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ABSTRACT

Due to their flexibility, scalability, and high quality, diffusion models (DMs) have
become a fundamental stream of modern AIGC. However, a substantial performance
deficit of DMs emerges when confronted with a scarcity of sampling steps. This
limitation stems from the DM’s acquisition of a series of weak denoisers obtained
by minimizing a denoising auto-encoder objective. The weak denoisers lead to a
decline in the quality of generated data samples in scenarios with few sampling steps.
To address this, in this work, we introduce the Data-Prediction Denoising Model
(DPDM), a constructor that embodies a sequence of stronger denoisers compared to
conventional diffusion models. The DPDM is trained by initializing from a teacher
DM. The core idea of training DPDM lies in improving the denoisers’ data recovery
ability with noisy data as inputs. We formulate such an idea through the minimization
of suitable probability divergences between denoiser-recovered data distributions
and the ground truth data distribution. The sampling algorithm of the DPDM is exe-
cuted through an iterative process that interleaves data prediction and the sequential
introduction of noise. We conduct a comprehensive evaluation of the DPDM on two
tasks: data distribution recovery and the few-step image data generation. For the data
distribution recovery, the DPDM shows significantly stronger ability to recover data
distributions from noisy distribution. For the data generation task, we train DPDMs
on two benchmark datasets: the CIFAR10, and the ImageNet64× 64. We com-
pare the DPDM with baseline diffusion models together with other diffusion-based
multi-step generative models under the few-step generation setting. We observe the
superior performance advantage of DPDMs over competitor methods. In addition to
the strong empirical performance, we also elucidate the interconnections and com-
parisons between the DPDM and existing methodologies, which shows that DPDM
is a stand-alone generative model that is essentially different from existing models.

1 INTRODUCTION

In the past decade, the realm of deep generative models has marked substantial progress across diverse
domains, encompassing data generation (Karras et al., 2020; 2022; Nichol and Dhariwal, 2021; Oord
et al., 2016; Ho et al., 2022; Poole et al., 2022; Hoogeboom et al., 2022; Kim et al., 2022; Luo et al., 2023),
density estimation (Kingma and Dhariwal, 2018; Chen et al., 2019), image editing (Meng et al., 2021;
Couairon et al., 2022), and numerous others (Zhang et al., 2023; Yoon et al., 2021; Wang et al., 2022; Nie
et al., 2022). Particularly notable, recent advancements in text-driven high-resolution image generation
(Saharia et al., 2022; Ramesh et al., 2022; 2021; Rombach et al., 2022) have boldly extended the frontiers
of employing generative models in the domain of Artificial Intelligence Generated Content (AIGC).
Behind the empirical success are fruitful developments of a wide variety of deep generative models,
among which diffusion models (DMs) (Ho et al., 2020; Song et al., 2020b) are the most prominent.

DMs leverage the diffusion processes and model the data across a wide spectrum of noise levels. Their
ease of training, ability to scale, and high sample quality have made DMs the preferred option for
generative modeling. There are two significant characteristics of diffusion models. First, a DM is
a multi-step generative model, i.e., its generation process incorporates a composition of multiple
evaluations of the model’s network before outputting final samples. This multi-step character makes
the DM flexible in practice and powerful in modeling, distinguishing it from previous models such
as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Radford et al., 2015; Brock
et al., 2018; Karras et al., 2019; 2020); Second, the training of DMs can be interpreted as training
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a series of denoising auto-encoders (Bengio et al., 2013; Vincent, 2011; Song et al., 2020b), making
the concept of diffusion models easy to understand and aligned with human sense.

With the above two characteristics, DMs have shown promising generative performance with sufficient
sampling steps with a sequence of denoising operations. In spite of its distinguished performance,
the diffusion model has a significant drawback: its performance drops significantly when the number
of sampling steps is few, e.g. less than 10. This means that DMs can not result in satisfactory samples
when the computational resources are limited or there are strong demands on inference efficiency.
For instance, sampling from DMs often requires up to a total number of 50+ evaluations of the deep
neural network (NFEs) to give a promising performance, making it computationally inefficient. This
disadvantage greatly limits the wider use of DMs, especially on devices with a limited computational
ability such as mobile phones, and edge devices, or on other applications such as denoising-based
adversarial defenses (Zhang et al., 2023; Nie et al., 2022).

This drawback of DMs strongly motivates us to understand the reason for the performance drop when
the sampling steps are limited to be few. In this work, we reveal one of the most important reasons
for such a performance deficit of DMs with limited NFEs through an empirical observation in Section
3.1 which shows:

The DM’s training objective results in weak denoisers that have poor ability to recover the
data distribution with noisy distributions, so the model can not give high-quality samples
with few NFEs.

Driven by the findings of weak denoisers, one practical way to improve the few-step generative perfor-
mance is to enhance the capability of recovering data distribution. To this end, we introduce the Data
Prediction Denoising Model (DPDM), a stand-alone multi-step generative model that shows signif-
icantly stronger generative performance than DMs under a few sampling steps. The proposed DPDM
is constructed by improving the data recovery ability of each data-prediction denoiser of a teacher DM
by minimizing some well-defined distribution divergence. The enhanced denoisers are shown to be
able to better recover data distributions from the observed noisy data distributions which the DMs can
not achieve. With stronger denoisers, the DPDM significantly outperforms DMs with few NFEs.

To generate samples from DPDMs, we introduce a corresponding Data Prediction Denosing Sampling
algorithm, which we call DPDM sampler for short. The DPDM sampler is a different sampling
algorithm from the DMs’ SDE or ODE sampler. It consists of a sequence of successive iterations of
data-prediction denoising operations with denoisers and random noise additions. The DPDM sampler
is essentially different from DMs in several aspects which we analyze in Section 5.2.

The proposed DPDM is essentially different from diffusion models in both training methods and
sampling methods. The training method of diffusion models encounters an image reconstruction
objective (aL2 loss function) to train (potentially weak) denoisers. On the contrary, the DPDM is based
on minimizing a novel smoothed KL divergence between the denoiser distribution and the ground truth
data distribution. Each sampling step of DDPM gradually predicts the mean of the next-step denoised
distribution. On the contrary, each step of DPDM’s sampling step directly predicts clean data and
then adds a Gaussian noise to obtain samples from the less-noisy distribution. Overall, the DPDM
is a stand-alone multi-step generative model that differs from diffusion models in both concepts and
implementations.

To demonstrate the effectiveness of DPDM, we apply DPDM on two tasks: recovering data distribution
from noisy samples and the few-step image data generation. For the data distribution recovery
experiment, we first add noise to ground truth clean data and then use the denoisers from DPDM and
DM to denoise in order to recover the data distribution. The DPDM shows significantly better recovery
performance than baseline diffusion models. For the few-step image data generation experiment, we
train DPDM on two benchmark datasets: the CIFAR10, and the ImageNet64×64 datasets, following
the same settings as (Karras et al., 2022). For both datasets, the DPDM outperforms both the baseline
DMs and other diffusion-based multi-step generative models, such as consistency models(Song
et al., 2023), progressive distillation (Salimans and Ho, 2022), denoising diffusion GANs (Xiao et al.,
2021), and others (Luo et al., 2023; Luhman and Luhman, 2021; Zheng et al., 2023; 2022; Liu et al.,
2022; Zhao et al., 2023; Xue et al., 2023), under the few-step generation setting. Overall, the optimal
performance of DPDM is comparable to the baseline DMs with about three times more sampling steps
with DMs. All empirical experiments show strong performance of the proposed DPDM with limited
sampling steps. Besides that, we also compare the DPDM with other multi-step generative models
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in Section 4 in order to distinguish it from existing works. The comparison shows that the DPDM
is an essentially different model than previous ones.

