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ABSTRACT

Learning effective gene representations is of great research interest. Lately, large-
scale language models based on the transformer architecture, such as DNABert
and LOGO, have been proposed to learn gene representations from the Human
Reference Genome. Although these large language models outperform previous
approaches, currently, no study empirically determined the best strategy for repre-
senting gene sequences as tokens. The uniform random masking strategy, which is
the default during the pretraining of such masked language models, might lead to
pretraining inefficiency, resulting in suboptimal downstream task performance in
the few-shot setting. However, good few-shot performance is critical, with dataset
sizes in (personalized) medicine often not exceeding a couple of hundred data
points. In this paper, we develop a novel strategy to adapt Pointwise Mutual Infor-
mation (PMI) masking used previously in the NLP setting to the domain of gene
sequence modeling. PMI-masking masks spans of tokens that are more likely to
co-occur, forming a statistically relevant span. First, we learn a vocabulary of to-
kens with a high PMI score from our pretraining corpus (the Human Reference
Genome). Next, we utilize this side information (pre)train our model by masking
tokens based on PMI scores. In extensive experiments, we evaluate the effective-
ness of the PMI-masking strategy on two baseline models of DNABert and LOGO,
over three benchmark datasets (two on promoters and one on enhancers), and on
a variety of few-shot settings. We observe that our PMI-masking-guided baseline
models substantially outperform the SOTA models. We further observe that al-
most all the top-ranked DNA tokens in terms of PMI score are closely associated
with existing conserved DNA sequence motifs.

1 INTRODUCTION

Computational analysis of genomics has revolutionized the field of medical science (McGuire et al.,
2020), particularly with the advent of the Human Reference Genome (Schneider et al., 2016). As
seen in (Yue & Wang, 2018a), deep learning has been applied to various applications, such as protein
structure analysis, gene expression data, and transcriptome analysis. Given the sequential nature of
gene sequences, several deep learning models found to be effective in the Natural Language Pro-
cessing (NLP) domain have been adopted for genomic applications (Yue & Wang, 2018b; Avsec
et al., 2021). The input data for these tasks is often presented as a sequence of nucleotides. Each
side of the double-helix DNA strand comprises the bases adenine (A), cytosine (C), guanine (G),
and thymine (T)). However, unlike words or sentences in languages, there are no clear semantically
demarcated tokens present within the gene sequence. Therefore, to come to a workable solution,
researchers (Mo et al., 2021; Ji et al., 2021) use k-mer representation, which is a sliding window of
k-length over the entire sequence. For example, if the gene sequence is ATTCGATGC, a 6-mer
representation will be ATTCGA, TTCGAT , TCGATG and CGATGC. Similar to the NLP
domain, the standard approach in gene sequence modeling is to pretrain the transformer models
by randomly masking (and predicting) tokens, the so-called masked language modeling objective
(MLM). Given the lack of rigorous evaluations of whether the methods from the NLP domain trans-
fer to modeling gene sequences, we question whether token selection, masking, or other components
of the transformer architecture are restrictive and not grounded in biomedical domain knowledge.

We develop a principled statistical approach based on Pointwise Mutual Information (PMI) to au-
tomatically identify meaningful spans (tokens) from a DNA sequence. PMI involves taking both
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the frequencies of a token and its overall uniqueness in the dataset. However, the standard PMI
formulation (Levine et al., 2021) sometimes favors tokens with a low frequency of occurrence. To
adapt to the genomic setting, we modify the PMI metric to mitigate the above-mentioned issue. The
state-of-the-art models (DNABert (Ji et al., 2021) and LOGO (Yang et al., 2021)) in gene regulatory
sequence classification tasks are widely used in the literature (Yang et al., 2021; Mo et al., 2021;
Badirli et al., 2021). Instead of randomly selecting tokens to mask, as done in DNABert (or LOGO),
we use the PMI score to prioritize the relevant tokens to mask within a given gene sequence. This
strategy is inspired by the work of Levine et al. (2021), which shows that PMI-masking improves
over random span masking (Joshi et al., 2020) in NLP tasks. However, the main difference from our
work is that they use it to develop a large masking vocabulary in the NLP domain, while we use the
PMI score as a ranking function to choose the span of tokens to mask. Instead of using PMI score
to formulate an absolute importance notion and consequently create a masking vocabulary, we use
the PMI score to measure relative importance among DNA sequence k-mer tokens during MLM.

As current medical datasets often face data scarcity issues, the move towards personalized medicine
requires models that perform well with limited training data at hand (Shaikhina & Khovanova, 2017;
Hekler et al., 2019). We, therefore, evaluate our proposed PMI-masking strategy in the low-resource
(few-shot) setting. Introducing biomedical domain knowledge in the form of side information is a
promising research direction, specifically to deal with limited data (Kyono et al., 2019; Oei et al.,
2021; Roy et al., 2021). Our PMI-guided approach builds on that idea and directly includes side
information derived from the Human Reference Genome into the training procedure.

Our extensive experimentation shows that PMI-masking-guided DNABert and LOGO improve over
the standard random masking-guided DNABert and LOGO (pretrained on the same number of steps)
respectively, in few-shot settings (10, 50, 100, 500 and 1000 training data points per class) over three
benchmark datasets of gene sequence classification (two on promoters such as Prom-core, Prom-300
and one on enhancer such as Cohn-enh). We posit that PMI-masking helps incorporate non-trivial
genetic knowledge because we observe that PMI-masking-guided DNABert pretrained for 10K steps
even outperforms original DNABert pretrained for 120K steps for all few-shot settings in case of
Prom-300 and Cohn-enh dataset.In addition, we perform motif1 analysis and finetuning impact anal-
ysis to understand the domain knowledge learned by PMI-guided DNABert. To alleviate the issue
of tremendous engineering effort needed to develop the experimental setup of gene sequence mod-
eling, we plan to make the pretraining and finetuning datasets, model weights and checkpoints, and
associated codebase publicly available, as the final contribution.

2 BACKGROUND

Learning deep representations in the context of gene sequence modeling. Nguyen et al. (2016)
encode base pair triples as one-hot vectors to feed into convolutional neural networks for DNA se-
quence classification tasks, whereas Badirli et al. (2021) convert the DNA barcodes represented by
nucleotide sequences into a vector embedding useful for the task of fine-grained species classifica-
tion. Ng (2017) utilize k-mers to represent gene sequences in their approach using a shallow neural
network. Ji et al. (2021); Yang et al. (2021) also represent gene sequences as k-mers, by using a
learned dense representation from an adapted BERT model. Mock et al. (2021) largely adapt the
DNABert architecture for the task of taxonomy classification and model gene sequences as 3-mers,
but also includes next sentence prediction along with MLM training loss. Instead of using k-mer
representations, Zaheer et al. (2020) trained a SentencePiece tokenizer on the Human Reference
Genome and applied to the tasks of chromatin-profile prediction and promoter region prediction.
Mo et al. (2021) infuse domain knowledge into the model by proposing a multimodal pretraining
setup comprising gene sequences and information on transcription factors and regions.

