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ABSTRACT
Visual grounding is the task of locating objects specified by natural
language expressions. Existing methods extend generic object de-
tection frameworks to tackle this task. They typically extract visual
and textual features separately using independent visual and textual
encoders, then fuse these features in a multi-modal decoder for final
prediction. However, visual grounding presents unique challenges.
It often involves locating objects with different text descriptions
within the same image. Existing methods struggle with this task
because the independent visual encoder produces identical visual
features for the same image, limiting detection performance. Some
recently approaches propose various language-guided visual en-
coders to address this issue, but they mostly rely solely on textual in-
formation and require sophisticated designs. In this paper, we intro-
duce Multi-modal Conditional Adaptation (MMCA), which enables
the visual encoder to adaptively update weights, directing its focus
towards text-relevant regions. Specifically, we first integrate infor-
mation from different modalities to obtain multi-modal embeddings.
Then we utilize a set of weighting coefficients, which generated
from the multimodal embeddings, to reorganize the weight update
matrices and apply them to the visual encoder of the visual ground-
ing model. Extensive experiments on four widely used datasets
demonstrate that MMCA achieves significant improvements and
state-of-the-art results. Ablation experiments further demonstrate

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10. . . $15.00
https://doi.org/10.1145/3664647.3681256

the lightweight and efficiency of our method. Our source code is
available at: https://github.com/Mr-Bigworth/MMCA.
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1 INTRODUCTION
Visual grounding aims to generalize traditional object detection to
localization of regions in images that correspond to free-form text
descriptions. Due to its potential in bridging the gap between visual
perception and textual expressions, visual grounding have emerged
as core problems in multi-modal reasoning [16, 19, 20, 50, 52].

Due to the similarity with detection tasks, early visual ground-
ing approaches adhered to the established object detection frame-
works, which evoluted from initial two-stage approaches [24, 47,
49] to recently one-stage approaches [5, 23, 43]. Benifit from the
transformer-based detectors DETR [2], TransVG [6] and MDETR
[16] further propose an transformer-based framework which re-
formulate the prediction process to a end-to-end regression problem.
Leveraging the excellent performance and scalability of transform-
ers in multi-modal learning, these transformer based methods have
achieved considerable results on visual grounding tasks. Neverthe-
less, the majority of these methods commonly adopt a sequential
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Figure 1: (a) Traditional visual grounding framework with in-
dependent visual encoder. (b) Our proposed visual grounding
framework with Multi-modal (MM) conditional visual en-
coder. We visualize the ground truth and the attention maps
of various visual encoders. The attention distribution of the
independent visual encoder appears more diffuse, whereas
the attention distributions of the MM-conditional visual en-
coder are more concentrated on the corresponding object.

extraction and fusion approach. This involves employing indepen-
dent visual and textual encoders to extract feature, which are sub-
sequently input into a multi-modal decoder to generate prediction
results. However, the absence of interaction between modalities
constrains the performance of detectors in visual grounding tasks.

For visual grounding tasks, the role of the visual encoder is to ex-
tract potential foreground features guided by the prior knowledge
acquired during training. Due to the fact that the same image often
corresponds to multiple different objects associated with unique
textual expressions, the independent visual feature extraction pro-
cess limiting the visual encoder, which can only trained to extract
compromised general visual feature rather than textually specific
one. As illustrated in Figure 1 (a), the attention map of the indepen-
dent visual encoder highlights general salient regions but struggles
to focus on the most text-relevant regions, which result in the
gap between the visual feature and the feature required in multi-
model reasoning. Consequently, the independent modality-specific
encoder fails to fully adapt to the requirements of visual grounding.

Several previous works have noticed this problem, VG-LAW [34]
proposes a language-guided dynamic visual network by generating
weights for visual encoders using textual information. LADS [33]
employs a language-guided gating mechanism to achieve dynamic
inference of visual input. These methods dynamically modify the
parameters or the architecture of the visual encoder according to
the textual features, as illustrated in Figure 2 (a). Some other meth-
ods, such as QRNet [46] and LAVT [44], improve the post-fusion
paradigm for visual and textual features through integrating lin-
guistic information into visual feature at intermediate levels based
on elaborate attention modules or additional feature-adjustment
modules, as shown in Figure 2 (b). While these methods achieve

appreciable performance, most of them still require sophisticated de-
signs, such as language-guided attention modules [44, 46], complex
weight generation process [34], or gumbel-softmax technique[33].
Additionally, all above methods rely solely on textual information,
which may limit flexibility in certain applications and be susceptible
to the quality of the expressions.