To make the presentation clear, we summarize our contribution as follows:

• We analyze the reason for the performance drop of DMs with few sampling steps, by showing
that the DM’s trained denoisers have limited ability to recover data distribution from noisy
distributions; The analysis sheds some light on more improvements of DMs in the future;

• We introduce both the Data Prediction Denoising Model (DPDM), together with its training
and sampling algorithms. We set a solid mathematical foundation for DPDM through
divergence minimization;

• The experiments on image data generations demonstrate that DPDMs achieve the state-of-
the-art few-step generation ability among diffusion-based multi-step generative models.

2 PRELIMINARY

Assume p0 = pd denotes the underlying ground truth data distribution. For ease of mathematical
exposition, we use p0 and pd interchangeably. In generative modeling, we want to generate new samples
x0∼ p0(x0). Diffusion Models are the most potent generative models that use a neural network to
approximate the marginal score functions of a forward diffusion process that is initialized with p0.

Diffusion models. A diffusion model relies on a forward diffusion (2.1) to transform the initial
distribution p0 towards some simple noise distribution,

dxt=F (xt,t)dt+G(t)dwt, (2.1)

where F is a pre-defined drift function, G(t) is a pre-defined scalar-value diffusion coefficient, and wt

denotes an independent Wiener process. A multiple-level or continuous-indexed score network sϕ(x,t)
is usually employed in order to approximate marginal score functions of the forward diffusion process
(2.1). The learning of marginal score functions is achieved by minimizing a weighted denoising score
matching objective (Vincent, 2011; Song et al., 2020b),

LDSM (ϕ)=

∫ T

t=0

w(t)Ex0∼p0,xt|x0∼pt(xt|x0)∥sϕ(xt,t)−∇xt
logpt(xt|x0)∥22dt. (2.2)

Here the weighting function w(t) controls the importance of the learning at different time levels and
pt(xt|x0) denotes the conditional transition of the forward diffusion (2.1). In this paper, we only
consider the simplest diffusion unless especially emphasizing, for which xt=x0+σ(t)ϵ, ϵ∼N (0,I)
where σ(t) is a monotonic noise schedule function. Therefore, ∇xt

logpt(xt|x0)=− 1
σ(t)ϵ and the

training objective is simplified as (2.3):

LDSM (ϕ)=

∫ T

t=0

w(t)Ex0∼p0,ϵ∼N(0,I)

xt=x0+σ(t)ϵ

∥∥∥∥sϕ(xt,t)+
1

σ(t)
ϵ

∥∥∥∥2
2

dt. (2.3)

The trained score networksϕ(xt,t) is a good approximation of marginal score functions of diffused data
distribution spt(xt) :=∇xt logpt(xt), and high-quality samples can be drawn from DM by simulating
reversed SDE which is implemented by learned score network (Song et al., 2020b). However, the
simulation of an SDE is significantly slow and usually requires at least 20 sampling steps to obtain
satisfied samples. Therefore, a promising line of work shows that distilling the pre-trained teacher
diffusion model to an efficient student network is a strong method for enhancing generation efficiency.

3 DATA-PREDICTION DENOISING MODELS

The main goal of Data Prediction Denoising Models is to improve the data distribution recovery ability
from noisy data distributions. To begin with, we revisit the training objective of the vanilla diffusion
model from the noisy-denoising perspective and evaluate the effects of the trained denoiser model.
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3.1 REVISIT THE TRAINING OF DIFFUSION MODEL AS DENOISERS OF NOISY DISTRIBUTION

Revisit the Training of Diffusion Model. Recall the diffusion model’s training objective (2.3),
when the conditional diffusion is a Gaussian noise addition, i.e., xt|x0 ∼ N (xt; x0, σ

2(t)I),
the noisy data writes xt = x0 + σ(t)ϵ, ϵ ∼ N (0,I), and the conditional score function writes
∇xt

logpt(xt|x0)=−(xt−x0)/σ
2(t), and the training objective (2.3) is equivalent to

LData−Pred(ϕ)=

∫ T

t=0

w(t)

σ4(t)
Ex0∼p0,xt|x0∼pt(xt|x0)∥dϕ(xt,t)−x0∥22dt. (3.1)

The equation indicates that the map dϕ(xt,t) :=xt+σ2(t)sϕ(xt,t) is trained to predict the clean data
x0 with the noisy data xt=x0+σ(t)ϵ. This objective form is called the denoising objective and the
trained model dϕ(xt,t) is called a denoising auto-encoder (DAE) (Bengio et al., 2013; Vincent, 2011).
To some extent, the trained dϕ is supposed to be able to recover clean data x0 based on noisy data
xt, therefore there is an intuition that dϕ should be able to recover clean data distribution p0 from
noisy data distribution pt.

DM’s Denoisers are Weak for Recovering Data Distributions. The optimal denoiser trained with
(3.1) has an explicit form d∗(xt,t)=E[x0|xt], such an denoiser tends to predict an average denoised
sample based on current noisy data xt. When the added noise of xt is significantly large, the averaged
denoised data is blurred, which prevents the diffusion model from performing well with few generation
steps. To numerically verify the ability of the diffusion model’s denoisers to recover the data distribution
from noisy distributions, as demonstrated in Figure A.4, we take a real image of a resolution of 64×64
(i.e. a lovely dog in the Figure) and add different amount of Gaussian noise to it to obtain noisy data.
Then we use the pre-trained class conditional diffusion model from Karras et al. (2022). We use the
diffusion model’s corresponding denoisers to denoise noisy data and observe the denoised data sample.
We find that when the variance of added Gaussian noise grows, the diffusion model’s denoisers become
unable to produce high-quality samples based on noisy inputs. This indicates that using denoisers of
diffusion models to directly generate clean data from noisy data (i.e. random Gaussian noise) will lead
to poor performance. This weak ability of denoisers prevents the diffusion model from generating
high-quality samples when the sampling steps are set to be small. This finding motivates us to propose
algorithms that can enhance the ability to recover clean data distribution from noisy ones.

3.2 ENHANCING THE DENOISER THROUGH VARIATIONAL INFERENCE

Enhancing a single denoiser. Our goal is to obtain a denoiser that can exactly recover the clean data
distribution. We begin by introducing the basic setting. Let x0∼p0 be a clean data sample. Without
loss of generality, we consider the DM’s denoiser function for a fixed noise sigma σ(t)=1 to make
the discussion clear. Therefore, the noisy sample xt = x0+ϵ, ϵ∼N (0,I). Let d(xt,t) denote a
denoiser that is supposed to be able to recover clean data distribution with noisy data as inputs for
a fixed noise variance σ(t)=1. We omit the second argument t and use d(xt) for short. Let pt(xt)
denote the noisy distribution, and q0(x̂0) denotes the denoised distribution: x̂0∼q0(x̂0), x̂0=dθ(xt).
Let qt(x̂t) denote the noisy denoised distribution, for which another independent Gaussian noise is
added to the denoised data with x̂t= x̂0+ϵ.