Random and PMI-masking for MLM training in NLP. The initial work applied random token
masking, as performed by BERT (Devlin et al., 2018), where 15% of the input tokens are chosen
to be masked uniformly. Previous work has also investigated jointly masking whole words (whole
word masking (Sennrich et al., 2016; Devlin et al., 2019)) or entities (entity masking (Sun et al.,
2019)) which both have been shown to be beneficial over masking tokens. Joshi et al. (2020) pro-
pose random span masking where random spans with lengths chosen from a geometric distribution

1Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological func-
tion (D’haeseleer, 2006).
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are masked at random positions. This simple method has been shown to outperform the more in-
volved entity masking approach. When applied to gene sequences, especially entity and whole word
masking have the problem that there is no well-defined concept of entities and words in gene se-
quences. The PMI-masking approach (Levine et al., 2021) builds on the ideas of entity and span
masking, but instead of masking random spans, their approach involves measuring the relevance of
colocated n-grams (based on their constructed masking vocabulary of 800K tokens) with pointwise
mutual information (PMI) and masking these spans together. The authors show that masking PMI
tokens (i) accelerates training while matching end-of-pretraining performance in roughly half the
training steps and (ii) improves upon previous masking approaches at the end of pretraining.

3 BUILDING BLOCKS OF SOTA MODELS

We focus on the two recent transformer-based pretrained models of DNABert Ji et al. (2021) and
LOGO Yang et al. (2021) that are adapted to the gene sequence modeling domain. Through MLM
pre-training, these SOTA models learn powerful contextual representations for DNA fragments uti-
lizing abundant unlabeled data from the Human Reference Genome, which contains around 3.2
billion base pairs in total over 24 chromosomes.

Implementation details of SOTA models and associated research challenges. The tokenization
of gene sequences and MLM training is performed based on the author’s codebase (DNA, 2021).
However, they do not provide the dataset for pretraining or finetuning (downstream) tasks. There-
fore, we follow the author’s description to construct the corresponding datasets, which is nontrivial.
We explain the pretraining data creation process in this section and later describe the finetuning
dataset creation process in Section 5.1.

Tokenization of gene sequences. The gene sequence is first converted into a k-mer representation,
which is commonly used in the literature (Ng, 2017; Ji et al., 2021). The k-mer representation is a
sliding window of length k. For example, AGCACGCAG in 6-mer representation leads to 3 tokens
- AGCACG, GCACGA, CACGAG. Thus, the vocabulary comprises all combinations (4k length) and
five special tokens - CLS, PAD, UNK, SEP, MASK. According to the set-up chosen by SOTA models,
we consider k = 6 for all the experiments. Yang et al. (2021) note that 6-mers incorporate richer
contextual information while keeping the memory and computational complexity manageable.

Pretraining data preparation. Since the pretraining data is not provided with the author’s code-
base, we follow the implementation details mentioned in the paper to construct the pretraining
dataset, which is a non-trivial task. We obtain the Human Reference Genome from the Genome
Reference Consortium Human Build 38 patch release 13 (GRCh38.p13) FASTA file Consortium
(2019) from the NCBI website. It serves as a large-scale corpus of unlabeled gene sequence data,
which we use for MLM training to obtain a contextual representation of the 6-mer tokens. We
perform the following steps to convert the Human Reference Genome to a form that DNABert (or
LOGO) can use to train with the MLM objective:

Step 1: For each chromosome c in the Human Reference Genome, we randomly choose the starting
index between 1 and 1000 Zaheer et al. (2020).

Step 2: Given the chromosome number and its starting index (ST ), we next determine the length
of the DNA segment L as BERT has the limitation of accommodating a maximum of 512 tokens.
We select L as 510 for 50% of the cases and a randomly selected length between 5 and 510 for the
remaining 50% of cases Ji et al. (2021).

Step 3: We thus create the DNA segment comprising the base pairs between ST and ST + L of
chromosome c, corresponding to data point in the pretraining dataset. We filter out DNA segments
that contain bases other than A, T, C, or G.

MLM training. The SOTA models are trained with masked language modeling loss similar to
BERT Devlin et al. (2018). However, to mask a nucleotide, a contiguous sequence of tokens is
masked to prevent information leakage, as each nucleotide is part of k consecutive k-mers. More
formally, say a neucleotide is represented a DNA[i], while a 6-mer token is represented as T6[i] =
{DNA[i-2], DNA[i - 1] · · · DNA[i + 3]}, then the tokens T[j], ∀(j)i+2

j=i−3 is masked. Given that
k = 6 and 15% of tokens need to be masked (Devlin et al., 2018), the MLM probability is set at:
15%/6; that is, 2.5% of the nucleotides are chosen for masking.
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4 PROPOSED ADAPTATION OF PMI-MASKING STRATEGY TO GENOMIC
APPLICATIONS

In this paper, we use a PMI-based approach to identify spans of k-mers that co-occur much more than
expected compared to their components (i.e., k-mers of shorter length, such as 4-mers or 5-mers).
These spans then replace the (uniform) random masking strategy used by SOTA models such as
DNABert and LOGO. This is to make the masked token prediction task more difficult by removing
highly correlated local contexts, which subsequently may improve the pretraining efficiency (as
shown by Levine et al. (2021)). In this section, we discuss the novel strategy to first adapt the PMI
metric from NLP to the genomic setting (Section 4.1) and then explain how to use PMI-masking for
improving the efficiency of MLM training (Section 4.2).

