
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARITHMETIC TRANSFORMERS CAN LENGTH-
GENERALIZE IN BOTH OPERAND LENGTH AND COUNT

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers often struggle with length generalization, meaning they fail to gener-
alize to sequences longer than those encountered during training. While arithmetic
tasks are commonly used to study length generalization, certain tasks are consid-
ered notoriously difficult, e.g., multi-operand addition (requiring generalization
over both the number of operands and their lengths) and multiplication (requiring
generalization over both operand lengths). In this work, we achieve approximately
2–3× length generalization on both tasks, which is the first such achievement in
arithmetic Transformers. We design task-specific scratchpads enabling the model
to focus on a fixed number of tokens per each next-token prediction step, and apply
multi-level versions of Position Coupling (Cho et al., 2024; McLeish et al., 2024) to
let Transformers know the right position to attend to. On the theory side, we prove
that a 1-layer Transformer using our method can solve multi-operand addition, up
to operand length and operand count that are exponential in embedding dimension.

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPE
(-Scratchpad) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

FIRE
(-Scratchpad) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

Position Coupling
(-Scratchpad) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPE
(+Scratchpad) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

FIRE
(+Scratchpad) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30Le
ng

th
 o

f E
ac

h
Op

er
an

d

Bi-level Position Coupling
(+Scratchpad) (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 1: Unlocking Length Generalization on Multi-Operand Addition Task. We present
median exact-match accuracy using 6-layer 8-head decoder-only Transformers trained on multi-
operand additions of 2–10 operands, each having 1–10 digits (red boxes represent the scope of
trained lengths). We compare three state-of-the-art position embedding (PE) methods for length
generalization: NoPE (Kazemnejad et al., 2023), FIRE (Li et al., 2024), and Position Coupling (Cho
et al., 2024; McLeish et al., 2024). With a proper scratchpad that enables Transformers to do extrinsic
multi-step reasoning (described in Section 4), all three PE methods can extend their generalization
scope (blue area of heatmaps). Remarkably, with our proposed bi-level Position Coupling with
scratchpad, we achieve a significant length generalization superior to all other methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Transformer-based language models (Vaswani et al., 2017) have become a cornerstone of modern deep
learning in recent years (Chowdhery et al., 2023; Gemini et al., 2023; OpenAI, 2023; Thoppilan et al.,
2022). Despite their seemingly limitless capabilities, they often struggle with a critical limitation
known as the length generalization problem, meaning that the model does not perform well on
input sequences longer than those encountered during training (Anil et al., 2022; Deletang et al.,
2023; Press et al., 2022; Wu et al., 2023; Zhang et al., 2023). Length generalization has recently
dragged the attention of many researchers because of the following two aspects: (1) the failure in
length generalization corroborates the models’ fundamental limitation that they may not genuinely
understand the task-solving algorithm but may rely on short-cut learning that is only applicable
to sequences of trained lengths; (2) improving length generalization can automatically extend the
applicability of the models in both memory-efficient and computation-efficient way.

As manageable and intriguing test beds, arithmetic and algorithmic tasks are commonly used to study
the capabilities (including length generalization) of Transformers (Cho et al., 2024; Fan et al., 2024;
Kazemnejad et al., 2023; Kim et al., 2021; Lee et al., 2024; McLeish et al., 2024; Nogueira et al.,
2021; Qian et al., 2023; Sabbaghi et al., 2024; Zhou et al., 2024a;b). In this paper, we mainly focus on
arithmetic tasks, specifically integer addition and multiplication. While humans can easily generalize
to longer examples of these tasks, recent works have shown that Transformers often struggle in length
generalization, and various approaches (Cho et al., 2024; McLeish et al., 2024) have been proposed
to help Transformers learn the true underlying mechanisms that solve addition and multiplication.

While recent work has made significant progress on the addition task, the scope has largely been
limited to cases of two operands. Similarly, studies on multiplication have achieved length general-
ization for just one operand, while the other is kept fixed at a small length. Notably, for addition, no
research has demonstrated significant generalization in terms of the number of operands—such as
training on problems with up to four operands (e.g., A+B + C +D) and successfully extending to
problems with more than four. Likewise, for multiplication, none has achieved length generalization
for both operands simultaneously (see e.g., Figure 5 of McLeish et al. (2024)).

In this paper, we address these challenges by proposing a combination of two techniques: scratch-
pad (Nye et al., 2021) and Position Coupling (Cho et al., 2024; McLeish et al., 2024). By equipping
decoder-only Transformers with a scratchpad (an appended sequence that contains multi-step reason-
ing) and integrating a bi-level extension of Position Coupling, we demonstrate that Transformers can
learn to solve multi-operand addition, generalizing in terms of both the number of operands and their
lengths. Similarly, for multiplication, we employ a scratchpad and a tri-level Position Coupling to
train Transformers that length-generalize in terms of both operand lengths.

Admittedly, the two key components—scratchpads and Position Coupling—are not entirely new, and
they have been adopted in existing approaches to improve length generalization in arithmetic tasks.
Here, our key contribution is to combine them in a complementary way that empowers Transformers
to solve the tasks that were considered very challenging. We use scratchpads to eliminate the need to
attend to an increasing number of positions as the number of operands increases. By spelling out
the intermediate outcomes on scratchpads, it now suffices for the model to attend to only a constant
number of tokens at each inference step. Position Coupling then offers the model information about
the “right” position to attend to, thereby assisting the model to quickly learn the correct inference
mechanism from data.

1.1 SUMMARY OF CONTRIBUTIONS

• We first tackle multi-operand addition (Section 4). By employing a scratchpad with bi-level
Position Coupling, we achieve length generalization not only with respect to the length of each
operand but also extrapolate to greater numbers of operands. Our trained model substantially
improves the generalization performance (with median exact-match accuracy ≥ 90.0%) for
addition tasks involving up to 30 operands of length up to 30, even though it was trained on
samples with a maximum of 10 digits and 10 operands. In contrast, models trained with either
NoPE or FIRE (Li et al., 2024) completely fail to solve for 13 operands of length 13, even with
the help of the scratchpad (Figure 1).

• By refining the scratchpad and employing tri-level Position Coupling, we achieve length general-
ization for multiplication tasks where both operands can vary in length (Section 5). The trained

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

models are capable of multiplying (up to) 20-digit integers times (up to) 15-digit integers with
median exact-match accuracy ≥ 78.55%, even though it was trained on samples with a maximum
of 10 digits for each operand (Figure 9).

• We develop a theoretical construction of a small (1-layer, 4-head) Transformer model, equipped
with a scratchpad and bi-level Position Coupling, capable of solving multi-operand addition
(Theorem 4.1). Our construction can handle problems involving both exponentially long operands
and exponentially many operands. The scratchpad is crucial, as it enables this shallow architecture
to accurately predict the next tokens by ensuring that the model only needs to attend to constant
number of tokens at each inference step, which we also verify in trained Transformers (Figure 7).

2 PRELIMINARIES

In this work, we use next-token prediction (NTP) with decoder-only Transformers to solve every
task. Each task can be represented as a set of sequences of the form “[query]=[response]”, where
the goal of the model is to correctly infer the response from a given query via NTP, starting from a
sequence “[query]=”. Since we are mostly studying length generalization on arithmetic tasks, we treat
a single digit (between 0–9) as a single token, but there are other non-digit tokens such as ‘+’, ‘×’ (or
interchangeably ‘*’), ‘=’, ‘→’ (or interchangeably ‘>’), and special tokens like beginning-/end-of-
sequence (BOS/EOS) and padding (PAD) tokens.1 Moreover, because of the deterministic nature
of arithmetic/algorithmic tasks, we only use greedy decoding for every NTP step. In the following
subsections, we provide an explanation of the background underlying our approach. For additional
discussion of related works on length generalization, we refer the reader to Appendix A.

2.1 RELATED WORKS

Length Generalization for Arithmetic and PE. Various position embedding methods have been
explored to enhance the Transformer models’ length generalization capability. Kazemnejad et al.
(2023) claim that a model without PE (NoPE) can achieve a comparable or better length generalization
in downstream tasks than widely-used PE techniques, including ALiBi (Press et al., 2022), Rotary (Su
et al., 2024), APE (Vaswani et al., 2017), and T5’s Relative PE (Raffel et al., 2020). However, recent
progress in the literature has introduced novel PE methods (Cho et al., 2024; McLeish et al., 2024;
Ruoss et al., 2023) or suggested the use of existing ones (Jelassi et al., 2023; Zhou et al., 2024b).

Position Coupling. Independent works by (Cho et al., 2024; McLeish et al., 2024) propose Position
Coupling (also called “Abacus” Embedding), a learned APE by assigning the position ID to each token
in a structured manner that captures the inherent symmetry of the target task. In this approach, tokens
in the input sequence are grouped, and each group of tokens is assigned a sequence of consecutive
numbers as position IDs. For example, in the integer addition task, identical position IDs are assigned
to the tokens that represent the same digit place across numbers in both the query and the response.
During training, the starting position ID is randomized to mitigate the problem of encountering
unseen position IDs for longer sequences. At test time, the starting position ID is fixed to 1. Position
Coupling demonstrates a remarkable length generalization performance on two-operand addition and
N -digit × 2-digit multiplication (i.e., the length of the second operand is fixed).

Scratchpad. To enhance the advanced reasoning abilities of Transformer models, several heuristic-
driven methods for data formatting have been introduced. One such technique is Scratchpad,
introduced by (Nye et al., 2021), an auxiliary intermediate sequence of tokens before arriving at
the final answer. Training the model with a scratchpad allows the model to store and reference
intermediate states when predicting subsequent tokens. This approach has been shown to enhance
both in-distribution and out-of-distribution performance in tasks such as integer addition and code
execution. Zhou et al. (2024a) further validate these findings in the parity task, explaining that the
effectiveness of the scratchpad lies in its ability to simplify next-token prediction.

3 WARM-UP: LENGTH GENERALIZATION ON PARITY TASK

Before moving on to our findings about addition and multiplication tasks, we begin with a warm-up
example: the parity task. Given a binary sequence as a query, the goal of the parity task is to output 1
if the query contains an odd number of 1’s, and 0 otherwise. Despite its simple description, it is well

1If possible, we ignore the details about the BOS/EOS/PAD tokens for simple representations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

known that Transformers struggle with achieving length generalization for the parity task (Anil et al.,
2022; Deletang et al., 2023; Hahn & Rofin, 2024; Kazemnejad et al., 2023; Zhou et al., 2024a). In
this section, we will demonstrate an enhanced length generalization performance on the parity task
by applying Position Coupling on top of the input sequence with a properly designed scratchpad.

3.1 METHOD: SCRATCHPAD & POSITION COUPLING

0 1 0 1 0 1 1 0=

Intermediate Step

Simple Algorithm

+

Scratchpad

Query

Figure 2: An illustration of a scratchpad for a parity problem (with a query 0101).