The goal is to minimize some probability divergence between q0 and p0, such that the denoised distribu-
tion q0 can closely match the clean data distribution p0, therefore the denoiser obtains a strong data dis-
tribution recovery ability. More precisely, we consider the smoothed KL divergence, which is defined as:

Dsmooth−KL(q0,p0) :=DKL(qt,pt)=Ext∼qt log
qt(xt)

pt(xt)
(3.2)

Here pt(xt) denote the distribution of xt =x0+ϵ,x0 ∼ p0(x0),ϵ∼N (0,I), and qt(x̂t) is defined
as the distribution of x̂t = dθ(xt) + ϵ,xt ∼ pt(xt),ϵ ∼ N (0,I). From a high-level concept, the
distribution pt and qt stands for the noisy and noisy-denoised distribution, respectively. It is easy to
check that the smoothed KL divergence is a well-defined divergence and satisfies some robustness
for distributions with misaligned density support (check Appendix A.1 for details).

Proposition 3.1. The Dsmooth−KL(q0,p0) satisfies that Dsmooth−KL(q,p)≥0, ∀q,p. Furthermore,
the equality holds if and only if q=p, almost everywhere under measure q.
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Algorithm 1: Training Algorithm of DPDM
Input: pre-trained DM spt

(.), multi-step denoiser model dθ(.,.), data samples x0∼p0,
auxiliary diffusion model sϕ(.,.); variance function of diffusion noise schedule σ(t).

while not converge do
Update auxiliary diffusion model sϕ using SGD with gradient

Grad(ϕ)=
∂

∂ϕ

∫ T

t=0

w(t)E x0∼p0,ϵ,ϵ̃∼N(0,I),

xt=x0+σ(t)ϵ,x̃0=dθ(xt),x̃t=x̃0+σ(t)ϵ̃

∥∥∥∥sϕ(x̃t,t)+
1

σ(t)
ϵ̃

∥∥∥∥2
2

dt.

Update θ using SGD with the gradient

Grad(θ)=

∫ T

t=0

w(t)E x0∼p0,ϵ,ϵ̃∼N(0,I),

xt=x0+σ(t)ϵ,x̃0=dθ(xt),x̃t=x̃0+σ(t)ϵ̃

[
sϕ(x̃t,t)−spt

(x̃t)
]∂x̃t

∂θ
dt.

end
return θ,ϕ.

Algorithm 2: Sampling Algorithm of DPDM
Input: trained DPDM dθ(.,.), noise schedules {σ(tk)}k=1,...,K , initial samples x0=0
for k from 1 to K do

Add noise: xt=x0+σ(tk)ϵ,ϵ∼N (0,I);
Denoise: x0=dθ(xt,tk)

end
return x0.

In order to minimize the smoothed KL divergence (3.2) to learn a strong denoiser that is capable of
recovering clean data distribution, we need to know how to update the denoiser’s parameter. So in
Theorem 3.2, we give an explicit gradient formula for minimizing the smoothed KL divergence.

Theorem 3.2. Let sqt(xt) := ∇xt
log qt(xt) and spt

(xt) := ∇xt
log pt(xt), the gradient of the

smoothed KL in (3.2) between q0 and p0 is

Grad(θ)=Ext=dθ(x0+σ(t)ϵ)+σ(t)ϵ̃
x0∼p0,ϵ,ϵ̃∼N(0,I)

[
sqt(xt)−spt

(xt)
]∂xt

∂θ
. (3.3)

We put the proof of Theorem 3.2 in Appendix A.2. In gradient formula (3.3), we do not know the score
functionssqt(·) andspt(·). However, in practice, with the improvements in the design of score networks
(Peebles and Xie, 2022; Gao et al., 2023; Wei et al., 2023) in diffusion models, and the improved tech-
niques of score matching (Song et al., 2019; Vincent, 2011), the score functionspt

(.) of noisy data distri-
bution pt can be approximated with high accuracy by a well-pre-trained teacher diffusion model’s score
function (we may use spt

(·) to replace the pre-trained diffusion model interchangeably). The unknown
denoiser’s score function sqt(·) can be approximated by another auxiliary diffusion model sϕ(xt,t)
which is fine-tuned with denoised data x̃0. Therefore, by alternating the training iterations between
fine-tuning sϕ(.) and updating denoiser dθ with gradient (3.3), the denoiser will be trained to minimize
the smoothed KL divergence, therefore match the denoising distribution and the clean data distribution.

Generalize to multiple denoising levels. In previous paragraphs, we have derived the training
method for a single denoiser through the formulation of smoothed KL divergence minimization.
However, in practice, we want a multi-step generative model other than a single denoiser, so that
the performance and efficiency of data generation can be traded off. Therefore, in this paragraph, we
generalize the training method for single denoisers to multiple denoisers (continuously time-indexed
denoisers). To this end, we assume the DPDM model is parametrized as {dθ(xt,t)}t∈[0,T ] where
for each time index t, the mapping dθ(xt,t) accounts for a denoiser that aims to recover the data
distribution p0 with noisy distribution pt as the input. To make this, we generalize the gradient formula
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(3.3) for the single denoiser to an integral version (3.4):

Grad(θ)=

∫ T

0

w(t)E x̃t=dθ(x0+σ(t)ϵ)+σ(t)ϵ̃
x0∼p0,ϵ,ϵ̃∼N(0,I)

[
sqt(x̃t,t)−spt

(x̃t,t)
]∂x̃t

∂θ
dt. (3.4)

Here the weighting functionw(t) controls the importance of learning each denoisers. In practice, we find
that using the same weighting function as diffusion training (2.3) for gradient formula (3.4) works well.
The objective integrates the training of all denoisers by considering each noise variance level in one inte-
gral. Besides, the score functionssqt(x̃t,t) for each denoiser can be learned by a unified diffusion model
sϕ(x̃t,t), for which the data with each t is generated by adding noise to denoised samples, i.e. x̃t=
x̃0+σ(t)ϵ, ϵ∼N (0,I). Overall, the training algorithms of DPDM can be summarized in Algorithm 1.

Sampling Algorithms. With the training algorithm 1, strong denoisers (i.e. the DPDM) can be
trained which are capable of recovering data distribution with noisy samples. To make use of these
denoisers for sampling, we introduce a novel sampling algorithm 2 for DPDM. The algorithm 2
consists of multiple iterations of denoising and noise addition operations at a series of monotonically
decreasing noise levels {σ(tk)}k=1,...,K . In the initial sampling step, the denoiser takes a pure random
noise with a sufficiently large variance σ(t1) and outputs a predicted data sample. Then a Gaussian
noise with variance σ(t2) is added to the output data. Then the iteration loops from k=1 to k=K
and outputs the final generated sample. Figure A.4 gives a comprehensive demonstration of how the
DMDM’s sampling algorithms work. The alternative of the data-prediction denoising and Gaussian
noise addition steps gradually transforms an initial random noise into high-quality generated data.
The DPDM sampling algorithm is essentially different from the sampling algorithms of diffusion
models. One of the most significant differences lies in the continuity of the sampling trajectory. The
diffusion model’s sampling relies on the simulation of an SDE or ODE, which has strictly continuous
trajectories. On the contrary, the sampling of DPDM relies on data-prediction denoising and adding
a large independent Gaussian noise, therefore, its trajectory is not continuous.