4.1 PMI SCORING FOR GENE SEQUENCES

Although NLP models are applied to the biomedical domain, no study empirically determined the
best strategy for representing gene sequences. In this work, we consider a single nucleotide equiv-
alent to a single token in NLP, and thus an n-gram from the NLP domain is equivalent to a k-mer
from the gene sequence modeling literature. We propose a novel strategy to adapt PMI-based scor-
ing to our genomic setting and can help us identify high PMI tokens to mask. Pointwise Mutual
Information (PMI) quantifies how often two tokens occur compared to what is expected if they are
independent. The PMI formula (proposed by Levine et al. (2021)) when extended to k-mers (where
k > 2) is:

PMIk(w1 . . . wk) = min
σ∈seg(w1...wk)

log
p(w1 . . . wk)∏

s∈σ p(s)
(1)

Here, seg(w1 . . . wn) is the set of all contiguous segmentations of the n-gram “w1 . . . wn” (excluding
the identity segmentation). In a valid segmentation (σ), the original sequence “w1 . . . wn” can be
divided into any number of partitions of positive (> 0) size. For example, say for n = 6, some of the
possible valid segmentations are: “(w1 . . . w3), (w4 . . . w6)” or “(w1, w2) (w3), (w4 . . . w6)”. The
PMIk formulation many times favors tokens with lower frequency, that is, the number of times
the n-gram gene sequence appears in the Human Reference Genome. We thus impose a discounting
factor that penalizes rare tokens (Pantel & Lin, 2002). We refer to it as the Normalized PMIk
formula, which we finally use for scoring all the individual n-gram sequences.

Normalized-PMIn(w1 . . . wk) = PMIk ∗ log f(w1 . . . wk)

log(c) + log f(w1 . . . wk)
(2)

Here, f(w1 . . . wk) refers to the frequency of occurrence of the k-mer sequence of w1 . . . wk. c
refers to the minimum frequency of occurrence (a constant value used as a threshold to remove
rare tokens). We determine the threshold c in Equation 2 based on the frequency distributions of
the entire collection of k-mers (around 199 Million). In our case, we choose c equal to 101 which
puts a cut-off beyond the first quartile (25 percentile) of k-mer frequencies.

In this paper, we focus only on computing Normalized-PMIn for all k-mer sequences where k=6,
and use a top-down memorization approach to reduce algorithmic complexity, by storing already
computed PMI scores in memory. As the final step, we develop a ranked list (RANK) of all 6-mers
(4096 in total) based on the decreasing order of Normalized-PMIk. Next, we discuss how we use the
PMI scores as a measure to choose tokens to be masked during MLM training.

4.2 PMI-MASKING STRATEGY

The strategy aims to mask all the nucleotides simultaneously in the most correlated spans. It min-
imizes information leakage and helps the system to learn deeper patterns. Side by side, we would
like to preserve the benefit drawn out of the traditional random masking strategy. Thus, to choose
the tokens for MLM training, we perform the following steps.

1. Randomly select m nucleotides as mask center spread uniformly over the DNA string.
2. Corresponding to a selected nucleotide (say DNA[i]), obtain a PMI score MPMIi in a

following manner.
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(a) A 6-mer token corresponding to DNA[i] : T6[i] = {DNA[i-2] · · · DNA[i+3]}
(b) Obtain the PMI rank of the token as PMI-Rank(T6[i])
(c) MPMIi = maxi+3

i=i−2 (PMI-Rank(T6[i])
3. Divide the m nucleotides into two sets based upon their MPMI scores, where the high

setting is the m/2 nucleotides with the highest MPMI scores.
4. For the high set, take all the nucleotides in T[i] (this ensures the masking of correlated spans

together). In contrast, for the low set, take only the corresponding nucleotide DNA[i] (this
mimics a random masking strategy) for masking.

Determining the value of m: To mask a six bp length sequence that is all the nucleotides in a
particular token T6[i], we need to mask a span of contiguous 11 tokens (6 mask centers, two tokens
to the left and three tokens right) while as mentioned a single nucleotide induce masking of 6 tokens.
Thus, the expected mask span length per mask center is computed as: 0.5 ∗ 6 + 0.5 ∗ 11 = 8.5.
Followingly, the mlm probability is updated from 2.5% to 1.765% (= 15%/8.5). Hence if the DNA
length is 512, m ≈ 9.

5 EXPERIMENTAL SETUP

Here, we first provide the dataset details and evaluation setup, followed by the model training and
baseline model details.

5.1 DATASETS

We use three benchmark datasets of gene sequence classification for evaluation purposes. The
two datasets of promoter region prediction are not directly made available and involve a signifi-
cant amount of effort (including a paper implementation) for their construction. The enhancer cohn
prediction dataset is directly made available from prior works (Martinek et al., 2022).

Promoter Region Prediction (Prom-core and Prom-300). A promoter is a DNA region typi-
cally located upstream of the gene, which is the site of transcription initiation (as defined in Zaheer
et al. (2020)). The task is to classify a given DNA fragment as a promoter or non-promoter se-
quence, as followed by previous studies (Ji et al., 2021; Zaheer et al., 2020). However, we follow
the instructions of Oubounyt et al. (2019) including the negative data creation) since the datasets
are not provided by the authors. Thus, we obtained human TATA and non-TATA promoter data,
i.e., including promoter sequences with and without a TATA box (a common promoter-related motif
found between −30 to −25 bp (upstream) of a gene’s transcription start site), from the Eukaryotic
Promoter Database (Dreos et al., 2012), using the website API of the EPD selection tool (EPD,
2022).We extracted −249 to +50 bp sequences around TSS for the Prom-300 setting and −34 to
+35 bp for Prom-core setting. We perform the standard train-test split of 70% and 30%, which leads
to 53276 and 5920 data points respectively.

Enhancer Cohn Prediction (Cohn-enh). An enhancer is a DNA sequence that can bind specific
proteins and increase the chance of transcription of a particular gene. This dataset has been adapted
from Cohn et al. (2018) and is made available as a benchmark dataset by Martinek et al. (2022)
in their Github repository (Gresova et al., 2022). Here, the input is a DNA sequence of 500 bp in
length and a binary classification task. We use the train-test split used by Martinek et al. (2022) that
leads to 20843 and 6948 data points as train and test datasets respectively.

5.2 EVALUATION SETUP

We report the standard metrics of accuracy (used for performance comparison) and AUC (stands
for Area Under the Receiver Operating Characteristic Curve) used for classification tasks where
the class labels are balanced. We follow the standard evaluation setup used in the few-shot text
classification setting (Schick & Schütze, 2021a;b). Thus, we assume that we do not have access to
a validation dataset (development set) to optimize the hyperparameters and investigate the perfor-
mance for different training set sizes where t = 10, 50, 100, 500, and 1000. For each t, we obtain
the training set τ by randomly choosing t number of examples from each class. We report the mean
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and standard deviation of accuracy and AUC by running the experiments ten times by randomly
choosing t different training (fine-tuning) examples per class as well as a random seed in each run.