In this paper, we aim to explore an efficient and lightweight inter-
action strategy from the perspective of transfer learning. Inspired
by the efficiency of LoRA [14] in adapting to different downstream
tasks, we propose the Multi-modal Conditional Adaption (MMCA)
to guide the visual encoder to focus on the text-relevant regions,
as depicted in Figure 2 (c) and (d). We consider language-guided
visual feature extraction as a downstream task of general visual
feature extraction, and regard the process of adapting visual en-
coders to different expressions as a weight update process relying
onmulti-modal information. Specifically, visual and textual features
are integrated through a gating mechanism to obtain multimodal
embeddings, and multi-modal conditional adaptation involves a
set of low-rank weight matrices reorganized from the coefficients
generated by these multimodal embeddings. During inference, the
visual encoder can adaptively update its weights through these
matrices. Thus, for a given image input, the visual encoder can
focus more on the foreground regions associated with the expres-
sion, as Figure 1 (b) shows. We benchmark our proposed method
based on TransVG [6] on four prevalent datasets, including Ref-
COCO [48], RefCOCO+ [48], RefCOCOg [28], ReferItGame [18] and
our method achieves comparable results with the state-of-the-art
methods. Furthermore, when applying MMCA to various stronger
baseline models, it consistently brings consistent improvements.
Ablation studies also compare the performance of different variants
of our proposed method and report the parameters and the infer-
ence speed, revealing that our approach is lightweight and efficient.
In summary, we make three-fold contributions:

• We propose the Multi-modal Conditional Adaption (MMCA)
method, which improving the feature extraction process of
the visual encoder in the visual grounding model from a
novel weight update perspective.

• We apply the proposed MMCA to the mainstream visual
grounding framework and propose the flexible multi-modal
conditional transformer and convolution module, which can
be easily applied to other visual grounding models as a plug-
and-play component.

• We conduct extensive experiments to verify the effectiveness
of our method, and the results on four representative datasets
showcase a significant improvement with a small cost.

2 RELATEDWORK
2.1 Visual Grounding
Visual grounding aims to ground a natural language description
onto the referred region in an image. Due to inheriting the general
object detection framework, early visual grounding methods can be
broadly categorized into two directions, i.e., two-stage methods [24,
41, 47, 49] and one-stage methods [5, 23, 43]. Two-stage methods
match the language feature to the vision content at the region level,
thus requiring the vision encoder to first generate a set of region
proposals. One-stage methods densely performmulti-modal feature
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Figure 2: (a) The parameters or the inference pipeline of the visual encoder are dynamically modified according to the textual
feature. (b) Integrating textual and visual features through finely designed attention modules. (c) LoRA uses the additional
trainable low-rank parameter matrices to simulate weight updates in transfer learning. (d) MMCA utilizes multi-modal
information to control a set of update matrices for the visual encoder to realize language-guided visual feature extraction.

fusion at all spatial locations, waiving the requirements of region
proposals, and predict the location of referred object directly.

With the success of transformer in detection and vision-language
tasks, a series of transformer applied to visual grounding tasks have
been proposed. Referring Transformer [21] leverages contextual-
ized phrase queries and directly decodes them into corresponding
image regions and segments. TransVG [6] incorporates DETR en-
coder [2] to extract visual feature and proposes a multi-modal rea-
soningmodule. MDETR [16] directly predicts the bounding boxes of
the objects by a transformer encoder-decoder which use the aligned
modulated feature as the input. Although transformer-based meth-
ods [6, 21] achieve better performance in visual grounding tasks
benefiting from the self-attention mechanism. The independent
visual encoder, may difficult to focus on the text-relevant regions,
limits its performance for visual grounding tasks.

2.2 Parameter-Efficient Transfer Learning
Transfer learning aims to produce the fine-tuned model, which
adapts to the specific task or dataset, based on the pre-trained model
(either via the supervised or the unsupervised manner). Transfer-
ring the large pre-trained models [1, 7] into downstream tasks
has been the popular paradigm for a long time. Conventional arts
[1, 7, 26] training all the network parameters to make them adapt
to the target tasks. However, with the growth of model sizes and
the complexity of the specific tasks, the full-parameter fine-tuning
paradigm is inevitably limited by the huge computational burden
and catastrophic forgetting.

To alleviate these issues, some parameter-efficient fine-tuning
methods have been proposed. One approach, known as Prompt
Tuning [10, 15], addresses the distribution mismatch between pre-
training and downstream tasks by learning task-specific tokens.
Adapter-like methods [4, 13, 17] insert trainable modules, such
as MLPs with activation functions and residual structures, into
the network to facilitate transfer learning. LoRA-like methods [14,
51] exploit the low-rank update to a large-scale frozen model and
introduces a bypass to the original parameter matrix to mimic
the fine-tuning of the entire model parameters. Inspired by the
success of NLP, several notable works [4, 35, 39] have emerged in
the computer vision domain. And they provide an efficient way
to adapt a model to specific tasks, inspiring us to improve visual

grounding tasks by adaptively update the weight of the visual
encoder through text guidance.

