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Abstract

Hallucinations in machine translation are trans-
lations that contain information completely un-
related to the input. Omissions are translations
that do not include some of the input informa-
tion. While both cases tend to be catastrophic
errors undermining user trust, annotated data
with these types of pathologies is extremely
scarce and is limited to a few high-resource lan-
guages. In this work, we release an annotated
dataset for the hallucination and omission phe-
nomena covering 18 translation directions with
varying resource levels and scripts. Our anno-
tation covers different levels of partial and full
hallucinations as well as omissions both at the
sentence and at the word level. Additionally,
we revisit previous methods for hallucination
and omission detection, show that conclusions
made based on a single language pair largely
do not hold for a large-scale evaluation, and
establish new solid baselines.

1 Introduction

With neural machine translation systems reaching
an overall satisfactory quality, alleviating those rare
but severe translation pathologies that undermine
user trust becomes very important. These patholo-
gies include hallucinations (translations containing
information completely unrelated to the input) and
omissions (translations that do not include some
of the information of the input). While under-
standing hallucinations is receiving increasing at-
tention (Raunak et al., 2021; Müller and Sennrich,
2021; Zhou et al., 2021; Guerreiro et al., 2023; Dale
et al., 2023; Guerreiro et al., 2022), progress in this
direction is hampered by the lack of annotated data.
To the best of our knowledge, previous datasets are
limited to German-English data with sentence-level
annotations of hallucinations and omissions (Guer-
reiro et al., 2023) and Chinese-English data with
token-level hallucination labels (Zhou et al., 2021).
Previously available general-purpose quality as-
sessments, such as direct assessment (DA) Gra-

Figure 1: Dataset summary.

ham et al. (2013), MQM (Lommel et al., 2014),
or XSTS (Licht et al., 2022) do not seem suitable
since they do not distinguish between hallucina-
tions, omissions and other translation errors. In
this work, we aim to address this limitation.

Ideally, an evaluation dataset for hallucina-
tion/omission detection should satisfy several con-
ditions: (i) data has to cover a broad range of lan-
guages with varying resource levels and scripts,
(ii) translations should be generated naturally,
(iii) the models that produced the translations
have to be available, and (iv) considered model-
ing paradigms have to cover several approaches
(i.e., encoder-decoder vs decoder-only, single lan-
guage pair vs multilingual, etc.). The first point
is important because the best-performing detectors
are different for high- and low-resource settings,
and general conclusions cannot be made based on a
single language pair (Section 4). Secondly, transla-
tions have to be generated naturally as opposed to
using specifically developed perturbations of mod-
els and/or data because conclusions for the latter
might not transfer for detection of natural hallucina-
tions (Section 6). Thirdly, the corresponding model
should be released along with the translations to
allow evaluating “internal” detection methods. Fi-



nally, in the most ideal setting, various models are
needed to test whether the detection methods trans-
fer between modeling approaches.

While satisfying all the desiderata is very chal-
lenging, we can satisfy all but last by focus-
ing on the state-of-the-art multilingual NLLB-200
model (NLLB Team et al., 2022). In addition to
covering a broad range of languages and being pub-
licly available along with its training data, NLLB
is widely recognized1 and is likely to stay the state-
of-the-art for the foreseeable future. For this model,
we choose 18 language pairs that include high-
and low-resource languages, as well as a zero-shot
pair (Figure 1). We develop rigorous annotation
guidelines for identifying full and partial halluci-
nations and omissions and use these guidelines for
manual annotation of translations in all 18 direc-
tions. The resulting dataset contains fine-grained
sentence-level and token-level annotations.

We highlight the importance of our dataset by
making several valuable observations that would
not be possible otherwise. For example, we find
that for low-resource directions, internal methods
perform much better than external methods that
substantially fail. When analyzing performance of
a range of recently introduced pathology detection
methods, we see that some of the previous results
do not transfer across languages. As another ex-
ample, we show that relying on attention to make
conclusions about translation quality is very fragile.
Finally, we introduce some detection tasks (e.g.,
token-level omission detection) that became possi-
ble only with our data. We believe our work opens
the door for reliable and accessible research on
detecting and analyzing translation pathologies as
well as understanding their causes.

Overall, we:

• release a dataset with fine-grained profes-
sional annotations of hallucinations and omis-
sions for 18 language pairs2;

• analyze previous sentence-level detectors and
find that e.g. (i) for low-resource set-
tings, model internal characteristics work best,

1Only 4-months after launching NLLB-200, Wikimedia
reported that this was the third most used machine transla-
tion engine accounting for 3.8% of all published translations.
Scientific impact is also prominent: the model has been used
as standard to compare with other MT paradigms such as
prompting with large language models (Zhu et al., 2023).