5.3 IMPLEMENTATION DETAILS

Pretraining. The authors of DNABert train for 120K steps on 8 NVIDIA 2080Ti GPUs, which
takes 25 days to complete. LOGO is trained for 25 epochs which took around 74 days to complete
using four Nvidia Tesla V100 32G GPUs. In this paper, we train all the pretrained models and their
variants for only 10000 steps, which takes about 2.5 days to complete for DNABert and around
20 hours for LOGO using four GTX 1080Ti 11GB. We select such a setup for two reasons —
(i) to explore different pretrained model variants in a reasonable time because we observe that the
perplexity of DNABert (SOTA model) has converged to a low score of 2.526 and is stable over the
last 3000 pretraining steps (see Figure 1). (ii) As observed by Levine et al. (2021), PMI-masking
learns fast and is thus quite efficient to reap the benefit even with a lower number of pretraining
steps. We use the same hyperparameter setting as the original SOTA model (see Section A.2 to
know more about training details and hyperparameters used).

Finetuning for gene sequence modeling downstream tasks. We use the same model finetuning
hyperparameters and training setup as used by DNABert for the 500 and 1000-shot setting (Ji et al.,
2021). The model is finetuned for 5 epochs at a learning rate of 5e−5, warmup steps percentage
of 10%, hidden dropout probability of 0.1, and uses the AdamW optimizer. We only update the
hyperparameters in order to adapt to the low few-shot setting (10, 50, and 100-shot), where we
increase the learning from 5e−5 to 4e−4 and reduce the per GPU train batch size from 15 to 5. The
idea behind these two hyperparameter changes is to indirectly increase the number of weight update
operations during finetuning, without overfitting (given the limited training dataset size). We also
increase the number of training epochs from 5 to 20 to mitigate finetuning performance stability
issues that may occur due to random initialization in low-resource settings (Mosbach et al., 2021).

5.4 BASELINE MODELS

We evaluate our work on two gene transformer-based models - DNABert (Ji et al., 2021) and
LOGO (Yang et al., 2021). Both of these models follow random masking during the MLM training
step instead of the proposed PMI-masking strategy. We will refer to the SOTA models that use
random masking as the original SOTA model (ORI) without any PMI-guided masking. We use the
original DNABert model pretrained on 120K steps based on the pretrained model weights provided
by Ji et al. (2021), as a baseline model and denote it as ORI 120K model.

Fixed PMI-guided Masking Vocabulary (PMI-VOCAB): Similarly to the creation of a PMI-
masking vocabulary by Levine et al. (2021), we create a masking vocabulary ≈ 10 times the
DNABert vocabulary size of 4101 tokens. We first select all possible k-mer sequences (2 ≤ k ≤ 10)
whose frequency of occurrence is ≥ 10000. We then rank them using our proposed PMI metric and
select the top 40000 as the masking vocabulary.

We explore multiple hyperparameter settings for pretraining (HGA and WC) and finetuning (FS).

Half Gradient Accumulation (HGA): The gradient accumulation steps parameter is halved, reduc-
ing it from 25 (default DNABert configuration) to 12 steps and consequently reduces the effective
batch size (it is the product of per GPU train batch size, GPU count and gradient accumulation steps)
by 50%. This aims to reduce the generalization gap issue that arises when the training batch size is
too large (Keskar et al., 2017; Hoffer et al., 2017).

Warmup Correction (WC): Instead of the fixed number of 10000 warmup steps as in the default
configuration of DNABert, we compute it as a percentage of the maximum number of pretraining
steps. In the original configuration, only the first 10K steps out of 200K (5% of the maximum
number of steps). Since we reduce the maximum steps limit from 200K to 10K, we adjust the
warmup number as 500 (5% of 10000 steps) accordingly. The importance of warmup in optimization
is highlighted in multiple recent studies (Xiong et al., 2020; Liu et al., 2020; Mosbach et al., 2021).

Finetuning Stability (FS): Longer finetuning epochs of 20 instead of the standard 5 epochs, along
with higher learning rate from 5e−5 to 4e−4. It improves the finetuning stability in model perfor-
mance and solves random initialization issues in low-resource settings (Mosbach et al., 2021).
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6 EXPERIMENTAL RESULTS

Here, we investigate two research questions: (i) Does PMI-masking strategy lead to reasonable
performance improvement over random masking in different few-shot settings? (ii) Does the PMI-
based ranking show association with conserved DNA sequence motifs?

6.1 PMI-MASKING RESULTS

We present the results of the model performance comparison in Table 1. PMI-best represents the
best performance of the two model variants: PMI (WC + FS) and PMI (WC + HGA + FS); The
performance results for the hyperparameter-based model variants are provided in Table 2. In the case
of DNABert, PMI-best outperforms all the baseline models for the task of Prom-300 and Cohn-enh,
except for 1000-shot Prom-300 setting, which also includes the original DNABert model trained for
120K steps (ORI 120K model). ORI 120K model outperforms PMI-best on shallow data settings
(10, 50, and 100-shot) of the Prom-core task, whereas PMI-best outperforms again in 500 and 1000-
shot settings. This may be because Prom-core is an easier task with a much shorter context (70 bp.
in length as compared to 300 and 500 bp in length in the case of Prom-300 and Cohn-enh task).
Thus, the ORI 120K model may simply memorize the gene sequence patterns instead of actually
learning intrinsic (or extra) knowledge of gene sequences. Therefore, we also observe that such
effect of memorization vanishes is higher data settings (above 500-shot). We observe the highest
performance improvement of PMI-best over ORI of 7.47% and 4.68% in DNABert and LOGO,
respectively, in the 10-shot (shallow data) setting. However, the performance gap slowly reduces
in higher data settings in case of DNABert (3.47%, 0.95%, 0.13% and 0% for 50, 100, 500, and
1000-shot, respectively). In the case of LOGO, both for random masking and PMI, we consider
the best-performing model setting of DNABert corresponding to a particular x-shot. We observe
that the PMI-masking-guided model outperforms random masking-based SOTA models (ORI) in all
settings across the three benchmark datasets except for 500-shot Prom core setting. It particularly
improves by a large margin in shallow data settings of Prom-core (accuracy improvement of 6.72%
and 8.14% in 10 and 50-shot respectively) and Prom-300 (8.09% in 50-shot).

We next report the performance improvement between PMI-masking and random masking (ORI
model variant) in DNABert versus LOGO in terms of average accuracy over all few-shot settings
for each task: Prom-core = 1.59% vs. 3.72%, Prom-300 = 2.61% vs. 7.67%, and Cohn-enh = 2.13%
vs. 1.95%. We observe that the addition of more finetuning data shows the lowest performance
improvement (in between 10-shot and 1000-shot) for Cohn-enh (13.50% and 19.35%) as compared
to Prom-300 (32.84% and 64.74%) and Prom-core (27.24% and 33.89%) tasks in case of DNABert
and LOGO respectively. However, we observe the effect of PMI-masking on model performance to
be higher in the case of LOGO for Prom-core and Prom-300. It indicates that PMI-masking is more
beneficial for lightweight models like LOGO; heavier models like DNABert might automatically
learn a certain amount of span correlations (like PMI) information, thus reducing the independent
impact of PMI-masking.