We follow the scratchpad format proposed by Anil et al. (2022). Figure 2 illustrates an example of an
input sequence consisting of a 4-bit parity problem (with query 0101) and its scratchpad (0110).
The idea of this scratchpad is to record every intermediate parity state as a given binary query is
processed starting from the leftmost token. That is, the k-th bit in the scratchpad is the parity of the
subsequence containing the first k bits of the query. Then, the final rightmost token of the scratchpad
is the desired answer for the parity task. Recording the process of solving the parity task is beneficial
in the following two points:

1. It makes the task-solving algorithm simpler. The first token the scratchpad is just a copy of the
first token in the query sequence. Also, we do not need to directly solve the intermediate parity
task at once in order to infer the k-th (k > 1) intermediate token in the scratchpad; instead, it is
enough to focus on the k-th token of the query and the (k − 1)-th token in the scratchpad and
then sum them up modulo 2 (see Figure 2).

2. It is straightforward to apply Position Coupling onto the input sequence with the scratchpad. The
scratchpad generates a natural positional correspondence between the query and the response.
Thus, we can assign the same position ID to the k-th query token and k-th scratchpad token, for
example, 234512345 in the example depicted in Figure 2.

To sum up, such a scratchpad simplifies the task by allowing the model to perform step-by-step
reasoning without having to attend to an increasing number of query tokens until it solves the full
task, while Position Coupling (applied on top of the scratchpad) can explicitly let the model know
“where it should focus on” to perform every step of the reasoning. We thus can expect a synergy
effect when we combine these two methods, and our experiments do align with this expectation.

3.2 EXPERIMENTS & DISCUSSION

0 10 20 30 40 50 60 70 80 90 100
Query Length

0

20

40

60

80

100

Ac
cu

ra
cy

 o
f t

he
 a

ns
we

r t
ok

en
 (%

)
(M

ed
ia

n
ov

er
 8

 ru
ns

)

Parity Task, Answer-Token Acc

Train lengths
NoPE
NoPE + Scratchpad
RoPE
RoPE + Scratchpad
FIRE
FIRE + Scratchpad
PositionCoupling + Scratchpad

Figure 3: Parity task. We report the accuracies only for the answer token (i.e., the token before EOS)
(light area: 95% confidence intervals). The gray area indicates the range of trained query lengths.
Note that a complete failure is indicated by the accuracy 50%: randomly guessing between 0 and 1.

To test the efficacy of the combination of scratchpad and Position Coupling, we compare its perfor-
mance against six other configurations: models trained with NoPE, RoPE, and FIRE, each tested with
and without the scratchpad. The result is presented in Figure 3. Please refer to Table 1 for detailed
experimental details.

We observe that without the scratchpad, all three PE methods generalize well to in-distribution samples
but struggle with out-of-distribution queries. Their performance sharply drops to 50% accuracy for
query lengths slightly exceeding the training samples, indicating no better than random guessing.
When the scratchpad is employed, NoPE and FIRE demonstrate improved performance, achieving

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

strong generalization up to 35-bit queries. The most striking result occurs when Position Coupling is
applied alongside the scratchpad: the model perfectly generalizes up to 100-bit queries. From these
observations, we conclude that for the parity task, (1) the scratchpad helps length generalization,
albeit not significantly, and (2) the combination of the scratchpad with Position Coupling substantially
boosts the model’s length extrapolation capability.

4 LENGTH GENERALIZATION ON MULTI-OPERAND ADDITION TASK

In the previous section, we demonstrated the potential of integrating the scratchpad with Position
Coupling for better length generalization. We now aim to evaluate the effectiveness of this approach
on a more challenging task. Specifically, we address the problem of achieving length generalization
in integer addition tasks, where operand length and count can both get longer at test time. Indeed,
there already is a length extrapolation result on additions with more than two operands: the “triple
addition” task presented by Cho et al. (2024). However, their approach still requires the number of
operands to be fixed (e.g., 3), leaving the challenge of generalizing to varying operand counts an
open question. In this section, we demonstrate that this challenge can be overcome by employing a
scratchpad in conjunction with a carefully designed multi-level Position Coupling.

4.1 METHOD: SCRATCHPAD & BI-LEVEL POSITION COUPLING

Token : 057+048+096=000>750>501>102
PosID1: 432143214321234123412341234
PosID2: 111122223331111222233334444

Figure 4: An example input sequence equipped with scratchpad and bi-level Position Coupling. The
original example was “57+48+96=201”: the query is inside a blue box and the response is inside
a red box. All numbers in the scratchpad (i.e., intermediate steps) are reversed; all numbers in the
whole sequence are minimally zero-padded to match their length.

Scratchpad for Multi-operand Addition. Similar to the parity task, we store the intermediate
cumulative sums in the scratchpad. It makes the algorithm of solving the multi-operand addition task
easier. This is because a model can obtain the k-th intermediate cumulative sum by adding exactly
two numbers: the most recently generated ((k−1)-th) intermediate sum and the k-th number/operand
in the query. As a minor detail, we start the scratchpad with zeros in order to make the task-solving
rule more clear and consistent.2

Bi-level Position coupling. Now we motivate the usage of the bi-level Position Coupling: each
token has two levels of position IDs, whose couplings happen only in each level.3 As observed
in prior works, adding two numbers can be successfully done by coupling the digits of the same
significance in every number by assigning the identical position ID. The resulting position IDs (level
1) are as in PosID1 in Figure 4. However, this is not enough because we want to know which
specific numbers we should add together, while the numbers are not very distinguishable solely with
level-1 position IDs. Our mitigation is to add another level of position IDs4 that can distinguish
properly between numbers. Combining the idea of Position Coupling again, we naturally couple
two numbers of the same order in query and response: the resulting position IDs (level 2) is as in
PosID2 in Figure 4. In short, the model will choose which numbers it should add based on level-2
position IDs, and perform two-operand addition with the help of level-1 position IDs. Lastly, when
we implement multi-level position IDs for each token, we use separate PE modules for different levels
of position IDs to map them to PE vectors, and then add them all to the token embedding vector.

Input Formats. There are additional design choices regarding the input sequence format: zero-
padding and number reversing. We apply zero-padding to every number in both query and response

2This is not a must. We empirically observed that directly starting the scratchpad with the (zero-padded,
reversed) first operand does not hurt the performance of moderate-sized models. We choose to start the
scratchpads with all zeros for the sake of simplicity in our theoretical construction, later presented in Section 4.4.
In fact, for multiplication (Section 5) we adopt a scratchpad that does not start with all zeros.

3It means that even if a token has a position ID p at level 1 and another token has the same position ID p at
level 2, these two tokens are not necessarily coupled by these position IDs.

4It is worth mentioning that multi-level position ID has already been studied (He et al., 2024; Zhang et al.,
2024). The implementation detail is very different because their approaches involve relative PEs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to ensure that the length of every number is identical to the maximum possible length of the final
answer, depending on the operand count. For example, if we add 11 operands of length at most
n ≥ 2, the final answer can have a length n+ 2 (because 99× 11 = 1089), so we match the length
of the numbers to be n+ 2 with zero-padding. In addition, we reverse all numbers in the scratchpad
(i.e., intermediate cumulative sums). This is a quite natural choice since even humans do additions
starting from the least significant digit (Lee et al., 2024; Nogueira et al., 2021).

4.2 EXPERIMENTAL SETUP

Given two integers a ≤ b, we denote by [a : b] := {a, a+ 1, · · · , b} a set of consecutive integers.

Data Sampling. For the sake of simplicity of notation, we denote a training set by SA(n,m),
consisting of addition problems where each operand can have at most n digits and the operand count
can range from 2 to m. The dataset consists of two equally sized chunks. In the first chunk, for each
sample, the number of operands is uniformly sampled from [2 : m], and the length of each operand is
independently sampled from [1 : n]; this means that the operands can differ in length. Based on the
chosen length (e.g., 4), each operand is then randomly generated (e.g., from [1000 : 9999]). In the
second chunk, for each sample, the number of operands is still uniformly sampled from [2 : m], but
this time, the lengths of all operands are identical. The operand length is sampled from [1 : n], and
all operands are randomly chosen to be of the chosen length. We use SA(10, 10) with size 500,000
as the baseline training set.

We also denote a test set by TA(n,m), consisting of a single component. In each sample, both the
number of operands and the length of each operand are fixed specifically at m and n, respectively.
For model evaluation, we draw a 30× 29 grid heatmap and assess the performance of the model on
the test set TA(i, j) of size 1,000 for every entry (i, j) ∈ [1 : 30]× [2 : 30].

Model and Training. Our baseline model is a 6-layer 8-head decoder-only Transformers with
embedding dimension 1024 (with approximately 63M parameters), trained from scratch. We do not
incorporate weight decay or dropout. Further details can be found in Table 2.

Random Offset of Position IDs During Training. An important detail about the training procedure
is that we randomly choose offsets (for each level of position IDs) and add them to every position ID
in each training sample. This is to promote learning all the position embedding vectors as evenly as
possible, and this training-time random assignment of position IDs is already used in prior works
for similar reasons (Cho et al., 2024; McLeish et al., 2024; Ruoss et al., 2023). As Cho et al.
(2024) and McLeish et al. (2024) did, we pre-define the maximum position IDs (for each level) as
hyperparameters, which naturally determines a maximum testable range of operand lengths and count.
See Table 2 for our choice of the maximum position IDs.

4.3 EXPERIMENTAL RESULTS

Position Coupling and Scratchpad Together Enable Powerful Length Generalization. We
trained models using 3 different position embedding methods—Position Coupling, NoPE, and FIRE—
both with and without the scratchpad. The implementation details of Position Coupling differ by
the presence/absence of scratchpad: if we use scratchpads, we apply the bi-level Position Coupling
explained in Section 4.1; if not, we use a simple single-level Position Coupling that matches the
position IDs for digits at the same significance in all numbers, which is also used for “triple addition”
task in Cho et al. (2024). The results are showcased in Figure 1. We measure the exact-match
accuracy for correct inference of the whole response, including scratchpad if it is used. The top 3
heatmaps in the figure, which are the results without scratchpads, indicate that these models can
only generalize to in-distribution samples and exhibit near-zero exact-match accuracy on out-of-
distribution samples. Next, when either NoPE or FIRE is combined with the scratchpad, the models
show a slight improvement in terms of generalizable operand lengths and counts. They barely solve
problems involving 13 numbers, each 12 digits long. In contrast, the combination of the scratchpad
and Position Coupling enables much stronger length generalization, achieving non-trivial accuracy
even on test samples involving 30 numbers, each with 30 digits. We emphasize that such problems
are extremely difficult, as the model must accurately predict a total of 1023 consecutive tokens to
solve the problem.

Effect of Trained Length. We compare the models trained on different lengths: SA(7, 7),
SA(10, 10), and SA(13, 13). The results are presented in Figure 5. As expected, the model’s
ability to generalize to longer sequences improves as the training data covers a wider range of lengths.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2 5 10 15 20 25 30

Operand Count

1
5

10

15

20

25

30
Op

er
an

d
Le

ng
th

Trained on SA(7, 7) (4 runs)
2 5 10 15 20 25 30

Operand Count

1
5

10

15

20

25

30

Op
er

an
d

Le
ng

th

Trained on SA(10, 10) (6 runs)
2 5 10 15 20 25 30

Operand Count

1
5

10

15

20

25

30

Op
er

an
d

Le
ng

th

Trained on SA(13, 13) (4 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 5: Comparison of training lengths in the integer addition task. We report exact-match
accuracies (median over at least 4 runs) for the addition task. The red box indicates the training
distribution: from the left plot, we trained on SA(7, 7), SA(10, 10), and SA(13, 13).