3 METHODS
We focus on the challenge of language-guided visual feature ex-
traction in visual grounding tasks. We introduce the architecture
of our method in the initial section. In the subsequent section, we
outline how multimodal information is utilized to guide the feature
extraction process of the visual encoder through weight updates,
with the objective of emphasizing regions pertinent to specific
expressions. And we expound upon our approach to integrating
visual and textual features, which aims to mitigate the influence
of potential low-quality text on language-guided visual encoders.
Finally, we show how to apply our method to visual grounding
model and propose the multi-modal conditional transformer and
multi-modal conditional convolution module. The overall pipeline
of our model is schematically illustrated in Figure 3.

3.1 Overall Architecture
Here we present the architecture of the adopted visual grounding
framework, which follows the typical end-to-end encoder-decoder
paradigm [6]. Illustrated in Figure 3, given an image and a language
expression as inputs, we initially feed them into the encoder part
to generate corresponding feature embeddings. In the Linguistic
Branch, the linguistic backbone take the tokenized language expres-
sion as input and extract the textual features 𝑓𝑡 ∈ R𝑁𝑡×𝐶𝑡 , where
𝑁𝑡 is the number of language tokens. Meanwhile, in the Visual
Branch, a CNN backbone first extracts a 2D feature map, followed
by a stack of transformer encoder layers that generate a flattened se-
quence of visual features 𝑓𝑣 ∈ R𝑁𝑣×𝐶𝑣 . Our proposed Multi-modal
Conditional Adaption (MMCA) is hierarchically applied to the pa-
rameter matrices of the convolutional and transformer layers. This
module takes both visual and textual features as inputs and dy-
namically updates the weights of the visual encoder to achieve
language-guided visual feature extraction. Subsequently, we con-
catenate the visual and textual feature embeddings and appending
a learnable token, [REG] token, as the inputs for the multi-modal
decoder (Visual-Linguistic Transformer), which embeds the input
tokens from different modalities into a aligned semantic space and
perform intra- and inter-modal reasoning with the self-attention
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layers. Finally, the regression head uses the output state of [REG]
token to directly predict the 4-dim coordinates 𝑏 = (𝑥,𝑦, �̂�, ℎ̂) of
the referred object. The training loss with the ground-truth box
𝑏 = (𝑥,𝑦,𝑤,ℎ) can be formulated as:

L = L𝑠𝑚𝑜𝑜𝑡ℎ−𝑙1 (𝑏, 𝑏) + 𝐿𝑔𝑖𝑜𝑢 (𝑏,𝑏) (1)

where 𝐿𝑠𝑚𝑜𝑜𝑡ℎ−𝑙1 (·) and 𝐿𝑔𝑖𝑜𝑢 (·) are the smooth L1 loss [11] and
GIoU loss [31], respectively.

3.2 Multi-modal Conditional Adaption
The existing methods employ various strategies for visual feature
extraction with language guidance. Although performance gains
can be achieved with these methods, most of them encounter the
challenge of requiring sophisticated designs and relying solely on
textual information, which can be susceptible to the quality of the
referring expression, especially in complex scenes. To address these
challenges, our method integrates visual and textual information
to obtain multimodal embeddings. And we use these embeddings
to guide the visual encoder in a weight updating manner, allowing

the model to adapt to various referring expressions directly. In the
following, we will first introduce the implementation of conditional
adaptation for visual grounding tasks. Then, we will detail the
generation of multimodal embeddings via gated fusion for the visual
and language inputs.
ConditionalAdaption. In order to efficiently adapt the pre-trained
model to downstream tasks, LoRA [14] models the incremental
update of the pre-trained weight matrix, typically performed by
the dense layers in the neural network, by the product of two low-
rank matrices. For ℎ = 𝑊𝑥 where output ℎ ∈ R𝑑 , input 𝑥 ∈ R𝑘
and weight matrix𝑊 ∈ R𝑑×𝑘 . When adapting to a specific task in
standard transfer learning, LoRA hypothesizes the update to the
weights matrices have a low “intrinsic rank” during adaptation and
modified forward pass yields:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (2)

where𝑊0 ∈ R𝑑×𝑘 represents the pre-trained weight matrix, Δ𝑊
denotes the weight update and 𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 with 𝑟 ≪
𝑚𝑖𝑛(𝑑, 𝑘) are the low-rank adaptation based on the “instrisic di-
mension” assumption. Benefits from LoRA, a pre-trained model can
be shared and efficiently switch to different downstream tasks by
update a small number of parameters.

