
DeepZensols: A Deep Learning Natural Language Processing Framework
for Experimentation and Reproducibility

Paul Landes, Barbara Di Eugenio, Cornelia Caragea
Department of Computer Science
University of Illinois at Chicago

{plande2, bdieugen, cornelia}@uic.edu

Abstract

Given the criticality and difficulty of reproduc-
ing machine learning experiments, there have
been significant efforts in reducing the vari-
ance of these results. The ability to consistently
reproduce results effectively strengthens the un-
derlying hypothesis of the work and should be
regarded as important as the novel aspect of the
research itself. The contribution of this work is
an open source framework that has the follow-
ing characteristics: a) facilitates reproducing
consistent results, b) allows hot-swapping fea-
tures and embeddings without further process-
ing and re-vectorizing the dataset, c) provides
a means of easily creating, training and evaluat-
ing natural language processing deep learning
models with little to no code changes, and d) is
freely available to the community.

1 Introduction

Consistently reproducing results is a fundamental
criterion of the scientific method, without which,
a hypothesis may be weakened or even invali-
dated (Arvan et al., 2022). Reproduction of results
becomes even more necessary as a growing number
of publications are inflated by false positives (Head
et al., 2015). Efforts to abate this trend include
introducing new statistical methods to detect false
findings (Ulrich and Miller, 2015).

The inability to reproduce results has been re-
ferred to as the “replication crisis” (Hutson, 2018).
The problem of reproducibility in results is becom-
ing more acknowledged as a serious issue in the ma-
chine learning (ML) community with efforts to un-
derstand and overcome the challenge (Rogers et al.,
2021; Drummond, 2018). Not only has the commu-
nity addressed the issue in the literature, it has en-
deavored to assess if experiments are reproducible
and provide recommendations to enhance repro-
ducibility as with the Reproducibility Challenge1.
To address these issues, we present DeepZensols,

1https://www.cs.mcgill.ca/.../ReproducibilityChallenge.html

a freely available2 deep learning (DL) framework
for NLP research by and for the academic research
community including citizen scientists, academic
researchers, and students. It has been used for re-
search projects(Landes et al., 2022, 2023) funded
by the National Institute of Health (NIH)3.

A key feature that sets DeepZensols apart from
others is a novel method to rapidly and easily swap
features sets and compare performance across mod-
els (see Section 2.4). Other systems must re-parse
and re-vectorize each mini-batch over each epoch.
While there exist similar frameworks to ours (Ning
et al., 2020; Falcon, 2019; Paszke et al., 2019; Al-
berti et al., 2018), none of these provides this batch
strategy, vectorization of natural language text fea-
tures and reproducibility of results across advanced
programming interfaces (APIs) and datasets in one
framework. Popular neural network (NN) architec-
tures are available out of the box and easily con-
figurable with little to no coding necessary (see
Section 2.2 for NLP specific framework details).

2 Library Design

DeepZensols is a combination of Python APIs built
on top of PyTorch that provide a means of easily
and quickly creating NLP task specific pipelines.
The framework’s source code and installable li-
braries are released under the MIT Open Source Li-
cense, and includes extensive and in depth overview
and API documentation, tutorials, Jupyter Note-
book examples and class diagrams for NLP refer-
ence models and datasets. The framework is vali-
dated with 381 unit tests and six integration tests,
which are automated using continuous integration.

2.1 Reproducibility

All random state, including utility libraries, scien-
tific libraries, PyTorch, and GPU state, is consistent

2https://github.com/plandes/deepnlp
3NIH award R01CA225446, MyPHA: Automatically gen-

erating personalized accounts of in-patient hospitalizations.

https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://github.com/plandes/deepnlp
https://plandes.github.io/deepnlp/index.html
https://plandes.github.io/deepnlp/api.html
https://github.com/plandes/deepnlp/blob/master/example/clickbate/notebook/clickbate.ipynb
https://github.com/plandes/deepnlp/blob/master/example/clickbate/notebook/clickbate.ipynb
https://plandes.github.io/deepnlp/index.html#usage-and-reference-models
https://plandes.github.io/deepnlp/index.html#usage-and-reference-models
https://github.com/plandes/deepnlp

Robert

Plant

ripped

up

word embedding

$800M

token features

<ner> <head><pos>

join
layer

document
features

softmax
fully connected

linear layers

token concatenated features

<300D>

Figure 1: Word embeddings concatenated to vectorized linguistic features, and then joined with vectorized document
features constructed using configuration with no coding.

across each run of the interpreter execution of the
model’s training, evaluation and testing when using
the framework. Results are consistent by saving
this random state when saving the model, then re-
trieving and resetting it before using the model.