2 5 10 15 20 25 30

Number of Operands

1

5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

No Zero-Padding
 (Position Coupling + Scratchpad) (4 runs)

0

20

40

60

80

100

Figure 6: Training without zero-
padding in input sequences.

Effect of Zero-padding. Figure 6 exhibits the exact-match
accuracies for models trained on input sequences with scratchpad
but without zero-padding in both the query and the response. Al-
though there is a moderate degradation in overall performance,
the models still generalize well with respect to an increased num-
ber of operands. Also, they maintain reasonable accuracy for
operand lengths below 25 digits. It implies that, although zero-
padding aids in enhancing length extrapolation capability, it is
not an absolute necessity.

Effect of Architecture. To study whether our approach can
be applied across various depth/width configurations, we explore
the performance as we vary the number of layers and heads.
Specifically, we tested configurations with 1, 2, 4, and 6 layers, and 2, 4, and 8 heads, resulting in 12
distinct configurations. The results are illustrated in Figure 10 (see Appendix C).

It turns out that 1-layer 2-head models perform the worst. While they could generalize across operand
counts, they immediately fail for longer digits. The remaining 11 configurations exhibit significantly
better performance than the 1-layer 2-head models. It is noteworthy that networks with only four
heads in total (1-layer 4-head or 2-layer 2-head) show surprisingly high accuracy, even outperforming
our baseline (6-layer 8-head). In particular, the 2-layer 2-head models achieve at least 90.0% exact-
match accuracy (median over 6 trials) across every combination (n,m) ∈ [1 :30]× [2 :30], whereas
the 6-layer 8-head models achieve 67.8% or above. This remarkable performance of small models is
also aligned with our theoretical construction, later elaborated in Section 4.4. However, we do not
observe an overall trend between the accuracy and the number of layers/heads, as the optimal number
of heads varied depending on the number of layers, and vice versa. We suspect that this is due to the
stochasticity of the training process.

For broader ablation results including head/embedding dimensions, training set sizes, and input
formats, we refer the reader to Appendix C.

4.4 THEORETICAL ANALYSIS ON 1-LAYER TRANSFORMER

In this section, we explain the success of our approach by providing a theoretical analysis in Theo-
rem 4.1. Specifically, we construct a Transformer model (whose normalization layer is omitted for
simplicity) that is capable of solving the addition task involving both exponentially long operands and
exponentially large number of operands when our approach is applied. Furthermore, the constructed
model is a 1-layer 4-head Transformer, which supports the experimental results presented in Figure 10:
the 1-layer 4-head model succeeds, but the 1-layer 2-head model fails.

Theorem 4.1. With a proper input format, scratchpad, and Position Coupling, there exists a 1-layer
4-head decoder-only Transformer that solves the multi-operand integer addition task involving up
to m operands each with up to n digits. Here, a sufficient choice of the embedding dimension is
d = O(log2(m+ 1) + log2(n+ 1)).

Theorem 4.1 above states that a 1-layer 4-head model is enough to solve multi-operand additions in-
volving exponentially many and exponentially long operands (in terms of the embedding dimensions),
especially when a proper scratchpad and Position Coupling are both applied. Since it is a sufficiency
result, it implies that larger architectures (with more layers and attention heads) are capable of solving

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the same task as well. Its detailed constructive proof is provided in Appendix D. We also remark that
our theorem extends Theorem 5.1 of Cho et al. (2024), which can only handle addition problems with
a fixed number of operands.

To illustrate our key idea, consider an example problem 057+048+096 = 000 → 750 → 501 → 102
(with the output reversed). First, consider the case without a scratchpad: 057 + 048+ 096 = 102. To
predict the least significant digit of the final answer, 1, the model must attend to the least significant
digits of all the operands, which are 7, 8, and 6, in the query sequence. In a scenario with m operands,
the model would need to attend to m digits. This property—the number of tokens the model has to
attend to increases with the number of operands—makes the construction difficult.

With a scratchpad, the process becomes a lot simpler. Instead of attending to every least significant
digit of all operands, the model only needs to attend to two tokens: e.g., 6 from 096 and 5 from 501.
Importantly, by utilizing the intermediate states stored in the scratchpad, the number of tokens the
model needs to attend to remains fixed, even if the number of operands gets larger.

Scrutinizing the Attention Patterns of Trained Transformer. Surprisingly, our insight into
the advantage of our scratchpad and its synergy with Position Coupling can be visually verified,
supporting the significance of our method and theoretical finding. We probe the attention matrices
of transformer models trained with a practical Adam optimizer. We visualize the lower-triangular
row-stochastic matrix softmax(QK⊤) as a heatmap in Figure 7. Thus, if you want to know the
distribution of softmax logits over key tokens for an NTP at the q-th query token, you should look at
q-th row of the heatmap; the brighter the point, the more the model attends to that key token position.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of 1st layer, 3rd head
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

(a) 1-layer 4-head model trained with bi-level
Position Coupling and Scratchpad.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of 6th layer, 1st head
(FIRE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

(b) 6-layer 8-head model trained with FIRE
but no scratchpad.

Figure 7: Extracted attention matrices from certain attention heads of trained Transformers on an
addition dataset SA(10, 10). We ran forward passes on 1,000 test samples from TA(11, 11) and
obtained average attention matrices. The softmax values below 0.01 are clipped out (black cells). We
compared with the model without Position Coupling nor scratchpad to demonstrate that, without
scratchpad, a model often try to “look at” every relevant positions at once, even without help of
Position Coupling. We put more examples of attention patterns in Appendix E.

Now first look at the attention pattern extracted from a model trained with our scratchpad and bi-level
Position Coupling (Figure 7a). Since the scratchpad takes up about half of the total input sequence
length, we may focus on the bottom half of the heatmap. The attention pattern tells us that, for most
of the NTP step, each attention head focuses on at most a fixed number of previous tokens: one on
the short anti-diagonal line (which corresponds to the token in the query sequence) and one on the
long diagonal line (which corresponds to the token in scratchpad). This property is strikingly similar
to our theoretical construction of the attention pattern.

On the other hand, let us move on to the attention pattern extracted from a model trained with FIRE
but without scratchpad (Figure 7b). In this case, the length of the response is the same scale as a
single operand, so you may focus on the last few rows of the heatmap. Unlike the previous case, and
as we expected, the eleven anti-diagonal lines in the attention pattern reveal that the model actually
focuses on as many previous token positions as the number of operands every time it performs NTP!

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 LENGTH GENERALIZATION ON INTEGER MULTIPLICATION TASK

Achieving length generalization for multiplication when both multiplier and multiplicand can vary in
length has long been recognized as a challenging problem. To our knowledge, prior works on the
multiplication task (Duan & Shi, 2023; Fan et al., 2024; Jelassi et al., 2023; McLeish et al., 2024)
have never successfully addressed this issue. In this section, we demonstrate the combination of
Position Coupling and the scratchpad can serve as a powerful solution to this obstacle.

5.1 METHOD: TWO-STAGE SCRATCHPAD & TRI-LEVEL POSITION COUPLING

37
* 925

185 00185
074 00925

+333 34225
34225

(a)

Token : 37*925=581+470+333=58100>52900>52243
PosID1: 320000123412341234000000000000000000
PosID2: 000321111122223333111111222222333333
PosID3: 000000123423453456123456123456123456

(b)

Figure 8: (a) A usual computation of integer multiplication, displaying the decomposition of multipli-
cation task into two stages. (b) An example input sequence with a two-stage scratchpad and tri-level
Position Coupling. The original example was “37×925=34225”: the query is inside a blue box and
the response is inside a red box. All numbers in the scratchpad are reversed; all numbers in the whole
sequence are minimally zero-padded to match the lengths of numbers in the same stage.

Different from the addition tasks, every digit of the first operand interacts with every digit of the
second operand. This makes it difficult to come up with a single-stage cumulative scratchpad. To
achieve strong length generalization in multiplication, we take a step beyond the simple cumulative
scratchpads. We propose a two-stage scratchpad, motivated by an observation that the usual (human)
computation of integer multiplication can be decomposed into two stages: (i) a series of M -digit
× 1-digit multiplications and (ii) a (linearly shifted variant of) multi-operand addition. Figure 8b
illustrates a concrete example of our two-stage scratchpad and tri-level position ID assignment rule,
and Figure 8a explains the intuitive motivation of the scratchpad. Note that we concatenate two stages
of scratchpad with a ‘=’ token, which the model is required to infer as well as other digit/symbol
tokens. For simplicity, let us write two operands as A (with M digits) and B (with N digits).

Stage 1: M -digit×1-digit Multiplications. The first stage of the scratchpad consists of N numbers:
the first number is the product between A and the least significant digit (LSD) of B, the second
number is the product between A and the second LSD of B, and so on. We reverse all the N
numbers, zero-pad them to match the length, and concatenate them in order with ‘+’ tokens in
between. Regarding the position ID assignment, observe that it is natural to (i) couple a k-th LSD
of A with k-th LSDs in every number of the scratchpad stage 1 and to (ii) couple the k-th LSD in
B with every digit in the k-th number of the scratchpad stage 1. This is reflected to PosID1 and
PosID2 in Figure 8b, until the second ‘=’ token.

Stage 2: (Modified) Multi-Operand Addition. The second stage is basically the same as a familiar
multi-operand addition, with a slight difference in that we shift the operands to the left one by one as
we add them sequentially. It can be done by viewing the LSD of the k-th number in stage 1 (i.e., the
leftmost digit, as it is already reversed) as the k-th LSD when solving stage 2. This is semantically
equivalent to converting “581+470+333” in the stage 1 into “58100+04700+00333”. Because
of this, we introduce a totally new level of position ID (level-3) that reflects this change of viewpoint
on digit significance. Luckily, we can reuse the level-2 position IDs since they only distinguish
the numbers. As a result, we expect the model to utilize level-3 and 2 of position IDs to solve the
second stage. In this spirit, the position ID assignment rule is similar to that introduced in Section 4.1,
reflected to PosID2 and PosID3 in Figure 8b. Lastly, we fill in unnecessary slots with 0’s.

5.2 EXPERIMENTAL SETUP

Data Sampling. We denote the training set by SM (n,m), consisting of multiplication problems
where the first operand can have up to n digits and the second operand can have up to m digits.
Specifically, the length of the first operand is uniformly selected from [1 : n]. The first operand is
then randomly generated based on the chosen length. The second operand is chosen in a similar way,
but its length is selected from [1 : m]. We use SM (10, 10) as the baseline training set.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The test set TM (n,m) is constructed in a similar manner, with the primary difference being that
the lengths of both operands are strictly fixed at n and m. For evaluation, we create a 30 × 30
grid heatmap and assess the performance of the model on the test set TM (i, j) for every entry
(i, j) ∈ [1 : 30]× [1 : 30].