For the visual grounding task, we hope that different referring
expressions can control a set of weight updates for the visual en-
coder, thereby directing the encoder’s focus towards text-relevant
regions. While directly generating such matrices brings about two
drawbacks. (1) It requires a large parameter generator, i.e., using
a linear projection to generate the matrices 𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘
from a embedding 𝐸 ∈ R𝑑𝑚𝑚 needs (𝑑𝑚𝑚 + 1) · (𝑑 × 𝑟 + 𝑟 × 𝑘)
parameters. (2) The generator without constraints may overfit the
expressions in training, while hardly understand the expressions
during testing [46]. Motivated by some previous works [9, 37, 38]
which empirically verified that the interpolation in weight space
can maintain the model robustness for data from different distribu-
tion. We enable the network to learn a set of basis matrices of the
weight update and use multi-modal information to reorganize the
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update matrices, as shown in Figure 3, which allows the parameter
generator to be lightweight and ensure the weights of the network
are updated in the same space.

Specifically, we first decomposing the weight update matrices
and reformulate it as a sum of outer products:

Δ𝑊𝑥 = 𝐵𝐴𝑥 =
∑𝑟
𝑖=1𝐵𝑖 ⊗ 𝐴𝑖 (3)

where 𝐵𝑖 , 𝐴𝑖 ∈ R𝑑×1 represents the 𝑖 − 𝑡ℎ column and row of 𝐵,𝐴.
Then we keep the form of out products by 𝐵𝑖 , 𝐴𝑖 and use a weighted
sum to control the subspace of the adaptation:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 +∑𝑟
𝑖=1𝑤𝑖𝐵𝑖 ⊗ 𝐴𝑖 (4)

here𝑊0 ∈ R𝑑×𝑘 denotes the fixed, independent weight matrix of
visual encoder, Δ𝑊 denotes the conditional weight update, 𝐵 ∈
R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 here are static low-rank weight matrices and the
coefficients 𝑤1,𝑤2, ...,𝑤𝑟 are scalar generated from multi-modal
embedding. For simplicity and not introduce other inductive bias,
we use a linear regression to generate this set of weights:

[𝑤1,𝑤2, ...,𝑤𝑟 ]𝑇 =𝑊𝑔𝐸𝑚𝑚 + [𝑏1, 𝑏2, ..., 𝑏𝑟 ]𝑇 (5)

where𝑊𝑔 ∈ R𝑟×𝑑 , [𝑏1, 𝑏2, ..., 𝑏𝑟 ]𝑇 are parametermatrices and𝐸𝑚𝑚 ∈
R𝑑 is the layer-specific multi-modal embedding, generated from the
textual features and the visual features output from the previous
layer. Unlike transfer learning tasks, we do not aim to fine-tune a
little part of parameters to adapt the specific downstream task, but
rather hope that the visual encoder can adapt various expressions.
So all parameter matrices𝑊0, 𝐵, 𝐴,𝑊𝑔, [𝑏1, 𝑏2, ..., 𝑏𝑟 ]𝑇 are learnable
during the training phase.
Gated Fusion for Multi-modal embedding. As previously dis-
cussed, relying solely on textual information to guide visual en-
coders may restrict flexibility in certain applications, and perfor-
mance may be impacted by the quality of the textual information.
To mitigate these issues, we employ gating mechanisms to regu-
late the input of textual information. Given the textual features
𝐹𝑡 ∈ R𝑁𝑡×𝐶𝑡 and the flattened visual feature 𝐹𝑣 ∈ R𝐻𝑊 ×𝐶𝑣 , we
first apply pooling operations to process textual features of different
lengths and visual features of different spatial sizes. Subsequently,
linear projections are used to generate fixed-dimensional embed-
dings 𝐸𝑡 , 𝐸𝑣 for the respective modal-specific features. We then
employ a simple gating mechanism with a sigmoid activation to
fuse the visual and textual embeddings:

𝐸𝑡 =𝑊𝑡 𝐹𝑡 , 𝐸𝑣 =𝑊𝑣𝐹𝑣 (6)

𝛼 = 𝜎 [𝑊 1
𝑔 𝛿 (𝑊 2

𝑔 (𝐸𝑡 + 𝐸𝑣))] (7)

where 𝛿 denotes ReLU,𝑊𝑡 ∈ R𝐶𝑚𝑚×𝐶𝑡 ,𝑊𝑣 ∈ R𝐶𝑚𝑚×𝐶𝑣 ,𝑊 1
𝑔 ∈

R𝐶𝑚𝑚×𝐶𝑚𝑚
𝑘 and𝑊 2

𝑔 ∈ R
𝐶𝑚𝑚

𝑘
×𝐶𝑚𝑚 are trainable parameter matri-

ces. 𝛼 ∈ R𝐶𝑚𝑚 controls how much textual information is kept. To
limit model complexity and aid generalisation, we parameterise
the gate mechanism by forming a gate network with two fully-
connected (FC) layers around the non-linearity. And the output of
gated fusion is obtained by summing the visual embedding with
the rescaled textual embedding:

𝐸𝑚𝑚 = 𝛼𝐸𝑡 + 𝐸𝑣 (8)

Finally, the fusion embedding 𝐸𝑚𝑚 is utilized to generate the coef-
ficients, which guiding the weight update for visual encoder.