The order of mini-batches, and their constituent
data can affect the model performance as an as-
pect of training or the results of validation and
testing (Pham et al., 2020). This performance in-
consistency is addressed by recording the order of
all data4 and tracking the training, validation and
test data splits. Not only are mini-batches given in
the same order, the ordering in each mini-batch is
also preserved. These dataset partitions and their
order are saved to the file system so the commu-
nity has the option of distributing it along with the
source code for later experiment duplication.

The framework also saves the configuration used
to recreate the same in-memory state along with
the model. This duplicates all train-time memory
model structures, parameters, and hyperparameters
during testing. For the framework’s reproducibility,
unit tests are executed for individual components
and integration tests by comparing the validation
and training loss across six data sets5. In addition,
this demonstrates to users of the framework how to
add their own components and tests.

2.2 NLP-Focused Abstractions and Features
The framework provides many APIs for natural
language tasks, including concatenation of vector-
ized language features to input embedding (see
Figure 1). Vectorization of contextual embed-
dings such as BERT (Devlin et al., 2019) and non-

4Regardless of any given data pre-processing or shuffling.
5Data sets include the MNIST, Adult, Iris datasets and

those mentioned in Section 3.

contextual embeddings such as word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014) and
fastText (Bojanowski et al., 2017) are available.

The framework includes many layer implementa-
tions, which are compatible with the PyTorch API
as module classes. Examples of layers provided
include BiLSTM CRF, BERT transformer models,
1D convolution NN, word embedding layer for con-
catenating features (see Section 2.3), and TF/IDF
frequency weighting (Sparck Jones, 1972).

HuggingFace transformer layers are available
as embeddings, document, sentence and token fea-
tures. The framework also provides direct access
to these models’ data and utilizes it in a variety of
tasks such as text classification, token classification,
language generation, latent semantic analysis, etc.
A linguistic feature mapper that translates spaCy6

to wordpieces, which are token sub-units with asso-
ciated vectors (Wu et al., 2016), is also accessible
as an easy to configure module.

2.3 Vectorization

The DeepZensols framework allows for easily con-
figurable components that provide a higher level
abstraction that tokenizes, sentence chunks, and
vectorizes linguistic features. These vectorizers
have a class taxonomy based on data they vector-
ize so their output data can be automatically con-
structed in various off-the-shelf architectures. See
Section 2.2 for more information on NLP specific
feature generation.

2.4 Batching

We provide a novel method to vectorize and batch
data without wasteful pre-processing of feature and

6https://spacy.io

https://spacy.io
https://spacy.io

1.2 .1.5

.3

.5

.4.43

.4

.8 .1

01

0 1
.5

.4.43

.4

.8 .1

1.2 .1.5

.3 1

01

0

.5

.4.43

.4

.8 .1

1.2 .1.5

.3

.3

.5

.4.43

.4

.8 .1

1.2 .1.5

The

boy

word embedding

1 11

1

0

01 0

10

00

<ner> <head><pos>

word embed file batch 1 token file batch 1

token features

0

1 11

1

0

01 0

10

0

.8 .1

1.2 .1.5

.3

.5

.4.43

.4

0

01

1 word embed file

batch N

token embed file

batch N

Figure 2: Batch decoding “stitches” mini-batches to-
gether from files containing features for the current run.

embedding combinations. Other similar frame-
works pre-process data in an intermediate form
only once before training. However, this leads to a
brittle and difficult to reproduce dataset of ad-hoc
text processing scripts that are challenging to re-
execute, and thus, reproduce performance metrics.

Our framework addresses this with an organized
intermediate file scheme and partitioned feature set
so the input data is vectorized only once efficiently
using a multi-processing pipeline. The output for-
mat of this process allows for quick feature swap-
ping and hyperparameter tuning for re-training. It
leverages the fact that mini-batches are independent
and fit nicely as independent units of work by seg-
menting datasets into smaller chunks, vectorizing
each chunk in parallel sub-processes, and creating
batches independently across each sub processes.