Model and Training. We employ the same baseline architecture as in Section 4 (Refer to Table 3).

5.3 EXPERIMENTAL RESULTS

We evaluate models trained with 3 different position embedding methods, both with and without
the scratchpad, and present the results in Figure 9. For models using Position Coupling without
the scratchpad, we adopted a similar position ID assignment scheme proposed for solving N -
digit × 2-digit multiplication in Cho et al. (2024). When the scratchpad is not applied, which
corresponds to the top 3 plots, none of the models manage to generalize, even on in-distribution
samples. When NoPE or FIRE is employed in conjunction with the scratchpad, the models show
limited length generalization, achieving non-trivial accuracy on multiplication between two 12-digit
integers. However, the combination of Position Coupling and the scratchpad again dominates others.

Interestingly, Position Coupling without the scratchpad shows weak length generalization when one
of the operands is short. This should not come as a surprise, as Cho et al. (2024) already demonstrate
that a model trained with Position Coupling alone can generalize to N -digit × 2-digit multiplication
task: models trained on N ≤ 40 can generalize to N ≥ 100.

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

NoPE
(-scratchpad) (4 runs)

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

FIRE
(-scratchpad) (4 runs)

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

Position Coupling
(-scratchpad) (4 runs)

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

NoPE
(+scratchpad) (4 runs)

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

FIRE
(+scratchpad) (4 runs)

1 5 10 15 20 25 30

Length of Second Operand

1
5

10
15
20
25
30Le

ng
th

 o
f F

irs
t O

pe
ra

nd

Tri-level Position Coupling
(+scratchpad) (4 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 9: Comparison of methods in the multiplication task. We report exact-match accuracies
for the multiplication task, with results taken as the median over 4 seeds for each method. Each axis
represents the length of each operand. The red box indicates the training distribution, SM (10, 10).

6 CONCLUSION

While length generalization in arithmetic Transformers has drawn a lot of attention, especially on
operand length for the addition, the ability to generalize on operand counts is considered a difficult
challenge and has not been explored yet. To address this challenge, we propose a combination of
two techniques: scratchpad and Position Coupling. We show that a Transformer trained on problems
involving 1–10 digit integers with 1–10 operands can solve addition tasks with up to 30 operands,
each being as long as 30 digits. We also theoretically construct a 1-layer Transformer model capable
of adding exponentially many operands with exponentially long integers when our approach is
applied. Finally, we demonstrate the effectiveness of our approach for length generalization in the
multiplication task, where both operand lengths can vary.

Limitation. One limitation of our approach is that it is only applicable to tasks whose structure is
well-defined and can be effectively encoded by scratchpad and Position Coupling. This leaves us
with two directions for future work. The first direction is to establish a clear principle for employing
scratchpad and Position Coupling when the task structure is known, as the current design choice
heavily relies on intuition. The second is to extend our method to the cases where the task structure is
implicit or even entirely unknown.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022. 1, 3, 3.1, A.1

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hinting.
arXiv preprint arXiv:2310.00726, 2023. A.1

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chulhee
Yun. Position coupling: Improving length generalization of arithmetic transformers using task
structure. In Advances in Neural Information Processing Systems, volume 38, 2024. abstract, 1, 1,
2.1, 4, 4.2, 4.3, 4.4, 5.3, A.1, A.1, B, D, D.2, D.5.2, D.7.1

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023. 1

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn. 1, 3, A.1

Shaoxiong Duan and Yining Shi. From interpolation to extrapolation: Complete length generalization
for arithmetic transformers. arXiv preprint arXiv:2310.11984, 2023. 5

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. arXiv preprint arXiv:2409.15647, 2024. 1, 5, A.1, A.1

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024. A.2

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. Advances in
Neural Information Processing Systems, 36, 2023. 6

Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023. 1

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14973–15008, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.800. URL https://aclanthology.org/2024.acl-long.800. 3

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia
Yang, and Di He. Two stones hit one bird: Bilevel positional encoding for better length
extrapolation. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=luqH1eL4PN. 4

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400, 2023.
2.1, 5, A.1, A.1

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2023. 1, 1, 2.1, 3, A.1, B

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo Kang, and Sung-Hyon Myaeng. Have you
seen that number? investigating extrapolation in question answering models. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 7031–7037, 2021. 1

11

https://openreview.net/forum?id=WbxHAzkeQcn
https://aclanthology.org/2024.acl-long.800
https://openreview.net/forum?id=luqH1eL4PN

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. 1, 2, 3

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022. A.2

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=dsUB4bst9S. 1,
4.1

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
rR03qFesqk. 1, 1.1, A.1

David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir
Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. Advances in Neural
Information Processing Systems, 36, 2023. 6

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
can do arithmetic with the right embeddings. In Advances in Neural Information Processing
Systems, volume 38, 2024. abstract, 1, 1, 2.1, 4.2, 5, A.1, A.1

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021. 1, 4.1, A.1

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021. 1, 2.1

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. B

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0. 1, 2.1, A.1

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language mod-
els in arithmetic and symbolic induction. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9285–9298, Toronto, Canada, July 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.516. URL https:
//aclanthology.org/2023.acl-long.516. 1

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020. 2.1, A.1, B

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023. 2.1, 4.2, A.1

Mahdi Sabbaghi, George Pappas, Hamed Hassani, and Surbhi Goel. Explicitly encoding structural
symmetry is key to length generalization in arithmetic tasks. arXiv preprint arXiv:2406.01895,
2024. 1

12

https://openreview.net/forum?id=dsUB4bst9S
https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=R8sQPpGCv0
https://aclanthology.org/2023.acl-long.516
https://aclanthology.org/2023.acl-long.516

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. 1, 2, 3

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023. A.1

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 2.1, A.1

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022. A.2

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 1, 2.1, A.1, B

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. A.2

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pp. 11080–11090. PMLR, 2021. 6

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019. B

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023. 1

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. B

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019. B, 1, 2, 3

Kechi Zhang, Ge Li, Huangzhao Zhang, and Zhi Jin. Hirope: Length extrapolation for code models
using hierarchical position. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 13615–13627, 2024. 4

Yi Zhang, Arturs Backurs, Sebastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wag-
ner. Unveiling transformers with LEGO: A synthetic reasoning task, 2023. URL https:
//openreview.net/forum?id=1jDN-RfQfrb. 1

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=AssIuHnmHX. 1, 2.1, 3, A.1, A.1, 6

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. ICLR Workshop on Understanding of
Foundation Models (ME-FoMo), 2024b. 1, 2.1, A.1, B

13

https://openreview.net/forum?id=1jDN-RfQfrb
https://openreview.net/forum?id=1jDN-RfQfrb
https://openreview.net/forum?id=AssIuHnmHX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 2

1.1 Summary of Contributions . 2

2 Preliminaries 3

2.1 Related Works . 3

3 Warm-up: Length Generalization on Parity Task 3

3.1 Method: Scratchpad & Position Coupling . 4

3.2 Experiments & Discussion . 4

4 Length Generalization on Multi-Operand Addition Task 5

4.1 Method: Scratchpad & Bi-level Position Coupling 5

4.2 Experimental Setup . 6

4.3 Experimental Results . 6

4.4 Theoretical Analysis on 1-Layer Transformer . 7

5 Length Generalization on Integer Multiplication Task 9

5.1 Method: Two-stage Scratchpad & Tri-level Position Coupling 9

5.2 Experimental Setup . 9

5.3 Experimental Results . 10

6 Conclusion 10

A Additional Related Works 16

A.1 Length Generalization in Arithmetic/Algorithmic Transformers 16

A.2 Chain-of-Thoughts Prompting . 16

B Experimental Details 18

C Additional Experimental Results 20

D Formal Construction of Multi-Operand Addition Transformer 25

D.1 Notation . 25

D.2 Architecture . 25

D.3 Input Sequence . 25

D.4 Encoding Function . 26

D.4.1 Token Embedding . 26

D.4.2 Coupled Position IDs and Position Embedding 26

D.5 Transformer Block — Causal Attention Layer . 28

D.5.1 Attention Head 1: Digit-wise Addition without Carries 29

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D.5.2 Attention Head 2: Carry Detection . 31

D.5.3 Attention Head 3: Arrow Detection . 33

D.5.4 Attention Head 4: EOS Detection . 35

D.6 Residual Connection . 37

D.7 Transformer Block — Token-wise Feed-forward Layer 37

D.7.1 Subnetwork 1: Construction for SUM (dimension 8–17) 38

D.7.2 Subnetwork 2: Construction for ARROW (dimension 18) 38

D.7.3 Subnetwork 3: construction for EOS (dimension 19) 38

D.7.4 Residual Connection . 38

D.8 Decoding Function . 39

E More Attention Patterns of Trained Transformers 41

E.1 Attention Patterns with Scratchpad . 41

E.2 Attention Patterns without Scratchpad . 43

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

A.1 LENGTH GENERALIZATION IN ARITHMETIC/ALGORITHMIC TRANSFORMERS

Several works (Anil et al., 2022; Deletang et al., 2023; Nogueira et al., 2021) have scrutinized the
Transformer’s lack of ability to length generalize across algorithmic reasoning tasks. Here, we
list the studies investigating and enhancing the length extrapolation capability of Transformers for
arithmetic/algorithmic tasks.

Addition Tasks. We first begin by exploring studies focused on encoder-only Transformers. Ruoss
et al. (2023) introduce Randomized Position Encodings to address the problem of the appearance
of unseen position indices in longer sequences. Additionally, Jelassi et al. (2023) demonstrate that
the RPE method enables generalization to 15-digit addition problems when the model is trained on
problems up to 5 digits.

We next move on to the studies concerning decoder-only Transformers. Kazemnejad et al. (2023)
investigate the effect of PE methods on length generalization performance, arguing that NoPE
outperforms several popular PE methods such as ALiBi (Press et al., 2022), Rotary (Su et al., 2024),
APE (Vaswani et al., 2017), and T5’s Relative PE (Raffel et al., 2020). Meanwhile, Shen et al. (2023)
propose the use of a scratchpad and random spacing, which facilitate generalization to 12-digit
problems when trained on up to 10-digit problems. Zhou et al. (2024a) introduce the technique of
“index-hinting”, which inserts appropriate position markers in the sequence. Zhou et al. (2024b)
integrate several existing techniques—FIRE (Li et al., 2024), index-hinting (Zhou et al., 2024a), and
Randomized PE (Ruoss et al., 2023)—achieving generalization to 100-digit problems while training
exclusively on samples with fewer than 40 digits. Furthermore, Cho et al. (2024) and McLeish et al.
(2024) independently introduce Position Coupling (also called “Abacus”), demonstrating state-of-
the-art performance in the literature by generalizing to 100-digit problems after training on samples
with up to 20 digits. We lastly remark there is a recent attempt to solve addition by utilizing a looped
transformer (Fan et al., 2024).