3.3 Applied for visual grounding
Finally, we show how to apply our method to the adopted visual
grounding model. Based on the visual encoder (Convolutional and
Transformer Layers), we then propose the Multi-modal conditional
transformer and Multi-modal conditional convolution by applying
the proposed MMCA as follows:
Multi-modal Conditional Transformer. The transformer en-
coder layer in visual backbone mainly consists of two types of
sub-layers, i.e., MHSA and FFN. In MHSA, the visual feature 𝑋 are
linearly projected by embedding𝑊𝑞,𝑊𝑘 and𝑊𝑣 into three vector.
And the output of the MHSA is performed on these vectors by:

ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑊𝑞𝑋𝑋

𝑇𝑊𝑇
𝑘√︁

𝑑𝑘

)𝑊𝑣𝑋 + 𝑋 (9)

where ℎ are the tokens produced by MHSA. In FFN, the output
tokens are further sent to a LayerNorm and a MLP block which is
consisted of two fully connected layers with a relu activation in
between. This process is formally formulated as follows:

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑁 (𝑀𝐿𝑃 (ℎ′) + ℎ′) (10)

where 𝑋𝑜𝑢𝑡𝑝𝑢𝑡 is the output of the transformer encoder block and
ℎ′ = 𝐿𝑁 (ℎ). By applying Multi-modal Conditional Adaption, our
method can be represented as:

ℎ′ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(𝑊 ′

𝑞 )𝑋𝑋𝑇 (𝑊 ′𝑇
𝑘

)√︁
𝑑𝑘

)𝑊𝑣𝑋 + 𝑋

𝑊 ′
𝑞 =𝑊𝑞 + Δ𝑊𝑞,𝑊

′
𝑘
=𝑊𝑘 + Δ𝑊𝑘

(11)

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑁 (𝑀𝐿𝑃 (ℎ′) + Δ𝑊𝑚ℎ′ + ℎ′) (12)
where Δ𝑊𝑞,Δ𝑊𝑘 ,Δ𝑊𝑚 are the conditional weight update for the
linear projection of query, key and MLP block. It is noted that we
take the embedding Δ𝑊𝑞,Δ𝑊𝑘 as an example in Figure 3 and we
would discuss the impact of applying our method to different type
of weight during ablation study.
Multi-modal Conditional Convolution.Consider the commonly
used convolution block 𝐶𝑜𝑛𝑣𝑘×𝑘 with a weight update denoted as
Δ𝑊𝑐 ∈ R𝑐𝑖𝑛×𝑐𝑜𝑢𝑡×𝑘×𝑘 , where 𝑘 represents kernel size, 𝑐𝑖𝑛 and 𝑐𝑜𝑢𝑡
indicate the number of input channels and output channels. To fa-
cilitate the application of our method, we unroll this weight update
into a 2-D matrix represented as Δ𝑊𝑐 ∈ R𝑐𝑜𝑢𝑡×𝑐𝑖𝑛𝑘2

and approxi-
mate this update with two matrices 𝐵 ∈ R𝑐𝑖𝑛×𝑟 , 𝐴 ∈ R𝑟×𝑐𝑜𝑢𝑡𝑘2

with
rank 𝑟 . Such a decomposition implies that the given weight up-
date can be approximated by two consecutive convolutional layers
𝐶𝑜𝑛𝑣𝐵 and 𝐶𝑜𝑛𝑣𝐴 with kernel sizes 1 and 𝑘 which use 𝑟 as output
and input channels. With the preceding analysis, the Multi-modal
Conditional Adaption for convolution block can be expressed as:

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣𝑘×𝑘 (𝑋 ) +𝐶𝑜𝑛𝑣𝐴 (𝑊𝑚𝑚 ⊙ 𝐶𝑜𝑛𝑣𝐵 (𝑋 )) (13)

where 𝑋 and𝑊𝑚𝑚 = [𝑤1,𝑤2, ...,𝑤𝑟 ]𝑇 are the visual feature from
the previous convolutional layer and the weighting coefficients gen-
erated from the multi-modal embedding. We perform dot product
between the coefficients and the output of 𝐶𝑜𝑛𝑣𝐵 along channel
dimension and feed the output into 𝐶𝑜𝑛𝑣𝐴 , which is equivalent to
reorganize the weight update. Through this process, we achieve the
multi-modal conditional convolution. For the convolutional visual
backbone (ResNet), we treat the bottleneck block as a independent
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Table 1: Comparison with state-of-the-art methods on RefCOCO [48], RefCOCO+ [48], and RefCOCOg [28] dataset task. We
highlight the best and second best result obtained with the same backbone in bold and underlined.