4 RELATED WORK

Comparison with Diffusion Models. The diffusion model is a representative multi-step generative
model. As we analyze in section 2, the diffusion model minimizes the denoising score matching
objective (2.2) to train a series of neural-parametrized denoisers. After training, generated samples
are obtained by numerically simulating generative SDEs or ODEs (Xue et al., 2023; Zhao et al., 2023;
Lu et al., 2022; Karras et al., 2022; Song et al., 2020b) which is implemented with the trained neural
score functions (i.e. denoisers). Though diffusion and DPDM share some common concepts, such as
denoisers and multi-step generations, they are fundamentally different. First, as we show empirically
in section 3.1, the denoisers of DM have poor data distribution recovery ability when the scale added
noise is relatively large. On the contrary, as we will show in Section 5.1, the denoisers of DPDM
are shown to be able to better recover the clean data distribution, which indicates that the DPDMs
have strictly stronger denoisers than DMs. Second, the sampling algorithms of DPDMs and DMs
are very different. The sampling algorithm of DPDM consists of multiple iterations of alternatives
for denoising and noise additions whose trajectory is not continuous. On the contrary, the sampling
algorithms of DMs solve a numerical ODE or SDE whose trajectory is continuous.

Comparison with Consistency Distillation. The consistency model (Song et al., 2023) (CM) is
another representative multi-step generative model. It is trained by minimizing the self-consistency
function of the generative ODE of a teacher DM. After training, sampling from CM can be obtained
by iterations of denoising and noise addition, which is conceptually the same as the DPDM sampling.
However, the DPDM and CM have many differences. First, the training of CM (through distillation)
requires the simulation of the generative ODE, however, on the contrary, the training of DPDM does
not require numerically simulating an ODE. Second, as is introduced in Song et al. (2023) the CM
requires both a learned data metric (i.e. the LPIPS (Zhang et al., 2018). Such a learned neural metric
is tricky in practice and usually unavailable. On the contrary, the DPDM does not require any learned
neural metric, making it user-friendly in practice. Due to the page limitations, we put more discussions
on related works in Appendix A.3.
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Table 1: Comparison of clean data recovery ability of DPDM and baseline EDM diffusion model’s
denoisers on CIFAR10 dataset with a different standard deviation of added Gaussian noises. The
quality of clean data distribution recovery is measured by FID, which is the lower the better.

FID↓/σ of Noise 0.02 0.05 0.1 0.2 0.5 0.75 1.0 2.0 5.0 7.5 10.0

DM (EDM) 0.40 1.94 4.28 7.90 15.77 21.66 28.46 61.94 161.63 205.44 229.71
DPDM(ours) 0.13 0.37 0.65 1.08 2.46 4.40 7.11 23.59 100.86 155.98 192.47

Figure 1: Comparison samples from DPDM and DM under few-step generation. Left Two:
ImageNet-64×64 (conditional); Right Two: CIFAR-10 (unconditional).

5 EXPERIMENTS

The core concept of DPDM is the strong data distribution recovery ability of denoisers over diffusion
models. In this section, we choose the state-of-the-art diffusion model from the seminal work by
Karras et al. (2022) (we denote the EDM model) as the baseline diffusion model and consider training
DPDMs with the same architecture and diffusion process.

To quantitatively verify the data distribution recovery ability, in Section 5.1, we conduct an experiment
on DPDM and baseline DMs to recover data distributions from noisy data distributions at different
noise variances. The result reveals that the DPDM’s data distribution recovery ability is consistently
stronger than baseline DMs, which supports our claim and motivations in Section 3.1.

In Section 5.2, we use the trained DPDM for few-step image data generation. We evaluate the sampling
performances of DPDM and baseline EDM diffusion models with limited NFEs (less than 10 NFEs)
on two datasets. We measure the generative performances in terms of the Fretchat Inception Score
(FID (Heusel et al., 2017), the lower the better), which is a widely used metric for evaluating generative
modeling performances. On both datasets, the DPDM outperforms baseline DMs, together with other
diffusion-based multi-step generative models, significantly under the few NFE settings.

5.1 QUATITATIVE MEASUREMENT OF DISTRIBUTION RECOVERY ABILITY

Experiment Settings. In this experiment, we choose the CIFAR10 dataset to compare the data
distribution recovery ability of DPDM and DMs across different noise variances. The standard
deviation of added Gaussian noises is set to 0.02,0.05,0.1,0.2,0.5,0.75,1.0,2.0,5.0,7.5,10.0 which
varies from both small and large values. The DM and the DPDM are trained on the CIFAR10 dataset.
We add Gaussian noises with different variances to the training data to obtain noisy data, and then
input the noisy data into the corresponding denoiser of DPDM and DM to output recovered data.
To quantitatively measure the recovery ability of the data distribution. We compute the FID values
between two sets of clean data (i.e. the ground truth training data) and the recovered data. The FID
values account for how similar the two sets of images are in the sense of distributional matching. The
smaller the FID value is, the better distribution recovery the denoiser shows.

Performances. Table 1 summarizes the recovery FID of DPDM and DM. On all variance levels,
the DPDM’s induced denoisers consistently outperform the baseline diffusion models by a significant
margin. In Figure A.4, we provide a demonstration of how DPDM and the DM recover the data
distribution from noisy samples. We visualize the original data, the noisy data, and the recovered data
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Table 2: Unconditional sample quality on
CIFAR-10 through multi-step models.

METHOD NFE (↓) FID (↓)

Sufficient Steps (more than 10)
DDPM (Ho et al., 2020) 1000 3.17
LSGM (Vahdat et al., 2021) 147 2.10
PFGM (Xu et al., 2022) 110 2.35
EDM (Karras et al., 2022) 35 1.97
DDIM (Song et al., 2020a) 15 12.23
DPM-solver (Lu et al., 2022) 15 5.13
UniPC (Zhao et al., 2023) 15 5.02
EDM-ODE (Karras et al., 2022) 15 5.62
EDM-SDE (Karras et al., 2022) 15 8.94
SA-Solver (Xue et al., 2023) 15 4.91

Few Step (less than 10)
EDM (Karras et al., 2022) 10 15.5
3-DEIS (Zhang and Chen, 2022) 10 4.17
UniPC (Zhao et al., 2023) 8 5.10
PD (Salimans and Ho, 2022) 8 3.92
CD (Song et al., 2023) 8 2.92
UniPC (Zhao et al., 2023) 5 23.22
Denoising-Diffusion GAN(T=2) (Xiao et al., 2021) 2 4.08
PD (Salimans and Ho, 2022) 2 5.13
CT (Song et al., 2023) 2 5.83
CD (Song et al., 2023) 2 2.93
Denoising-Diffusion GAN(T=1) (Xiao et al., 2021) 1 14.6
DFNO (Zheng et al., 2022) 1 4.12
CT (Song et al., 2023) 1 8.70
1-ReFlow (+distill) (Liu et al., 2022) 1 6.18
2-ReFlow (+distill) (Liu et al., 2022) 1 4.85
3-ReFlow (+distill) (Liu et al., 2022) 1 5.21
PD (Salimans and Ho, 2022) 1 8.34
CD (Song et al., 2023) 1 3.55
Diff-Instruct (Luo et al., 2023) 1 4.53
DPDM (Ours) 5 3.85
DPDM (Ours) 8 2.68

Table 3: Class-conditional sample quality
ImageNet 64×64 through multi-step models.