2The data and code are available at https://github.com
/facebookresearch/stopes/tree/main/demo/halomi

(ii) attention is very fragile when used to judge
translation quality, among other observations;

• introduce word-level pathology detection
tasks along with the baselines.

2 Dataset Creation

The steps to create the dataset were (i) choosing
the language pairs, (ii) gathering data for anno-
tation, (iii) developing annotation guidelines and
qualification sets, (iv) manual annotation, (v) post-
processing. Here, we explain these steps.

2.1 Selection of Languages
We optimized the language selection in order to
cover (i) different resource levels and (ii) a variety
of language families and scripts. Among the lan-
guages available in NLLB-200, we include 5 high-
resource language pairs (Arabic, Mandarin Chi-
nese, German, Russian, and Spanish paired with
English), 3 low-resource language pairs (Kashmiri,
Manipuri, and Yoruba paired with English) and a
zero-shot pair (Spanish-Yoruba).3 We consider all
language pairs in both directions which gives us 18
translation directions summarized in Figure 1.

2.2 Gathering Data for Annotation
Since strong NLLB models rarely generate halluci-
nations and omissions, getting translations that are
likely to contain these types of errors is not straight-
forward. To gather these translations, we developed
a multi-step procedure where we first choose data
to generate translations and then choose a subset of
the generated translations for annotation.

Choosing data for translation. Since we expect
that the NLLB model will not hallucinate much
when handling high-resource languages, in addi-
tion to clean in-domain data, we use noisier out-
of-domain sources. Overall, the data we use to
generate translations is as follows:

• in-domain: FLORES-200 development
set (NLLB Team et al., 2022);

• out-of-domain: Jigsaw toxicity detection com-
petition corpora (Jigsaw, 2020)4 – for En-
glish, Russian and Spanish; comments from
Wikipedia discussion pages5 – for Chinese,

3In the NLLB training dataset, Spanish and Yoruba sen-
tences were paired to English but not to each other.

4https://www.kaggle.com/competitions/jigsaw-m
ultilingual-toxic-comment-classification/

5From public dumps: https://dumps.wikimedia.org/.

https://github.com/facebookresearch/stopes/tree/main/demo/halomi
https://github.com/facebookresearch/stopes/tree/main/demo/halomi
https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/
https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/
https://dumps.wikimedia.org/


Figure 2: Overview of some parts of the annotation guidelines.

Arabic and German. The Jigsaw corpora were
extracted from Wikipedia talk pages, so the
distributions of these texts are rather similar.

We translated these texts with the 600M distilled
NLLB model6 following the standard setting (beam
size 5, forbidden generation of the <UNK> token,
forbidden repetition of 4-grams, limiting the trans-
lation length to 3·len(source)+5 tokens.

Choosing translations for annotation. To find
potentially pathological translations, we scored sen-
tence pairs by multiple metrics that were used as
hallucination detectors in previous works. Specifi-
cally, we used some methods from Guerreiro et al.
(2023): ChrF++ (Popović, 2017), reference-based
COMET7 and referenceless COMET-QE (Rei
et al., 2020), and Seq-Logprob (their best detec-
tor). We also used some methods introduced in
Dale et al. (2023): cosine similarity coming from
LASER3 (Heffernan et al., 2022) and LaBSE (Feng
et al., 2022), a bidirectional XNLI score, and ALTI+
source contributions (Ferrando et al., 2022).

For each translation direction and data source,
we selected sentence pairs with 3 strategies:

• Sample uniformly – to preserve data diversity
and non-hallucinated examples;

• Sample favoring potentially pathological
translations (with the probabilities propor-
tional to the quantiles of the detectors);

• Pick the worst according to the detectors – to
increase the chance of hallucinations.

Appendix A describes the amount of data selected
by these strategies for all directions.

6We selected the smallest model from the NLLB family as
the most popular one, and potentially the one generating most
hallucinations and omissions.

7We applied the reference-based metrics only to the FLO-
RES data.

2.3 Guidelines and Qualification Tests
To ensure annotation quality, guidelines and qualifi-
cation tests were prepared by professional linguists.

Annotation guidelines. These guidelines define:

• the notion of hallucinations and omissions;

• the hallucination vs mistranslation distinction;

• hallucination/omission severity levels.

Figure 2 summarizes the resulting guidelines. Note
that distinguishing hallucinations from other trans-
lation errors is one of the known difficulties when
dealing with hallucinations (Raunak et al., 2021;
Guerreiro et al., 2023). In our guidelines, a token
is referred to as hallucinated if there is no corre-
sponding token in the source (Figure 2).