Method Backbone RefCOCO RefCOCO+ RefCOCOg ReferIt
val testA testB val testA testB val-g val-u test-u test

Two-stage
VC [49] VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - - -

MAttNet [47] ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27 29.04
RvG-Tree [12] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51 -

CM-Att-Erase [25] ResNet-101 78.35 83.14 71.32 68.09 73.65 58.03 - 67.99 68.67 -
NMTree [24] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44 -
Ref-NMS [3] ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62

One-stage
ReSC-Large[42] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20 64.60

SAFF [45] DarkNet-53 79.26 81.09 76.55 64.43 68.46 58.43 - 68.94 68.91 -
TransVG [6] ResNet-50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44 69.76

D-MDETR [32] ResNet-50 81.62 83.85 76.24 67.00 70.95 58.13 68.04 70.14 69.57 71.13
LADS [33] ResNet-50 82.85 86.67 78.57 71.16 77.64 59.82 - 71.56 71.66 71.08
HFRN [30] ResNet-101 79.76 83.12 75.51 66.80 72.53 59.09 - 69.71 69.08 -
TransVG [6] ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73 70.73
LGFPN [36] ResNet-101 81.76 84.78 78.16 70.29 76.19 59.68 69.20 73.06 73.24 73.61
LUNA [22] ResNet-101 84.67 86.74 80.21 72.79 77.98 64.61 - 74.16 72.85 72.97

Ours
MMCATransVG ResNet-50 84.34 86.99 80.06 72.44 78.01 63.86 72.02 74.11 73.46 72.87
MMCATransVG ResNet-101 84.76 87.34 80.86 73.18 78.67 64.13 72.53 74.91 73.87 73.43

convolution block and apply our method on the last bottleneck
block in the last three layers (C3, C4, and C5 layers).

4 EXPERIMENTS
4.1 Datasets
RefCOCO/ RefCOCO+/ RefCOCOg. RefCOCO [48] includes
19,994 images with 50,000 referred objects. The samples in Ref-
COCO are officially split into a train set with 120,624 expressions,
a validation set with 10,834 expressions, a testA set with 5,657
expressions and a testB set with 5,095 expressions. Similarly, Ref-
COCO+ [48] contains 19,992 images with 49,856 referred objects
and 141,564 referring expressions. It is also officially split into a
train set with 120,191 expressions, a validation set with 10,758 ex-
pressions, a testA set with 5,726 expressions and a testB set with
4,889 expressions. RefCOCOg [28] has 25,799 images with 49,856 re-
ferred objects and expressions. There are two commonly used split
protocols for this dataset. One is RefCOCOg-google [28], and the
other is RefCOCOg-umd [29]. We report our performance on both
RefCOCOg-google (val-g) and RefCOCOg-umd (val-u and test-u)
to make comprehensive comparisons.
ReferItGame. ReferItGame [18] includes 20,000 images collected
from the SAIAPR-12 dataset [8]. We follow the same split as in the
previous works [6, 46] to divide this dataset into three subsets and
report our results.

4.2 Implementation Details
Our experiments are mainly based on TransVG [6], QRNet [46]
and VLTVG [40]. For the MMCATransVG and MMCAVLTVG, the
visual branch employ the ResNet-50 as its CNN-based backbone,

followed by 6 transformer encoder layers, where the embedding
dimension is set as 256, the head number of multi-head attention
modules is set as 8, and the hidden dimension in FFN is set as 2048,
aligning with the configuration in TransVG and VLTVG. Addition-
ally, since TransVG does not provide the Swin-S [27] based model,
the results and implementation of TransVG (Swin-S) we adopted
follow the QRNet, and our MMCATransVG (Swin-S) uses the same
architecture. We employ the basic BERT [7] for textual feature gen-
eration and follow the TransVG to process the input images and
sentences. We also follow the training setting used in TransVG,
QRNet and VLTVG, which use AdamW optimizer with weight de-
cay 10−4. The batch size is set to 64 and the learning rate is set
to 10−5 for pre-trained parameters and 10−4 for other parameters.
The parameters without pretraining are randomly initialized with
Xavier. We train MMCATransVG, MMCAVLTVG for 90 epochs and
MMCATransVG (Swin-S), MMCAQRNet (Swin-S) for 160 epochs, which
is consistent with previous works [6, 46] for fair comparison. The
learning rate is multiplied by a factor of 0.1 at epoch 60. The hyper-
parameters 𝑘 and𝐶𝑚𝑚 in the gate network are set to 4 and 128. We
also follow the data augmentation strategies employed in previous
works [6, 40, 42, 43, 46].