Multiplication Tasks. Most studies on multiplication focus on problems where one operand has a
fixed digit length. Jelassi et al. (2023) investigate N -digit×3-digit multiplication but observe length
generalization only when train set priming is applied, which involves adding a few long samples
in the train set. Cho et al. (2024) present the effectiveness of Position Coupling in N -digit×2-digit
multiplication, achieving generalization to N ≥ 100 after training on samples with N ≤ 40. Fan et al.
(2024) showcase the length generalization capability of looped Transformers to 16-digit problems
from training up to 11 digits, where the numbers are encoded in binary format and the length of the
first operand is up to 2.

While McLeish et al. (2024) train their models on multiplication tasks where both operand lengths
can vary, they observe only in-distribution generalization.

There is also a body of literature focused on length generalization in algorithmic tasks. We highlight
a few key contributions. Zhou et al. (2024a) introduce the concept of RASP-L, suggesting the
conjecture of the Transformer’s ability to length-generalize may depend on whether the task can be
expressed in the RASP-L language. Additionally, Awasthi & Gupta (2023) create an auxiliary task
associated with sorting, resulting in substantial length generalization improvements through multitask
learning.

A.2 CHAIN-OF-THOUGHTS PROMPTING

While the main focus of this work is on training the model with a scratchpad, chain-of-thoughts
(CoT) prompting—showing a series of intermediate natural language reasoning steps before reaching
the answer—is also extensively studied to enhance the reasoning ability of Transformers (Kojima
et al., 2022; Suzgun et al., 2022; Wei et al., 2022). Similar to the spirit of scratchpad, CoT allows the
model to decompose complex problems into several intermediate steps, which has demonstrated its
importance in tasks that require arithmetic and reasoning.

In an attempt to understand the success of CoT, Feng et al. (2024) investigate the expressivity of CoT.
They prove that the autoregressive Transformers of constant size can solve basic arithmetic/equation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

tasks, while finite-depth Transformer models cannot directly produce correct answers to these tasks
unless their size grows super-polynomially with input length. In arithmetic tasks, their experiments
reveal that models trained with CoT-formatted data can generalize to different numbers of operands,
but the generalization leap is limited to 3 (from 15 to 18).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

We modify and customize the codebase from Kazemnejad et al. (2023) for all our experiments.5 This
codebase includes a custom implementation of a decoder-only T5 model (Raffel et al., 2020) built
upon PyTorch (Paszke et al., 2019) and HuggingFace (Wolf et al., 2019), which incorporates several
positional encoding methods.

We implemented a custom RMSNorm module (Zhang & Sennrich, 2019) and various normalization
layer positioning schemes (e.g., PreNorm (Xiong et al., 2020), PostNorm (Vaswani et al., 2017)) to
follow the implementation details outlined by Cho et al. (2024); Zhou et al. (2024b).

Below, we provide detailed settings of experiments.

Table 1: Hyperparameter summary for the parity task.

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 512
Dimension per Head 64
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 25M

Training Steps 50,000
Batch Size 20
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00003
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 101

Training Dataset Size 10,000
Evaluation Dataset Size 10,000 per query length

Device NVIDIA RTX A6000 48GB
Training Time ≤ 3 hours

5github.com/McGill-NLP/length-generalization

18

https://github.com/McGill-NLP/length-generalization

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameter summary for the addition task (e.g., Figure 1).

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 1024
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 63M

Training Steps 50,000
Batch Size 400
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00003
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID 1 (max_pos_1) 40
Maximum Position ID 2 (max_pos_2) 40

Training Dataset Size 500,000
Evaluation Dataset Size 1,000 per operand length/count

Device NVIDIA RTX A6000 48GB
Training Time ≤ 12 hours

Table 3: Hyperparameter summary for the multiplication task (Figure 9).

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 1024
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 63M

Training Steps 50,000
Batch Size 200
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00005
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID 1 (max_pos_1) 64
Maximum Position ID 2 (max_pos_2) 32
Maximum Position ID 3 (max_pos_3) 64

Training Dataset Size 500000
Evaluation Dataset Size 1000 per length combination of first/second operands

Device NVIDIA RTX A6000 48GB
Training Time ≤ 12 hours

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results that are not discussed in the main section.

We first present the results of experiments investigating how changes in model architecture (the
number of layers and attention heads) affect task performance. We explore 12 different configurations.
The heatmaps below represent the performance across different operand numbers and lengths, with
blue regions indicating higher accuracy and red regions indicating lower accuracy.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

2L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

2L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

2L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

4L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

4L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

4L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

6L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

6L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

6L8H (6 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 10: Comparison of architectures in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 6 seeds for each method. The
x-axis corresponds to the number of operands, and the y-axis indicates the length of operands. The
red box indicates the trained scope SA(10, 10).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

One might be concerned why 1L8H models perform worse than 1L4H models. To address this
concern, we conduct experiments by controlling the total number of head dimensions. In Figure 10,
since we fix the total number of head dimensions within a layer by 1024, each head in 1L4H models
has 256 dimensions while each head in 1L8H models has only 128 dimensions. To make a fair
comparison, we decoupled the embedding dimension from the head dimension, fixing the embedding
dimension by 1024 for this setup only. The results are presented in Figure 11. We observe that the
performance of 1L8H models improves when the dimension per head is increased to 256, while
the performance of 1L4H models degrades when the dimension per head is decreased to 128. We
conclude that the inferior performance of 1L8H models in Figure 10 is due to the reduced dimension
per head. These findings suggest that a larger dimension per head is crucial for achieving strong
performance in shallow models.

2 5 10 15 20 25 30

Number of Operands

1

5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H1024D (128d/h) (8 runs)
2 5 10 15 20 25 30

Number of Operands

1

5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H1024D (256d/h) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1

5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L8H1024D (128d/h) (8 runs)
2 5 10 15 20 25 30

Number of Operands

1

5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L8H1024D (256d/h) (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Exact-Match Acc

Figure 11: Comparison of head dimensions in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).

We next provide ablation results on varying embedding dimensions. We trained 1L4H models, each
with embedding dimensions of 64, 128, 256, and 512 (with dimensions per head of 16, 32, 64, and
128, respectively). The results are illustrated in Figure 12. We observe that there is a significant
performance gap between these configurations. While models with small embedding dimensions
have sufficient expressive capacity for solving the task, we believe that larger embedding dimensions
are crucial for enabling more effective optimization.

We now present the results of an ablation study on the training set size. Our baseline training data
size is 500K, and we vary the size to 20K, 100K, 2M, and 10M. We fix the architecture as a 6-layer
8-head model with an embedding dimension of 1024. The results are illustrated in Figure 13. We
observe that the training set size has no significant impact on the model’s performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H64D (16d/h) (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H128D (32d/h) (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H256D (64d/h) (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H512D (128d/h) (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

1L4H1024D (256d/h) (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Exact-Match Acc

Figure 12: Comparison of embedding dimensions in the integer addition task. We report
exact-match accuracies for the addition task, with results taken as the median over 8 seeds for each
configuration. The x-axis corresponds to the number of operands, and the y-axis indicates the length
of operands. The red box indicates the trained scope SA(10, 10).

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

|Dtrain|=20K (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

|Dtrain|=100K (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

|Dtrain|=500K (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

|Dtrain|=2M (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

|Dtrain|=10M (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Exact-Match Acc

Figure 13: Comparison of training set size in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We next investigate the impact of input sequence formatting. We considered three factors: (1)
reversed or plain query, (2) reversed or plain response, and (3) zero-padding or no zero-padding.
We exclude the case where a reversed query and a plain response are used together, resulting in a
total of 6 configurations. Note that our baseline format consists of a plain query, reversed response,
and zero-padding. We fix the architecture as a 6-layer 8-head model with an embedding dimension
of 1024. The results are illustrated in Figure 14. To clarify, the top 3 figures correspond to the
zero-padding setting, while the bottom 3 figures correspond to the no zero-padding setting. From
left to right, the figures represent: plain query with reversed response, reversed query with reversed
response, and plain query with plain response.

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

ZeroPad + ReverseResponse (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

ZeroPad + ReverseAll# (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30
Le

ng
th

 o
f E

ac
h

Op
er

an
d

ZeroPad + NoReverse (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + ReverseResponse (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + ReverseAll# (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + NoReverse (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Exact-Match Acc

Figure 14: Comparison of the input formats in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).

We also study how the criteria for determining the correct answer impact the accuracy number.
Specifically, our baseline considers a prediction correct if both the scratchpad and final answer
are accurate. Alternatively, one may consider a prediction correct if only the final answer (the
sequence between the last → token and the EOS token) is correct, ignoring the scratchpad. Using
this alternative criterion, We re-evaluate Figure 14 and present the results in Figure 15. Notably, we
observe a significant overall increase in accuracy numbers.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

ZeroPad + ReverseResponse (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

ZeroPad + ReverseAll# (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

ZeroPad + NoReverse (8 runs)

2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + ReverseResponse (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + ReverseAll# (8 runs)
2 5 10 15 20 25 30

Number of Operands

1
5

10

15

20

25

30

Le
ng

th
 o

f E
ac

h
Op

er
an

d

NoPad + NoReverse (8 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Answer Acc

Figure 15: Comparison of the input formats in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
In this figure, predictions are considered correct if the final answer is correct, regardless of the
scratchpad. The x-axis corresponds to the number of operands, and the y-axis indicates the length of
operands. The red box indicates the trained scope SA(10, 10).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D FORMAL CONSTRUCTION OF MULTI-OPERAND ADDITION TRANSFORMER

In this section, we prove Theorem 4.1 by formally constructing a 1-layer 4-head Transformer model
capable of solving multi-operand addition problems. The framework of the proof mostly follows the
proof by Cho et al. (2024). For the sake of readability, we restate the theorem statement.
Theorem 4.1. With a proper input format, scratchpad, and Position Coupling, there exists a 1-layer
4-head decoder-only Transformer that solves the multi-operand integer addition task involving up
to m operands each with up to n digits. Here, a sufficient choice of the embedding dimension is
d = O(log2(m+ 1) + log2(n+ 1)).

D.1 NOTATION

Let edi represent the i-th standard basis vector of Rd. Define Im as the identity matrix of size m×m.
The vectors 0p and 1p are p-dimensional vectors filled with zeros and ones, respectively. Let 0m×n

denote the m× n zero matrix. For n ∈ N, we use [n] to denote the set {1, ..., n}. For any matrix A,
we use Ai• and A•j to refer to the i-th row and j-th column of A, respectively.

Define an ordered vocabulary V = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,=,→, $). The special token ‘$’
represents both the beginning-of-sequence (BOS) token and the end-of-sequence (EOS) token. While
BOS and EOS tokens do not have to be identical, we use a single symbol for simplicity. Let Vk

represent the k-th element of V .

D.2 ARCHITECTURE

We adopt the same architecture as explained in the appendix of Cho et al. (2024). We direct the reader
to Appendix D of their work for architectural specifications. In summary, we use a decoder-only
Transformer with softmax operation, but omit the normalization layer for simplicity. Note that,
since our construction involves a single-layer model, we omit the superscripts (l) in the parameter
matrices/vectors and the size of dimensions d(l)QK,h and d

(l)
V,h for simplicity.