For all pathologies, linguists provide positive
and negative examples in diverse languages. Addi-
tionally, we ask the annotators to mark if a trans-
lation is incomprehensible, i.e. whether the text is
garbled or in another language. These translations
are then discarded.8

Qualification tests and postprocessing. For an-
notation, we choose professional translators (2 for
each language) who are allowed to annotate our
data only after passing a specifically developed
qualification test. More details on this test and
postprocessing steps can be found in Appendix A.

3 Dataset Description

Annotation format. The resulting data contains
the source text and its translation, along with the

8We believe that incomprehensible texts should be consid-
ered separately for two reasons. From the user perspective,
hallucinations and omissions are mostly fluent, which can
mislead the user into trusting the translation; differently, in-
comprehensible texts are clearly bad sentences and thus do not
mislead the user. From the detection perspective, incompre-
hensible sentences can be recognized regardless of the source,
while hallucinations and omissions can be judged as such only
in relation to the source sentence.



Figure 3: Annotated examples from our dataset.

word-level and sentence-level annotations of omis-
sions and hallucinations. Figure 3 shows examples
of annotated translations from our dataset.

Overall statistics. Figure 1 shows the propor-
tions of hallucinations and omissions in the data
(translations with both hallucinations and omis-
sions are referred to as hallucinations). Overall,
all directions have at least 3% translations with
hallucinations (1% full) and 17% with omissions
(5% full). Most of the full hallucinations are also
labelled as full omissions, and vice versa.

Differences between resource levels. From Fig-
ure 1 we see that, not surprisingly, high-resource
language pairs hallucinate less than low-resource.
A less anticipated difference between high- and
low-resource settings is seen when looking within
each language pair. In high-resource settings, trans-
lating to English leads to more hallucinations than
translating from English. Differently, for low-
resource pairs, translation from English has higher
hallucinatory rates than translation to English for
the same language pair. This might inspire future
work to analyze the role of English data in the mul-
tilingual NLLB model. Finally, while for the zero-
shot pair one might expect more pathologies, this
is not what we see: results for the zero-shot pair are
comparable to those for low-resource languages.

4 Sentence-Level Detection

Detecting pathologies at the sentence level is the
task of flagging a whole translation as pathological
or not. This is the standard definition of e.g. the hal-
lucination detection task (Lee et al., 2019; Müller
et al., 2020; Raunak et al., 2021; Guerreiro et al.,
2023; Dale et al., 2023; Guerreiro et al., 2022; Xu
et al., 2023). Such sentence-level pathology de-
tection (instead of flagging individual erroneous
tokens) is an integral part of hybrid pipelines when

a machine-generated translation is first passed to
a quality estimation system and then, if needed, is
corrected by human translators.

Detection tasks. For our dataset, we define three
sentence-level detection tasks:

• hallucination detection: same as in previous
work mentioned above;

• omission detection: detecting translations
with omissions on a hallucination-free subset.
The latter is to disentangle omissions from a
more severe hallucination pathology;

• pathology detection: detecting translations
that are either hallucinations or omissions.

Evaluation methodology. We evaluate the abil-
ity of a detector to rank more severe pathologies
higher (e.g., full hallucinations higher than partial,
any hallucinations higher than non-hallucinations,
etc). For this, we use an adaptation of the binary
ROC AUC score for several classes. Formally, we
subtract from the perfect score, i.e. 1, the percent-
age of incorrectly ranked pairs of sentences with
different labels. For two classes, this metric is
equivalent to the ROC AUC score.

We compute the metrics for each translation di-
rection separately.

4.1 Detection Methods

Detection metrics can be either internal, i.e. rely-
ing only on the information from the model that
generated the inspected translation, or external, i.e.
using external models. We use the best detectors
from several recent works, along with some of their
modifications we propose in this work. The metrics
are summarized in Figure 4.



Figure 4: Summary of the sentence-level detection methods.

Internal methods. For internal models, we use
the best method from Guerreiro et al. (2023)
(sequence log-probability) and the best internal
method from (Dale et al., 2023), ALTI. ALTI (Fer-
rando et al., 2022) is an attribution method that
evaluates token contributions to generated transla-
tions. For hallucination detection, Dale et al. (2023)
evaluate how, on average, the prediction of each
target token is based on the source. Here, mostly
to detect omissions, we propose a different vari-
ant ALTIT that computes how much, on average,
each source token was used to generate the transla-
tion. Intuitively, if many source tokens are not used
during generation, the translation is likely to not
contain some information. The difference between
the two versions of ALTI is illustrated in Figure 4.

External methods. For external methods, we
use the state-of-the-art quality estimation system
COMET-QE (Rei et al., 2020) and sentence sim-
ilarity measures proposed in Dale et al. (2023).
The latter are cosine similarities coming from
LASER3 (Heffernan et al., 2022), LaBSE (Feng
et al., 2022), and a bidirectional XNLI score. Fi-
nally, we evaluate a translation quality estima-
tion method from Seamless Communication et al.
(2023), BLASER 2.0-QE, built on top of SONAR
sentence embeddings (Duquenne et al., 2023).