METHOD NFE (↓) FID (↓)

Sufficient Steps (more than 10)
ADM (Dhariwal and Nichol, 2021) 250 2.07
SN-DDIM (Bao et al., 2022) 100 17.53
EDM-SDE (Karras et al., 2022) 79 2.44
EDM-SDE (Karras et al., 2022) 25 4.26
GGDM (Watson et al., 2022) 25 18.4
EDM-SDE (Karras et al., 2022) 15 8.94
EDM-ODE (Karras et al., 2022) 15 4.78
SA-Solver (Xue et al., 2023) 15 3.41
UniPC (Zhao et al., 2023) 15 3.41
DPM-Solver (Lu et al., 2022) 15 3.49
Few Step (less than 10)
EDM-ODE(Karras et al., 2022) 10 24.95
EDM-ODE(Karras et al., 2022) 8 33.90
PD (Salimans and Ho, 2022) 8 5.22
CD (Song et al., 2023) 8 4.70
CT (Song et al., 2023) 2 11.1
PD (Salimans and Ho, 2022) 2 8.95
CD (Song et al., 2023) 2 4.70
PD (Salimans and Ho, 2022) 1 15.39
CT (Song et al., 2023) 1 13.00
CD (Song et al., 2023) 1 6.20
Diff-Instruct (Luo et al., 2023) 1 5.57
DPDM (Ours) 5 3.98
DPDM (Ours) 8 3.66

by DPDM and DM respectively. The result shows that the DPDM is able to recover high-quality clean
data from noisy samples, while the DM can only recover the rough shape of the original data.

5.2 FEW-STEP IMAGE GENERATION

Settings. In this experiment, we show the superior generative performance of the DPDMs under a few
sampling steps. we train and use the DPDM on image generation on the CIFAR-10 (Krizhevsky et al.,
2014) and the ImageNet 64×64 (Deng et al., 2009) datasets. We compare the DPDM with the baseline
EDM (Karras et al., 2022) models and other diffusion-based multi-step generative models. We evaluate
the performance of the trained DPDM via FID. More experiment details are put in Appendix B.1.

Performances. Tables 2 and 3 summarize the FID values of DPDM, the baseline EDMs, along with
other multi-step generative models on the CIFAR10 datasets (unconditional without labels) and the
conditional generation on the ImageNet 64×64 data. The notation NFE refers to sampling steps. On
both datasets, DPDM performs significantly better than both baseline EDMs and other diffusion-based
multi-step models under the few NFE settings (NFE no larger than 10).

As shown in Table 3 and 2, DPDM shows an FID of 3.66 on ImageNet64× 64 with only 8 NFEs
and an FID of 2.68 on CIFAR10 unconditional generation with 8 NFEs. On both datasets, DPDM
shows the best FID value among both diffusion-based few-step models and few-step diffusion solvers,
such as consistency distillation (CD) and the consistency training (Song et al., 2023), the progressive
distillation (Salimans and Ho, 2022), the Diff-Instruct (Luo et al., 2023), the DD-GAN (Xiao et al.,
2021) and the diffusion model with various sampling algorithms such as SA-SolverXue et al. (2023),
UniPC(Zhao et al., 2023), and the DPM-Solver (Lu et al., 2022). It is worth noting that the CD, CT,
Diff-Instruct, PD, and EDM with SDE/ODE samplers all share the same model architecture and
the teacher diffusion model (if necessary), therefore the comparison with these models especially
highlights the promising few-step generation ability of DPDM. Besides, According to Table 2, the
5-step generation performance of DPDM (with an FID of 3.85) is better than the 15-step generation
performance of the baseline EDM model (with an FID of 5.62). This indicates that DPDM achieves
about 3 times more efficiency than baseline diffusion models with competitive performances.
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Table 4: Comparison of FID values of DPDM and baseline EDM model on CIFAR10 and ImageNet64
datasets. The DPDM shows significantly better FID than the baseline Diffusion Model with few NFEs.

FID↓/NFE 4 5 6 7 8 9 10 12 14 16 18

EDM 95.25 68.71 51.07 36.59 28.69 22.97 18.98 13.92 7.14 4.52 3.24
DPDM(ours) 7.16 3.85 2.77 2.72 2.68 2.68 2.68 2.68 2.68 2.68 2.68

Figure 1 shows some non-cherry-picked few-step generated samples from DPDM and baseline EDM
models on the ImageNet64×64 and the CIFAR10 datasets. The DPDM data is generated with sampling
algorithms 2, while the DM samples are generated with DM’s default ODE samplers. We find that using
DPDM’s sampling algorithm for DM leads to worse performance than DM’s original sampling algo-
rithms. As is shown in Figure 1, the DPDM is able to generate high-quality samples with good diversities
with no more than 10 NFEs. On the contrary, the diffusion model fails to generate satisfactory samples
with such few sampling steps. In conclusion, the DPDM achieves promising few-step generative perfor-
mance under challenging few-step settings. We put more discussions and analyses in the Appendix B.1.

Detailed Comparison with Different Sampling Steps. Table 4 shows the detailed FID values of
DPDM and baseline EDM models on the CIFAR10 dataset with different NFEs. The result shows that
the DPDMs show significantly superior performance than EDM with limited NFEs (i.e. 4-18 NFEs).
Such an advantage arises from the improved denoisers of DPDM over baseline DMs. As is shown
in Table 4, the FID value of DPDM quickly becomes less than 3.0 with 6 NFEs, and the optimal FID is
attained with 9 NFEs. After that, the FID value of DPDM saturates and holds about 2.68, which is also
better than the baseline EDM model with 18 NFEs. We also give a Figure A.4 which visualizes batches
of samples from the same DPDM model on CIFAR10 with different sampling steps. The visualization
shows that the generated samples become poor when the NFEs are set to be less than 5.

Exploration the Combination of Model and Sampling Algorithms. In this paragraph, we give
an intuitive exploration of the DPDM’s sampling algorithm 2 with the diffusion model’s default
sampling algorithms. Since both DPDM and DM can provide denoisers, therefore the combination
of model and sampling algorithms seems flexible. To explore the effects of using DPDM and DM with
different sampling algorithms, we try the four sampling configurations on the CIFAR10 unconditional
generation task, which are DPDM+DPDM sampler, DM+DPDM sampler, DPDM+Diffusion sampler,
and DM+diffusion sampler. We calculate the FID as a metric and also visualize the generated samples
with 7 NFEs in Figure A.4. As is shown in Figure A.4, the DPDM with DPDM sampler shows the best
performances, and the DM with DM sampler shows the second. The cross-use of models and samplers
gives very low-quality samples. This result shows that the DPDM model and sampler are closely paired,
which demonstrates from another aspect that the DPDM is totally different from diffusion models. We
think more exploration and development of more advanced DPDM samplers is an important direction,
which may further improve the generation performance of DPDM with the same sampling steps.

Training Efficiency and GPU-memory Cost. Another characteristic of the DPDM is its good
training efficiency and moderate GPU memory requirements. Take the CIFAR10 dataset as an instance,
we find that the DPDM’s FID (7 sampling steps) converges to 2.72 within 100k training iterations with
a batch size of 128. The wall-clock time that it costs is about 13 hours on a cluster with 4 Nvidia 2080ti
GPUs and with PyTorch distributed data-parallel framework, which is considered not time expensive.
As for the training memory costs, we compare the memory costs of DPDM with consistency distillation
as a baseline. We summarize the GPU and CPU statistics during training in Table 6. Both models are
trained on a 2 Nvidia 2080ti GPU with PyTorch DDP framework. In conclusion, the training of DPDM
consumes more GPU memory costs and almost the same CPU memory as CD. This is due to that the
training of DPDM involves deploying an auxiliary diffusion model as we introduced in algorithm
1. Fortunately, the auxiliary DM and the DPDM are updated alternatively, therefore, the training does
not need to backpropagate through a large computational graph that involves both the auxiliary DM
and the DPDM. As a result, the additional training memory cost is moderate and acceptable.
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6 CONCLUSION AND LIMITATIONS

In this work, we have presented a novel multi-step generative model that we call the data-prediction
denoising model (DPDM). We have shown that empirically, DPDM has a stronger denoising ability
than diffusion models. We have also shown that empirically DPDM outperforms other multi-step
generative models such as DMs, PDs, CMs, and Denoising-Diffusion GAN models under the few-step
setting (less than 10 NFEs when sampling). In conclusion, the DPDM has been shown to be a
promising multi-step diffusion-based generative model.

