0\sigma_1 & \sigma_1^2 \end{pmatrix} \right),$$

1203 it is well known that:

1204 
$$Z_1 | Z_0 = z \sim \mathcal{N} \left( \mu_1 + \rho \frac{\sigma_1}{\sigma_0} (z - \mu_0), \sigma_1^2 (1 - \rho^2) \right).$$

1205 Moreover, the shortest prediction interval with a given coverage is symmetric around the mean.

1206 First, we introduce some notation:

- 1207 • Let  $c := \Phi^{-1}(0.95) \approx 1.6449$  denote the 0.95 quantile of a standard Gaussian random  
 1208 variable.
- 1209 • Let  $\sigma_t^2(x) := \text{Var}(Y(t) | X = x)$  denote the conditional variance.
- 1210 •  $\mu_t(x) + u_t(x) = \text{Quantile}_{0.95}(Y(t) | X = x)$ .
- 1211 • Since  $Y(t) | X = x$  is symmetrical around the mean, we have  $l_t(x) = u_t(x)$ . Therefore,  
 1212  $u_t(x) = c \cdot \sigma_t(x)$ , by the standard form of the quantile function for a Gaussian distribution.  
 1213 Therefore,  $\lambda(x) = \frac{\sigma_1(x)}{\sigma_0(x)}$ .

1214 Due to Gaussianity assumption, it holds that:

1215 
$$Y(1) | Y(0) = y, X = x \sim \mathcal{N} \left( \mu_1(x) + \rho \frac{\sigma_1(x)}{\sigma_0(x)} (y - \mu_0(x)), (1 - \rho^2) \sigma_1^2(x) \right)$$

1216 which directly gives us

1217 
$$\mathbb{P}(Y(1) \leq \mu_1(x) + \rho \frac{\sigma_1(x)}{\sigma_0(x)} (y_0 - \mu_0(x)) + \sqrt{1 - \rho^2} \cdot c \cdot \sigma_1(x) | X = x, Y(0) = y_0) = 0.95.$$

1218 Using our notation and previously established results, we get

1219 
$$\mathbb{P}(Y(1) \leq \hat{\mu}_\rho(x, y_0) + \sqrt{1 - \rho^2} \cdot u_1(x) | X = x, Y(0) = y_0) = 0.95,$$

1220 and analogously

1221 
$$\mathbb{P}(Y(1) \geq \hat{\mu}_\rho(x, y_0) - \sqrt{1 - \rho^2} \cdot l_1(x) | X = x, Y(0) = y_0) = 0.95.$$

1242 Hence, we proved that

$$1243 \quad \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y_0) = 0.9.$$

1244 The fact that  $C_\rho$  prediction interval is the smallest possible interval achieving the desired coverage  
1245 follows directly from symmetry+continuity of Gaussian variable.

1246 The fact that  $\hat{\mu}_\rho(x, y)$  is the optimal point predictor follows directly since

$$1247 \quad \hat{\mu}_\rho(x, y) = \mathbb{E}[Y(1) \mid X = x, Y(0) = y].$$

1248  $\square$

1249 **Theorem 2.** Let  $x \in \mathcal{X}$  and suppose  $(Y(1), Y(0)) \mid X = x$  is Gaussian with  $\rho = \text{cor}(Y(1), Y(0) \mid$   
1250  $X = x) \in [-1, 1]$ .

1251 Let  $\hat{\mu}_t(x)$  be consistent estimators of  $\mu_t(x)$ , and assume the prediction interval widths  $l_t(x), u_t(x)$   
1252 are asymptotically conditionally valid, i.e.,

$$1253 \quad \lim_{n \rightarrow \infty} \mathbb{P}(Y(t) \leq \hat{\mu}_t(x) + u_t(x) \mid X = x) = 0.95, \quad \lim_{n \rightarrow \infty} \mathbb{P}(Y(t) \geq \hat{\mu}_t(x) - l_t(x) \mid X = x) = 0.95,$$

1254 for  $t = 0, 1$ . Then, for any fixed  $y \in \mathbb{R}$ :

1255 1.  $\hat{\mu}_\rho(x, y)$  is a consistent estimator of the conditional mean,

$$1256 \quad \hat{\mu}_\rho(x, y) \xrightarrow{p} \mathbb{E}[Y(1) \mid X = x, Y(0) = y], \quad \text{as } n \rightarrow \infty.$$

1257 2. The  $C_\rho$  prediction intervals achieve asymptotic conditional coverage,

$$1258 \quad \lim_{n \rightarrow \infty} \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) = 0.9.$$

1259 *Proof.* Under the Gaussian assumption, Theorem 1 implies

$$1260 \quad \mathbb{E}[Y(1) \mid X = x, Y(0) = y] = \mu_1(x) + \rho \frac{\sigma_1(x)}{\sigma_0(x)} (y - \mu_0(x)). \quad (8)$$