Gray-area method. Finally, we also use a recent
optimal transport-based measure evaluating the ab-
normality of the attention distribution compared to
those of good translations (Guerreiro et al., 2022).
While this method uses internal characteristics, it
requires external data, i.e. a large collection of at-
tention maps for “good” translations, which can be
hard to obtain for low-resource settings.9

9We use the best variant of the original method (Guerreiro
et al., 2022). For more details, see Appendix B.

4.2 Experimental Results

The detection scores for hallucinations and omis-
sions are shown in Figure 5. The scores for detect-
ing all pathologies are given in Appendix C.

High-resource: much easier to handle. We can
see that it is much easier to detect pathologies in
high-resource settings: the gap between the best
scores for high- and low-resource directions is
rather big (e.g., for halucinations, 0.89 vs 0.79).
Note also that for high-resource language pairs,
both internal and external methods perform quite
well (e.g., Seq-Logprob and LaBSE for hallucina-
tions; XNLI, LaBSE and ALTIT for omissions).

Low-resource: internal methods take the lead.
In low-resource settings, external methods drop
substantially with some of them losing sensibil-
ity. For example, high-performing XNLI drops
close to chance for all pathologies. Overall, most
external models (with the exception of massively
multilingual BLASER) are unlikely to be compe-
tent for low-resource directions as they do not ob-
serve enough relevant data during training. While
previous work already expressed this concern and
advocated focusing on internal methods (Dale et al.,
2023), without our dataset, verifying this was not
possible.

Hallucinations: Seq-Logprob is the most stable.
After it turned out that the standard sequence log-
probability is more informative for hallucination de-
tection than the heuristics introduced earlier (Guer-
reiro et al., 2023), a few recent works reported im-
provements over Seq-Logprob: ALTI and LaBSE
in Dale et al. (2023) and Attn-OT in Guerreiro et al.
(2022). We see, however, that on average, Seq-
Logprob is still the most robust accross translation
directions. This discrepancy comes from the fact
that those works made conclusions based on a sin-



Figure 5: Results for sentence-level detection of hallucinations (left) and omissions (right).

gle language pair. This highlights the importance
of our dataset enabling large-scale evaluation over
several language pairs.

BLASER-QE: a SOTA hallucination detector.
On average, BLASER-QE performs on par with the
best hallucination detection methods high-resource
directions, and outperforms them on low-resource
directions. Apparently, fine-tuning massively mul-
tilingual sentence encoders to predict semantic sim-
ilarity is a good recipe for hallucination detectors.

Attention-based method: close to chance.
For hallucinations, Attn-OT detecting attention
anomaly is an outlier and performs close to
chance.1011 While previous work already showed
that relying on attention patterns to make conclu-
sions about translation quality can be fragile (Guer-
reiro et al., 2023), results with our dataset highlight

10We tried all the versions of the method from Guerreiro
et al. (2022) as well as some additional modifications to
improve its results. For the dataset from Guerreiro et al.
(2022), we managed to reproduce their results. For out dataset,
we show the best method variant in the main text and the
rest (along with the implementation details) in Appendix B.

11For NLLB, poor performance of this method could be
attributed to the overall large attention to the EOS token. We
tried removing this token from the optimal transport computa-
tion, but this did not improve the results significantly.

this even further. This points to a larger debate
on the distinction between attention and attribu-
tion and the consequences of mistaking one for the
other (Jain and Wallace, 2019; Serrano and Smith,
2019; Wiegreffe and Pinter, 2019; Bastings and
Filippova, 2020). While Attn-OT was introduced
as a way to evaluate detachment from the source
sequence (Guerreiro et al., 2022), we see that im-
plementing this intuition with attention instead of
attribution (as in e.g. ALTI) leads to varying results:
from high performance in Guerreiro et al. (2022)
to near-random performance in our experiments.

Omissions: internal ALTIT performs best. For
detecting omissions among non-hallucinations, the
quality is generally worse than for hallucinations.
The best method is ALTIT which confirms our in-
tuition that if, according to token contributions,
some source words are not used for translation, a
translation is likely to omit relevant information.
LaBSE, XNLI and BLASER-QE also perform well
for high-resource languages but, similar to halluci-
nation detection, are worse than internal methods
for low-resource. Finally, while Attn-OT does not
seem to identify hallucinations, it is sensible for
omissions.



Figure 6: Token-level detection methods for hallucina-
tions. For omissions, we swap the source and the target.

5 Word-Level Detection

In contrast to sentence-level detection, detecting
pathologies at the word level received much less
attention. In terms of both available data and detec-
tors, previous attempts were rather limited (Zhou
et al., 2021; Vamvas and Sennrich, 2022). Here, we
want to facilitate future research in this direction.