D.3 INPUT SEQUENCE

We aim to construct a decoder-only Transformer model capable of solving the addition a1 + a2 +
· · ·+ am = b of m operands whose lengths are at most n, where we regard every single digit as a
single token. We employ the same input format illustrated in Figure 4. Now, we describe how to
transform this addition problem into the input sequence I, which will be fed to the Transformer.

We begin by introducing the scratchpad. Let bj :=
∑j

i=1 ai (for ∀j ∈ [m]) and b0 = 0, representing
the cumulative sum up to the j-th operand; thus, bm = b. As in the experimental setup, the scratchpad
contains every intermediate result ({bi}mi=0) that arises during the addition process, with each result
separated by an arrow (→).

Next, we apply zero-padding to every number in {ai}mi=1 and {bi}mi=0 so that they have the equal
length, ℓ, which is determined by the maximum length among them. We set ℓ = n + 1 +
⌊log10 m⌋ since the result of adding m numbers each with n digits can have a length at most
1 + ⌊log10((10n − 1)m)⌋ ≤ 1 + n+ ⌊log10 m⌋.

Also, we reverse the digits within each number in the response sequence ({bi}mi=0), while keeping
the numbers in the query ({ai}mi=1) in their original order, which is consistent with the experimental
setup.

To recap, the input sequence I can be formally written as σ1σ2 · · ·σN ∈ VN of length N =
(2m+ 1)(ℓ+ 1) consisting of the following parts:

1. BOS token σ1 = ‘$’;
2. i-th operand Ai = σ(i−1)(ℓ+1)+2 · · ·σi(ℓ+1) where σj ∈ {0, . . . , 9} (for i ∈ [m], zero-padded

ai);
3. i-th addition symbol σi(ℓ+1)+1 = ‘+’ (for i ∈ [m− 1]);
4. equality symbol σm(ℓ+1)+1 = ‘=’;

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

5. placeholder zeros B0 = σm(ℓ+1)+2 · · ·σ(m+1)(ℓ+1) = 00 · · · 0 (zero-padded b0);

6. i-th arrow symbol σ(m+i)(ℓ+1)+1 = ‘→’ (for i ∈ [m]);

7. i-th (reversed) intermediate step Bi = σ(m+i)(ℓ+1)+2 · · ·σ(m+i+1)(ℓ+1) where σj ∈ {0, . . . , 9}
(for i ∈ [m], reversed & zero-padded bi).

We call σ1 · · ·σm(ℓ+1) by the query sequence, and σm(ℓ+1)+2 · · · by the response sequence. We
note that during the inference process, the response sequence might be incomplete (i.e., N <
(2m+ 1)(ℓ+ 1)), as each digit in these components will be inferred one by one using the next-token
prediction mechanism. However, in this section on formal construction, we focus on the training
setup, where we infer all the digits of the response sequence simultaneously in a single forward pass
via next-token prediction. Specifically, we aim to use an input sequence I = σ1 · · ·σN to produce
an output sequence O = σ′

1 · · ·σ′
N , where σ′

m(ℓ+1)+1 · · ·σ
′
N−1 is identical to σm(ℓ+1)+2 · · ·σN and

σ′
N = ‘$’ (EOS).

We summarize this process with an example. Given an addition problem 57 + 48 + 96 = 201,
the transformed input sequence I becomes $057 + 048 + 096 = 000 → 750 → 501 → 102, with
m = 3, n = 2, ℓ = 3, and N = 28. The goal is to generate an output sequence O that ends with
000 → 750 → 501 → 102$.

D.4 ENCODING FUNCTION

We now define the encoding function, which maps the input sequence I ∈ VN to the initial embedding
matrix X(0) ∈ Rd×N . In this representation, each column corresponds to the embedding vector of an
individual token. The embedding matrix X(0) is constructed by concatenating the token embedding
matrix and the PE matrix. We note that this construction can also be interpreted as the element-wise
sum of these two different embedding matrices.

An example of the embedding matrix is presented in Table 4. The first 19 rows correspond to the
token embedding matrix, while the subsequent (2P1 + 2P2) rows represent the PE matrix. We will
use this example throughout this appendix to visualize our construction with tables.

D.4.1 TOKEN EMBEDDING

The token embedding consists of 19 dimensions, which we will refer to by the following names for
clarity:

1=NUM, 2=IS_BOS, 3=FULL_ONES, 4=PRE_SUM, 5=PRE_CARRY,
6=PRE_ARROW, 7=PRE_EOS, {8,. . . ,17}=SUM, 18=ARROW, and 19=EOS.

To enhance readability, we will refer to each dimension by its corresponding name rather than by its
index.

Initially, the last 16 dimensions are set to zero, while the first three dimensions are filled with their
corresponding values. Below, we explain how the values for NUM, IS_BOS, and FULL_ONES are
determined:

Dimension 1 (NUM). If the token is a digit (0, . . . , 9), we fill the dimension NUM by the token’s
value. Otherwise, for tokens +, =, →, and $, we put zero.

Dimension 2 (IS_BOS). If the token is the BOS token (‘$’), we put 1 to the dimension IS_BOS.
Otherwise, we put zero.

Dimension 3 (FULL_ONES). The dimension FULL_ONES is set to 1 for every token.

D.4.2 COUPLED POSITION IDS AND POSITION EMBEDDING

In this section, we explain how the position embedding (PE) vector is determined for each token. As
in our experiment, we first assign two position IDs p1(k) and p2(k) for each token σk. Then, we map

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 4: Example initial encoding. We consider $057 + 048 + 096 = 000 → 750 → 501 → 102
as an input sequence and the position ID offsets are chosen by 4 (for the first PE module) and
2 (for the second PE module). We denote dimensions for PE vectors as POS_1={20,. . . ,P1 +
19}, POS_1_NEXT={P1 + 20,. . . ,2P1 + 19}, POS_2={2P1 + 20,. . . ,2P1 + P2 + 19}, and
POS_2_NEXT={2P1 + P2 + 20,. . . ,2P1 + 2P2 + 19}. The vectors of the form vD

k are defined
in Equation (3). The gray cells will be filled in later.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
p1(·) 0 7 6 5 4 7 6 5 4 7 6 5 4 · · ·
p2(·) 0 2 2 2 2 3 3 3 3 4 4 4 2 · · ·

1: NUM 0 0 5 7 0 0 4 8 0 0 9 6 0
2: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

POS_1_NEXT 0P1 vP1
8 vP1

7 vP1
6 vP1

5 vP1
8 vP1

7 vP1
6 vP1

5 vP1
8 vP1

7 vP1
6 vP1

5

POS_2 0P2 vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

2

POS_2_NEXT 0P2 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

3

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
p1(·) 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7
p2(·) 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

1: NUM 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7

POS_1_NEXT vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

POS_2 vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

each position ID to a PE vector: from pi(k) we map a 2Pi-dimensional vector (i = 1, 2). We use two
different embedding modules to map position IDs and then concatenate them.

We begin by assigning two position IDs to each token. We introduce two hyperparameters,
max_pos1(≥ ℓ + 1) and max_pos2(≥ m + 1), which set the maximum possible position ID for
the first and the second PE modules, respectively. Then, we select a position offset for each module:
s1 ∈ [max_pos1 − ℓ] and s2 ∈ [max_pos2 −m]. The position IDs, p1(k) from the first PE module
and p2(k) from the second PE module, are assigned to each token σk in the input sequence I as
follows:

p1(k)=


0, k=1, (corresponding to ‘$’ token)
s1+{i(ℓ+1)+1} − k, k=(i−1)(ℓ+1)+2, . . . , i(ℓ+1)+1 for i ∈ [m],

s1−{(m+i−1)(ℓ+1)+1}+k, k=(m+i−1)(ℓ+1)+1, . . . , (m+i)(ℓ+1) for i ∈ [m+1],

(1)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and

p2(k) =



0, k = 1, (corresponding to ‘$’ token)

s2 +

⌊
k − 2

ℓ+ 1

⌋
, k = 2, . . . ,m(ℓ+ 1),

s2 +

⌊
k −m(ℓ+ 1)− 1

ℓ+ 1

⌋
, k = m(ℓ+ 1) + 1, . . . , (2m+ 1)(ℓ+ 1).

(2)

Due to the complexity of the formal expressions, we encourage readers to refer to the dimensions
POS_1 and POS_2 in Table 4 for concrete examples.

Next, we explain the design of the PE vector for each position ID. We define b
(D,k)
i as the i-th (from

left) digit of D-digit binary representation of k − 1. The vector vD
k (k ∈ [2D]) is defined as:

vD
k =

[
(−1)b

(D,k)
i

]D
i=1

∈ RD. (3)

This can be interpreted as a vertex of D-dimensional hypercube [−1, 1]D. Importantly, for k ̸= l,∥∥vD
k

∥∥2 = D,
〈
vD
k ,vD

l

〉
≤ D − 2 (4)

hold. This property will later be utilized in the construction of the attention layer.

We set a PE vector for the level-1 position ID p1(i) = 0 (indicating a BOS token) as 02P1
. For cases

where p1(i) > 0, the level-1 PE vector is defined as: vP1

p1(i)

vP1

p1(i)+1

 ∈ R2P1 , (5)

but we use vP1
1 instead of vP1

p1(i)+1 when p1(i) = 2P1 .

Similarly, the second PE module is defined such that the PE vector is set to 02P2 if p2(i) = 0;
otherwise, it is defined as:  vP2

p2(i)

vP2

p2(i)+1

 ∈ R2P2 , (6)

but we use vP2
1 instead of vP2

p2(i)+1 when p2(i) = 2P2 .

Recall that the format vD
k can represent 2D distinct directions. So, we can set the hyperparameters

for maximum position IDs as max_pos1 ≤ 2P1 and max_pos2 ≤ 2P2 . Also, recall that ℓ + 1 ≤
max_pos1, m + 1 ≤ max_pos2, and ℓ = n + 1 + ⌊log10 m⌋. Thus, it suffices to choose P1 ≥
log2 (n+ 1 + ⌊log10 m⌋) and P2 ≥ log2(m+ 1). Since d = 2(P1 + P2) + 19, a sufficient choice
of embedding dimension is

d = 2 ⌈log2 (n+ 1 + ⌊log10 m⌋)⌉+ 2 ⌈log2(m+ 1)⌉+ 19

= O (log2(n+ 1) + log2(m+ 1)) .

In the next section, we present the construction of the model and demonstrate its capability to solve
the multiple operand addition problem when the above conditions are met.

D.5 TRANSFORMER BLOCK — CAUSAL ATTENTION LAYER

We now introduce the construction of the Transformer block, which utilizes 4 attention heads. The
output from these heads are recorded to the dimensions PRE_SUM, PRE_CARRY, PRE_ARROW, and
PRE_EOS.6 The feed-forward layer will then process these 4 dimensions and store the results in
dimensions SUM and EOS. Finally, the linear readout at the final layer uses these outputs to predict
the next token in the sequence.