6.2 ABLATION ANALYSIS

We show the performance comparison among the different model hyperparameter-based variations
(described in Section 5.4) in Table 2. We observe that finetuning stability (FS) works very well with
limited training data (10, 50, and 100-shot settings), where substantial tremendous improvement is
noticed. However, with more training data, such as 500 and 1000-shot settings, we observe a high-
performance drop due to overfitting. We, therefore, do not use FS in 500 and 1000-shot settings.
We observe that half gradient accumulation (HGA) helps to improve the model performance in
10 and 50-shot settings (10 and 50-shot for Prom-300 and 50-shot for Cohn-enh). It is empirically
observed that if a large batch size is used to train deep neural networks, the trained models appear
to generalize poorly (Keskar et al., 2017; Hoffer et al., 2017). HGA reduces the effective batch
size by 50% and mitigates the generalization gap issue in such low data settings (10 and 50-shot).
However, beyond the 100-shot setting, the impact is either negative or marginal. We observe that
warmup correction (WC) provides a decent performance improvement across all the few-shot
settings (4.46% in 50-shot, 1.56% in 500-shot, etc.) in comparison to finetuning stability (FS)
and half gradient accumulation (HGA), where their utility is only observed to lower data settings
of 10, 50, and 100-shot. The number of warmup steps in standard pretraining setups is usually
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Data Model Prom-core Prom-300 Cohn-enh
per class type Accuracy AUC Accuracy AUC Accuracy AUC

DNABert as Base model
10 ORI 120K (FS) 0.606 ± 0.045 0.661 ± 0.064 0.638± 0.070 0.708± 0.088 0.582± 0.030 0.631± 0.044

ORI 10K (WC+FS) 0.586± 0.051 0.641± 0.082 0.601± 0.065 0.657± 0.095 0.579± 0.047 0.655± 0.058
PMI-VOCAB 0.6± 0.047 0.652± 0.067 0.653± 0.065 0.731± 0.066 0.596± 0.048 0.66± 0.062

PMI-best (WC+FS) 0.602 ± 0.058 0.655 ± 0.078 0.676 ± 0.054 0.779 ± 0.074 0.622 ± 0.050 0.701 ± 0.038
50 ORI 120K (FS) 0.687 ± 0.024 0.756 ± 0.03 0.808± 0.019 0.89± 0.013 0.638± 0.020 0.679± 0.028

ORI 10K (WC+FS) 0.653± 0.058 0.718± 0.064 0.789± 0.059 0.882± 0.04 0.634± 0.031 0.689± 0.044
PMI-VOCAB 0.649± 0.058 0.738± 0.033 0.800± 0.027 0.893± 0.02 0.645± 0.014 0.706± 0.016

PMI-best (WC+FS) 0.678 ± 0.026 0.744 ± 0.026 0.815 ± 0.02 0.905 ± 0.013 0.654 ± 0.017 0.713 ± 0.011
100 ORI 120K (FS) 0.712 ± 0.009 0.781 ± 0.012 0.842± 0.014 0.915± 0.012 0.669± 0.017* 0.736± 0.022*

ORI 10K (WC+FS) 0.695± 0.014 0.765± 0.017 0.842± 0.018 0.923± 0.009 0.668± 0.015* 0.736± 0.011*
PMI-VOCAB 0.697± 0.011 0.767± 0.013 0.835± 0.017 0.912± 0.014 0.65± 0.051 0.737± 0.011

PMI-best (WC+FS) 0.708 ± 0.013 0.779 ± 0.015 0.847 ± 0.029 0.920 ± 0.020 0.67 ± 0.017* 0.737 ± 0.013*
500 ORI 120K 0.743± 0.008 0.819± 0.007 0.883± 0.006 0.951± 0.005 0.698 ± 0.009 0.776 ± 0.011

ORI 10K (WC) 0.752± 0.007 0.831 ± 0.003 0.888± 0.007 0.958 ± 0.002 0.696± 0.009 0.767± 0.008
PMI-VOCAB 0.738± 0.021 0.82± 0.017 0.884± 0.004 0.948± 0.008 0.692± 0.011 0.759± 0.011

PMI-best (WC) 0.753 ± 0.005 0.831 ± 0.003 0.89 ± 0.006 0.957± 0.002 0.698 ± 0.006 0.771 ± 0.007
1000 ORI 120K 0.758± 0.006 0.835± 0.004 0.895± 0.005 0.957± 0.005 0.700± 0.009 0.769± 0.009

ORI 10K (WC) 0.765± 0.004 0.839± 0.005 0.901 ± 0.003 0.964 ± 0.002 0.705± 0.005 0.776± 0.006
PMI-VOCAB 0.759± 0.007 0.834± 0.006 0.895± 0.004 0.96± 0.004 0.698± 0.007 0.766± 0.009

PMI-best (WC) 0.766 ± 0.007 0.843 ± 0.006 0.898± 0.005 0.962± 0.002 0.706 ± 0.005 0.778 ± 0.006
LOGO as Base model

10 ORI (WC+FS) 0.506± 0.017 0.557± 0.064 0.502± 0.005 0.557± 0.028 0.53± 0.043 0.599± 0.067
PMI (WC+FS) 0.54 ± 0.049 0.582 ± 0.088 0.519 ± 0.04 0.594 ± 0.086 0.553 ± 0.063 0.649 ± 0.067

50 ORI (WC+FS) 0.565± 0.048 0.635± 0.037 0.618± 0.037 0.663± 0.05 0.627± 0.007 0.676± 0.006
PMI (WC+FS) 0.611 ± 0.04 0.676 ± 0.017 0.668 ± 0.014 0.733 ± 0.022 0.635 ± 0.006 0.692 ± 0.009

100 ORI (WC+FS) 0.628± 0.014 0.677± 0.017 0.646± 0.033 0.694± 0.039 0.638± 0.008 0.691± 0.011
PMI (WC+FS) 0.644 ± 0.008 0.695 ± 0.012 0.705 ± 0.023 0.783 ± 0.023 0.639 ± 0.006 0.695 ± 0.008

500 ORI (WC) 0.693 ± 0.010 0.754 ± 0.007 0.751± 0.034 0.817± 0.037 0.629± 0.006 0.679± 0.007
PMI (WC) 0.69± 0.006 0.748± 0.009 0.835 ± 0.008 0.907 ± 0.008 0.648 ± 0.004 0.709 ± 0.04

1000 ORI (WC) 0.705± 0.014 0.769± 0.013 0.808± 0.015 0.884± 0.016 0.652± 0.008 0.709± 0.008
PMI (WC) 0.723 ± 0.005 0.785 ± 0.006 0.855 ± 0.004 0.925 ± 0.004 0.660 ± 0.004 0.727 ± 0.004

Table 1: Performance comparison at 10K pretraining steps. All values are rounded off to 3 decimal
places. ORI refers to the SOTA model with random masking, and PMI-best refers to the best
performance of two PMI-masking model variants: PMI (WC+FS), PMI (WC+HGA+FS). FS is not
performed where * is marked and for 500 and 1000-shot settings due to model overfitting.