This process by which data is written to the
file system in a format that is fast to reassem-
ble is called batch encoding and accomplished
by: a) split sentences and/or tokens into equal size
“chunks” units of work, b) parsing natural language
features from chunks across multiple processes,
and c) vectorizing each chunk as tensor data in
separate files by feature.

After batch encoding is complete, the model is
ready to be trained from data obtained from a batch
decoding step, which is accomplished by: a) choos-
ing a feature set for a training run, b) reassembling
features by mini-batch, c) decode each mini-batch
into a tensor (see Figure 2), and d) load, cache and
copy tensors to the GPU.

Reassembling mini-batches by feature greatly
reduces load time and memory space, which speeds

up model training (see Section 3) and ameliorates
issues of complex models. The train, validation and
test cycle is faster for other vectorized linguistic
data such as spaCy features as well.

2.5 Execution

The framework provides both a command line and
a Jupyter notebook interface to train, test and pre-
dict. A “glue” API is used to make a Python dat-
aclass7 class a dynamically generated command
line with help usage message documentation. A
set of default application classes are available with
the framework, but they can be extended to include
project specific workflows. The default application
set provides interactive early stopping or epoch
resetting during training.

Results are organized by each run and carry a
common file system structured named by either
what is provided in the configuration or by model
name. This directory structure contains the full
model with all configuration, the PyTorch model,
and results provided as human readable indented
text, JSON and binary formats.

3 Runtime Analysis

Runtime analysis was performed for parsing, fea-
ture vectorization (see Section 2.3), batching (see
Section 2.4), training and testing three different
types of models using a Nvidia TITAN RTX graph-
ics processor on an Intel 3.6GHz CPU using the
following criteria:

• Model: the model trained and evaluated.
• Batch: whether or not the mini-batches were

(re)created (see Section 2.4).
• GPU: whether or not the mini-batches were

cached in GPU memory.8

Since obtaining fast results allows for more ex-
perimentation with a variety of feature sets, em-
beddings, and NN architectures, our experiments
included several combinations of caching strate-
gies. Table 1 shows the latency to batch, retrain
and test the model for each dataset in the “Duration”
column. Experiments were rerun obtain the time
needed for training, validation and testing of each
model, then a second time using the precomputed
mini-batched data. The GPU caching option was
toggled across these experiments to find the CPU
to GPU latency for loading mini-batches.

7https://docs.python.org/3/library/dataclasses.html
8The framework offers GPU caching, CPU caching, and

iterative buffering of mini-batches.

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html

Data Model Duration Batch GPU Both

NER BERT 1:06:04 04:23 00:12 04:35
GloVe 34:08 04:19 05:41 10:00

Mov BERT 21:19 02:04 -00:26 01:38
GloVe 05:03 03:07 01:20 04:27

CB BERT 05:48 01:50 -00:01 01:49
GloVe 05:45 01:51 03:03 04:54

Table 1: Efficiency benchmarks showing the Named
Entity Recognition, Movie review sentiment, and
ClickBate datasets. The “Duration” column lists pro-
cessing latency with no batch or GPU caching in hours,
minutes and seconds. The “Batch” and “GPU” columns
have the caching speedup times in minutes and seconds.
The “Both” column is the speedup with both batch and
GPU caching are enabled.

The datasets used in the runtime analysis include
the CoNNL 2003 (Tjong Kim Sang and De Meul-
der, 2003) for NER, the movie review corpus (Pang
and Lee, 2005; Socher et al., 2013) for sentiment,
and the clickbate corpus (Chakraborty et al., 2016)
for text classification.

The results show significant processing improve-
ments in all three datasets with the GloVe model
leading. This is likely due to how the static embed-
ding are not computed for each sentence (unlike
BERT). The NER dataset with the BERT model
was faster by 4.5 minutes and the GloVe model was
10 minutes faster (1.4X speedup). However, the
movie review sentiment dataset shows the best im-
provement (7.8X speedup) on the GloVe model.
This is primarily from the batch caching 2.6X
speedup, but benefited from a GPU 1.3X caching
speedup. We hypothesize that the GPU slowdowns
for the movie review and clickbate datasets are
potentially due to larger BERT (768D vs 300D
embeddings) mini-batches copied from the CPU.