4.3 Comparisons with State-of-the-art Methods
In Table 1, we compare our proposed model with other state-of-the-
art methods on RefCOCO [48], RefCOCO+ [48], and RefCOCOg
[28] datasets. For small-sized models, which use ResNet-50 as CNN
backbone, our method based on TransVG has better performance
with +4.02% / +4.32%/ +1.94% on RefCOCO, +8.94%/ +9.86%/ +8.23%
on RefCOCO+, and +5.46%/ +6.45% +6.02% on RefCOCOg, which
outperforms the recent methods and achieve the state-of-the-art
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Table 2: Results with stronger baseline.

Method Backbone RefCOCOg ReferIt
testval-u test-u

VLTVG [40] ResNet-50 74.90 73.88 71.60
TransVG [46] Swin-S 69.34 68.99 70.86
QRNet [46] Swin-S 73.03 72.52 74.61
VG-LAW [34] Swin-S 75.61 76.28 74.83
Ours
MMCAVLTVG ResNet-50 75.48 75.11 73.89
MMCATransVG Swin-S 73.58 73.59 74.11
MMCAQRNet Swin-S 76.08 75.64 75.86

Table 3: Ablative experiments on the weight type.

Weight type RefCOCO
val testA testB

𝑊𝑚 81.67 83.99 78.34
𝑊𝑐 82.98 85.14 78.99
𝑊𝑣 82.14 84.12 78.01

𝑊𝑞,𝑊𝑘 83.35 85.89 79.58
𝑊𝑞,𝑊𝑘 ,𝑊𝑣 82.96 84.81 78.22
𝑊𝑞,𝑊𝑘 ,𝑊𝑐 84.34 86.99 80.06

𝑊𝑞,𝑊𝑘 ,𝑊𝑐 ,𝑊𝑚 83.69 86.24 79.71

results. When the larger visual backbone (ResNet-101) adopted, our
method still gain overall better performance on all four datasets.
Compared with the the most recent works, our method generally
surpasses LGFPN [36] and LUNA [22] on the RefCOCO and Ref-
COCOg datasets.

Table 2 also reports the performance of our method based on
the stronger baseline. We compare our method with the VLTVG
[40], TransVG (Swin-S) [46], QRNet [46] and VG-LAW [34] on the
RefCOCOg and ReferItGame datasets. It is noted our method en-
hances visual grounding models by guiding the behavior of the
visual encoder and does not introduce a new model structure. And
we intentionally avoid comparing models with different structures.
The results indicate that our method can still achieve consistent
improvement under different strong baselines. Although VG-LAW
has not made its source code available, our MMCAQRNet still out-
performs it with +0.47% and +1.03% on the RefCOCOg val split and
ReferItGame dataset.

4.4 Ablation Studies
In this section, we perform ablation studies on the RefCOCO [48]
dataset to assess the effectiveness of our proposed method. We
establish TransVG (ResNet-50) as the baseline due to its straight-
forward and CNN-transformer mixed architecture. Our analysis
centers on three key aspects: where to add these adaptations, the
effectiveness of gated fusion and comparison with different rank 𝑟 .
Where to Apply the Adaptations. In Table 3, we discussed which
weights our proposed MMCA should apply to the network. We
applied our method to different parts of the self-attention layer
𝑊𝑞,𝑊𝑘 ,𝑊𝑣 , convolutional layer𝑊𝑐 , and FFN layer𝑊𝑚 with the

Table 4: Ablative experiments with different modal infor-
mation as inputs. T: Textual features, V: Visual features, (A):
Add fusion, (G): Gated fusion.

Modality RefCOCO
val testA testB

- 80.32 82.67 78.12
T 83.54 85.55 79.74
V 82.21 84.92 78.27

T+V (A) 83.34 86.06 79.11
T+V (G) 84.34 86.99 80.06

Table 5: Ablative experiments on the hyperparameter rank 𝑟

Rank 𝑟 RefCOCO params (M)val testA testB

- 80.32 82.67 78.12 149.52
4 82.87 84.71 79.17 151.17
8 83.36 85.64 79.12 151.34
16 83.65 86.28 79.51 151.69
32 83.91 86.51 79.67 152.40
64 84.34 86.99 80.06 153.80