Data Model Prom-core Prom-300 Cohn-enh
per class type Accuracy AUC Accuracy AUC Accuracy AUC

10 PMI 0.520± 0.020 0.545± 0.035 0.506± 0.015 0.514± 0.021 0.526± 0.031 0.562± 0.048
PMI (FS) 0.565± 0.037 0.596± 0.056 0.526± 0.021 0.556± 0.047 0.575± 0.032 0.62± 0.047

PMI (WC + HGA + FS) 0.585± 0.065 0.631± 0.088 0.676 ± 0.054 0.779 ± 0.074 0.604± 0.068 0.640± 0.098
PMI (WC + FS) 0.602 ± 0.058 0.655 ± 0.078 0.625± 0.09 0.717± 0.111 0.622 ± 0.050 0.701 ± 0.038

50 PMI 0.602± 0.037 0.659± 0.048 0.629± 0.062 0.714± 0.085 0.602± 0.029 0.656± 0.048
PMI (FS) 0.647± 0.032 0.71± 0.039 0.751± 0.043 0.847± 0.041 0.618± 0.036 0.669± 0.046

PMI (WC + HGA + FS) 0.677± 0.033 0.744 ± 0.032 0.815 ± 0.02 0.905 ± 0.013 0.654 ± 0.017 0.713± 0.011
PMI (WC +FS) 0.678 ± 0.026 0.744 ± 0.026 0.781± 0.097 0.893± 0.023 0.648± 0.016 0.718 ± 0.015

100 PMI 0.617± 0.022 0.677± 0.027 0.588± 0.042 0.652± 0.046 0.654± 0.016 0.718± 0.018
PMI (FS) 0.676± 0.015 0.751± 0.015 0.795± 0.027 0.889± 0.022 0.642± 0.049 0.694± 0.067

PMI (WC + HGA + FS) 0.694± 0.043 0.759± 0.058 0.847 ± 0.029 0.920± 0.020 0.67 ± 0.017* 0.737 ± 0.013*
PMI (WC + FS) 0.708 ± 0.013 0.779 ± 0.015 0.843± 0.027 0.925± 0.010 0.655± 0.052* 0.722± 0.068*

500 PMI 0.744± 0.008 0.826± 0.004 0.873± 0.017 0.949± 0.004 0.687± 0.006 0.755± 0.008
PMI (FS) 0.735± 0.010 0.811± 0.007 0.871± 0.011 0.945± 0.003 0.538± 0.075 0.576± 0.108

PMI (WC + HGA) 0.75± 0.008 0.829± 0.005 0.887± 0.004 0.953± 0.004 0.674± 0.058 0.75± 0.038
PMI (WC) 0.753 ± 0.005 0.831 ± 0.003 0.89 ± 0.006 0.957 ± 0.002 0.698 ± 0.006 0.771 ± 0.007

1000 PMI 0.761± 0.004 0.837± 0.003 0.894± 0.003 0.959± 0.003 0.674± 0.058 0.717± 0.128
PMI (FS) 0.673± 0.109 0.719± 0.112 0.498± 0.005 0.523± 0.064 0.589± 0.089 0.629± 0.099

PMI (WC + HGA) 0.766 ± 0.007 0.843 ± 0.006 0.898 ± 0.004 0.961± 0.002 0.699± 0.008 0.771± 0.011
PMI (WC) 0.766 ± 0.004 0.841± 0.005 0.898 ± 0.005 0.962 ± 0.002 0.706 ± 0.005 0.778 ± 0.006

Table 2: Ablation analysis of PMI-masking-guided DNABert model variants at 10000 steps. FS is
not performed where * is marked and for 500 and 1000-shot settings due to model overfitting

kept between 5 − 10% (known as warmup percentage) of the maximum number of training steps;
In models without WC, the warmup percentage is almost 100%, indicating that the learning rate is
slowly increasing throughout the entire training process. However, since we use mini-batch Gradient
Descent, the model noisily converges towards minima and may oscillate far away from the actual
minima. As a result, the model convergence is significantly delayed, negatively impacting both
model optimization and generalization.

8



Under review as a conference paper at ICLR 2023

Dataset Motifs Normalized PMI rank
(Consensus Logo) (out of 4096)

Prom-core nGAGGAGGv AGGAGG (56), GAGGAG (278)
Cohn-enh nCCTGGCCh CCTGGC (25), CTGGCC (129)
Prom-core nTATAAAr 242
Cohn-enh GTGGCTsw 126

Prom-core, Cohn-enh nCyyCCTCCn* 1, 11, 52, 175, 186
Prom-core sCwGCAGCn 259, 516, 540, 570, 628
Prom-core nTATAAAr 242
Cohn-enh ksCTGGGm 5, 17, 20, 21, 71
Cohn-enh TTTTTTTTTn 8

Table 3: PMI-based rankings based on Normalized-PMIn score for the motifs present in finetuning
datasets. The motifs are of lengths 5, 6, or 7. For length 7, we mention two rankings considering
two 6-length sub-motifs. A motif of length 5 matches as a sub-string to multiple 6-mers, we only
mention the top five ranks for all such matches.

6.3 MOTIF ANALYSIS

Motifs are repetitive units having a certain biological significance. We here check whether the
correlated tokens identified by PMI are in fact (part of) such units.

Association between the top-20 ranked 6-mers based on Normalized-PMIn score and con-
served DNA sequence motifs. We analyze whether highly ranked PMI tokens resemble mean-
ingful concepts by checking their overlap with known motifs. We performed a Google search with
the following query template: “AATCTC” DNA sequence motif. Double quotes are used as a Google
wildcard to indicate that the term AATCTC must always be present in the returned results. We only
considered the first page of Google results to consider hits to the query. Among the top 20 ranked
6-mers, we observed that all except 2 (CCAGGC - rank 9, GCCTGG - rank 10) are previously
mentioned in the published biomedical literature.