Nonetheless, DPDM has its limitations that call for further research along this line. First, despite its
promising generative ability, DPDM has shown sub-optimal performance than diffusion models if
the sampling steps are set to be sufficient. This limitation motivates us to further improve DPDM in
future work. Second, the training of DPDM relies on an auxiliary diffusion model, which may bring
additional memory costs. We hope our exploration of DPDM could shed some light and contribute to
developing more efficient and powerful multi-step generative models for the community in the future.
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A TECHNICAL DETAILS

A.1 ROBUSTNESS OF SMOOTHED KL DIVERGENCE

One of the benefits of the smoothed KL divergence over the traditional KL divergence is its robustness
to misaligned density support. To illustrate this advantage, we consider a well-known example in
Arjovsky et al. (2017). Let z be a random variable following the uniform distribution on the unit interval
[0,1]. Consider P0 to be the distribution of (0,z)∈R2. Now let gθ(z)=(θ,z), where θ is a single real
parameter. The density of P0 and Pθ are p0(x,z) = Ix=0(x)I[0,1](z) and pθ(x,z) = Iθ(x)I[0,1](z).
Since for each θ ̸=0, the support of pθ and p0 does not intersect, the KL divergence between Pθ and
P0 is ill-defined with

DKL(Pθ,P0)=

{
+∞ θ ̸=0;

0 θ=0.
(A.1)

The same is also true for the Jensen-Shannon divergence where

DJS(Pθ,P0)=

{
log2 θ ̸=0;

0 θ=0.
(A.2)

So minimizing the KL divergence with a gradient-based algorithm does not lead the generator to
converge to the correct parameter θ = 0. However, the smoothed KL divergence (defined in (3.2))
provides a finite and reliable objective for training the generator. More precisely, considering the
simple diffusion defined in (2.3): xt =x0+σ(t)ϵ,ϵ∼N (0,I). The marginal distribution of (x,z)
initialized with P0 and Pθ writes

p
(t)
0 (x,z)=N (x;0,t)

∫ 1

0

N (z;s,t)ds,

p
(t)
θ (x,z)=N (x;θ,t)

∫ 1

0

N (z;s,t)ds,

which are defined on (x,z)∈R2. The notation N (x;µ,σ2) represents the density function of Gaussian
distribution with mean µ and variance σ2. The smoothed KL divergence with weight function thus
has the expression

Dsmooth−KL(Pθ,P0)=E
(x,z)∼p

(t)
θ (x,z)

log
q(t,θ)(x,z)

p
(0)
θ (x,z)

=E
(x,z)∼p

(t)
θ (x,z)

log
N (x;θ,t)

N (x;0,t)

=Ex∼N (x;θ,t)log
N (x;θ,t)

N (x;0,t)
(A.3)

=Ex∼N (x;θ,t)
1

2t

[
x2−(x−θ)2

]
=Ex∼N (x;θ,t)

1

2t

[
2θx−θ2

]
=

1

2t
θ2, θ∈R.

For each t > 0, Dsmoothed−KL is finite. The smoothed KL divergence in (A.3) is a differentiable
quadratic function of parameter θwith a single minima θ=0which lead to theDsmooth−KL(Pθ,P0)=0.
Table 5 shows a summary of the comparison among smooth KL divergence, KL divergence, and
the Wasserstein distance between Pθ and P0. The smooth KL is more suitable for learning θ with
gradient-based optimization algorithms.

A.2 THE PROOF OF THEOREM 3.2

Theorem A.1. Let sqt(xt) := ∇xt
log qt(xt) and spt

(xt) := ∇xt
logpt(xt), the gradient of the

smoothed KL in (3.2) between q0 and p0 is

Grad(θ)=E xt=dθ(x0+ϵ)+ϵ̃

x0∼p0,ϵ,ϵ̃∼N(0,I)

[
sqt(xt)−spt(xt)

]∂xt

∂θ
.
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Divergence distance smooth

smooth KL (ours) ∝θ2 ✓
KL +∞(A.1) ✗

Wasserstein ∝|θ| (Arjovsky et al., 2017) ✗
Jensen-Shannon log2 (A.2) ✗

Table 5: Comparison of divergence property against smooth KL.

Proof. Recall the definition of pt and qt: pt(xt) denote the distribution ofxt=x0+ϵ,x0∼p0(x0),ϵ∼
N (0,I), and qt(x̂t) is defined as the distribution of x̂t=dθ(xt)+ϵ̃,xt∼pt(xt),ϵ̃∼N (0, I). There
are two terms that contain the denoiser’s parameter θ. The term x̂t contains parameter through
x̂t=dθ(x0+ϵ)+ϵ̃. The marginal density qt also contains parameter θ implicitly since qt is initialized
with q0 which is recovered by the denoiser dθ. To demonstrate the parameter dependence, we may
use q(t,θ) to represent qt.

The pt is defined through the pre-trained diffusion models with score functions spt
. The smoothed

KL divergence between qt and pt is defined with,

Dsmooth−KL(q0,θ,p0) :=DKL(q(t,θ),pt)=Ext∼q(t,θ)

[
log

q(t,θ)(xt)

pt(xt)

]
(A.4)

Taking the θ gradient of smooth KL (A.4), we have

∂

∂θ
Dsmooth−KL(q(t,θ),pt)

=
∂

∂θ
E xt=x0+ϵ,

x0∼p0(x0),ϵ,ϵ̃∼N(0,I)

[
log

q(t,θ)(dθ(xt)+ϵ̃)

pt(dθ(xt)+ϵ̃)

]
=E xt=x0+ϵ,

x0∼p0(x0),ϵ,ϵ̃∼N(0,I)

∂

∂θ

[
log

q(t,θ)(dθ(xt)+ϵ̃)

pt(dθ(xt)+ϵ̃))

]
=E xt=x0+ϵ,

x0∼p0(x0),ϵ,ϵ̃∼N(0,I)
∇xt

[
log

q(t,θ)(dθ(xt)+ϵ̃)

pt(dθ(xt)+ϵ̃))

]∂[dθ(xt)+ϵ̃
]

∂θ

+Ext=x0+ϵ,x̂t=dθ(xt)+ϵ̃

x0∼p0(x0),ϵ,ϵ̃∼N(0,I)

∂

∂θ
logq(t,θ)(x̂t)|x̂t=dθ(xt)+ϵ̃

=Ext=x0+ϵ,x̂t=dθ(xt)+ϵ̃

x0∼p0(x0),ϵ,ϵ̃∼N(0,I)

∇x̂t

[
log

q(t,θ)(x̂t)

pt(x̂t))

]∂x̂t

∂θ
+Ex̂t∼q(t,θ)

∂

∂θ
logq(t,θ)(x̂t)

=A+B. (A.5)

The term A in equation (A.5) writes

A=Ex̂t∼q(t,θ)

[
sqt(x̂t)−spt

(x̂t)
]∂xt

∂θ
(A.6)

We show that the term B in equation (A.5) vanishes.