Detection tasks. We define two detection tasks:

• hallucination detection: for each translation
word, predict whether it is hallucinated;

• omission detection: for each source word, pre-
dict whether it is omitted from the translation.

Segmentation. We segment texts using Sacre-
BLEU tokenizer (Post, 2018). For Chinese, it in-
terprets each Chinese character as an individual
word. For other languages, it applies regex-based
tokenization based on spaces and punctuation.

Evaluation methodology. For these binary clas-
sification tasks, we use the ROC AUC score. Since
models operate at the token level, we make predic-
tions for tokens and not words. If a word is segmen-
ted into several tokens, we assign the worst score
among its tokens (i.e., if one of a word’s tokens is
hallucinated, the entire word is hallucinated).

5.1 Detection Methods

To the best of our knowledge, there are no publicly
available models for token-level detection of hallu-
cinations or omissions that could be easily adapted
to handle the language pairs in our dataset. Apply-
ing previous approach by Zhou et al. (2021), i.e.
training a specialized model (or several language
pair-specific models) on synthetic data, would be
very demanding in terms of engineering and re-
search effort to work well on diverse resource lev-
els. Therefore, we suggest starting with internal
methods and their combinations.

Internal methods. For internal methods, we rely
on the same methods that were previously used:
model log-probability and ALTI (Figure 6). We use

two types of log-probability: the standard and its
difference with the unconditioned log-probability
for the same token (i.e., when conditioning on an
empty source sentence). Intuitively, the latter is one
more way of measuring whether the model uses the
source or relies more on its language model. For
ALTI, we use both the total source contribution
and the maximum contribution among the source
tokens. The latter is high when the model is “fo-
cused” on a specific source token – this might be
indicative of the prediction quality. For omissions,
we use the same methods with swapped source and
target sentences (i.e., ALTI turns into ALTIT).

Combination of methods. Apart from the indi-
vidual methods, we also consider their linear com-
binations. We use a logistic regression trained us-
ing 3-fold group-wise cross-validation (with sen-
tence ids as groups). We train the same feature
combination for all languages by maximizing the
detection score on the pooled data.

5.2 Experimental Results
The results are shown in Figure 7. Overall, the
methods we proposed are reasonable and perform
much better than the random baseline.

Token contributions perform best. We see that
for both hallucinations and omissions, token con-
tributions coming from ALTI (or ALTIT for omis-
sions) perform better than the log-probability com-
ing from the model. Note that for hallucinations,
this is different from the sentence-level results
where Seq-Logprob outperformed ALTI.

Contrastive vs standard log-probability. An-
other interesting observation is that for hallucina-
tion detection in the high-resource setting, con-
trastive log-probability gives a better signal than
the standard log-probability. This indicates that
comparing explicitly the changes when dropping
some information can be useful. This is not surpris-
ing: in a broad sense, our contrastive log-probabi-
lity is a variant of erasure-based interpretation ap-
proaches (Zeiler and Fergus, 2014; Li et al., 2017;
Kádár et al., 2017; Poerner et al., 2018; Li et al.,
2019). In our case, the erased part is rather large,
i.e. the whole source sentence. For such large
segments, a similar idea previously appeared in
context-aware machine translation when dropping
the entire context sentence (Fernandes et al., 2021).

The detectors are complementary. Finally, we
see that log-probability and token contributions are



Figure 7: Word-level detection results.

complementary: for both hallucinations and omis-
sions, combining the features leads to a noticeable
improvement in detection quality.

6 Natural vs “Artificial” Pathologies

One of the difficulties when dealing with hallucina-
tions (and, to a lesser extent, omissions) is that this
is a rare phenomenon. Therefore, previous work
often resorted to artificially amplifying the prob-
lem by applying various perturbations (Lee et al.
(2019); Raunak et al. (2021), among others). How-
ever, it is not clear whether conclusions made based
on this synthetic data would transfer to pathologies
generated by a model in a natural setting.

In Appendix D, we compare performance of
detection methods between two datasets: (i) our
dataset with natural translations and (ii) translations
generated with perturbed model. We find that data
with translations generated under perturbation has
to be used with caution, especially when evaluating
pathology detection methods: the conclusions are
likely to not transfer to the natural setting.

7 Discussion

We saw that some of the internal and external meth-
ods can detect hallucinations and omissions with
the quality that is much better than nothing, much
worse than perfect. But what are the cases in which
methods perform well and what can be improved?

7.1 Sentence-Level Detection

Figure 8 shows manually selected examples of false
and true positive and negative detection results.