1261 By consistency,  $\hat{\mu}_t(x) \xrightarrow{p} \mu_t(x)$  for  $t = 0, 1$ . Moreover, since the upper and lower bounds converge  
1262 to the 0.95 and 0.05 conditional quantiles of  $Y(t) \mid X = x$ , their total width satisfies

$$1263 \quad l_t(x) + u_t(x) \xrightarrow{p} \text{Quantile}_{0.95}(Y(t) \mid X = x) - \text{Quantile}_{0.05}(Y(t) \mid X = x) = 2z_{0.95}\sigma_t(x).$$

1264 Thus,

$$1265 \quad \lambda(x) = \frac{l_1(x) + u_1(x)}{l_0(x) + u_0(x)} \xrightarrow{p} \frac{\sigma_1(x)}{\sigma_0(x)}.$$

1266 Substituting into  $\hat{\mu}_\rho(x, y)$ ,

$$1267 \quad \hat{\mu}_\rho(x, y) \xrightarrow{p} \mu_1(x) + \rho \frac{\sigma_1(x)}{\sigma_0(x)} (y - \mu_0(x)),$$

1268 which coincides with equation 8, proving consistency of the point estimator.

1269 For the prediction interval  $C_\rho$ , Theorem 1 further states that, under Gaussianity,  $C_\rho(X, Y(0))$  is the  
1270 minimal set achieving 90% conditional coverage for  $Y(1) \mid X = x, Y(0) = y$ . Since  $l_t(x)$  and  
1271  $u_t(x)$  converge to their true quantiles, the constructed interval converges to this optimal set. Hence,

$$1272 \quad \lim_{n \rightarrow \infty} \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) = 0.9.$$

1273  $\square$

1274 **Lemma 1** (Special cases of  $\rho$ ). • If  $\rho = 0$  and  $\tilde{C}_1(X)$  is marginally valid, then  $C_\rho(X, Y(0))$   
1275 is also marginally valid:

$$1276 \quad \mathbb{P}(Y(1) \in \tilde{C}_1(X)) \geq 0.9 \implies \mathbb{P}(Y(1) \in C_\rho(X, Y(0))) \geq 0.9.$$

1277 If additionally  $Y(0) \perp\!\!\!\perp Y(1) \mid X = x$  and  $\tilde{C}_1(X)$  is conditionally valid, then  
1278  $C_\rho(X, Y(0))$  is also conditionally valid:

$$1279 \quad \mathbb{P}(Y(1) \in \tilde{C}_1(X) \mid X = x) \geq 0.9 \implies \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) \geq 0.9,$$

1280 for any  $x \in \mathcal{X}, y \in \mathcal{Y}$ .

1296     • If  $\rho = \pm 1$  and  $\mu(x, y_0) = \hat{\mu}(x, y_0)$ , then  
 1297

$$1298 \quad \mathbb{P}(Y(1) \in C_\rho(X, Y(0)) \mid X = x, Y(0) = y) = 1.$$

1299     If we have confidence intervals satisfying  $\mathbb{P}(\mu(x, y_0) \in \hat{\mu}(x, y_0) \pm r(x, y_0)) = 1 - \beta$ , then  
 1300

$$1301 \quad \mathbb{P}(Y(1) \in C_\rho^{+CI}(X, Y(0)) \mid X = x, Y(0) = y) = 1 - \beta.$$

1302  
 1303     *Proof.* **Case  $\rho = 0$ :** By definition,  $C_\rho(X, Y(0)) = \tilde{C}_1(X)$ , so marginal validity is preserved. If  
 1304      $Y(0) \perp\!\!\!\perp Y(1) \mid X$ , then conditioning on  $Y(0)$  does not affect the validity, hence conditional validity  
 1305     also holds.

1306     **Case  $\rho = \pm 1$ :** Perfect (anti-)correlation implies a deterministic linear relationship: for fixed  $X = x$ ,  
 1307     we have

$$1308 \quad Y(1) = a_x + b_x Y(0) \quad \text{for some } a_x, b_x \in \mathbb{R}.$$

1309     Thus,

$$1311 \quad \text{Var}(Y(1) \mid X = x, Y(0) = y) = 0 \quad \Rightarrow \quad \mathbb{P}(Y(1) = \mu(x, y) \mid X = x, Y(0) = y) = 1.$$

1312     If  $\mu(x, y) = \hat{\mu}(x, y)$ , then  $C_\rho(x, y) = \{\mu(x, y)\}$ , implying perfect coverage. If instead  $\mu(x, y)$  lies  
 1313     in a confidence interval with coverage  $1 - \beta$ , then  
 1314

$$1315 \quad \mathbb{P}(Y(1) \in C_\rho^{+CI}(x, y) \mid X = x, Y(0) = y) \geq 1 - \beta.$$

1316     □

1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349