B=Ex̂t∼q(t,θ)

∂

∂θ
logq(t,θ)(x̂t)

=

∫
1

q(t,θ)(x̂t)

∂

∂θ
q(t,θ)(x̂t)q(t,θ)(x̂t)dx̂t

=

∫
∂

∂θ
q(t,θ)(x̂t)dx̂t

=
∂

∂θ

∫
q(t,θ)(x̂t)dx̂t (A.7)

=
∂

∂θ
1dx̂t

=0

(A.8)
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The equality (A.7) holds if function q(t,θ)(x) satisfies the conditions (1). q(t,θ)(x) is Lebesgue
integrable for x with each θ; (2). For almost all x∈RD, the partial derivative ∂q(t,θ)(x)/∂θ exists
for all θ∈Θ. (3) there exists an integrable function h(.) :RD→R, such that q(t,θ)(x)≤h(x) for all
x in its domain. Then the derivative w.r.t θ can be exchanged with the integral over x, i.e.∫

∂

∂θ
q(t,θ)(x)dx=

∂

∂θ

∫
q(t,θ)(x)dx.

A.3 MORE DISCUSSIONS ON RELATED WORKS

Compare DPDM with Other Multi-step Models. Luo et al. (2023) proposed the Diff-Instruct, a
strong data-free method that can distill the teacher diffusion model into one-step student generative
models. The foundation of Diff-Instruct is based on minimizing an integral Kullback-Leibler diver-
gence, which shares a similar form of our gradient expression (3.4) of DPDM. However, the DPDM has
fundamentally different concepts from Diff-Instruct. First, the Diff-Instruct only supports the training
of a one-step implicit generative model, i.e. a direct generator. Instead, the DPDM aims to train a series
of strong denoiser models, which are composed to form a multi-step generative model. Second, since
the training of DPDM is based on denoising noisy data, it requires the ground truth dataset. On the
contrary, the Diff-Instruct does not rely on the ground truth dataset for training one-step generative
models. Third, as we show in Table 3 in Section 5.2, the generative performance of multi-step DPDM
is significantly better than the one-step generator trained with Diff-Instruct on each benchmark. This
shows the benefits of multi-step generative modeling over the single-step model. Fourth, the trained
denoisers of DPDM are able to be used for tasks, such as data distribution recovery, as we introduced in
Section 5.1, for which the Diff-Instructed one-step generator can not be used.

The progressive Distillation (PD (Salimans and Ho, 2022)) and Denoising Diffusion GANs (DD-GAN)
(Xiao et al., 2021) are two other representative multi-step generative models. These two models use
neural mappings to implement the distribution transfers between intermediate consecutive marginal
distributions of the diffusion processes. Therefore, their inference does not support the flexible choice
of sampling steps. This means that if a PD or DD-GAN model is trained to support 8 steps, it can not
support the inference with more or less than 8 steps. The DPDM follows a different concept from PD and
DD-GAN. The DPDM directly learns the mapping that transfers noisy data to clean data. This makes
the DPDM highly flexible because the model’s multiple inference steps all lead to the data (instead
of inter-mediate noisy data). Therefore, DPDM can support arbitrary sampling steps in practical uses.

A Detailed Comparison with Diff-Instruct Luo et al. (2023) proposed the Diff-Instruct, a strong
data-free method that can distill the teacher diffusion model into one-step student generative models.
Let spt

denote the marginal score functions provided by pre-trained teacher diffusion models, where
pt(xt)’s are the underlying diffused data distributions at time t according to (2.1). Assume spt

provides
a sufficiently good approximation of diffused data distribution. The goal of Diff-Instruct is to use score
functions provided by teacher DM to train a one-step student, i.e. a generator that takes a random
noise z∼pz to obtain generated data x0=gθ(z), where gθ is a neural network with the same output
dimension as the data. Let qt = qg denote the distribution of the one-step student generator, and
sqt(xt) :=∇xt logqt(xt) be the marginal score functions of the generator distribution after forward
diffusion. Luo et al. (2023) shows that the one-step student can be trained by minimizing the Integral
Kullback-Liebler (IKL) divergence between the generator and the teacher diffusion model’s distribution
as defined in (A.9)

D[0,T ]
IKL(qg,pd) :=

∫ T

t=0

w(t)DKL(qt,pt)dt :=

∫ T

t=0

w(t)Ext∼qt

[
log

qt(xt)

pt(xt)

]
dt, (A.9)

They show that the parameter gradient to minimize the IKL has an explicit formula (A.10)

Grad(θ)=

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼pt(xt|x0)

[
sqt(xt)−spt

(xt)
]∂xt

∂θ
dt. (A.10)

In practice, Luo et al. (2023) shows that the generator score function sqt(xt) is estimated via fine-
tuning an auxiliary diffusion model sϕ(xt, t) as proposed in Luo et al. (2023). The Diff-Instruct
achieves strong performance when distilling diffusion models to a single-step generator, leading to
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extreme acceleration of DMs. However, it has its own limitation: it can only distill diffusion models
to one-step generators, but for complex data distributions, a single-step generator is not powerful
enough to maintain the strong performance of the diffusion models. A preferred generative model
is usually assumed to support both single-step and multi-step generations to trade-off efficiency and
strong performance.

The Diff-Instruct has shown promising results, which are capable of training a one-step student model
that is comparable to multi-step teacher diffusion models and, therefore achieves tens of sampling
accelerations. However, the Diff-Instruct can only distill the teacher diffusion model into one-step
generators. Therefore the performance and flexibility are limited by the one-step student’s architecture.
Though the goal of Diff-Instruct and DPDM is very different, in our work, we borrow some common
concepts from Diff-Instruct when introducing the training algorithm of our DPDM.

Furthermore, DPDM offers very high flexibility to the generator, distinguishing it from traditional
diffusion distillation methods that impose strict constraints on the generator selection. For instance, the
generator can be a convolutional neural network (CNN)-based or a Transformer-based image generator
such as StyleGAN (Karras et al., 2019; 2020; 2021; Lee et al., 2021), or an UNet-based generator (Xiao
et al., 2021) adapted from pre-trained diffusion models (Karras et al., 2022; Song et al., 2020b; Ho et al.,
2020). The versatility of DPDM allows it to be adapted to different types of generators, expanding its
applicability across a wide range of generative modeling tasks. In the experiment sections, we show that
DPDM is capable of transferring knowledge to generator architectures including both UNet-based and
GAN generators respectively. To the best of our knowledge, the DPDM is the first approach to efficiently
enable such a data-free knowledge transfer from diffusion models to generic implicit generators.
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Figure 2: Demonstration of the denoising effect of diffusion model’s denoisers. When the variance
of the added Gaussian noise grows, the DM’s denoisers quickly become unable to recover the clean
data (and the data distribution). This drawback limits the DM’s generation performance when
sampling steps are limited to be few. Upper: noisy data; Under: denoised data by diffusion model’s
corresponding denoisers.

Figure 3: Demonstration of the DMDP’s sampling algorithm 2. The algorithm consists of successive
iterations of a data prediction denoising step and a Gaussian noise addition step.

Figure 4: Visualization of Data Recovery performance of DPDM and DM.

Table 6: Statistics of training memory costs of DPDM on Cifar10 datasets.

Model/ Stats Peak GPU-Memo(GB) Peak CPU-Memo(GB) Sec-per-K Iterations

CD 9.55 2.75 0.0489
DPDM 10.40 2.78 0.0728

A.4 ALGORITHMS, TABLES AND FIGURES
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Figure 5: Comparison of performance of DPDM with different sampling steps on CIFAR10
unconditional generation.