Flagging correct translations. Examples 1-3 are
correct translations, but some of them are flagged
as pathological. Example 2 is flagged as an hallu-
cination and omission, probably because the input
“:::Jeez.” is slang and has a wide range of potential
meanings. Example 3 is flagged by Seq-Logprob:
for the model, this translation may be “unlikely”
because it is short and consists of a rare word.

Difficult to detect pathologies. Examples 4-6
show partial hallucinations and omissions that are
difficult to detect, either because (in some sense)
they resemble a correct translation, or because the
translation indeed remains within the range of pos-
sible translations despite having these pathologies.

This raises a question: what does it really mean
to have a hallucinated translation? While our sen-
tence-level labels are fine-grained, the severity of a
pathology is defined based on the number of omit-
ted/hallucinated words rather than on the degree
of semantic inadequacy of the pathology (similarly
to e.g. Guerreiro et al. (2023)). This agrees with
previous work noting that defining severity of trans-
lation errors is not straightforward (Graham et al.,
2013; Licht et al., 2022; Guerreiro et al., 2023).

Correctly detected pathologies. Examples 7-11
show more severe hallucinations and omissions –
these are detected correctly by at least a few of the
considered methods. Many of these pathologies
are produced for out-of-distribution inputs: con-
junction of several sentences, typos, non-sentence
texts (such as dates), and very short or incomplete
sentences. Note that e.g. short sentences are non-
typical for the NLLB training data. As we see, for
such inputs the model is often not confident even
for correct translations (see e.g. examples 2 and 3 –
correct but short translations are flagged as patho-
logical). This suggests that these errors might be
alleviated by augmenting training data with similar
(very short, multi-sentence, etc.) samples.

7.2 Word-Level Detection
In Appendix E.1, we also show examples of word-
level detection and discuss the behavior of the de-
tection methods. For example, we note that log-
probability focuses on the beginnings of sentences
while ALTI focuses on the endings.

8 Additional Related Work

Except for mentioned above work, previous work
on hallucinations in machine translation largely
avoided human annotation. To judge whether a
translation is hallucinated, they relied on various
heuristics or string-based automatic evaluation met-
rics (Lee et al. (2019); Berard et al. (2019); Müller
and Sennrich (2021); Raunak et al. (2021)). These,
however, were shown not to be indicative of hallu-
cinations (Guerreiro et al., 2023), which highlights
the importance of our human-annotated data. For
omissions, previous work mostly focused on empty



Figure 8: Examples of successful and failed sentence-level detection for translations from English to Spanish.

translations (Stahlberg and Byrne, 2019; Vijayaku-
mar et al., 2016) with some work using artificially
created undertranslations (Vamvas and Sennrich,
2022). As we saw in Section 6, the latter is unlikely
to be helpful when evaluating detection methods.

9 Conclusions

We present the first dataset with human-annotated
hallucinations and omissions that satisfies several
conditions: (i) it covers a broad range of languages
with varying resource levels and scripts, (ii) the
translations are generated naturally (i.e., without
artificial perturbations), (iii) the model producing
the translations is publicly available. Through our
extensive experiments, we illustrate why each of
these conditions is important. Additionally, we
make several observations of individual importance.
For example, for low-resource directions internal
pathology detection methods perform better than
most of the external ones, attention is very frag-
ile when used to judge translation quality, among
others. We believe our work opens the door for a
reliable and accessible research on detecting and
analyzing translation pathologies.

10 Limitations

Our experiments are reproducible, and our dataset
together with the NLLB model can be widely used

to evaluate progress on hallucinations/omissions de-
tection and mitigation. However, all the annotated
translations were generated with a single model,
and the generalization to other models is yet to be
verified.

The dataset is rather small and may not cover all
possible hallucinations/omissions cases.

11 Ethical considerations

The annotations were provided by professionals
and they were all paid a fair rate.
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Data source FLORES Comments

Selection U B W U B W

eng_Latn-arb_Arab 18 31 31 22 28 14
arb_Arab-eng_Latn 19 31 31 21 31 23
eng_Latn-rus_Cyrl 19 31 31 20 32 13
rus_Cyrl-eng_Latn 18 31 30 22 33 24
eng_Latn-spa_Latn 19 31 31 22 33 17
spa_Latn-eng_Latn 19 31 31 22 33 24
eng_Latn-deu_Latn 19 31 31 22 31 12
deu_Latn-eng_Latn 18 31 31 21 31 23
eng_Latn-zho_Hans 19 31 31 22 33 24
zho_Hans-eng_Latn 19 31 31 22 33 23
eng_Latn-kas_Deva 23 38 36 19 36 32
kas_Deva-eng_Latn 40 54 57 0 0 0
eng_Latn-yor_Latn 24 39 36 27 40 29
yor_Latn-eng_Latn 40 51 55 0 0 0
eng_Latn-mni_Beng 24 39 37 27 39 31
mni_Beng-eng_Latn 40 54 58 0 0 0
yor_Latn-spa_Latn 40 54 58 0 0 0
spa_Latn-yor_Latn 40 53 58 0 0 0

Table 1: Number of sentence pairs selected from each
source with each method: uniform sampling U, biased
sampling B, and selecting worst cases W.

Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393–1404, Online.
Association for Computational Linguistics.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Lingpeng Kong, Jiajun Chen, Lei Li, and Shujian
Huang. 2023. Multilingual machine translation with
large language models: Empirical results and analy-
sis.

A Dataset Creation

Selecting the data. The 3 sampling strategies
described in Section 2.2 were applied in different
proportions, depending on what kind of data we
had for a particular translation direction. Our re-
leased dataset has a field with the sampling strategy
labels. The resulting proportions are reported in
Table 1.

Qualification tests. The annotators recruited for
this project were translators and reviewers who
participated in FLORES translation (NLLB Team
et al., 2022) or have other professional translation
experience. Typically, these annotators are trans-
lators with at least two to three years of profes-
sional translation experience, usually with domain
expertise in journalism, education, social media or
marketing. Two annotators are recruited for each
language. They are allowed to annotate our data
only after passing a specifically developed qualifi-
cation test. An annotator can fail the test no more

than once, in which case they are given an oppor-
tunity to receive a detailed feedback and re-do the
test. If they do not achieve a passing score of 96%
at the second attempt, the vendor is required to find
a replacement. Once two annotators are qualified
for a given language, one annotator performs the
annotations, which are then reviewed by the second
annotator.

Our qualification tests were developed for each
of the language directions, and contained 15 items
to annotate: 3 full hallucinations, 4 partial halluci-
nations, 2 word-level hallucinations, 5 mistransla-
tions, and 1 incomprehensible sentence. The tests
were found effective in identifying annotation qual-
ity issues before annotators annotate real data.

Post-processing. For each language, annotations
were performed by one annotator and reviewed
by another annotator. From the data, we discard
the translations marked as incomprehensible along
with the data with some issues (e.g. unbalanced
brackets in the word-level annotations of hallucina-
tions or omissions; word-level annotations that sig-
nificantly differ from the initial input/output texts).
After this filtering, we were left with 144 to 197
annotated sentence pairs per direction.

B Attention-based anomaly detection

Reproducibility. The Attn-OT sentence-level de-
tection method that we use in Section 4 is our re-
production of the Wass-Combo method from Guer-
reiro et al. (2022). Their paper did not provide
code and training data, so our implementation is
not exact. For Wass-to-Unif, we obtained the same
ROC AUC scores as Guerreiro et al. (2022) on their
test set, but for Wass-to-Data and Wass-Combo, the
AUC scores are 2% lower than in the original pa-
per, probably due to the differences in selecting the
reference data.

Reference data for 18 directions. To apply the
Attn-OT method to our data, we created reference
translations for each of the 18 translation directions
by following steps:

• Sample 1M sentences for each language from
the NLLB mined training data (NLLB Team
et al., 2022);

• Translate them with the same settings as in
Section 2.2;

• For each translation direction, drop the result-
ing sentence pairs that got into the worst 20%
by any of the criteria: shortest-to-longest ratio
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for source and translation texts, Seq-LogProb,
and LASER3 cosine similarity score between
source and translation.

After that, about 600K sentence pairs per direction
are left as reference translations.

Computing scores. To compute attention distri-
bution, we average the encoder-decoder attention
maps for the last decoder layer over heads and over
target tokens, just like Guerreiro et al. (2022). Our
Attn-OT score is then computed with the same for-
mula as for Wass-Combo in Guerreiro et al. (2022),
with the only slight difference: s̃wtu is scaled by
matching 1% and 99% quantiles of swtd, instead of
min-max scaling, to improve computational sta-
bility. Along with this score, we also evaluate
Wass-to-Unif and Wass-to-Data scores from Guer-
reiro et al. (2022), and their weighted average with
weights inversely proportional to standard devia-
tions: Wass-Mean.

Dropping the EOS We observed that in the set-
ting above, Wass-to-Unif has nearly zero rank cor-
relation with hallucination severity. After inspect-
ing the attention maps, we found that about 75% of
attention weight on most heads is distributed to the
end-of-sentence token. This probably compensates
for the fact that the order of magnitude of its en-
coder hidden state is an order of magnitude smaller
than for other tokens, which aligns with the obser-
vations of Kobayashi et al. (2020). This makes a
standard attention map highly non-uniform, and
may obscure the more informative differences be-
tween the attention maps for different translations.
To mitigate this fact, we computed the second ver-
sion of all scores, with dropping the attention to
the EOS token and renormalizing it so that the sum
of attention to the other tokens equals 1 again.