PMI-based rankings capture motifs present in finetuning datasets. We use the R package rGA-
DEM (Droit et al., 2022) to perform de novo motif discovery. As motif discovery is computationally
expensive, we only provide a subset of the data: randomly sampled 1000 (prom300 - 300 bp and
enhancers-cohn 500 bp) and 2000 (prom-core - 70 bp) data points. We obtain a total of 12 motifs
from the Prom-core and Cohn-enh datasets, which are of varying lengths but are mostly concentrated
around lengths 5, 6, and 7. We present our best matches and their corresponding ranks in the 6-mer
PMI ranked list (RANK) in Table 3 (see Table 6 for the complete list, as well as their corresponding
consensus logos in Figures 3 and 4). We observe that most of the 6-mers that match the discovered
motifs are ranked very high. Within the top 25 percentile of RANK, that is, a rank of 1024. We
further observe that our top-1 ranked 6-mer is present in motifs of both enhancers and promoters
based on de-novo motif discovery and is also mentioned in previous biomedical literature (Chow
et al., 1991). The TATA box, a well-known motif for promoters (rows 3 of Table 3) is ranked at 242;
the best TATA box motif is TATATA, which has a PMI rank of 15. We thus conclude that top-ranked
6-mers (top 25 percentile) have a strong correlation with DNA sequence motifs.

7 CONCLUSION

Gene sequence classification is a challenging problem and requires a tremendous engineering effort
even to develop the experimental setup. The publicly available infrastructure currently in place needs
to be improved to facilitate such research. We plan to open-source the pretraining and finetuning
datasets and associated codes, along with model weights and checkpoints, with the objective of
broader adoption by the research community. We believe this would be an important contribution
to the work besides the critical finding that the PMI-masking strategy improves over the random
masking strategy in all the few-shot settings for two SOTA models - DNABert and LOGO over three
gene sequence classification datasets. We also performed a detailed motif analysis and observed a
strong correlation between top-ranked PMI tokens and conserved DNA sequence motifs, providing
us with a biological reason behind the improvement. Finally, given the often limited dataset sizes in
(personalized) medicine, the present framework of entity-aware pretraining leading to improvement
in a few-shot setting needs to be explored in full, which will be our immediate future work.
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ETHICS STATEMENT

The gene sequence data used for both pretraining and finetuning is obtained from publicly available
sources and can be obtained directly without signing any explicit data use agreement. The three
benchmark datasets of Prom-core, Prom-300, and Cohn-enh are also used in previous studies for
the task of gene sequence classification (Zaheer et al., 2020; Ji et al., 2021; Martinek et al., 2022;
Oubounyt et al., 2019). Our work does not involve patient-level data for the experiments. We do not
foresee any negative social impacts of this work, but of course, the accumulation of improvements
in ML could be misused as it may give more power to nefarious agents.

REPRODUCIBILITY STATEMENT

We develop the Normalized-PMIn metric and also incorporate it into SOTA models as PMI-masking.
In terms of motif analysis, we also perform the de novo motif discovery on the downstream task
datasets using the rGADEM R package. We will provide the code which includes the pretrain-
ing and finetuning data construction, together with a detailed reproducibility report (file name:
reproducibilty-report-iclr-2023) in the supplementary material. We will be releasing the codebase
and the pretrained models after the review process.
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Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska,
Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley. Effective
gene expression prediction from sequence by integrating long-range interactions. Nature Meth-
ods, 18(10):1196–1203, Oct 2021. ISSN 1548-7105. URL https://doi.org/10.1038/
s41592-021-01252-x.

Sarkhan Badirli, Zeynep Akata, George Mohler, Christine Picard, and Mehmet M
Dundar. Fine-grained zero-shot learning with dna as side information. In Ad-
vances in Neural Information Processing Systems, volume 34, pp. 19352–19362,
2021. URL https://proceedings.neurips.cc/paper/2021/file/
a18630ab1c3b9f14454cf70dc7114834-Paper.pdf.

B.K. Chow, V. Ting, F. Tufaro, and R.T. MacGillivray. Characterization of a novel liver-specific en-
hancer in the human prothrombin gene. Journal of Biological Chemistry, 266(28):18927–18933,
1991. ISSN 0021-9258. doi: https://doi.org/10.1016/S0021-9258(18)55152-8. URL https:
//www.sciencedirect.com/science/article/pii/S0021925818551528.

Dikla Cohn, Or Zuk, and Tommy Kaplan. Enhancer identification using transfer and adversarial
deep learning of dna sequences. bioRxiv, 2018. doi: 10.1101/264200. URL https://www.
biorxiv.org/content/early/2018/02/14/264200.

ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human genome.
Nature, 489(7414):57–74, 2012.

Genome Reference Consortium. Genome reference consortium human build 38 patch release
13 (grch38.p13), 2019. URL https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.39/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Original bert github reposi-
tory, 2019. URL https://github.com/google-research/bert.

10

https://github.com/jerryji1993/DNABERT
https://epd.epfl.ch/human/human_database.php?db=human
https://epd.epfl.ch/human/human_database.php?db=human
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1038/s41592-021-01252-x
https://proceedings.neurips.cc/paper/2021/file/a18630ab1c3b9f14454cf70dc7114834-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a18630ab1c3b9f14454cf70dc7114834-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0021925818551528
https://www.sciencedirect.com/science/article/pii/S0021925818551528
https://www.biorxiv.org/content/early/2018/02/14/264200
https://www.biorxiv.org/content/early/2018/02/14/264200
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert


Under review as a conference paper at ICLR 2023

Patrik D’haeseleer. What are dna sequence motifs? Nature Biotechnology, 24(4):423–425, Apr
2006. ISSN 1546-1696. doi: 10.1038/nbt0406-423. URL https://doi.org/10.1038/
nbt0406-423.