6The idea of filling the missing values in the embedding matrix is drawn from the RASP-L literature
(Friedman et al., 2023; Lindner et al., 2023; Weiss et al., 2021; Zhou et al., 2024a).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.5.1 ATTENTION HEAD 1: DIGIT-WISE ADDITION WITHOUT CARRIES

The goal of the first attention head is to perform digit-wise addition between two single-digit integers
and store the result in the dimension PRE_SUM. Recall that bj , defined as

∑j
i=1 ai, can be computed

by adding aj to bj−1. This means that to predict a digit in bj , the model needs to attend to two tokens:
the first token (placed in aj) which is in the query sequence, and the second token (placed in bj−1)
which is in the response sequence. Thus, we aim to design the query weight matrix Q1 and the key
weight matrix K1 that generates an attention pattern satisfying this requirement.

Let P = P1 + P2 and recall that d = 2P + 19. Let the dimension of the first attention head be
dQK,1 = P + 1. We define the query matrix Q1 and the key matrix K1 as follows:

Q1 =

 0P1×19 0P1×P1

√
α1IP1

0P1×P2
0P1×P2

0P2×19 0P2×P1 0P2×P1

√
α1IP2 0P2×P2√

α1P (e19FULL_ONES)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,1×d, (7)

K1 =

 0P1×19
√
α1IP1 0P1×P1 0P1×P2 0P1×P2

0P2×19 0P2×P1 0P2×P1 0P2×P2

√
α1IP2√

α1P (e19IS_BOS)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,1×d, (8)

where α1 is a scaling factor to be determined later. Also, let dV,1 = 1 and define

V1 = 3(edNUM)
⊤ ∈ RdV,1×d, (9)

U1 = edPRE_SUM ∈ Rd×dV,1 . (10)

For better understanding, we explain the structure of Q1X
(0) ∈ RdQK,1×N . The block

√
α1IP1

in the first row of Q1 extracts the dimensions POS_1_NEXT from X(0), and scales them by
√
α1.

Similarly, the block
√
α1IP2

in the second row of Q1 selects the dimensions POS_2 from X(0)

and scales them by
√
α1. Lastly, the block

√
α1P (e19FULL_ONES)

⊤ in the third row of Q1 takes the
dimension FULL_ONES from X(0) and scales it by

√
α1P . Q1X

(0) is a concatenation of these three
matrices. An example is presented in Table 5. The computation of K1X

(0) follows similar steps, but
it operates on the dimensions POS_1, POS_2_NEXT, and IS_BOS. For U1V1X

(0) ∈ Rd×N , it simply
copies the dimension NUM, scales it by 3, and shifts it to the dimension PRE_SUM. An example of
Q1X

(0), K1X
(0), and U1V1X

(0) is illustrated in Tables 5 to 7.

Table 5: Example of 1√
α1

Q1X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5

(P1+1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

(P1+1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

Table 6: Example of 1√
α1

K1X
(0), continuing from Table 4. P := P1 + P2

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1+1)–(P1+P2): 0P2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

3

P1 + P2 + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1+1)–(P1+P2): vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

P1 + P2 + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 7: Example of U1V1X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 15 21 0 0 12 24 0 0 27 18 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 21 15 0 0 15 0 3 0 3 0 6
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Now, we consider the attention score matrix C1 := (K1X
(0))⊤Q1X

(0) and the attention matrix
A1 := softmax(C1) ∈ RN×N (including the causal masking operation inside softmax). To
understand the structure A1, we first focus on the entry [C1]ij , which can be expressed as following:

[C1]ij =


α1P if i = 1,

α1P else if
[
K1X

(0)
]
•i =

[
Q1X

(0)
]
•j ,

≤ α1(P − 2) otherwise.

In essence, [C1]ij equals α1P if and only if i = 1 or the key vector for σi is identical to the query
vector for σj . Otherwise, [C1]ij is less than α1P . Let xj denote the number of indices i (≤ j) that
satisfy [C1]ij = α1P . This allows that, with sufficiently large α1, we have

[A1]ij =


1/xj if i = 1,

0 else if i > j,

1/xj else if
[
K1X

(0)
]
•i =

[
Q1X

(0)
]
•j ,

0 otherwise.

The output of the attention layer is computed by multiplying the matrix U1V1X
(0) with the matrix

A1. An example of U1V1X
(0)A1 is illustrated in Table 8.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 8: Example of U1V1X
(0)A1, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

To clarify our example, consider the input sequence $057 + 048 + 096 = 000 → 750 → 501 →. At
this stage, the goal of the model is to predict ‘1’ as the next token, which corresponds to the least
significant digit (LSD) of the sum of 6 (the third token of 096) and 5 (the first token of 501). It is
important to note that the query vector for the last arrow token is identical to the key vectors for 6 and
5. This can be easily verified by comparing Table 5 and Table 6. As a result, the dimension PRE_SUM
of U1V1X

(0)A1 for the last arrow token can be obtained by computing 1
3 (0 + 18 + 15) = 11. Here,

the “3” in 1
3 originates from the number of tokens that the last arrow token attends to: BOS, 6, and 5,

and this is the reason why we design the matrix V1 with the scalar 3. The operation of extracting the
LSD from 11 will be handled in the subsequent feed-forward layer.

D.5.2 ATTENTION HEAD 2: CARRY DETECTION

The goal of the second attention head is to fill the dimension PRE_CARRY with the appropriate values.
To illustrate this, consider the partial input sequence $057 + 048 + 096 = 000 → 750 → 501 → 1.
To predict 0 as the next token, the model needs to (1) compute the sum of 9 (the second token of
096) and 0 (the second token of 501), and (2) detect the carry from the previous digit’s sum, which
was 6 + 5. The first attention head handles the first part, by making 1 (the last token of our example
input sequence) attend to 9 and 0. We aim to design the second attention head to handle the second
part. A key observation is that detecting the carry becomes possible when the model attends to 6 and
5, by verifying that 6 + 5− 1 ∈ {9, 10} (see Section E.4.2. of Cho et al. (2024) for more details).
Thus, the second attention head’s goal is to compute 6 + 5 and assign a value of 11 to the dimension
PRE_CARRY of the token 1.

Recall that P = P1 + P2 and d = 2P + 19. Let the dimension of the second attention head be
dQK,2 = P + 1. We define the query matrix Q2 and the key matrix K2 as follows:

Q2 =

 0P1×19
√
α2IP1

0P1×P1
0P1×P2

0P1×P2

0P2×19 0P2×P1
0P2×P1

√
α2IP2 0P2×P2√

α2P (e19FULL_ONES)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,2×d, (11)

K2 =

 0P1×19
√
α2IP1 0P1×P1 0P1×P2 0P1×P2

0P2×19 0P2×P1 0P2×P1 0P2×P2

√
α2IP2√

α2P (e19IS_BOS)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,2×d, (12)

where α2 is a scaling factor to be determined later. Also, let dV,2 = 1 and define

V2 = 3(edNUM)
⊤ ∈ RdV,2×d, (13)

U2 = edPRE_CARRY ∈ Rd×dV,2 . (14)

An example of Q2X
(0), K2X

(0), U2V2X
(0), and U2V2X

(0)A2 is illustrated in Tables 9 to 12.
Similar to the first attention head, with sufficiently large α2, the j-token σj will only attend to the
BOS token and tokens whose key vectors match the query vector of σj . However, the tokens that

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

σj attends to differ from those in the first attention as the design of the query matrix Q2 and K2 is
slightly modified. By adjusting the placement of

√
α2IP1

and
√
α2IP2

in the Q2 and K2, we can
control which tokens are attended to.

Table 9: Example of 1√
α2

Q2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1+1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1+1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

Table 10: Example of 1√
α2

K2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

3

P + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

P + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11: Example of U2V2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 15 21 0 0 12 24 0 0 27 18 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 21 15 0 0 15 0 3 0 3 0 6
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 12: Example of U2V2X
(0)A2, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.5.3 ATTENTION HEAD 3: ARROW DETECTION

The goal of the third attention head is to fill the dimension PRE_ARROW. We aim to put 1 if the next
token the model has to predict is the arrow (→), and otherwise, we will put strictly smaller values
(below 1/2).

Recall that d = 2P +19. Let the dimension of the first attention head be dQK,3 = P1 +1. We define
the query matrix Q3 and the key matrix K3 as follows:

Q3 =

(
0P1×19 0P1×P1

√
α3IP1 0P1×P2 0P1×P2√

α3P1(e
19
FULL_ONES)

⊤ 01×P1
01×P1

01×P2
01×P2

)
∈ RdQK,3×d, (15)

K3 =

(
0P1×19

√
α3IP1

0P1×P1
0P1×P2

0P1×P2√
α3P1(e

19
IS_BOS)

⊤ 01×P1 01×P1 01×P2 01×P2

)
∈ RdQK,3×d, (16)

where α3 is a scaling factor to be determined later. Also, let dV,3 = 1 and define

V1 = (edIS_BOS)
⊤ ∈ RdV,3×d, (17)

U1 = edPRE_ARROW ∈ Rd×dV,3 . (18)

An example of Q3X
(0), K3X

(0), U3V3X
(0), and U3V3X

(0)A3 is illustrated in Tables 13 to 16.
Similar to the first and the second attention head, with sufficiently large α3, the j-token σj will only
attend to the BOS token and tokens whose key vectors match the query vector of σj .

To enhance understanding, consider two input sequences I1 = $057 + 048 + 096 = 000 → 750 and
I2 = $057 + 048 + 096 = 000 → 75. We first analyze I1. By comparing Table 13 and Table 14,
we can observe that the token 0 (the last token in 750) only attends to the BOS token. Therefore, the
dimension PRE_ARROW of the token 0 will be set to 1 in the matrix U3V3X

(0)A3. Next, for I2, we
can see that the token 5 (the second token in 750) attends to the BOS token and four other tokens (0
from 057, 0 from 048, 0 from 096, 0 from 000). As a result, the dimension PRE_ARROW of the token
5 will be filled by 1/5, where the denominator 5 comes from the softmax operation.

Consequently, the model can decide to predict the arrow (→) as the next token if the dimension
PRE_ARROW in the matrix U3V3X

(0)A3 of the last token of the given input sequence is equal to 1.
Otherwise, for the case where the model should not predict the arrow as the next token, PRE_ARROW
is set to the value less than 1/2.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 13: Example of 1√
α3

Q3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5

P1 + 1:
√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

P1 + 1:
√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

Table 14: Example of 1√
α3

K3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

P1 + 1:
√
P1 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

P1 + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15: Example of U3V3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 1 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 16: Example of U3V3X
(0)A3, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.5.4 ATTENTION HEAD 4: EOS DETECTION

The goal of the fourth attention head is to fill the dimension PRE_EOS. We aim to put 1/2 if the next
token the model has to predict is the EOS token.