Evaluation Table 2 reports ROC AUC scores for
all OT-based detection methods, with and without
including the EOS token. Removong the EOS to-
ken improves the Wass-to-Unif and Wass-Mean
scores, but slightly negatively affects Wass-to-Data
and Wass-Combo scores. Whatever method we use,
its performance for hallucination detection is not
much better than chance.

C Detection of any pathology

Figure 9 reports scores for detecting hallucinations
and omissions jointly. The scores are computed as
percentage of correctly ranked pairs w.r.t. the worst

Method Hallucinations Omissions

Wass-to-Unif 0.49 0.43
Wass-to-Data 0.53 0.71
Wass-Combo 0.53 0.71
Wass-Mean 0.51 0.51

Wass-to-Unif* 0.55 0.65
Wass-to-Data* 0.51 0.69
Wass-Combo* 0.52 0.69
Wass-Mean* 0.55 0.67

Table 2: ROC AUC scores for detection of hallucina-
tions and omissions with OT-based methods, averaged
across tranlsation directions. The asterisk* denotes the
scores based on the attention maps with the EOS token
excluded.

of the hallucination level and omission levels for
each sentence pair.

Qualitatively, the results are similar to those for
hallucination detection: internal methods perform
equally well for all translation directions, whereas
external methods deteriorate for low-resource di-
rections. For the joint detection of hallucinations
and omissions, BLASER 2.0-QE outperforms all
other methods both for high-resource and for low-
resource directions.

D Natural vs Artificially Induced
Pathologies

One of the difficulties when dealing with hallucina-
tions (and, to a lesser extent, omissions) is that this
is a rare phenomenon. Therefore, previous work
often resorted to artificially amplifying the prob-
lem by applying various perturbations (Lee et al.
(2019); Raunak et al. (2021), among others). How-
ever, it is not clear whether conclusions made based
on this synthetic data would transfer to pathologies
generated by a model in a natural setting. This
is especially important when evaluating detection
methods: for example, using internal workings of a
model to detect its pathological behavior does not
have to be helpful for pathologies the model did
not generate “voluntarily”. In this section, we com-
pare performance of detection methods between
two datasets: (i) our dataset with natural transla-
tions and (ii) translations generated under perturba-
tion (annotated using the same protocol).

Model perturbation. To encourage the model to
hallucinate or omit source information while still
generating fluent text, we decrease the output acti-



Figure 9: Results for sentence-level detection of both hallucinations and omissions.

vations of all the encoder-decoder attention layers
by a constant multiplier α. Intuitively, this should
imitate detachment from the source and increase
hallucinatory rate. Indeed, translations generated
this way are overall more pathological (see Fig-
ure 11). We use α = 0.3 to match the average
Seq-logprob of reference translations.

“Artificial” data might not be informative. Fig-
ure 10 shows sentence-level detection scores for
different methods of hallucination and omission
detection (average over all translation directions).
We can see that perturbing the translation model
introduces biases into the evaluation of detection
methods. For example, for hallucination detec-
tion, Seq-Logprob outperforms ALTI on the nat-
ural dataset and loses on artificial. For omission
detection, ALTIT is the best for the natural dataset,
while XNLI is better on the artificial.

Figure 12 shows similar results, but with frac-
tions of data downsampled in a way that the natural
and perturbed data subsets have equal number of
observations for each combination of pathology
type, source dataset and translation direction. This
is done to ensure that differences in detection per-

Figure 10: Sentence-level detection scores for natural
and artificial (generated under perturbation) pathologies.

formance to come from different distribution of
pathology types. We can see that even for these cu-
rated subsets, the conclusions do not transfer from
perturbed to natural pathologies.

Overall, we see that data with translations gen-
erated under perturbation has to be used with cau-
tion, especially when evaluating pathology detec-
tion methods: the conclusions are likely to not
transfer to the natural setting.



Figure 11: Annotation results: translations generated
naturally vs under perturbation.

Figure 12: Word-level detection results.

E Discussion

E.1 Word-Level Detection
Figure 13 shows examples of word-level detection.

Logprob focuses on the beginnings. We notice
that log-probability focuses more on the beginning
of a word or a sentence. This makes sense: model
uncertainty in prediction is generally higher when
beginning generation.

ALTI focuses on the endings. Differently, token
contributions focus on word endings. This is again
expected: when generating a token that completes a
word, source contribution is likely to be lower than
for the other tokens. However, the predictions are
still very reasonable – for the last three examples,
ALTI detects omissions and hallucinations more
confidently than log-probability.

Finally, we see that feature-based combination
of the methods leads to more refined results.



Figure 13: Examples of word-level detection for translations from English to Spanish. Hallucinated and omitted
fragments are underlined.