Figure 6: Comparison of samples from DPDM and DM with different sampling algorithms on
CIFAR10 unconditional generation.

B MORE ON EXPERIMENTS

Settings. To demonstrate the efficacy of our proposed DPDM, We choose the state-of-the-art EDMs
Karras et al. (2022) as baselines, which have achieved state-of-the-art generative performance on several
benchmarks such as CIFAR10 and ImageNet 64×64. The EDM model depends on the diffusion process

dxt=G(t)dwt,t∈ [0,T ]. (B.1)
Samples from the forward process (B.1) can be generated by adding random noise to the output
of the generator function, i.e., xt = x0 + σ(t)ϵ where ϵ ∼ N (0, I) is a Gaussian vector and

σ(t) :=
√∫ t

0
G2(s)ds is a function with explicit expressions. We download the pre-trained model

checkpoints from the official website1 and consider transferring their knowledge to implicit generative
models, specifically UNet and StyleGAN as generators.

We compare the DPDM with the baseline EDM (Karras et al., 2022) models and other diffusion-based
multi-step generative models. We evaluate the performance of the trained DPDM via FID. We calculate
the FID in the same way as the StyleGAN2-ADA2 codebase. For the ImageNet 64×64 dataset, we
use the same pre-processing scripts as the EDM model on the ImageNet 64×64 dataset.

B.1 DETAILED EXPERIMENTAL SETTINGS OF FEW-STEP IMAGE GENERATION

Sampling Configurations. The sampling algorithm 2 relies on a pre-defined sequence of standard
deviations. In our implementation, we follow a similar concept of EDM sampler (Karras et al., 2022),
in which the discretized noise levels in algorithm 2 are chosen by

σk<K=(σ
1
ρ
max

i

K−1
(σ

1
ρ

min−σ
1
ρ
max))

ρ, and σK=0

Here we set σmax=80.0,ρ=40.0 and σmin to vary for different sampling steps. The values for σmin

are put in Table B.1.
1https://github.com/NVlabs/edm
2https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 7: Choice of hyper-parameters σmin of sampling algorithm for different NFEs.

σmin/↓/NFE 4 5 6 7 8 9 10 12 14 16 18

σmin 0.3 0.2 0.1 0.015 0.0035 0.00055 0.0001 0.0001 0.0001 0.0001 0.0001

Table 8: Hyperparameters used for training DPDM
Hyperparameter CIFAR-10 (Uncond) ImageNet 64×64 CIFAR-10 (Cond)

DM sϕ DPDM dθ DM sϕ DPDM dθ DM sϕ DPDM dθ

Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
Batch size 128 128 96 96 128 128
Adam β0 0.0 0.0 0.0 0.0 0.0 0.0
Adam β1 0.99 0.99 0.99 0.99 0.99 0.99
Training iterations 100k 100k 50k 50k 100k 100k
Number of GPUs 4 4 8 8 4 4

Detailed Performances. Tables 2 and 3 summarize the FID values of DPDM, the baseline EDMs,
along with other multi-step generative models on the CIFAR10 datasets (unconditional without labels)
and the conditional generation on the ImageNet 64×64 data. The notation NFE in both tables refers
to the number of neural function evaluations, which represents the number of sampling steps for a
multi-step model. On both datasets, DPDM performs significantly better than both baseline diffusion
models and other diffusion-based multi-step generative models under the few NFE settings (NFE
no larger than 10). Besides, DPDMs perform competitively across all datasets among multiple-step
generative models, which involve both models from diffusion distillation or direct training.

As shown in Table 3 and Table 2, on the ImageNet dataset of the resolution of 64× 64, DPDM
outperforms diffusion-based single-step generative models in terms of FID, achieving a state-of-the-art
few-step generation performance among diffusion-based models with an FID of 3.61 and an NFE of 10.
On the unconditional generation of the CIFAR10 dataset, DPDM achieves the state-of-the-art few-step
FID value among diffusion-based generative models, with an FID of 2.68 and an NFE of 8. It out-
performs other mult-step generative models such as consistency distillation (CD) and the consistency
training (Song et al., 2023), the progressive distillation (Salimans and Ho, 2022), the Diff-Instruct (Luo
et al., 2023), the DD-GAN (Xiao et al., 2021) and the diffusion model with various sampling algorithms
such as SA-SolverXue et al. (2023), UniPC(Zhao et al., 2023), and the DPM-Solver (Lu et al., 2022).
It is worth noting that the CD, CT, Diff-Instruct, PD, and EDM with SDE/ODE samplers all share
the same model architecture and the teacher diffusion model (if necessary), therefore the comparison
with these models especially highlights the promising few-step generation ability of DPDM.

According to Table 2, the 5-step generation performance of DPDM (with an FID of 3.85) is better
than the 15-step generation performance of the baseline EDM model (with an FID of 5.62). This
indicates that DPDM achieves about 3 times more efficiency than baseline diffusion models with
competitive performances. Figure 1 shows some non-cherry-picked few-step generated samples from
DPDM and baseline EDM models on the ImageNet64×64 and the CIFAR10 datasets. The DPDM
data is generated with sampling algorithms 2, while the DM samples are generated with DM’s default
ODE samplers. We find that using DPDM’s sampling algorithm for DM leads to worse performance
than DM’s original sampling algorithms. As is shown in Figure 1, the DPDM is able to generate
high-quality samples with good diversities with no more than 10 NFEs. On the contrary, the diffusion
model fails to generate satisfactory samples with such few sampling steps. In conclusion, the DPDM
achieves promising few-step generative performance under challenging few-step settings.

Other training details. Following Luo et al. (2023), we initialize the auxiliary diffusion model
sϕ(.,.) with the weight parameters of pre-trained DM. We train the DPDM and auxiliary model on
a 4-GPU cluster with Nvidia 2080ti GPUs. We implemented the training program with PyTorch of
version 1.12.1 and the default distributed data-parallel mechanism for parallel training. During training,
we use our DPDM algorithm 1 to update the auxiliary DM and the DPDM’s parameters. We use the
Adam optimizer for both the DM and the generator. For the DPDM, we use the same exponential
moving average (EMA) technique as the EDM model’s training scripts. Table 8 summarizes some
hyper-parameters for training DPDMs on CIFAR10 and ImageNet64×64 datasets.
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Training Efficiency and GPU-memory Cost. Another characteristic of the DPDM is its good
training efficiency and moderate GPU memory requirements. More precisely, on CIFAR10 datasets,
we find that the DPDM’s generation FID (7 sampling steps) converges to 2.72 within 100k training
iterations with a batch size of 128. The wall-clock time that the training costs is about 13 hours on
a cluster with 4 Nvidia 2080ti GPUs and with PyTorch distribution data parallel training framework.
Overall, we find empirically that the training time costs are comparable with consistency distillation.
As for the training memory costs, we compare the memory costs of DPDM with baseline consistency
distillation. We summarize the GPU and CPU statistics during training in Table 6. Both models are
trained on a 2 Nvidia 2080ti GPU with PyTorch DDP parallel framework. In conclusion, the training of
DPDM consumes more GPU memory costs and almost the same CPU memory as CD. This is due to that
the training of DPDM involves deploying an auxiliary diffusion model as we introduced in algorithm
1. Fortunately, the auxiliary DM and the DPDM are updated alternatively, therefore, the training does
not need to backpropagate through a large computational graph that involves both the auxiliary DM
and the DPDM. As a result, the additional training memory cost is moderate and acceptable.
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