Recall that P = P1 + P2 and d = 2P + 19. Let the dimension of the second attention head be
dQK,4 = P + 1. We define the query matrix Q4 and the key matrix K4 as follows:

Q4 =

 0P1×19
√
α4IP1

0P1×P1
0P1×P2

0P1×P2

0P2×19 0P2×P1
0P2×P1

√
α4IP2 0P2×P2√

α4P (e19FULL_ONES)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,4×d, (19)

K4 =

 0P1×19
√
α4IP1 0P1×P1 0P1×P2 0P1×P2

0P2×19 0P2×P1 0P2×P1

√
α4IP2 0P2×P2√

α4P (e19IS_BOS)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,4×d. (20)

where α4 is a scaling factor to be determined later. Also, let dV,4 = 1 and define

V4 = (edIS_BOS)
⊤ ∈ RdV,4×d, (21)

U4 = edPRE_EOS ∈ Rd×dV,4 . (22)

An example of Q4X
(0), K4X

(0), U4V4X
(0), and U4V4X

(0)A4 is illustrated in Tables 17 to 20.
Like the previous attention heads, with sufficiently large α4, the j-token σj will only attend to the
BOS token and tokens whose key vectors match the query vector of σj .

As mentioned earlier, the fourth head aims to fill 1/2 in the dimension PRE_EOS if the model has
to predict the EOS token as the next token. However, it might not be very clear that such a token is
not uniquely defined, as multiple tokens in the matrix U4V4X

(0)A4 can have their PRE_EOS entry
filled with 1/2, as illustrated in Table 20. To clarify, we note that the final decision regarding
the EOS token is made by combining the outputs from both the third and the fourth attention
head (readers can check this in the subsequent feed-forward layer construction). This approach
enables the model to correctly determine whether the next token should be the EOS token or not, as
the token with PRE_ARROW and PRE_EOS set to 1 and 1/2 is uniquely identified. We also note that
PRE_EOS can only be either 1/2 or 1/3, which will be utilized in the feed-forward layer construction.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 17: Example of 1√
α4

Q4X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

Table 18: Example of 1√
α4

K4X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19: Example of U4V4X
(0), continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 1 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 20: Example of U4V4X
(0)A4, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.6 RESIDUAL CONNECTION

We now consider the residual connection. The output of the attention layer can be expressed as
follows:

Y (1) = X(0) +
∑

h∈{1,2,3,4}

UhVhX
(0)Ah (23)

One can observe that the dimensions PRE_SUM, PRE_CARRY, PRE_ARROW, and PRE_EOS in X(0)

are empty, whereas these same dimensions in
∑

h∈{1,2,3,4} UhVhX
(0)Ah contain non-empty values.

Thus, the residual connection effectively “fills in the blanks” in the input embedding matrix. An
example of the output of residual connection is presented in Table 21. Again, we note that the
error from the softmax operation can be made negligible by setting the scalars α1, α2, α3, and α4

sufficiently large.

Table 21: Example output of residual connection, Y (1), continuing from Tables 4, 8, 12, 16 and 20.
The orange rows correspond to the values computed through the attention layer. We omit the columns
corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response. The gray rows will be filled during the subsequent feed-forward layer.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

POS_1_NEXT vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8

POS_2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5 vP2
6 vP2

6 vP2
6 vP2

6

D.7 TRANSFORMER BLOCK — TOKEN-WISE FEED-FORWARD LAYER

The goal of the feed-forward layer is to fill the dimensions SUM, PRE_ARROW, and EOS. While the
attention layer enables interactions between different tokens, the feed-forward layer operates solely
on the dimensions within each token.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

We will construct 3 one-hidden-layer ReLU networks (FF11, FF21, FF31) that take inputs from dimensions
1 to 7. Each network will handle a specific output: SUM (8–17), ARROW (18), and EOS (19),
respectively. The goals of each network are as follows:

• FF11: If the model has to predict a digit (let’s say k ∈ {0, 1, . . . , 9}), set the dimension (8 + k) by
1.

• FF21: If the model has to predict the arrow (→) as the next token, set ARROW by 1.

• FF31: If the model has to predict the EOS token as the next token, set EOS by 1.

By combining these three sub-networks, we can construct a single one-hidden-layer ReLU network
FF1, that takes inputs from dimensions 1 to 7 and outputs the proper values at dimensions 8 to 19.
We provide our example in Table 22.

D.7.1 SUBNETWORK 1: CONSTRUCTION FOR SUM (DIMENSION 8–17)

For FF11, we can apply the construction provided in Section E.5.1 of Cho et al. (2024).

D.7.2 SUBNETWORK 2: CONSTRUCTION FOR ARROW (DIMENSION 18)

We will construct a subnetwork FF21 : Rd → Rd that outputs 1 in the dimension ARROW if the
dimension PRE_ARROW is set to 1; otherwise, outputs 0. As PRE_ARROW can have a value less than
1/2 if it is not 1, this can be easily achieved by constructing FF21 by

[FF21(x)]ARROW = 2ϕ(xPRE_ARROW − 1/2).

D.7.3 SUBNETWORK 3: CONSTRUCTION FOR EOS (DIMENSION 19)

We will construct a subnetwork FF31 : Rd → Rd that outputs 1 in the dimension EOS if the dimension
PRE_ARROW is set to 1 and PRE_EOS is set to 1/2. As mentioned in the fourth attention head, the
dimension PRE_EOS can be either 1/2 or 1/3. We construct FF31 by

[FF31(x)]EOS := 2ϕ(xPRE_ARROW − 1/2) + 6ϕ(xPRE_EOS − 1/3)− 1.

Table 22: Example of the output of the feed-forward layer. The yellow rows represent the values that
are generated during the feed-forward operation. We omit the columns corresponding to the tokens
preceding the equal token ‘=’, as they do not influence the next-token prediction.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM e10

1 e10
1 e10

1 e10
1 e10

8 e10
6 e10

1 e10
1 e10

6 e10
1 e10

2 e10
1 e10

2 e10
1 e10

3 e10
1

18: ARROW 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
19: EOS 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 0 0 1
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.7.4 RESIDUAL CONNECTION

Similar to the residual connection applied after the attention layer, the residual connection following
the feed-forward layer “fills in the blanks” of the matrix Y (1) with the output of each subnetwork as

X(1) = Y (1) + FF1(Y
(1)).

The example of X(1) is illustrated in Table 23.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 23: Example of after applying the residual connection, X(1), continuing from Table 22.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM e10

1 e10
1 e10

1 e10
1 e10

8 e10
6 e10

1 e10
1 e10

6 e10
1 e10

2 e10
1 e10

2 e10
1 e10

3 e10
1

18: ARROW 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
19: EOS 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 0 0 1
POS_1 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

POS_1_NEXT vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8

POS_2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5 vP2
6 vP2

6 vP2
6 vP2

6

D.8 DECODING FUNCTION

The final step is decoding: the model decides which token to predict as the next token based on the
embedding matrix. Specifically, with a weight matrix Wout ∈ R|V|×d, the model first compute the
multiplication between Wout ∈ R|V|×d and X(1). Then, the model takes a (token-wise) arg-max
operation for greedy decoding. Mathematically, the next-prediction at i-th token σi can be written as
follows:

ki := argmax
k∈[|V|]

{
ok : WoutX

(1)
•i =

[
o1 · · · o|V|

]⊤}
. (24)

The design of the weight matrix Wout ∈ R|V|×d is illustrated in Table 24, and the example of the
matrix WoutX

(1)
1 and the output sequence is presented in Tables 25 and 26, respectively.

Table 24: The transposed weight matrix W⊤
out of the linear readout in decoding function.

V 0 1 2 3 4 5 6 7 8 9 + = → $

1–7: NUM-PRE_EOS 07 07 07 07 07 07 07 07 07 07 07 07 07 07

8: SUM1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9: SUM2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10: SUM3 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11: SUM4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12: SUM5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
13: SUM6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
14: SUM7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15: SUM8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
16: SUM9 0 0 0 0 0 0 0 0 1 0 0 0 0 0
17: SUM10 0 0 0 0 0 0 0 0 0 1 0 0 0 0
18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 10 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 100
20–end: POSITIONS 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 25: Example output of linear readout, WoutX
(1), continuing from Tables 23 and 24. The

yellow cells represent the maximum value of each column.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
→ 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10
$ 0 -100 -100 0 -100 -100 -100 0 -100 -100 -100 0 0 0 0 100

Table 26: Example output sequence O, continuing from Table 25.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
O 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2 $

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E MORE ATTENTION PATTERNS OF TRAINED TRANSFORMERS

Continuing from the discussion in Section 4.4 on the attention patterns due to the (non-)existence of
scratchpad, we showcase more examples of the attention matrices softmax(QK⊤ +Λ) of actually
trained Transformers (where Λ is a causal mask).

E.1 ATTENTION PATTERNS with SCRATCHPAD

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 3
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 5
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 6
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 8
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 16: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with NoPE
and using the scratchpad.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 3
(FIRE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 5
(FIRE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 6
(FIRE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 8
(FIRE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 17: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with FIRE
and using the scratchpad.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 1, head 2
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 1, head 4
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 18: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with bi-level
Position Coupling and using the scratchpad.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

E.2 ATTENTION PATTERNS without SCRATCHPAD

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 6, head 5
(NoPE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 6, head 7
(NoPE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 19: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with NoPE
but not using the scratchpad.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 6, head 4
(FIRE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 6, head 4
(FIRE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 20: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with FIRE
but not using the scratchpad.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 2, head 2
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of layer 2, head 5
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

Figure 21: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with (single-
level) Position Coupling but not using the scratchpad.

43

	Introduction
	Summary of Contributions

	Preliminaries
	Related Works

	Warm-up: Length Generalization on Parity Task
	Method: Scratchpad & Position Coupling
	Experiments & Discussion

	Length Generalization on Multi-Operand Addition Task
	Method: Scratchpad & Bi-level Position Coupling
	Experimental Setup
	Experimental Results
	Theoretical Analysis on 1-Layer Transformer

	Length Generalization on Integer Multiplication Task
	Method: Two-stage Scratchpad & Tri-level Position Coupling
	Experimental Setup
	Experimental Results

	Conclusion
	Additional Related Works
	Length Generalization in Arithmetic/Algorithmic Transformers
	Chain-of-Thoughts Prompting

	Experimental Details
	Additional Experimental Results
	Formal Construction of Multi-Operand Addition Transformer
	Notation
	Architecture
	Input Sequence
	Encoding Function
	Token Embedding
	Coupled Position IDs and Position Embedding

	Transformer Block — Causal Attention Layer
	Attention Head 1: Digit-wise Addition without Carries
	Attention Head 2: Carry Detection
	Attention Head 3: Arrow Detection
	Attention Head 4: EOS Detection

	Residual Connection
	Transformer Block — Token-wise Feed-forward Layer
	Subnetwork 1: Construction for sum (dimension 8–17)
	Subnetwork 2: Construction for arrow (dimension 18)
	Subnetwork 3: construction for eos (dimension 19)
	Residual Connection

	Decoding Function

	More Attention Patterns of Trained Transformers
	Attention Patterns with Scratchpad
	Attention Patterns without Scratchpad