rank 𝑟 = 64. The results on the validation and testing sets of Re-
fCOCO show that applying our mehod on the𝑊𝑞,𝑊𝑘 ,𝑊𝑐 have
significantly higher performance than others. In the self-attention
layer, using MMCA in𝑊𝑞,𝑊𝑘 yields better results than in𝑊𝑣 or
𝑊𝑞,𝑊𝑘 ,𝑊𝑣 , this could be because attention score plays a role in
feature selection, making the network pay more attention to text-
relevant regions.
Effectiveness of Gated Fusion. To verify the effectiveness of
gated fusion of multimodal features in MMCA, we use different
modal information to guide weight update matrices and present the
experimental results in Table 4. It can be seen that fusingmultimodal
features will bring better results than using only textual or visual
features. To further verify the impact of the gating mechanism,
we adopte a simple summation method, e.g. 𝐸𝑚𝑚 = 𝐸𝑡 + 𝐸𝑣 , to
fuse visual and textual features and compared it with the fusion
method using the gating mechanism. The results show that the
gating scheme can further bring improvement with 1.00%, 0.93% and
0.95%. This also verifies that our method can effectively dynamically
control the input of textual information to handle more complex
scenarios.
Comparison with Different Rank 𝑟 . At last, we analyze the
effectiveness of rank 𝑟 . We investigate the number of rank 𝑟 in
MMCA, for𝑊𝑞,𝑊𝑘 ,𝐶 , by comparing the detection performance
and the number of parameters on RefCOCO. As shown in Table
5, our proposed method already performs well with a very small
rank 𝑟 = 8. With 1.82M additional parameters, our method achieved
3.04%, 2.57%, and 1.00% improvement on dataset val, testA, and testB.
It can be seen that the overall performance gradually increases as
rank 𝑟 gets larger. And we take the best 𝑟 = 64 as our default setting
for other ablation study and state-of-the-art result.
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Text: person above dog

Text: man on right front

Text: girl wearing black

Text: legs on right

(a) Input images and 
referring expressions (b) Attention maps of the transformer encoder

(c) Prediction results 
and ground truth

MMCA (layer 2) MMCA (layer 4) MMCA (layer 6)TransVG (layer 6)

Figure 5: Visualization of input images and referring expressions, the attention maps of the transformer encoder layer in
TransVG and MMCA, our prediction results (red bounding boxes) and ground truth (yellow bounding boxes).
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Figure 6: The inference speed (FPS) of our method with dif-
ferent factors rank 𝑟 and weight type, where Q, K, V, C, M
denotes the weight type𝑊𝑞,𝑊𝑘 ,𝑊𝑣,𝑊𝑐 ,𝑊𝑚 .

4.5 Efficiency Analysis
We examined the inference time of our proposed method with
various factor dimensions by setting 𝑟 = {4, 8, 16, 32, 64} and ap-
plying our method to different weight matrices of TransVG. The
experiments were conducted on a single NVIDIA RTX3090 GPU
and the results are presented in Figure 6. The experimental results
suggest that our method shows robust inference efficiency across
different hyperparameter values 𝑟 . We observed that the primary
inference delay arises from the adaptation applied in the FFN layer
and convolutional layer. We attribute this delay to the larger input
channels and the presence of additional branches and we believe
that this can be improved through more detailed parameter set-
tings, such as additional channel reduction for convolutional or
fully connected layers. When comparing our best result, achieved
by adopting rank 𝑟 = 64 and applying it to𝑊𝑞,𝑊𝑘 ,𝐶 , to the base-
line, we observed a decrease in inference speed of approximately 5%

(1.07 FPS drop). When considering the trade-off between accuracy
and inference speed, we recommend applying MMCA to𝑊𝑞 and
𝑊𝑘 , which can achieve 83.35%, 85.89%, 79.58% on RefCOCO while
only brings about 0.48 FPS drop.

4.6 Qualitative Results
In Figure 5, we visualize the input images, referring expressions,
multi-modal conditional visual encoder’s attention maps, final pre-
diction results and ground truth. It can be observed that the at-
tention scores are generally higher on the foreground regions or
regions relevant to the corresponding expression. The comparison
with TransVG shows the ability of our proposed MMCA to focus on
the object regions. And as the number of encoder layers deepens,
the attention distribution gradually concentrates from the general
foreground area to the object referred to in textual expressions,
which validates the effectiveness of our method.

5 CONCLUSION
In this paper, we proposeMulit-modal Conditional Adaption (MMCA)
to address the limitation of independent visual feature extraction for
visual grounding. MMCA integrate visual and textual information
to reorganize a set of low-rank weight matrices and enable the vi-
sual encoder can adaptively update its weight to concentrate on the
text-relevant regions. Extensive experiments and ablation studies
have validated the high effectiveness of our method. Our proposed
framework significantly outperforms the baseline and achieves
comparable results with the state-of-the-art methods while little
parameter budget and time cost required. In future work, we plan to
introduce this idea into the parameter-efficient tuning of large-scale
multi-modal model and explore the mechanism behind conditional
adaption, e.g. how are the conditional weight update enable the
visual model to extract expression-relevant visual feature.
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