4 Related Frameworks

Popular DL frameworks such as TensorFlow9 have
a dashboard that provides metrics, such as training
and validation loss. However, these general pur-
pose frameworks offer basic performance metrics
and do not provide a means of producing higher ab-
straction level NLP specific models. More specif-
ically, frameworks such as Keras, supply a very
coarse API allowing solely for cookie-cutter mod-
els. They lack the ability to easily create and evalu-
ate models past this surface interface.

Frameworks such as PyTorch10, which are more

9https://www.tensorflow.org
10https://pytorch.org

common in academia, provide a more straightfor-
ward simple API that is similar to the core Tensor-
Flow libraries, and thus have the same shortcom-
ings as a tool to bridge the gap between pure re-
search and reproducibility. Specifically, they do not
provide batching for accessible feature swapping
and ablation studies, or retention of ML algorithm
state necessary to reproduce results.

AllenNLP (Gardner et al., 2018) is a flexible
configuration driven framework that provides con-
struction of NLP NN architectures and is the closest
framework to ours. However, it does not have fast
feature swapping (see Section 2.4) and batch cre-
ation capability, and lacks most of the components
necessary to consistently reproduce results11.

Popular packages providing support for trans-
former architectures such as BERT (Devlin et al.,
2019) include HuggingFace12. However, this
framework only provides transformer models for
contextual word embeddings.

5 Conclusion and Limitations

The DeepZensols framework is a viable solu-
tion to easily create NLP specific models with
APIs and analysis tools to produce consistent re-
sults. Such frameworks create the types of mod-
els that give confidence and legitimacy by pro-
viding a way to produce reliable reproducible re-
sults for researchers not familiar with deep learn-
ing tools, practitioners, medical personnel, stu-
dents, and those new to the field. Runtime analy-
sis shows the framework offers significant pro-
cessing time savings compared to systems that
do not provide feature caching with stable re-
sults, but not all HuggingFace pretrained mod-
els13 have been tested. The following have been
tested: BERT, RoBERTa (Liu et al., 2019), Distil-
BERT (Sanh et al., 2019), Big Bird (Zaheer et al.,
2020), BioBERT (Lee et al., 2020), XML-R (Con-
neau et al., 2020), ClinicalBioBERT (Alsentzer
et al., 2019), and GatorTron (Yang et al., 2022)
have been tested. A planned future work is to inte-
grate the framework with TensorBoard14.

6 Acknowledgments

This work is partially supported by award
R01CA225446 from the NIH.

11https://github.com/allenai/allennlp/issues/3100
12https://huggingface.co
13https://huggingface.co/models
14https://www.tensorflow.org/tensorboard

https://www.tensorflow.org
https://pytorch.org
https://www.tensorflow.org
https://pytorch.org
https://allennlp.org
https://github.com/allenai/allennlp/issues/3100
https://huggingface.co
https://huggingface.co/models
https://huggingface.co/models
https://www.tensorflow.org/tensorboard
https://github.com/allenai/allennlp/issues/3100
https://huggingface.co
https://huggingface.co/models
https://www.tensorflow.org/tensorboard

References
Michele Alberti, Vinaychandran Pondenkandath, Mar-

cel Würsch, Rolf Ingold, and Marcus Liwicki. 2018.
DeepDIVA: A Highly-Functional Python Framework
for Reproducible Experiments. In 2018 16th Inter-
national Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 423–428.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly Available Clin-
ical BERT Embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78. Association for Computational Linguis-
tics.

Mohammad Arvan, Luís Pina, and Natalie Parde. 2022.
Reproducibility in Computational Linguistics: Is
Source Code Enough? In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2350–2361. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Abhijnan Chakraborty, Bhargavi Paranjape, Sourya
Kakarla, and Niloy Ganguly. 2016. Stop clickbait:
Detecting and preventing clickbaits in online news
media. In Proceedings of the 2016 IEEE/ACM Inter-
national Conference on Advances in Social Networks
Analysis and Mining, ASONAM ’16, pages 9–16.
IEEE Press.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chris Drummond. 2018. Reproducible research: A
minority opinion. Journal of Experimental & Theo-
retical Artificial Intelligence, 30(1):1–11.

William A Falcon. 2019. Pytorch lightning. GitHub, 3.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.

2018. AllenNLP: A Deep Semantic Natural Lan-
guage Processing Platform. In Proceedings of Work-
shop for NLP Open Source Software (NLP-OSS),
pages 1–6.