René Dreos, Giovanna Ambrosini, Rouayda Cavin Périer, and Philipp Bucher. EPD and EPDnew,
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A.1 BACKGROUND

Importance of understanding gene regulatory code. The long strands of DNA found in the human
chromosomes can be classified into genes and the genes, in turn, comprise coding and non-coding
parts. A coding part encapsulates the information required for converting the nucleotide to a pro-
tein. These proteins are the building blocks of all tissues. These genes interact with the non-coding
regions which perform gene regulation. Promoters/Enhancers speed up the process of coding, in-
hibitors slow down the reaction. These non-coding genes are called gene regulatory elements(Yue &
Wang, 2018a). The non-coding regions, accounting for over 98% of the whole genome, implement
significant yet largely unknown regulatory functions. Recent large consortia projects, including the
ENCyclopedia of DNA Elements (ENCODE) (Consortium, 2012), Roadmap Epigenomics (Kun-
daje et al., 2015), and the Genomics of Gene Regulation (GGR), have produced a large number of
experimental mapping readouts to help annotate non-coding genome in specific tissues or cell-lines.
On the other hand, Genome-wide association studies (GWAS) have discovered that the vast majority
(> 90%) of associated genome loci for complex disease and traits fall in non-coding regions (Viss-
cher et al., 2017).

MLM training. Yamaguchi et al. (2021) explore alternative pretraining tasks compared to MLM
such as shuffled word detection, random word detection, manipulated word detection (Shuffle +
Random), masked token type classification, and masked first character prediction. Here, we choose
the original DNABert configuration of MLM without Next Sentence Prediction and experiment with
multiple masked token selection strategies.

A.2 PARAMETER COMPARISON OF THE SOTA MODELS

Parameter DNABert LOGO
Hidden Size 768 256

Hidden Layers 12 2
Attention Heads 12 8

Per GPU train batch size 10 5
Hidden Dropout Probability 0.1 0

Attention Dropout Probability 0.1 0
Intermediate Size 3072 3072
Embedding Size 512 512

Table 4: Difference between parameters of DNABert and LOGO

Finetuning parameter configuration. In the current setup, the models are fine-tuned on task-
specific data for 5 epochs with warmup percentage as 0.1, hidden dropout probability as 0.1, and
weight decay as 0.01.

A.3 EXPERIMENTAL RESULTS

Sequence Length Total tokens in vocabulary

1 5
2 17
3 65
4 212
5 533
6 1465
7 3829
8 10271
9 17537
10 6071

Table 5: Masking vocabulary statistics of the baseline model, PMI-VOCAB
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Figure 1: Perplexity score plot of pretrained models used in the experiments

A.3.1 ANALYZING THE EFFECT OF FUNCTIONAL GENETIC VARIANTS

We aim to reproduce the variant analysis conducted by Ji et al. (2021), using dbSNP (Sherry et al.,
2001) and ClinVar (Landrum et al., 2013), to compare the performance of PMI-masking-based
model (PMI) with the original SOTA model (ORI) for the task of identifying functional genetic
variants (using DNABert as the ORI model). 400, 000 variants are retrieved from dbSNP, and the
corresponding genomic sequences (both original and mutated) are constructed by the original au-
thors; this dataset is publicly available. When the original and mutated sequences offer significantly
different prediction probabilities, the variant is queried in ClinVar to ascertain their importance.
Since we do not have access to the specific code used by the authors to evaluate the importance of
a given variant using Clinvar, we instead use the same finetuned DNABert model, pretrained for
120K steps and finetuned on the 10-shot Prom-core dataset (ORI 120K performs best in Prom-core
low-resource setting) and obtain the original weights used by the authors (DNA, 2021)). We will
look to evaluate settings other than 10-shot for the sake of completeness as a future research direc-
tion. As a result, DNABERT demonstrated its capability to capture and propose new and significant
(disease-specific) variants in the future.

Experimental Details. The differences in prediction probabilities for the dataset mentioned above
(400, 000 data points) in the 10-shot setting and the data points are ranked in non-increasing order
of the difference value. At this point, we obtain an individual ranked list of data points for the ORI
and PMI models. We use the ranked (constructed similarly to ORI and PMI models) based on the
finetuned DNABert model provided by the authors (described in the above paragraph) as ground
truth, i.e., a proxy to identify all possible important functional variants. The degree of overlap with
the ground-truth ranked list for multiple top-N settings for the ORI and PMI setting is provided in
Figure 2. We observe that the PMI-guided DNABert model consistently reports higher overlap over
the original model (ORI) in different top-N settings (5000 ≤ N ≤ 50000). Thus, we conclude that
PMI-masking helps incorporate intrinsic (or relevant) genomics information into ORI models like
DNABert and LOGO. The performance improvement is wider than just gene sequence classification
tasks.

A.4 MOTIF ANALYSIS
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Figure 2: Performance comparison between “WS+FS” variant of ORI and PMI model in terms of
overlap percentage for the task of analyzing the effect of functional genetic variants

Dataset Motifs Normalized PMI rank (Top 5 for 5-mers)
(out of 4096)

Prom-core nCyyCCTCCn* 1, 11, 52, 175, 186
Prom-core sCsCCGCCsCCn 103, 1181, 1678, 2205, 2534
Prom-core sCwGCAGCn 259, 516, 540, 570, 628
Prom-core yyTTTATAn 286
Prom-core nTATAAAr 242
Prom-core nGAGGAGGv AGGAGG (rank 56), GAGGAG (rank 278)
Prom-core kGCTGCwGs 260, 510, 555, 590, 639
Cohn-enh ksCTGGGm 5, 17, 20, 21, 71
Cohn-enh nCCTGGCCh CCTGGC (rank 25), CTGGCC (rank 129)
Cohn-enh yyCCAGrGn 302, 593, 1247, 2778
Cohn-enh TTTTTTTTTn 8
Cohn-enh GTGGCTsw 126

Table 6: PMI-based rankings based on Normalized-PMIn score for the motifs present in finetuning
datasets. The motifs are of lengths 5, 6, or 7. For length 7, we mention two rankings considering
two 6-length sub-motifs. A motif of length 5 matches as a sub-string to multiple 6-mers, we only
mention the top five ranks for all such matches.

Figure 3: Consensus logo plot of motifs identified using de novo motif discovery tool. (left) nCyy-
CCTCCyCn (middle) sCCTCCCw (right) nTATAAAr

Figure 4: Consensus logo plot of motifs identified using de novo motif discovery tool. (left)
sCwGCAGCm (middle) ksCTGGGm (right) TTTTTTTTTn

16


	Introduction
	Background
	Building blocks of SOTA models
	Proposed Adaptation of PMI-Masking Strategy to Genomic Applications
	PMI Scoring for Gene Sequences
	PMI-masking Strategy

	Experimental Setup
	Datasets
	Evaluation Setup
	Implementation Details
	Baseline Models

	Experimental Results
	PMI-masking Results
	Ablation Analysis
	Motif Analysis

	Conclusion
	Supplementary Text Material
	Background
	Parameter comparison of the SOTA models
	Experimental Results
	Analyzing the effect of functional genetic variants

	Motif Analysis