Megan L. Head, Luke Holman, Rob Lanfear, Andrew T.
Kahn, and Michael D. Jennions. 2015. The Extent
and Consequences of P-Hacking in Science. PLoS
Biology, 13(3).

Matthew Hutson. 2018. Artificial intelligence faces
reproducibility crisis. Science, 359(6377):725–726.

Paul Landes, Aaron Chaise, Kunal Patel, Sean Huang,
and Barbara Di Eugenio. 2023. Hospital Discharge
Summarization Data Provenance. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 439–448. Associa-
tion for Computational Linguistics.

Paul Landes, Kunal Patel, Sean S. Huang, Adam Webb,
Barbara Di Eugenio, and Cornelia Caragea. 2022. A
New Public Corpus for Clinical Section Identifica-
tion: MedSecId. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3709–3721. International Committee on Com-
putational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: A pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv: 1907.11692 (Only available as
arXiv preprint).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Qiang Ning, Hao Wu, Pradeep Dasigi, Dheeru Dua,
Matt Gardner, Robert L. Logan Iv, Ana Marasović,
and Zhen Nie. 2020. Easy, Reproducible and Quality-
Controlled Data Collection with CROWDAQ. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 127–134.

Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploit-
ing Class Relationships for Sentiment Categoriza-
tion with Respect to Rating Scales. In Proceedings
of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 115–124.
Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward

https://doi.org/10.1109/ICFHR-2018.2018.00080
https://doi.org/10.1109/ICFHR-2018.2018.00080
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://aclanthology.org/2022.emnlp-main.150
https://aclanthology.org/2022.emnlp-main.150
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1080/0952813X.2017.1413140
https://doi.org/10.1080/0952813X.2017.1413140
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
https://aclanthology.org/2023.bionlp-1.41
https://aclanthology.org/2023.bionlp-1.41
https://aclanthology.org/2022.coling-1.326
https://aclanthology.org/2022.coling-1.326
https://aclanthology.org/2022.coling-1.326
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.17
https://doi.org/10.18653/v1/2020.emnlp-demos.17
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855

Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association
for Computational Linguistics.

Hung Viet Pham, Shangshu Qian, Jiannan Wang,
Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yao-
liang Yu, and Nachiappan Nagappan. 2020. Prob-
lems and opportunities in training deep learning soft-
ware systems: An analysis of variance. In Proceed-
ings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 771–783.
Association for Computing Machinery.

Anna Rogers, Timothy Baldwin, and Kobi Leins. 2021.
‘Just What do You Think You’re Doing, Dave?’ A
Checklist for Responsible Data Use in NLP. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4821–4833. Association
for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. In The
5th EMC2 - Energy Efficient Training and Inference
of Transformer Based Models.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642. Association for Computational
Linguistics.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Nat-
ural Language Learning at HLT-NAACL 2003, pages
142–147.

Rolf Ulrich and Jeff Miller. 2015. P-hacking by post hoc
selection with multiple opportunities: Detectability
by skewness test?: Comment on Simonsohn, Nel-
son, and Simmons (2014). Journal of Experimental
Psychology: General, 144(6):1137–1145.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine
Translation. arXiv: 1609.08144 (Only available as
arXiv preprint).

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang
Shin, Kaleb E. Smith, Christopher Parisien, Colin
Compas, Cheryl Martin, Mona G. Flores, Ying
Zhang, Tanja Magoc, Christopher A. Harle, Glo-
ria Lipori, Duane A. Mitchell, William R. Hogan,
Elizabeth A. Shenkman, Jiang Bian, and Yonghui
Wu. 2022. GatorTron: A Large Clinical Language
Model to Unlock Patient Information from Unstruc-
tured Electronic Health Records. arXiv: 2203.03540
(Only available as arXiv preprint).

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big Bird: Trans-
formers for Longer Sequences. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020.

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.18653/v1/2021.findings-emnlp.414
https://doi.org/10.18653/v1/2021.findings-emnlp.414
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.48550/arXiv.2203.03540
https://doi.org/10.48550/arXiv.2203.03540
https://doi.org/10.48550/arXiv.2203.03540
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

	Introduction
	Library Design
	Reproducibility
	NLP-Focused Abstractions and Features
	Vectorization
	Batching
	Execution

	Runtime Analysis
	Related Frameworks
	Conclusion and Limitations
	Acknowledgments

